1
|
Yu XF, Zeng XX, Wang XY, Du J, Wang XH, Liu YJ, Chen ML, Zhang XY, Xiao X, Yang LJ, Lei T, Gao SP, Li X, Jiang MY, Tao Q. Integrated cell wall and transcriptomic analysis revealed the mechanism underlying zinc-induced alleviation of cadmium toxicity in Cosmos bipinnatus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108940. [PMID: 39024781 DOI: 10.1016/j.plaphy.2024.108940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Plant growth is severely harmed by cadmium (Cd) contamination, while the addition of zinc (Zn) can reduce the toxic effects of Cd. However, the interaction between Cd and Zn on the molecular mechanism and cell wall of Cosmosbipinnatus is unclear. In this study, a transcriptome was constructed using RNA-sequencing. In C. bipinnatus root transcriptome data, the expression of 996, 2765, and 3023 unigenes were significantly affected by Cd, Zn, and Cd + Zn treatments, respectively, indicating different expression patterns of some metal transporters among the Cd, Zn, and Cd + Zn treatments. With the addition of Zn, the damage to the cell wall was reduced, both the proportion and content of polysaccharides in the cell wall were changed, and Cd accumulation was decreased by 32.34%. In addition, we found that Cd and Zn mainly accumulated in pectins, the content of which increased by 30.79% and 61.4% compared to the CK treatment. Thus, Zn could alleviate the toxicity of Cd to C. bipinnatus. This study revealed the interaction between Cd and Zn at the physiological and molecular levels, broadening our understanding of the mechanisms of tolerance to Cd and Zn stress in cosmos.
Collapse
Affiliation(s)
- Xiao-Fang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiao-Xuan Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yu Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Du
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin-Hao Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu-Jia Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mao-Lin Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin-Yu Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li-Juan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Su-Ping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming-Yan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
2
|
Qin XL, Zhao YQ, Zhang DJ, Wang KY, Chen WH, Tang ZZ, Chen YE, Yuan S, Ye L, Yuan M. Three species of rape responded to cadmium and melatonin alleviating Cd-toxicity in species-specific strategy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124178. [PMID: 38763294 DOI: 10.1016/j.envpol.2024.124178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Cadmium (Cd) pollution has been a significant concern in heavy metal pollution, prompting plants to adopt various strategies to mitigate its damage. While the response of plants to Cd stress and the impact of exogenous melatonin has received considerable attention, there has been limited focus on the responses of closely related species to these factors. Consequently, our investigation aimed to explore the response of three different species of rape to Cd stress and examine the influence of exogenous melatonin in this scenario. The research findings revealed distinctive responses among the investigated rape species. B. campestris showed the resistance to Cd and exhibited lower Cd absorption and sustained its physiological activity under Cd stress. In contrast, B. juncea accumulated much Cd and increased the amount of anthocyanin to mitigate the Cd-damage. Furthermore, B. napus showed the tolerance to Cd and tended to accumulate Cd in vacuoles under Cd stress, thereby decreasing the Cd damage and leading to higher activity of antioxidant enzymes and photosynthesis. Moreover, the application of exogenous melatonin significantly elevated the melatonin level in plants and mitigated Cd toxicity by promoting the activity of antioxidant enzymes, reducing Cd absorption, enhancing the chelating capacity with Cd, decreasing Cd accumulation in organelles, and reducing its fluidity. Specifically, exogenous melatonin increased the FHAc content in B. campestris, elevated the phytochelatins (PCs) level in B. napus, and stimulated photosynthesis in B. juncea. In summary, the findings underscore the species-specific responses of the three species of rape to both Cd stress and exogenous melatonin, highlighting the potential for tailored mitigation strategies based on the unique characteristics of each species.
Collapse
Affiliation(s)
- Xiao-Long Qin
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Yu-Qing Zhao
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - De-Jun Zhang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Ke-Yu Wang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Wen-Hui Chen
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Zi-Zhong Tang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, 611130, Chengdu, China
| | - Lin Ye
- College of Animal Science and Technology, Sichuan Agricultural University, 611100, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
3
|
Sorour AA, Badr R, Mahmoud N, Abdel-Latif A. Cadmium and zinc accumulation and tolerance in two Egyptian cultivars (S53 and V120) of Helianthus annuus L. as potential phytoremediator. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1643-1654. [PMID: 38644603 DOI: 10.1080/15226514.2024.2343842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
One of the most important oil crops in the world, sunflower (Helianthus annuus L.), is recognized to help in soil phytoremediation. Heavy metal (HM) contamination is one of the most abiotic challenges that may affect the growth and productivity of such an important crop plant. We studied the influence of HM-contaminated soils on metal homeostasis and the potential hypertolerance mechanisms in two sunflower Egyptian cultivars (V120 and S53). Both cultivars accumulated significantly higher cadmium concentrations in their roots compared to their shoots during Cd and Zn/Cd treatments. Higher root concentrations of 121 mg g-1 dry weight (DW) and 125 mg g-1 DW were measured in V120 plants compared to relatively lower values of 111 mg g-1 DW and 105 mg g-1 DW in the roots of S53 plants, respectively. Cadmium contamination significantly upregulated the expression of heavy metal ATPases (HaHMA4) in the shoots of V120 plants. On the other hand, their roots displayed a notable expression of HaHMA3. This study indicates that V120 plants accumulated and sequestered Cd in their roots. Therefore, it is advised to cultivate the V120 cultivar in areas contaminated with heavy metals as it is a promising Cd phytoremediator.
Collapse
Affiliation(s)
- Ahmed A Sorour
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Reem Badr
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nermen Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amani Abdel-Latif
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Zhuang Q, Zhang Y, Liu Q, Sun Y, Sharma S, Tang S, Dhankher OP, Yuan H. Effects of sulfur nanoparticles on rhizosphere microbial community changes in oilseed rape plantation soil under mercury stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1545-1555. [PMID: 38597454 DOI: 10.1080/15226514.2024.2335207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In the present study, experiments were conducted to assess the influence of nanoscale sulfur in the microbial community structure of metallophytes in Hg-contaminated rhizosphere soil for planting rapeseed. The results showed that the richness and diversity of the rhizobacteria community decreased significantly under Hg stress, but increased slightly after SNPs addition, with a reduction in the loss of Hg-sensitive microorganisms. Moreover, all changes in the relative abundances of the top ten phyla influenced by Hg treatment were reverted when subjected to Hg + SNPs treatment, except for Myxococcota and Bacteroidota. Similarly, the top five genera, whose relative abundance decreased the most under Hg alone compared to CK, increased by 19.05%-54.66% under Hg + SNPs treatment compared with Hg alone. Furthermore, the relative abundance of Sphingomonas, as one of the dominant genera for both CK and Hg + SNPs treatment, was actively correlated with plant growth. Rhizobacteria, like Pedobacter and Massilia, were significantly decreased under Hg + SNPs and were positively linked to Hg accumulation in plants. This study suggested that SNPs could create a healthier soil microecological environment by reversing the effect of Hg on the relative abundance of microorganisms, thereby assisting microorganisms to remediate heavy metal-contaminated soil and reduce the stress of heavy metals on plants.
Collapse
Affiliation(s)
- Qiurong Zhuang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Yongxia Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Qingquan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Yuming Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Sudhir Sharma
- Stockbridge School of Agriculture, University of MA Amherst, Amherst, MA, USA
| | - Shijie Tang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of MA Amherst, Amherst, MA, USA
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| |
Collapse
|
5
|
Tőzsér D, Idehen DO, Osazuwa JD, Sule JE, Ragyák ÁZ, Sajtos Z, Magura T. Early-stage growth and elemental composition patterns of Brassica napus L. in response to Cd-Zn contamination. CHEMOSPHERE 2024; 351:141235. [PMID: 38237783 DOI: 10.1016/j.chemosphere.2024.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Soil contamination caused by the presence of Cd and the excess amount of Zn is a widespread concern in agricultural areas, posing significant risks to the growth and development of crops. In this paper, the early-stage development and metal (Cd and Zn) accumulation potential of rapeseed (Brassica napus L.) grown under different metal application schemes were assessed by determining radicle and hypocotyl length and the micro- and macro elemental composition of plantlets after 24, 72, and 120 h. The results indicated that the single and co-application of Cd and Zn significantly reduced the radicle and hypocotyl lengths. Accumulation intensity for Cd and Zn was affected by Cd and the combination of Cd and Zn in the solution, respectively. In addition, both metals significantly influenced the tissue Mn and had a minor effect on Cu and Fe concentrations. Both Cd and Zn significantly affected macro element concentrations by decreasing tissue Ca and influencing K and Mg concentrations in a dose- and exposure time-dependent manner. These findings specify the short-term and support the long-term use of rapeseed in remediation processes. However, interactions of metals are crucial in determining the concentration patterns in tissues, which deserves more attention in future investigations.
