1
|
Paengnakorn P, Ngoyteja N, Chuntama M, Wiboonsuntharangkoon C, Sangngam P, Kanthasap K, Wongkhuenkaew R, Kumphune S, Theera-Umpon N, Auephanwiriyakul S, Udomsom S, Baipaywad P. Development of a dual PM 2.5 sampling and direct exposure system incorporated an in vitro air-liquid interface culture method: Application to the northern Thailand haze season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125606. [PMID: 39734046 DOI: 10.1016/j.envpol.2024.125606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Exposure to ambient air pollution is associated with several noncommunicable diseases, and it adversely affects the respiratory system and other organ systems. Several studies have investigated the underlying mechanisms of biological response to air pollutants using conventional techniques, but there is a lack of research on the effects of air pollution at the cellular level. This study developed a dual system that combines PM2.5 (particulate matter <2.5 μm in aerodynamic diameter) sampling with direct exposure of air-liquid interface-cultured human respiratory cells to assess the impacts of air pollution. The exposure chamber was designed to mimic the physiology of the human respiratory tract and inhalation. The applicability of the system for quantifying cellular exposure was evaluated in human alveolar epithelial cells (A549) and human bronchial epithelial cells (BEAS-2B). The ambient PM2.5 in Chiang Mai, Thailand, during the haze season was used as a model pollutant for the application of real stimuli. The system exhibited cytotoxic effects of PM2.5 exposure on BEAS-2B cells, and it induced proinflammatory cytokine responses. This study identified the initial trends in cellular responses to direct exposure to air pollutants that could be useful for further studies on how PM2.5 affects different organ systems and for developing treatment strategies. It was also suggested that the developed system had potential as an alternative method for directly evaluating the effects of ambient air pollution on cells. Furthermore, chemical analysis is needed for gaining more insights into the relationship between PM2.5 composition and cell responses.
Collapse
Affiliation(s)
- Pathinan Paengnakorn
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipapon Ngoyteja
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Molnapat Chuntama
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chakrit Wiboonsuntharangkoon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pakorn Sangngam
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kritsana Kanthasap
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ritipong Wongkhuenkaew
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Theera-Umpon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sansanee Auephanwiriyakul
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Computer Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suruk Udomsom
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phornsawat Baipaywad
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Zhang M, Zhou H, Liu L, Song W. Biological effect of U(VI) exposure on lung epithelial BEAS-2B cells. CHEMOSPHERE 2024; 366:143451. [PMID: 39362378 DOI: 10.1016/j.chemosphere.2024.143451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In this study, the biological effects of U(VI) exposure on lung epithelial cells were investigated by MTT assay, immunofluorescence, flow cytometry, and Western blotting. U(VI)-induced stress triggers oxidative stress in cells, activates MAPK signaling pathways, and promotes inflammation. Additionally, U(VI) causes damage to the cell membrane structure and severe DNA injury, impacting the accuracy of transcription and translation. The results demonstrate that U(VI) exposure significantly inhibits cell proliferation and migration. This is attributed to the disruption of the PI3K/AKT/GSK-3β/β-catenin signaling pathway and the reduction in CyclinD1 expression, leading to a delayed cell cycle, decreased growth rate, mitochondrial damage, and reduced energy metabolism. This study provides a comprehensive understanding of the molecular mechanisms underlying uranium-induced cellular toxicity in lung epithelial cells.
Collapse
Affiliation(s)
- Mingxia Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Han Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Wencheng Song
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China; Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Chatsirisupachai A, Muanjumpon P, Jeayeng S, Onkoksong T, Pluempreecha M, Soingam T, Panich U. Calcitriol/vitamin D receptor system alleviates PM2.5-induced human bronchial epithelial damage through upregulating mitochondrial bioenergetics in association with regulation of HIF-1α/PGC-1α signaling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104568. [PMID: 39307374 DOI: 10.1016/j.etap.2024.104568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
PM2.5 exposure causes lung injury by triggering oxidative stress, mitochondrial dysfunction, and modulating HIF-1α signaling. Calcitriol activates VDR, which regulates cellular homeostasis. This study evaluated the protective role of the calcitriol/VDR system in PM2.5-induced damage to BEAS-2B bronchial epithelial cells by reducing oxidative stress, upregulating mitochondrial bioenergetics, and downregulating HIF-1α. We found that the calcitriol/VDR system decreased ROS formation and restored mitochondrial bioenergetics in PM2.5-treated cells. This improvement correlated with reduced HIF-1α nuclear translocation and increased PGC-1α protein and mitochondrial gene expressions. This study is the first to suggest that targeting the calcitriol/VDR system could be a promising pharmacological strategy for mitigating PM2.5-induced lung epithelial damage by promoting mitochondrial bioenergetics and regulating PGC-1α and HIF-1α signaling.