Collapse
Affiliation(s)
- Dávid Tőzsér
- Department of Ecology, University of Debrecen, H-4032, Debrecen, Hungary; Circular Economy Analysis Center, Hungarian University of Agriculture and Life Sciences, H-2100, Gödöllő, Hungary
| | | | | | - John Elias Sule
- Department of Ecology, University of Debrecen, H-4032, Debrecen, Hungary
| | - Ágota Zsófia Ragyák
- Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, H-4032, Debrecen, Hungary
| | - Zsófi Sajtos
- Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, H-4032, Debrecen, Hungary.
| | - Tibor Magura
- Department of Ecology, University of Debrecen, H-4032, Debrecen, Hungary; HUN-REN-UD Anthropocene Ecology Research Group, University of Debrecen, H-4032, Debrecen, Hungary
| |
Collapse
|
6
|
Jiang Y, Wei C, Jiao Q, Li G, Alyemeni MN, Ahmad P, Shah T, Fahad S, Zhang J, Zhao Y, Liu F, Liu S, Liu H. Interactive effect of silicon and zinc on cadmium toxicity alleviation in wheat plants. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131933. [PMID: 37421854 DOI: 10.1016/j.jhazmat.2023.131933] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Silicon (Si) and Zinc (Zn) have been frequently used to alleviate cadmium (Cd) toxicity, which are feasible strategies for crop safety production. However, the mechanisms underlying the interaction of Si and Zn on alleviating Cd toxicity are not well understood. A hydroponic system was adopted to evaluate morphological, physiological-biochemical responses, and related gene expression of wheat seedlings to Si (1 mM) and Zn (50 µM) addition under Cd stress (10 µM). Cd induced obvious inhibition of wheat growth by disturbing photosynthesis and chlorophyll synthesis, provoking generation of reactive oxygen species (ROS) and interfering ion homeostasis. Cd concentration was decreased by 68.3%, 43.1% and 73.3% in shoot, and 78.9%, 44.1% and 85.8% in root by Si, Zn, and combination of Si with Zn, relative to Cd only, respectively. Si and Zn effectively ameliorated Cd toxicity and enhanced wheat growth; but single Si or combination of Si with Zn had more efficient ability on alleviating Cd stress than only Zn, indicating Si and Zn have synergistic effect on Cd toxicity; Interaction of them alleviated oxidative stress by reducing ROS content, improving AsA-GSH cycle and antioxidant enzymes activities, and regulating Cd into vacuole through PC-Cd complexes transported by HMA3 transporter. Our results suggest that fertilizers including Si and Zn should be made to reduce Cd content, which will beneficial for food production and safety.
Collapse
Affiliation(s)
- Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Chang Wei
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301 Jammu and Kashmir, India
| | - Tariq Shah
- Plant Science Research Unit, United States Department for Agriculture (USDA), ARS, Raleigh, NC, USA
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ying Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
7
|
Rehman M, Pan J, Mubeen S, Ma W, Luo D, Cao S, Chen P. Intercropping of kenaf and soybean affects plant growth, antioxidant capacity, and uptake of cadmium and lead in contaminated mining soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89638-89650. [PMID: 37454378 DOI: 10.1007/s11356-023-28757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Intercropping is considered a sustainable agricultural practice that can reduce the environmental impacts on agriculture. Our study investigated the morphology, physiology, and cadmium (Cd) and lead (Pb) uptake of kenaf (Hibiscus cannabinus L.) and soybean (Glycine max L.) under intercropping in mining soil. Results showed that mutual intercropping is conducive to the growth and biomass accumulation of kenaf and soybean, compared to their respective monoculture. Intercropping increased the relative chlorophyll index in kenaf, while that in soybean had no significant effect. Furthermore, intercropping increased the antioxidant enzyme activity of kenaf, while that of soybean reduced or had no significant effect. The content of malondialdehyde (MDA) was decreased in both of the species. Compared to their respective monoculture, Cd content was increased in kenaf leaves and reduced in soybean roots. Moreover, intercropping decreased the Pb content in tissues of both the species, except that Pb content of kenaf roots was increased. At the same time, root, leaf, or stem bioconcentration factors also performed the same trend, and TF was less than 1. These results indicated that intercropping can increase the plant growth and decrease the metal content in plant tissues. Present findings could provide support for future research on kenaf and soybean cultivation in contaminated lands. In addition, the present study strengthens our understanding about the effectiveness of intercropping system on heavy metal-contaminated lands for sustainable agricultural production.
Collapse
Affiliation(s)
- Muzammal Rehman
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jiao Pan
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Samavia Mubeen
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wenyue Ma
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Dengjie Luo
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Shan Cao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Peng Chen
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
8
|
Rashid MH, Rahman MM, Naidu R. Zinc Biofortification through Basal Zinc Supply Reduces Grain Cadmium in Mung Beans: Metal Partitioning and Health Risks Assessment. TOXICS 2022; 10:689. [PMID: 36422897 PMCID: PMC9692611 DOI: 10.3390/toxics10110689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Grain zinc (Zn) biofortification with less cadmium (Cd) accumulation is of paramount importance from human health and environmental point of view. A pot experiment was carried out to determine the influence of Zn and Cd on their accumulations in Mung bean tissues (Vigna radiata) in two contrast soil types (Dermosol and Tenosol). The soil types with added Zn and Cd exerted a significant effect on translocation and accumulation of metals in different tissues. The accumulation of Zn and Cd was higher for Tenosol than that for Dermosol. At control, the concentration of Cd followed a pattern, e.g., root > stem > petiole > pod > leaflet > grain for both soils. A basal Zn supply (5 mg kg−1) increased the grain Zn concentration to a significant amount (up to 67%). It also reduced Cd accumulation in tissues, including grains (up to 34%). No non-carcinogenic effect was observed for either the children or the adults as the EDI and PTDI values were below the safety limit; however, the ILCR values exceeded the safety limit, indicating the possibility of some carcinogenic effects. Added Zn helped to reduce the carcinogenic and non-carcinogenic health risks on humans.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- Bangladesh Agricultural Research Institute (BARI), Gazipur 1701, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Dhaka 1207, Bangladesh
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
9
|
Combined Plant Growth-Promoting Bacteria Inoculants Were More Beneficial than Single Agents for Plant Growth and Cd Phytoextraction of Brassica juncea L. during Field Application. TOXICS 2022; 10:toxics10070396. [PMID: 35878301 PMCID: PMC9318595 DOI: 10.3390/toxics10070396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Single or combined plant growth-promoting bacteria (PGPB) strains were widely applied as microbial agents in cadmium (Cd) phytoextraction since they could promote plant growth and facilitate Cd uptake. However, the distinct functional effects between single and combined inoculants have not yet been elucidated. In this study, a field experiment was conducted with single, double and triple inoculants to clarify their divergent impacts on plant growth, Cd uptake and accumulation at different growth stages of Brassica juncea L. by three different PGPB strains (Cupriavidus SaCR1, Burkholdria SaMR10 and Sphingomonas SaMR12). The results show that SaCR1 + SaMR10 + SaMR12 combined inoculants were more effective for growth promotion at the bud stage, flowering stage, and mature stage. Single/combined PGPB agents of SaMR12 and SaMR10 were more efficient for Cd uptake promotion. In addition, SaMR10 + SaMR12 combined the inoculants greatly facilitated Cd uptake and accumulation in shoots, and enhanced the straw Cd extraction rates by 156%. Therefore, it is concluded that the application of PGPB inoculants elevated Cd phytoextraction efficiency, and the combined inoculants were more conductive than single inoculants. These results enriched the existing understanding of PGPB agents and provided technical support for the further exploration of PGPB interacting mechanisms strains on plant growth and Cd phytoextraction, which helped establish an efficient plant–microbe combined phytoremediation system and augment the phytoextraction efficiency in Cd-contaminated farmlands.
Collapse
|
10
|
Zhang L, Zou D, Zeng N, Li L, Xiao Z. Slaked lime improves growth, antioxidant capacity and reduces Cd accumulation of peanut (Arachis hypogaea L.) under Cd stress. Sci Rep 2022; 12:4388. [PMID: 35288602 PMCID: PMC8921238 DOI: 10.1038/s41598-022-08339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Slaked lime has been used to remediate contaminated agricultural soils as an in situ chemical immobilization amendment for a long time. However, the effects of slaked lime on peanut and soil cadmium (Cd) levels remain poorly understood with respect to remediating Cd-contaminated soil. In this study, six rates of slaked lime (e.g., 0, 300, 600, 900, 1200 and 1500 kg ha-1) were applied to evaluate the effects of slaked lime treatments on soil pH and the growth, Cd accumulation and physiology characteristics of peanut, which were in Cd-contaminated soil, and 0 kg ha-1 was taken as the control. The results indicated that slaked lime application significantly increased soil pH and reduced total Cd contents in peanut tissues at all growth stages. As the rates of slaked lime were increased, kernel biomass increased in the maturity stage, which increased peanut yields. The irregular variations in catalase, peroxidase, and superoxide dismutase activities and chlorophyll and malondialdehyde contents that were observed at all growth stages may be due to the interactions among soil pH, Ca nutrients and Cd, etc. In summary, slaked lime is suitable as an in situ chemical immobilization amendment to increase Cd immobilization and peanut yields in Cd-contaminated soil.
Collapse
Affiliation(s)
- Liqing Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Ningbo Zeng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Lin Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Makarova A, Nikulina E, Tsirulnikova N, Pishchaeva K, Fedoseev A. Effect of monoethanolamine salt-containing dicarboxylic acid and plant growth regulators on the absorption and accumulation of mercury. Saudi J Biol Sci 2022; 29:3448-3455. [PMID: 35844374 PMCID: PMC9280225 DOI: 10.1016/j.sjbs.2022.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/08/2022] [Accepted: 02/20/2022] [Indexed: 11/23/2022] Open
Abstract
In the modern world, mercury has become an extremely dangerous pollutant due to intensive human activity. Currently, sources of mercury are wastes from chemical industries, as well as mines, oil combustion products, and household waste. Phytoextraction of heavy metals from soil is considered one of the most promising and cost-effective technologies. The efficiency of this process can be increased by introducing various amendments. The use of additives in phytoextraction can enhance the absorption of heavy metals and increase their concentration in various parts of the plant. This article presents the results of a study of various chelating agents for effective phytoextraction of mercury with white clover (Trifolium repens L.) and watercress (Lepidium sativum). In the present study, the monoethanolamine salt of dithiodiacetic acid (MEDBA) was used. The optimal concentration of MEDBA on watercress and creeping clover has been determined for highly efficient phytoextraction of mercury. Research has been carried out with a complex of exogenous growth regulators (GA / IAA / Fe-EDDHA). The results showed that the use of phytohormones and plant growth regulators led to a synergistic effect in combination with thiosulfate, but a pronounced inhibitory effect was observed with the use of MEDBA.
Collapse
Affiliation(s)
- Anna Makarova
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| | - Elena Nikulina
- Institute of Chemical Reagents and Special Purity Chemicals of the National Research Center Kurchatov Institute (IREPC), St. Bogorodsky Val, 3, 107076 Moscow, Russia
| | - Nina Tsirulnikova
- Institute of Chemical Reagents and Special Purity Chemicals of the National Research Center Kurchatov Institute (IREPC), St. Bogorodsky Val, 3, 107076 Moscow, Russia
| | - Ksenia Pishchaeva
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
- Corresponding author at: Miusskaya Square, 9, 125047 Moscow, Russia.
| | - Andrey Fedoseev
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| |
Collapse
|
12
|
Zeremski T, Ranđelović D, Jakovljević K, Marjanović Jeromela A, Milić S. Brassica Species in Phytoextractions: Real Potentials and Challenges. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112340. [PMID: 34834703 PMCID: PMC8617981 DOI: 10.3390/plants10112340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 05/08/2023]
Abstract
The genus Brassica is recognized for including species with phytoaccumulation potential and a large amount of research has been carried out in this area under a variety of conditions, from laboratory experiments to field trials, with spiked or naturally contaminated soils, using one- or multi-element contaminated soil, generating various and sometimes contradictory results with limited practical applications. To date, the actual field potential of Brassica species and the feasibility of a complete phytoextraction process have not been fully evaluated. Therefore, the aim of this study was to summarize the results of the experiments that have been performed with a view to analyzing real potentials and limitations. The reduced biomass and low metal mobility in the soil have been addressed by the development of chemically or biologically assisted phytoremediation technologies, the use of soil amendments, and the application of crop management strategies. Certain issues, such as the fate of harvested biomass or the performance of species in multi-metal-contaminated soils, remain to be solved by future research. Potential improvements to current experimental settings include testing species grown to full maturity, using a greater amount of soil in experiments, conducting more trials under real field conditions, developing improved crop management systems, and optimizing solutions for harvested biomass disposal.
Collapse
Affiliation(s)
- Tijana Zeremski
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.M.J.); (S.M.)
- Correspondence:
| | - Dragana Ranđelović
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d’Esperey Boulevard 86, 11000 Belgrade, Serbia;
| | - Ksenija Jakovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia;
| | - Ana Marjanović Jeromela
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.M.J.); (S.M.)
| | - Stanko Milić
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.M.J.); (S.M.)
| |
Collapse
|
13
|
Rosca M, Cozma P, Minut M, Hlihor RM, Bețianu C, Diaconu M, Gavrilescu M. New Evidence of Model Crop Brassica napus L. in Soil Clean-Up: Comparison of Tolerance and Accumulation of Lead and Cadmium. PLANTS 2021; 10:plants10102051. [PMID: 34685860 PMCID: PMC8538861 DOI: 10.3390/plants10102051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
The potential of the model crop Brassica napus L. (rapeseed) for the phytoremediation of soils polluted with metals was investigated at laboratory scale. The first step consists in the evaluation of the seed germination and growth of the Brassica napus L. plant in a controlled environment, followed by the determination of the photosynthetic pigments content represented by chlorophyll a and b and carotenoids. The degree of metal accumulation in rapeseed has been evaluated by the bioaccumulation factor (BAC), the bioconcentration factor (BCF) and the translocation factor (TF). Phytotoxicity tests were performed in Petri dishes with filter papers moistened with metal solutions in the range of 0 to 300 mg/L Pb(II) or Cd(II). At the highest concentration of the lead and cadmium treatments (300 mg/L), B. napus L. showed the lowest germination degree (56.67% and 43.33%, respectively). According to Tukey test results, Pb(II) concentrations of up to 300 mg/L do not significantly affect the length of the hypocotyls, whereas, in the case of Cd(II), the mean of the radicle and hypocotyl lengths of the seedlings are significantly affected compared to the mean of the control. In soil pot experiments, important changes have been obtained in the pigment content, especially in the case of cadmium. For both metals and for each treatment (100 to 1500 mg/kg Pb(II) and 1 to 30 mg/kg Cd(II)), a TF < 1 indicates an ineffective metal transfer from root to shoot. Finally, rapeseed can be considered a tolerant plant and a suitable candidate for Pb(II) and Cd(II) accumulation and for the phytostabilization of contaminated soil under the experimental conditions adopted in the present study.
Collapse
Affiliation(s)
- Mihaela Rosca
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania; (M.R.); (M.M.); (R.-M.H.); (C.B.); (M.D.)
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Petronela Cozma
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania; (M.R.); (M.M.); (R.-M.H.); (C.B.); (M.D.)
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
- Correspondence: (P.C.); (M.G.)
| | - Mariana Minut
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania; (M.R.); (M.M.); (R.-M.H.); (C.B.); (M.D.)
| | - Raluca-Maria Hlihor
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania; (M.R.); (M.M.); (R.-M.H.); (C.B.); (M.D.)
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Camelia Bețianu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania; (M.R.); (M.M.); (R.-M.H.); (C.B.); (M.D.)
| | - Mariana Diaconu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania; (M.R.); (M.M.); (R.-M.H.); (C.B.); (M.D.)
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania; (M.R.); (M.M.); (R.-M.H.); (C.B.); (M.D.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050094 Bucharest, Romania
- Correspondence: (P.C.); (M.G.)
| |
Collapse
|
14
|
Li L, Zou D, Zeng X, Zhang L, Zhou Y, Anastopoulos I, Wang A, Zeng Q, Xiao Z. Enhancing cadmium extraction potential of Brassica napus: Effect of rhizosphere interactions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112056. [PMID: 33548754 DOI: 10.1016/j.jenvman.2021.112056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 12/05/2020] [Accepted: 01/21/2021] [Indexed: 05/27/2023]
Abstract
Brassica napus L. (oilseed rape) was grown with daikon and white lupin in a polyvinyl chloride split pot experiment (with no barrier between the compartments or by a nylon mesh barrier (37 μm) to license partial root interaction, or a solid barrier to stop any root interactions) to examine the effect of rhizosphere interaction on the cadmium uptake. The results showed that shoot and root biomasses of oilseed rape were 40.66% and 26.94% less than that of the monocropped treatment (solid barrier) when intercropping with daikon under the rhizosphere complete interaction. However, the intermingling of roots between oilseed rape and white lupin notably enhanced the dry biomass of oilseed rape by 40.23% and decreased with the reduction of root contact. Oilseed rape intercropping with daikon enhanced the shoot Cd concentration of oilseed rape. The shoot Cd concentration (44.8 mg/kg) of oilseed rape when intercropped white lupin under complete rhizosphere interaction were greater than those of other treatments. Additionally, the intermingling of roots played a positive role in the content of citric and malic acids when intercropping with white lupin. In all systems, the BCF values of oilseed rape >5. Therefore, intercropping with white lupin may contribute to higher biomass and increased uptake Cd by oilseed rape. We can toward sustainable positive effects on phytoremediation that based on a better understanding of rhizosphere processes.