Collapse
Affiliation(s)
| | - Phetthinee Muanjumpon
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Saowanee Jeayeng
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand; Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tasanee Onkoksong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Mutita Pluempreecha
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tanyapohn Soingam
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
4
|
Roh S, Hwang J, Park JH, Song DJ, Gim JA. Particulate matter-induced gene expression patterns in human-derived cells based on 11 public gene expression datasets. Genes Genomics 2024; 46:743-749. [PMID: 38733519 DOI: 10.1007/s13258-024-01512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/04/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Exposure to particulate matter (PM) and house dust mite (HDM) can change the expression patterns of inflammation-, oxidative stress-, and cell death-related genes. We investigated the changes in gene expression patterns owing to PM exposure. OBJECTIVE This study examined the changes in gene expression patterns following PM exposure. METHODS We searched for differentially expressed genes (DEGs) following PM exposure using five cell line-based RNA-seq or microarray datasets and six human-derived datasets. The enrichment terms of the DEGs were assessed. RESULTS DEG analysis yielded two gene sets. Thus, enrichment analysis was performed for each gene set, and the enrichment terms related to respiratory diseases were presented. The intersection of six human-derived datasets and two gene sets was obtained, and the expression patterns following PM exposure were observed. CONCLUSIONS Two gene sets were obtained for cells treated with PM and their expression patterns were presented following verification in human-derived cells. Our findings suggest that exposure to PM2.5 and HDM may reveal changes in genes that are associated with diseases, such as allergies, highlighting the importance of mitigating PM2.5 and HDM exposure for disease prevention.
Collapse
Affiliation(s)
- Sanghyun Roh
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea
| | - Jeongeun Hwang
- Department of Medical IT Engineering, Soonchunhyang University, Asan, 31538, Korea
| | - Joo-Hoo Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, 08308, Korea
| | - Dae Jin Song
- Department of Pediatrics, Korea University Guro Hospital, Seoul, 08308, Korea.
| | - Jeong-An Gim
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea.
| |
Collapse
|
5
|
Liu T, Jiang B, Fu B, Shang C, Feng H, Chen T, Jiang Y. PM2.5 Induces Cardiomyoblast Senescence via AhR-Mediated Oxidative Stress. Antioxidants (Basel) 2024; 13:786. [PMID: 39061855 PMCID: PMC11274155 DOI: 10.3390/antiox13070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Previous research has established a correlation between PM2.5 exposure and aging-related cardiovascular diseases, primarily in blood vessels. However, the impact of PM2.5 on cardiomyocyte aging remains unclear. In this study, we observed that extractable organic matter (EOM) from PM2.5 exposure led to cellular senescence in H9c2 cardiomyoblast cells, as characterized by an increase in the percentage of β-galactosidase-positive cells, elevated expression levels of p16 and p21, and enhanced H3K9me3 foci. EOM also induced cell cycle arrest at the G1/S stage, accompanied by downregulation of CDK4 and Cyclin D1. Furthermore, EOM exposure led to a significant elevation in intracellular reactive oxygen species (ROS), mitochondrial ROS, and DNA damage. Supplementation with the antioxidant NAC effectively attenuated EOM-induced cardiac senescence. Our findings also revealed that exposure to EOM activated the aryl hydrocarbon receptor (AhR) signaling pathway, as evidenced by AhR translocation to the nucleus and upregulation of Cyp1a1 and Cyp1b1. Importantly, the AhR antagonist CH223191 effectively mitigated EOM-induced oxidative stress and cellular senescence. In conclusion, our results indicate that PM2.5-induced AhR activation leads to oxidative stress, DNA damage, and cell cycle arrest, leading to cardiac senescence. Targeting the AhR/ROS axis might be a promising therapeutic strategy for combating PM2.5-induced cardiac aging.