Collapse
Affiliation(s)
- Longcheng Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Xinyi Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Liqing Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Ioannis Anastopoulos
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia, CY-1678, Cyprus
| | - Andong Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China.
| |
Collapse
|
15
|
Xiao F, Gu Z, Sarkissian A, Ji Y, RuonanYang, Yang L, Zeng Q, Huang P, Chen H. Phytoremediation of potentially toxic elements in a polluted industrial soil using Poinsettia. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:675-686. [PMID: 33958839 PMCID: PMC8055735 DOI: 10.1007/s12298-021-00980-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 05/19/2023]
Abstract
Potentially toxic elements (PTEs) pollution has become a serious environmental threat, particularly in developing countries such as China. In response, there is a growing interest in phytoremediation studies to identify plant species as designated hyperaccumulators of PTEs in polluted soils. Poinsettia was selected as a candidate species for phytoremediation of six PTEs (Zn, Pb, Hg, Cr, As, Cu) in this study. A pot cultivation experiment (randomized incomplete block experimental design with 5 treatments and 4 blocks) was conducted using contaminated soils gathered from an industrial area in southcentral China. The bioaccumulation factor (BAF), translocation factor (TF), and bioconcentration factor were analyzed to determine the phytoremediation potential of poinsettia potted in different ratios of polluted soils. One-way ANOVA with post-hoc Tukey's test showed that poinsettia had significant uptake of Zn, Pb, Cu (BAF < 1 and TF < 1, p < 0.05) and Hg (BAF < 1 and TF > 1, p < 0.05). Poinsettias can therefore effectively accumulate Zn, Pb, and Cu in their lateral roots while extracting and transferring Hg into their leaves. Moreover, poinsettia exhibited tolerance towards As and Cr. Interestingly, it was also observed that PTEs can inhibit the height of potted poinsettia at a certain concentration.
Collapse
Affiliation(s)
- Fangmeng Xiao
- Central South University of Forestry and Technology, Changsha, China
| | - Zhanying Gu
- Central South University of Forestry and Technology, Changsha, China
| | | | - Yaxin Ji
- Central South University of Forestry and Technology, Changsha, China
| | - RuonanYang
- Central South University of Forestry and Technology, Changsha, China
| | - Ling Yang
- Central South University of Forestry and Technology, Changsha, China
| | - Qingyang Zeng
- Central South University of Forestry and Technology, Changsha, China
| | - Peng Huang
- Central South University of Forestry and Technology, Changsha, China
| | - Hanyue Chen
- Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
16
|
Vannucchi F, Francini A, Raffaelli A, Sebastiani L. Removal of multi-contaminants from water by association of poplar and Brassica plants in a short-term growth chamber experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16323-16333. [PMID: 33387308 DOI: 10.1007/s11356-020-11804-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/23/2020] [Indexed: 05/24/2023]
Abstract
The plant association of Populus alba L. 'Villafranca', Brassica oleracea var. acephala sebellica (kale), and B. oleracea var. capitata 'sonsma' (cabbage) was exposed to Zn, Cd, and exogenous caffeine (13CFN)-contaminated water under growth chamber conditions. In the short term of treatment (15 days), poplar increased the root dry biomass (+ 25%) and decreased the chlorophyll content in new leaves (- 32%), compared to control. On the contrary, cabbage decreased the root dry biomass, enhancing the shoot dry biomass (+ 50%). Heavy metals were mainly concentrated in plant roots and in poplar reached the highest concentrations of 705 ± 232.6 and 338 ± 85.5 μg g-1 DW for Zn and Cd, respectively. The ability of poplar to accumulate more Zn and Cd than kale and cabbage in plant biomass was confirmed by heavy metal contents, following the order: poplar > kale = cabbage. However, poplar and Brassica sp. association was very useful for Zn and Cd decontaminations as reported by the bioconcentration factors (> 1). The concentration of 13CFN was below 2.4 ng g-1 FW in poplar and 7.4 ng g-1 FW in Brassica species, suggesting the caffeine uptake and degradation by plant association. Under our experimental conditions, the removal efficiency of the system was upper to 79%, indicating the capability of Populus-Brassica association to efficiently remove Zn, Cd, and 13CFN from mixed inorganic-organic-contaminated water in short term.
Collapse
Affiliation(s)
- Francesca Vannucchi
- BioLabs, Institute of Life Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Alessandra Francini
- BioLabs, Institute of Life Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Andrea Raffaelli
- CNR-Istituto di Fisiologia Clinica, Via Moruzzi 1, 56124, Pisa, Italy
| | - Luca Sebastiani
- BioLabs, Institute of Life Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| |
Collapse
|
17
|
Makarova A, Nikulina E, Tsirulnikova N, Avdeenkova T, Pishchaeva KV. Potential of S-containing and P-containing complexones in improving phytoextraction of mercury by Trifolium repens L.. Saudi J Biol Sci 2021; 28:3037-3048. [PMID: 34025180 PMCID: PMC8117166 DOI: 10.1016/j.sjbs.2021.02.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/28/2022] Open
Abstract
Mercury is a global pollutant in the modern world. There is a large number of areas in the world where mercury is present in soils in significant quantities. Remediation methods which have traditionally been proposed may pose a risk of secondary mercury contamination and/or adverse health effects for cleaners. Phytoextraction of heavy metals from the soil environment is currently considered one of the promising non-invasive methods of remediation. But this approach has limited effectiveness. Chemically induced phytoextraction can increase the efficiency of this process both by converting less bioavailable mercury compounds to bioavailable fractions in the soil and by increasing the rate of transfer of metals in plants. This paper presents the results of a screening study of various chemical amendments to enhance the phytoextraction of mercury by Trifolium repens L. The results showed good potential for the induction of phytoextraction of phosphorus(P) and sulfur (S)-containing chelates. With this study, for the first time for the phytoextraction of mercury, the monoethanolamine salt of 2,2′-(ethylenedithio) diacetic acid was used as the S-containing chelate, and the disubstituted potassium salt of 1-hydroxy ethylidene-1,1-diphosphonic acid was used as the P-containing chelate. Further attention is given to study the effect that exogenous application of phytohormones and plant growth regulators has on the efficiency of mercury absorption and physiological status of plants, which performed well in combination with a P-containing chelate.
Collapse
Affiliation(s)
- Anna Makarova
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| | - Elena Nikulina
- Institute of Chemical Reagents and Special Purity Chemicals of the National Research Center Kurchatov Institute (IREPC), St. Bogorodsky Val, 3, 107076 Moscow, Russia
| | - Nina Tsirulnikova
- Institute of Chemical Reagents and Special Purity Chemicals of the National Research Center Kurchatov Institute (IREPC), St. Bogorodsky Val, 3, 107076 Moscow, Russia
| | - Tatyana Avdeenkova
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| | - Ksenia V Pishchaeva
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| |
Collapse
|
18
|
Jung HI, Lee TG, Lee J, Chae MJ, Lee EJ, Kim MS, Jung GB, Emmanuel A, Jeon S, Lee BR. Foliar-Applied Glutathione Mitigates Cadmium-Induced Oxidative Stress by Modulating Antioxidant-Scavenging, Redox-Regulating, and Hormone-Balancing Systems in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:700413. [PMID: 34589095 PMCID: PMC8473890 DOI: 10.3389/fpls.2021.700413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/18/2021] [Indexed: 05/16/2023]
Abstract
The antioxidant glutathione (GSH) mitigates adverse physio-metabolic effects and defends against abiotic types of stress, such as cadmium (Cd) stress. However, its function and role in resisting Cd phytotoxicity by leveraging plant antioxidant-scavenging, redox-regulating, and hormone-balancing systems have not been comprehensively and systematically demonstrated in the Cd-hyperaccumulating plant Brassica napus L. cv. Tammi (oilseed rape). In this study, the effects of exogenously applied GSH to the leaves of B. napus seedlings exposed to Cd (10 μM) were investigated. As a result, Cd stress alone significantly inhibited growth and increased the levels of reactive oxygen species (ROS) and the bioaccumulation of Cd in the seedlings compared with those in unstressed controls. Furthermore, Cd stress induced an imbalance in plant stress hormone levels and decreases in endogenous GSH levels and GSH redox ratios, which were correlated with reductions in ascorbate (AsA) and/or nicotinamide adenine dinucleotide phosphate (NADPH) redox states. However, the exogenous application of GSH to Cd-stressed B. napus seedlings reduced Cd-induced ROS levels and enhanced antioxidant-scavenging defenses and redox regulation by both increasing seedling AsA, GSH, and NADPH concentrations and rebalancing stress hormones, thereby enhancing Cd uptake and accumulation. These results demonstrate that GSH improved plant redox status by upregulating the AsA-GSH-NADPH cycle and reestablishing normal hormonal balance. This indicates that exogenously applied GSH can mitigate Cd phytotoxicity in B. napus and possibly other plants. Therefore, GSH can potentially be applied to Cd-polluted soil for plant remediation.
Collapse
Affiliation(s)
- Ha-il Jung
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Tae-Gu Lee
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Jinwook Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Mi-Jin Chae
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon, South Korea
| | - Eun-Jin Lee
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Myung-Sook Kim
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Goo-Bok Jung
- Division of Climate Change and Agroecology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Amoakwah Emmanuel
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
- Council for Scientific and Industrial Research-Soil Research Institute, Academy Post Office, Kwadaso, Ghana
| | - Sangho Jeon
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
- *Correspondence: Sangho Jeon
| | - Bok-Rye Lee
- Asian Pear Research Institute, Chonnam National University, Gwangju, South Korea
- Bok-Rye Lee
| |
Collapse
|
19
|
Xiao Z, Zou D, Zeng X, Zhang L, Liu F, Wang A, Zeng Q, Zhang G, Li L. Cadmium accumulation in oilseed rape is promoted by intercropping with faba bean and ryegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111162. [PMID: 32836158 DOI: 10.1016/j.ecoenv.2020.111162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 05/27/2023]
Abstract
The mechanisms of intercropping increasing plant biomass, cadmium accumulation, and organic acids secreted in rhizosphere soil are still unclear. Oilseed rape and intercrops were grown in boxes separated either with no barrier between the compartments or by a nylon mesh barrier (37 μm) to license partial root interaction, or a solid barrier to stop any root interactions. Two intercropping systems (oilseed rape-faba bean and oilseed rape-ryegrass) were carried out in soil with Cd content of 5 mg/kg. The intermingling of roots between oilseed rape and faba bean enhanced the biomass of oilseed rape. However, the biomass was negatively affected implying the higher nutrient apportionment to the ryegrass than oilseed rape. Oilseed rape intercropping with both faba bean and ryegrass played a positive role in the shoot Cd concentration of oilseed rape. The intermingling of roots played a positive role in the citric and malic acids when intercropping with faba bean. A remarkable increase in water-soluble Cd and DTPA-Cd content was observed during oilseed rape-faba bean complete root interaction treatment, up to 175.00% and 46.65%, respectively, which compare with the monoculture treatment. In both systems, the translocation factor values were higher for oilseed rape (O-F system) than for the other test plants and were always >1. Thus the Cd removal potential of oilseed rape can be further improved in the future by optimizing agronomic practices and intercropping with faba bean.
Collapse
Affiliation(s)
- Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Xinyi Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Liqing Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Andong Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Guolin Zhang
- The College of Urban and Environmental Sciences, The Graduate School of Landscape Architecture, PKU, Beijing, 100871, PR China
| | - Longcheng Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China.
| |
Collapse
|
20
|
He C, Zhao Y, Wang F, Oh K, Zhao Z, Wu C, Zhang X, Chen X, Liu X. Phytoremediation of soil heavy metals (Cd and Zn) by castor seedlings: Tolerance, accumulation and subcellular distribution. CHEMOSPHERE 2020; 252:126471. [PMID: 32220713 DOI: 10.1016/j.chemosphere.2020.126471] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Cd and Zn pollution was observed to often occur simultaneously in soils. However, previous studies focused on single heavy metal instead of Cd and Zn combined pollution. Castor (Ricinus communis) is considered to have great potential for contaminated soil remediation. The resistance of castor seedlings to heavy metals and the mechanism behind it remain unknown. In this study, the tolerance and accumulation ability of castor seedlings to Cd and Zn were investigated, and the accumulation mechanism involving the subcellular distribution in different tissues was further explored. The results on biomass and chlorophyll revealed that castor seedlings have good tolerance to the pollution with 0-5 mg/kg Cd and 380 mg/kg Zn, while not to the heavy pollution with 25 mg/kg Cd and 380 mg/kg Zn. The maximum accumulation concentrations of Cd and Zn, 175.3 mg Cd/kg and 386.8 mg/kg Zn, appeared in castor seedling root instead of stem and leaf, indicating that root played a significant part in accumulating Zn and Cd. The relative low dosage of Cd (0-5 mg/kg) promoted the accumulation of Zn in the subcellular component, while high dosage (25 mg/kg) inhibited the accumulation of Zn. In subcellular accumulation and distribution of castor seedlings, Cd (27.1%-69.4%) and Zn (39.6%-66.6%) in the cell wall was the highest. With the increase of Cd addition, the accumulation of Cd increased in cell wall while decreased in organelle and soluble fraction. Hydroxyl, amino, amides and carboxyl functional groups on cell wall might provided the main binding sites for Cd and Zn.
Collapse
Affiliation(s)
- Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yanping Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Kokyo Oh
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kisai, Saitama, 347-0115, Japan
| | - Zhenzhen Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Changlu Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xinying Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiaoyan Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
21
|
Guo J, Guo Y, Yang J, Yang J, Zheng G, Chen T, Li Z, Wang X, Bian J, Meng X. Effects and interactions of cadmium and zinc on root morphology and metal translocation in two populations of Hylotelephium spectabile (Boreau) H. Ohba, a potential Cd-accumulating species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21364-21375. [PMID: 32277416 DOI: 10.1007/s11356-020-08660-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The interactions between Cd and Zn in their effects on plants are inconsistent and difficult to predict. A hydroponic experiment was conducted to investigate the effects of Cd and Zn and their interactions on root morphology and metal translocation in two populations of Hylotelephium spectabile (Boreau) H. Ohba (Crassulaceae, HB1 and HB2). Both populations showed relative tolerance to high levels of Cd and Zn, except that the leaf biomass of HB1 significantly decreased by 44.6% with 5-mg/L Cd plus 10-mg/L Zn. Root growth was inhibited in both populations by addition of 20-mg/L Zn under Cd stress, while 10-mg/L Zn showed little impact on the root growth inhibition of HB2. Roots with diameter 0.1-0.4 mm contributed most of the total root length (RL) and root surface area (RSA) of H. spectabile. In both populations, these root parameters showed greater suppression with the combined stress of Cd plus Zn than under Cd or Zn single stress, except by adding 10-mg/L Zn under Cd stress. Moreover, HB2 maintained relatively higher RL and RSA than HB1 under the different treatments, which implied that HB2 might possess a more effective mechanism than HB1 for coping in response to Cd and Zn stress. The addition of Zn not only affected the absorption of Cd but also significantly affected the distribution of Cd in different tissues of H. spectabile. A low level of Zn led to increased Cd in the stem of HB2, but an increase in Cd in the leaf and root of HB1. Addition of 10-mg/L Zn led to a significant increase by 188% and 170% in Cd accumulation in aboveground part of HB2 under 2- and 5-mg/L Cd stress, whereas the addition of Zn had little effect on Cd accumulation in HB1. Thus, strong positive interactions of Cd and Zn occurred in HB2, which showed great potential for application in phytoremediation of soil contaminated with both Cd and Zn, warranting further investigation under field condition.
Collapse
Affiliation(s)
- Junmei Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhitao Li
- Chinese Academy for Environmental Planning, Beijing, 100012, China.
| | - Xuedong Wang
- The Key Lab of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, 105 North Road of Xisanhuan, Beijing, 100048, China
| | - Jianlin Bian
- The Key Lab of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, 105 North Road of Xisanhuan, Beijing, 100048, China
| | - Xiaofei Meng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Du J, Zeng J, Ming X, He Q, Tao Q, Jiang M, Gao S, Li X, Lei T, Pan Y, Chen Q, Liu S, Yu X. The presence of zinc reduced cadmium uptake and translocation in Cosmos bipinnatus seedlings under cadmium/zinc combined stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:223-232. [PMID: 32234661 DOI: 10.1016/j.plaphy.2020.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) and zinc (Zn) coexist in the environment but interact differently in plants. Cosmos bipinnatus has been potentially considered as a Cd-accumulator. Thus, this study investigated the detoxification mechanism in C. bipinnatus seedlings under Cd, Zn and Cd + Zn stresses. In the present study, the presence of Zn inhibited Cd uptake and translocation, whereas Cd merely hindered Zn uptake. The concentration of Cd in soluble fraction significantly decreased and Cd was bounded to the cell wall in root under Cd + Zn stress. Meanwhile, Zn and Cd mutually decreased their concentrations in the ethanol extractable form (FE) and water extractable form (FW) in roots and shoots. Furthermore, Cd + Zn stress enhanced the activities of superoxide dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7) and catalase (CAT, EC 1.11.1.6) compared to Cd stress alone. These results suggested that Zn effectively decreased Cd uptake and translocation, changed their subcellular distributions, regulated their chemical forms composition and increased antioxidative enzyme activities, thereby enhancing the tolerance to Cd in C. bipinnatus. This study physiologically revealed the interactive effect of Cd and Zn on the detoxification mechanism of Cd in C. bipinnatus and provided new information on phytoremediation of the heavy metal contaminated soils.
Collapse
Affiliation(s)
- Jie Du
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaoyu Ming
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qinglin He
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
23
|
Hyperaccumulation of arsenic by Pteris vittata, a potential strategy for phytoremediation of arsenic-contaminated soil. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42398-020-00106-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Zhu S, Shi W, Jie Y, Zhou Q, Song C. A MYB transcription factor, BnMYB2, cloned from ramie (Boehmeria nivea) is involved in cadmium tolerance and accumulation. PLoS One 2020; 15:e0233375. [PMID: 32421756 PMCID: PMC7233596 DOI: 10.1371/journal.pone.0233375] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/04/2020] [Indexed: 11/18/2022] Open
Abstract
MYB-related transcription factors play important roles in plant development and response to various environmental stresses. In the present study, a novel MYB gene, designated as BnMYB2 (GenBank accession number: MF741319.1), was isolated from Boehmeria nivea using rapid amplification of cDNA ends (RACE) and RT-PCR on a sequence fragment from a ramie transcriptome. BnMYB2 has a 945 bp open reading frame encoding a 314 amino acid protein that contains a DNA-binding domain and shares high sequence identity with MYB proteins from other plant species. The BnMYB2 promoter contains several putative cis-acting elements involved in stress or phytohormone responses. A translational fusion of BnMYB2 with enhanced green fluorescent protein (eGFP) showed nuclear and cytosolic subcellular localization. Real-time PCR results indicated that BnMYB2 expression was induced by Cadmium (Cd) stress. Overexpression of BnMYB2 in Arabidopsis thaliana resulted in a significant increase of Cd tolerance and accumulation. Thus, BnMYB2 positively regulated Cd tolerance and accumulation in Arabidopsis, and could be used to enhance the efficiency of Cd removal with plants.
Collapse
Affiliation(s)
- Shoujing Zhu
- Institute of Ramie, Hunan Agricultural University, Changsha, Hunan, China
- College of Life Sciences, Resources and Environment, Yichun University, Yichun, Jiangxi, China
| | - Wenjuan Shi
- College of Life Sciences, Resources and Environment, Yichun University, Yichun, Jiangxi, China
| | - Yucheng Jie
- Institute of Ramie, Hunan Agricultural University, Changsha, Hunan, China
| | - Qingming Zhou
- Institute of Ramie, Hunan Agricultural University, Changsha, Hunan, China
| | - Chenbo Song
- College of Life Sciences, Resources and Environment, Yichun University, Yichun, Jiangxi, China
| |
Collapse
|
25
|
Wan Y, Wang Z, Xia J, Shen S, Guan M, Zhu M, Qiao C, Sun F, Liang Y, Li J, Lu K, Qu C. Genome-Wide Analysis of Phosphorus Transporter Genes in Brassica and Their Roles in Heavy Metal Stress Tolerance. Int J Mol Sci 2020; 21:E2209. [PMID: 32210032 PMCID: PMC7139346 DOI: 10.3390/ijms21062209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/18/2022] Open
Abstract
Phosphorus transporter (PHT) genes encode H2PO4-/H+ co-transporters that absorb and transport inorganic nutrient elements required for plant development and growth and protect plants from heavy metal stress. However, little is known about the roles of PHTs in Brassica compared to Arabidopsis thaliana. In this study, we identified and extensively analyzed 336 PHTs from three diploid (B. rapa, B. oleracea, and B. nigra) and two allotetraploid (B. juncea and B. napus) Brassica species. We categorized the PHTs into five phylogenetic clusters (PHT1-PHT5), including 201 PHT1 homologs, 15 PHT2 homologs, 40 PHT3 homologs, 54 PHT4 homologs, and 26 PHT5 homologs, which are unevenly distributed on the corresponding chromosomes of the five Brassica species. All PHT family genes from Brassica are more closely related to Arabidopsis PHTs in the same vs. other clusters, suggesting they are highly conserved and have similar functions. Duplication and synteny analysis revealed that segmental and tandem duplications led to the expansion of the PHT gene family during the process of polyploidization and that members of this family have undergone purifying selection during evolution based on Ka/Ks values. Finally, we explored the expression profiles of BnaPHT family genes in specific tissues, at various developmental stages, and under heavy metal stress via RNA-seq analysis and qRT-PCR. BnaPHTs that were induced by heavy metal treatment might mediate the response of rapeseed to this important stress. This study represents the first genome-wide analysis of PHT family genes in Brassica species. Our findings improve our understanding of PHT family genes and provide a basis for further studies of BnaPHTs in plant tolerance to heavy metal stress.
Collapse
Affiliation(s)
- Yuanyuan Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhen Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jichun Xia
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Mingwei Guan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Meichen Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cailin Qiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Fujun Sun
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Ying Liang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
26
|
Comparative Study of Growth, Cadmium Accumulation and Tolerance of Three Chickpea ( Cicer arietinum L.) Cultivars. PLANTS 2020; 9:plants9030310. [PMID: 32121615 PMCID: PMC7154813 DOI: 10.3390/plants9030310] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 11/17/2022]
Abstract
Trace metals (TM) contamination is a severe problem in the environment and produced an adverse effect on the productivity of crops. Cadmium (Cd) is a TM ranked seven among the top 20 pollutants due to its high toxicity and solubility in water, taken up by the plants and affects their growth and metabolism. In this study, we evaluated the growth, Cd accumulation and tolerance capacities of three chickpea (Cicer arietinum L.) cultivars (NC234 (NC2), ICCV89310 (IC8) and ICCV89323-B (IC8-B)), subjected to two Cd concentrations (25 and 50 µM) in hydroponic culture. The toxicity of Cd reduced the plant height and fresh and dry biomass in all cultivars. The maximum reduction was observed at 50 µM of Cd. Compared with IC8-B, cultivars IC8 and NC2 exhibited better performance with high growth, biomass, root to shoot (R/S) ratio and water content under high Cd stress. To measure the accumulation of Cd in root and shoot, an inductively coupled plasma optical emission spectrometer (ICP-OES) was used. IC8 and NC2 had comparatively high Cd tolerance and accumulation ability (> 100 µg g-1 dry weight), with IC8 being more tolerant and accumulated higher Cd in shoot than NC2, while cultivar IC8-B was sensitive. Root accumulated more Cd than shoot in a dose-dependent manner. The bioconcentration factors (BCF) and bioaccumulation coefficients (BAC) were far higher than one (> 1) and increased with an increase in Cd concentrations, while the translocation factor (TF) was less than one (< 1), suggesting that all the three cultivars were unable to transfer Cd from the root to the shoot efficiently. Our results indicated that IC8 and NC2 proved to be resistant, while IC8-B showed sensitivity when exposed to high Cd stress (50 µM).
Collapse
|
27
|
Interaction between Cd and Zn on Metal Accumulation, Translocation and Mineral Nutrition in Tall Fescue ( Festuca arundinacea). Int J Mol Sci 2019; 20:ijms20133332. [PMID: 31284596 PMCID: PMC6651138 DOI: 10.3390/ijms20133332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 01/29/2023] Open
Abstract
Tall fescue (Festuca arundinacea), an accumulator that is able to accumulate and excrete cadmium (Cd), has attracted much attention for its possible use in phytoremediation of heavy metal contaminated soils. In the present study, the interaction between Cd and Zn, and their uptake, translocation and accumulation under external Cd and Zn treatment in tall fescue were investigated. The concentrations of K, Ca, Mg in xylem sap under Cd and Zn treatment were measured to determine the level of mineral nutrients and their relationship with Cd alleviation. The result showed that Cd and Zn antagonized each other in the roots, while Cd antagonized Zn and Zn synergized Cd in the shoots of tall fescue. Compared with Cd only treatment, the concentrations of Ca, Mg and K in xylem sap increased after the addition of Zn, and they increased the most in the guttation. This result indicated that the addition of Zn facilitates the level of mineral elements to alleviate Cd toxicity, which might be used to improve the phytoremediation efficiency of Cd contaminated soils by tall fescue.
Collapse
|
28
|
Liao Q, Jian SF, Song HX, Guan CY, Lepo JE, Ismail AM, Zhang ZH. Balance between nitrogen use efficiency and cadmium tolerance in Brassica napus and Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:57-66. [PMID: 31084879 DOI: 10.1016/j.plantsci.2019.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 05/14/2023]
Abstract
The transmembrane transport of NO3- and Cd2+ into plant cell vacuoles relies on the energy from their tonoplast proton pumps, V-ATPase and V-PPase. If the activity of these pumps is reduced, it results in less NO3- and Cd2+ being transported into the vacuoles, which contributes to better nitrogen use efficiency (NUE) and lower Cd2+ tolerance in plants. The physiological mechanisms that regulate the balance between NUE and Cd2+ tolerance remain unknown. In our study, two Brassica napus genotypes with differential NUEs, xiangyou 15 and 814, and Atclca-2 mutant and AtCAX4 over-expression line (AtCAX4-OE) of Arabidopsis thaliana, were used to investigate Cd2+ stress responses. We found that the Brassica napus genotype, with higher NUE, was more sensitive to Cd2+ stress. The AtCAX4-OE mutant, with higher Cd2+ vacuolar sequestration capacity (VSC), limited NO3- sequestration into root vacuoles and promoted NUE. Atclca-2 mutants, with decreased NO3- VSC, enhanced Cd2+ sequestration into root vacuoles and conferred greater Cd2+ tolerance than the WT. This may be due to the competition between Cd2+ andNO3- in the vacuoles for the energy provided by V-ATPase and V-PPase. Regulating the balance between Cd2+ and NO3- vacuolar accumulation by inhibiting the activity of CLCa transporter and increasing the activity of CAX4 transporter will simultaneously enhance both the NUE and Cd2+ tolerance of Brassica napus, essential for improving its Cd2+ phytoremediation potential.
Collapse
Affiliation(s)
- Qiong Liao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Shao-Fen Jian
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Hai-Xing Song
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China; National Engineering Laboratory of High Efficiency Utilization of Soil and Fertilizer Resources, Hunan Agricultural University, Changsha, China
| | - Chun-Yun Guan
- National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | - Joe Eugene Lepo
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL, 32514, United States
| | - Abdelbagi M Ismail
- International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Zhen-Hua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China; National Engineering Laboratory of High Efficiency Utilization of Soil and Fertilizer Resources, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
29
|
Rizwan M, Ali S, Rehman MZU, Maqbool A. A critical review on the effects of zinc at toxic levels of cadmium in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6279-6289. [PMID: 30635881 DOI: 10.1007/s11356-019-04174-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/04/2019] [Indexed: 05/08/2023]
Abstract
Increasing cadmium (Cd) pollution in agricultural soils has raised serious concerns worldwide. Several exogenous substances can be used to mitigate the toxic effects of Cd in plants. Zinc (Zn) is one of the essential plant micronutrients and is involved in several physiological functions in plants. Zn may alleviate Cd toxicity in plants owing to the chemical similarity of Zn with Cd. Published reports demonstrated that Zn can alleviate toxic effects of Cd in plants by increasing plant growth, regulating Cd uptake, increasing photosynthesis, and reducing oxidative stress. Literature demonstrated that the role of Zn on Cd accumulation by plants is very controversial and depends upon several factors including concentrations of Cd and Zn in the medium, exposure duration, plant species and genotypes, and growth conditions. This review highlights the role of Zn in reducing Cd toxicity in plants and provides new insight that proper level of Zn in plants may enhance plant resistance to excess Cd.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Arosha Maqbool
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| |
Collapse
|
30
|
Wang X, Bai J, Wang J, Le S, Wang M, Zhao Y. Variations in cadmium accumulation and distribution among different oilseed rape cultivars in Chengdu Plain in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3415-3427. [PMID: 30511224 DOI: 10.1007/s11356-018-3857-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a widespread toxic heavy metal trace pollutant worldwide. The ability of Cd absorption and accumulation highly varies among different species and varieties. In order to screen oilseed rape cultivars which are appropriate for cultivation and application in Cd-contaminated soils, we conducted the field trial of 32 oilseed rape varieties in Shifang County of Chengdu Plain. The various biomass, Cd accumulation, and distribution patterns were investigated via determining the Cd concentration in different plant tissues. Moreover, the food safety risks of rapeseeds were finally assessed. The results indicated diverse responses to Cd stress appeared in various tested varieties, including plant biomass, seed yield, Cd concentration, and proportion in different tissues. And most Cd were concentrated in non-edible parts. Through cluster analysis, we found that Nanchongjie, Pengzhoubai, and J-25 belong to high-biomass and high-Cd-accumulated groups in experimental cultivars, which indicated that they could possess more biomass and gather higher Cd content in overground part, so they could be great materials for phytoremediation in Cd-polluted area. Besides, combined with the risk assessment of food safety in rapeseeds, cultivars 72A and 47 with the traits of high yield, low-Cd concentration, and low food safety risk can be considered as suitable materials to widely plant as cash crop. These results provide valuable reference for practical planting and application of oilseed rape in Cd-polluted areas.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Jiuyuan Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Jing Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Sixiu Le
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| |
Collapse
|
31
|
Mycoextraction: Rapid Cadmium Removal by Macrofungi-Based Technology from Alkaline Soil. MINERALS 2018. [DOI: 10.3390/min8120589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fungi are promising materials for soil metal bioextraction and thus biomining. Here, a macrofungi-based system was designed for rapid cadmium (Cd) removal from alkaline soil. The system realized directed and rapid fruiting body development for subsequent biomass harvest. The Cd removal efficiency of the system was tested through a pot culture experiment. It was found that aging of the added Cd occurred rapidly in the alkaline soil upon application. During mushroom growth, the soil solution remained considerably alkaline, though a significant reduction in soil pH was observed in both Cd treatments. Cd and dissolved organic carbon (DOC) in soil solution generally increased over time and a significant correlation between them was detected in both Cd treatments, suggesting that the mushroom‒substratum system has an outstanding ability to mobilize Cd in an alkaline environment. Meanwhile, the growth of the mushrooms was not affected relative to the control. The estimated Cd removal efficiency of the system was up to 12.3% yearly thanks to the rapid growth of the mushroom and Cd enrichment in the removable substratum. Transcriptomic analysis showed that gene expression of the fruiting body presented considerable differences between the Cd treatments and control. Annotation of the differentially expressed genes (DEGs) indicated that cell wall sorption, intracellular binding, and vacuole storage may account for the cellular Cd accumulation. In conclusion, the macrofungi-based technology designed in this study has the potential to become a standalone biotechnology with practical value in soil heavy metal removal, and continuous optimization may make the system useful for biomining.
Collapse
|
32
|
Rizwan M, Ali S, Zia Ur Rehman M, Rinklebe J, Tsang DCW, Bashir A, Maqbool A, Tack FMG, Ok YS. Cadmium phytoremediation potential of Brassica crop species: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1175-1191. [PMID: 29727943 DOI: 10.1016/j.scitotenv.2018.03.104] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) is a highly toxic metal released into the environment through anthropogenic activities. Phytoremediation is a green technology used for the stabilization or remediation of Cd-contaminated soils. Brassica crop species can produce high biomass under a range of climatic and growing conditions, allowing for considerable uptake and accumulation of Cd, depending on species. These crop species can tolerate Cd stress via different mechanisms, including the stimulation of the antioxidant defense system, chelation, compartmentation of Cd into metabolically inactive parts, and accumulation of total amino-acids and osmoprotectants. A higher Cd-stress level, however, overcomes the defense system and may cause oxidative stress in Brassica species due to overproduction of reactive oxygen species and lipid peroxidation. Therefore, numerous approaches have been followed to decrease Cd toxicity in Brassica species, including selection of Cd-tolerant cultivars, the use of inorganic and organic amendments, exogenous application of soil organisms, and employment of plant-growth regulators. Furthermore, the coupling of genetic engineering with cropping may also help to alleviate Cd toxicity in Brassica species. However, several field studies demonstrated contrasting results. This review suggests that the combination of Cd-tolerant Brassica cultivars and the application of soil amendments, along with proper agricultural practices, may be the most efficient means of the soil Cd phytoattenuation. Breeding and selection of Cd-tolerant species, as well as species with higher biomass production, might be needed in the future when aiming to use Brassica species for phytoremediation.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Arooj Bashir
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Arosha Maqbool
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - F M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
33
|
Pan Y, Zhu M, Wang S, Ma G, Huang X, Qiao C, Wang R, Xu X, Liang Y, Lu K, Li J, Qu C. Genome-Wide Characterization and Analysis of Metallothionein Family Genes That Function in Metal Stress Tolerance in Brassica napus L. Int J Mol Sci 2018; 19:E2181. [PMID: 30049941 PMCID: PMC6121329 DOI: 10.3390/ijms19082181] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022] Open
Abstract
Brassica plants exhibit both high biomass productivity and high rates of heavy metal absorption. Metallothionein (MT) proteins are low molecular weight, cysteine-rich, metal-binding proteins that play crucial roles in protecting plants from heavy metal toxicity. However, to date, MT proteins have not been systematically characterized in Brassica. In this study, we identified 60 MTs from Arabidopsis thaliana and five Brassica species. All the MT family genes from Brassica are closely related to Arabidopsis MTs, encoding putative proteins that share similar functions within the same clades. Genome mapping analysis revealed high levels of synteny throughout the genome due to whole genome duplication and segmental duplication events. We analyzed the expression levels of 16 Brassica napus MTs (BnaMTs) by RNA-sequencing and real-time RT-PCR (RT-qPCR) analysis in plants under As3+ stress. These genes exhibited different expression patterns in various tissues. Our results suggest that BnaMT3C plays a key role in the response to As3+ stress in B. napus. This study provides insight into the phylogeny, origin, and evolution of MT family members in Brassica, laying the foundation for further studies of the roles of MT proteins in these important crops.
Collapse
Affiliation(s)
- Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Meichen Zhu
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Shuxian Wang
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Guoqiang Ma
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Xiaohu Huang
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Cailin Qiao
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Rui Wang
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Xinfu Xu
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Ying Liang
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Kun Lu
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Jiana Li
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Cunmin Qu
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| |
Collapse
|
34
|
Chen L, Wan H, Qian J, Guo J, Sun C, Wen J, Yi B, Ma C, Tu J, Song L, Fu T, Shen J. Genome-Wide Association Study of Cadmium Accumulation at the Seedling Stage in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2018; 9:375. [PMID: 29725340 PMCID: PMC5917214 DOI: 10.3389/fpls.2018.00375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/06/2018] [Indexed: 05/26/2023]
Abstract
Cadmium is a potentially toxic heavy metal to human health. Rapeseed (Brassica napus L.), a vegetable and oilseed crop, might also be a Cd hyperaccumulator, but there is little information on this trait in rapeseed. We evaluated Cd accumulation in different oilseed accessions and employed a genome-wide association study to identify quantitative trait loci (QTLs) related to Cd accumulation. A total of 419 B. napus accessions and inbred lines were genotyped with a 60K Illumina Infinium SNP array of Brassica. Wide genotypic variations in Cd concentration and translocation were found. Twenty-five QTLs integrated with 98 single-nucleotide polymorphisms (SNPs) located at 15 chromosomes were associated with Cd accumulation traits. These QTLs explained 3.49-7.57% of the phenotypic variation observed. Thirty-two candidate genes were identified in these genomic regions, and they were 0.33-497.97 kb away from the SNPs. We found orthologs of Arabidopsis thaliana located near the significant SNPs on the B. napus genome, including NRAMP6 (natural resistance-associated macrophage protein 6), IRT1 (iron-regulated transporter 1), CAD1 (cadmium-sensitive 1), and PCS2 (phytochelatin synthase 2). Of them, four candidate genes were verified by qRT-PCR, the expression levels of which were significantly higher after exposure to Cd than in the controls. Our results might facilitate the study of the genetic basis of Cd accumulation and the cloning of candidate Cd accumulation genes, which could be used to help reduce Cd levels in edible plant parts and/or create more efficient hyperaccumulators.
Collapse
Affiliation(s)
- Lunlin Chen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Heping Wan
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiali Qian
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianbin Guo
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengming Sun
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Laiqiang Song
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Lacalle RG, Gómez-Sagasti MT, Artetxe U, Garbisu C, Becerril JM. Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:347-356. [PMID: 29132002 DOI: 10.1016/j.scitotenv.2017.10.334] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 05/06/2023]
Abstract
Contaminated soils are frequently characterized by the simultaneous presence of organic and inorganic contaminants, as well as a poor biological and nutritional status. Rhizoremediation, the combined use of phytoremediation and bioremediation, has been proposed as a Gentle Remediation Option to rehabilitate multi-contaminated soils. Recently, newer techniques, such as the application of metallic nanoparticles, are being deployed in an attempt to improve traditional remediation options. In order to implement a phytomanagement strategy on calcareous alkaline peri-urban soils simultaneously contaminated with several metals and diesel, we evaluated the effectiveness of Brassica napus L., a profitable crop species, assisted with organic amendment and zero-valent iron nanoparticles (nZVI). A two-month phytotron experiment was carried out using two soils, i.e. amended and unamended with organic matter. Soils were artificially contaminated with Zn, Cu and Cd (1500, 500 and 50mgkg-1, respectively) and diesel (6000mgkg-1). After one month of stabilization, soils were treated with nZVI and/or planted with B. napus. The experiment was conducted with 16 treatments resulting from the combination of the following factors: amended/unamended, contaminated/non-contaminated, planted/unplanted and nZVI/no-nZVI. Soil physicochemical characteristics and biological indicators (plant performance and soil microbial properties) were determined at several time points along the experiment. Carbonate content of soils was the crucial factor for metal immobilization and, concomitantly, reduction of metal toxicity. Organic amendment was essential to promote diesel degradation and to improve the health and biomass of B. napus. Soil microorganisms degraded preferably diesel hydrocarbons of biological origin (biodiesel). Plants had a remarkable positive impact on the activity and functional diversity of soil microbial communities. The nZVI were ineffective as soil remediation tools, but did not cause any toxicity. We concluded that rhizoremediation with B. napus combined with an organic amendment is promising for the phytomanagement of calcareous soils with mixed (metals and diesel) contamination.
Collapse
Affiliation(s)
- Rafael G Lacalle
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain.
| | - María T Gómez-Sagasti
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| | - Carlos Garbisu
- NEIKER, Department of Conservation of Natural Resources, c/Berreaga 1, E-48160 Derio, Spain
| | - José M Becerril
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| |
Collapse
|
36
|
Benáková M, Ahmadi H, Dučaiová Z, Tylová E, Clemens S, Tůma J. Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20705-20716. [PMID: 28714046 DOI: 10.1007/s11356-017-9697-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Clarifying the connection between metal exposure and anatomical changes represents an important challenge for a better understanding of plant phytoextraction potential. A hydroponic screening experiment was carried out to evaluate the effects of combined interactions of Cd and Zn on mineral uptake (Mg, K, Ca, Na) and on the physiological and anatomical characteristics of Brassica napus L cv. Cadeli, Viking, and Navajo. Plants were exposed to 5 μM Cd (CdCl2), 10 μM Zn (ZnSO4), or both Cd + Zn, for 14 days. Cadmium exposure led to a significant reduction in root growth, shoot biomass, and chlorophyll content. After Cd-only and Cd + Zn treatment, primary root tips became thicker and pericycle cells were enlarged compared to the control and Zn-only treatment. No differences between metals were observed under UV excitation, where all treatments showed more intensive autofluorescence connected with lignin/suberin accumulation compared to control conditions. The highest concentrations of Cd and Zn were found in the roots of all tested plants, and translocation factors did not exceed the threshold of 1.0. The root mineral composition was not affected by any treatment. In the shoots, the Mg concentration slightly increased after Cd-only and Cd + Zn treatments, whereas Zn-only treatment caused a sharp decrease in Ca content. Slight increases in K were seen after the addition of Zn. Significantly higher concentrations of Na were induced by Cd- or Zn-only treatment.
Collapse
Affiliation(s)
- Martina Benáková
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic.
| | - Hassan Ahmadi
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Zuzana Dučaiová
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Edita Tylová
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Jiří Tůma
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
37
|
Xiao W, Li D, Ye X, Xu H, Yao G, Wang J, Zhang Q, Hu J, Gao N. Enhancement of Cd phytoextraction by hyperaccumulator Sedum alfredii using electrical field and organic amendments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5060-5067. [PMID: 28000074 DOI: 10.1007/s11356-016-8277-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
The combined use of organic amendment-assisted phytoextraction and electrokinetic remediation to decontaminate Cd-polluted soil was demonstrated in a laboratory-scale experiment. The plant species selected was the hyperaccumulator Sedum alfredii. Prior to the pot experiment, the loamy soil was treated with 15 g kg-1 of pig manure compost, 10 g kg-1 of humic acid, or 5 mmol kg-1 of EDTA, and untreated soil without application of any amendment was the control. Two conditions were applied to each treatment: no voltage (without an electrical field) and a direct current (DC) electrical field (1 V cm-1 with switching polarity every day). Results indicated that Cd concentrations in S. alfredii were significantly (p < 0.05) increased by application of the electrical field and soil amendments (pig manure compost, humic acid, and EDTA). By switching the polarity of the DC electrical field, significant pH variation from anode to cathode can be avoided, and no significant impact was observed on shoot biomass production. Electrical field application increased DTPA-extractable Cd in soils and the Cd accumulation in shoots by 6.06-15.64 and 24.53-52.31%, respectively. The addition of pig manure compost and humic acid enhanced shoot Cd accumulation by 1.54- to 1.92- and 1.38- to 1.64-fold because of their simultaneous enhancement of Cd concentration in shoots and biomass production. However, no enhancement of Cd accumulation was found in the EDTA treatment, which can be ascribed to the inhibition of plant growth caused by EDTA. In conclusion, pig manure compost or humic acid addition in combination with the application of a switched-polarity DC electrical field could significantly enhance Cd phytoextraction by hyperaccumulator S. alfredii.
Collapse
Affiliation(s)
- Wendan Xiao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Dan Li
- Hangzhou Plant Protection and Soil Fertilizer Station, Hangzhou, 310020, China
| | - Xuezhu Ye
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Haizhou Xu
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Guihua Yao
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jingwen Wang
- Hangzhou Plant Protection and Soil Fertilizer Station, Hangzhou, 310020, China
| | - Qi Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing Hu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Na Gao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
38
|
Bayçu G, Gevrek-Kürüm N, Moustaka J, Csatári I, Rognes SE, Moustakas M. Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2840-2850. [PMID: 27838905 DOI: 10.1007/s11356-016-8048-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/03/2016] [Indexed: 05/03/2023]
Abstract
A population of the metallophyte Noccaea (Thlaspi) caerulescens originating from a Zn-enriched area at Røros Copper Mine (Norway) was studied. N. caerulescens tolerance to accumulate Cd and Zn was evaluated in hydroponic experiments by chlorophyll fluorescence imaging analysis. In the field-collected N. caerulescens mother plants, Zn shoot concentrations were above Zn hyperaccumulation threshold while, in hydroponic experiments under 40-μM Cd exposure, shoot Cd concentrations were clearly above Cd hyperaccumulation threshold. Cadmium ions and, to a less extent, Zn were mainly retained in the roots. Exposure to Cd enhanced Zn translocation to the shoot, while decreased significant total Ca2+ uptake, suggesting that Cd uptake occurs through Ca2+ transporters. Nevertheless, it increased Ca2+ translocation to the leaf, possibly for photoprotection of photosystem II (PSII). Exposure to 800 μM Zn or 40 μM Cd resulted in increased Fe3+ uptake suggesting that in N. caerulescens, Cd uptake does not take place through the pathway of Fe3+ uptake and that conditions that lead to Cd and Zn accumulation in plants may also favor Fe accumulation. Despite the significant high toxicity levels of Zn and Cd in leaves, under Zn and Cd exposure, respectively, the allocation of absorbed light energy at PSII did not differ compared to controls. The results showed that N. caerulescens keep Cd and Zn concentrations in the mesophyll cells in non-toxic forms for PSII and that the increased Ca and Fe accumulation in leaves alleviates the toxicity effects. Chlorophyll fluorescence imaging revealed that PSII of N. caerulescens resisted better the phytotoxic effects of 20 times higher Zn than Cd exposure concentration. Overall, it is concluded that the use of chlorophyll fluorescence imaging constitutes a promising basis for investigating heavy metal tolerance of plants.
Collapse
Affiliation(s)
- Gülriz Bayçu
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Nurbir Gevrek-Kürüm
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
- Department of Biology, University of Crete, Voutes University Campus, 700 13, Heraklion, Crete, Greece
| | - István Csatári
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Sven Erik Rognes
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Michael Moustakas
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey.
- Department of Botany, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| |
Collapse
|