Collapse
Affiliation(s)
- Tiantian Liu
- School of Biology and Basic Medic Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China (C.S.); (H.F.)
| | - Bin Jiang
- The First Affiliated Hospital of Soochow University, Suzhou 215005, China;
| | - Baoqiang Fu
- School of Biology and Basic Medic Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China (C.S.); (H.F.)
| | - Changyi Shang
- School of Biology and Basic Medic Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China (C.S.); (H.F.)
| | - Haobin Feng
- School of Biology and Basic Medic Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China (C.S.); (H.F.)
| | - Tao Chen
- MOE Key Laboratory of Geriatric Disease and Immunology, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-Communicable Diseases, Soochow University, Suzhou 215123, China
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yan Jiang
- School of Biology and Basic Medic Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China (C.S.); (H.F.)
- MOE Key Laboratory of Geriatric Disease and Immunology, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Park SH, Kim G, Yang GE, Yun HJ, Shin TH, Kim ST, Lee K, Kim HS, Kim SH, Leem SH, Cho WS, Lee JH. Disruption of phosphofructokinase activity and aerobic glycolysis in human bronchial epithelial cells by atmospheric ultrafine particulate matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132966. [PMID: 37976851 DOI: 10.1016/j.jhazmat.2023.132966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Exposure to ambient ultrafine particulate matter (UPM) causes respiratory disorders; however, the underlying molecular mechanisms remain unclear. In this study, we synthesized simulated UPM (sUPM) with controlled physicochemical properties using the spark-discharge method. Subsequently, we investigated the biological effects of sUPM using BEAS-2B human bronchial epithelial cells (HBECs) and a mouse intratracheal instillation model. High throughput RNA-sequencing and bioinformatics analyses revealed that dysregulation of the glycolytic metabolism is involved in the inhibited proliferation and survival of HBECs by sUPM treatment. Furthermore, signaling pathway and enzymatic analyses showed that the treatment of BEAS-2B cells with sUPM induces the inactivation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, also known as AKT), resulting in the downregulation of phosphofructokinase 2 (PFK2) S483 phosphorylation, PFK enzyme activity, and aerobic glycolysis in HBECs in an oxidative stress-independent manner. Additionally, intratracheal instillation of sUPM reduced the phosphorylation of ERK, AKT, and PFK2, decreased proliferation, and increased the apoptosis of bronchial epithelial cells in mice. The findings of this study imply that UPM induces pulmonary toxicity by disrupting aerobic glycolytic metabolism in lung epithelial cells, which can provide novel insights into the toxicity mechanisms of UPM and strategies to prevent their toxic effects.
Collapse
Affiliation(s)
- Su Hwan Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gyuri Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gi-Eun Yang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Hye Jin Yun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Tae Hwan Shin
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Sun-Hee Leem
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea.
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
7
|
Lin L, Tian L, Li T, Sun M, Duan J, Yu Y, Sun Z. Microarray analysis of mRNA expression profiles in liver of ob/ob mice with real-time atmospheric PM 2.5 exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76816-76832. [PMID: 35672633 DOI: 10.1007/s11356-022-21088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Epidemiological studies have demonstrated the association between exposure to fine particulate matter (PM2.5) and the onset of non-alcoholic fatty liver disease (NAFLD). However, the potential biological mechanism is largely unknown. Our study was aimed to explore the impact of PM2.5 on the transcriptome level in the liver of ob/ob mice by atmosphere PM2.5 whole-body dynamic exposure system, and meanwhile preliminarily investigated the effects of metformin intervention in this process. More than three thousand differentially expressed genes (DEGs) was screened out by microarray analysis (p < 0.05, |FC|> 1.5). KEGG pathway enrichment analysis showed that these DEGs were mainly enriched in cancers, infectious diseases, and signal transduction, and the most significant pathways were thyroid hormone signaling pathway, chronic myeloid leukemia and metabolic pathways. Then, 12 hub genes were gained through weighted gene correlation network analysis (WGCNA) and verified by qRT-PCR. The expression of 5 genes in darkslateblue module (cd53, fcer1g, cd68, ctss, laptm5) increased after PM2.5 exposure and decreased after metformin intervention. They were related to insulin resistance, glucose and lipid metabolism and other liver metabolism, and also neurodegenerative diseases. This study provided valuable clues and possible protective measures to the liver damage in ob/ob mice caused by PM2.5 exposure, and further research is needed to explore the related mechanism in detail.
Collapse
Affiliation(s)
- Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Li Tian
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
8
|
Gene Expression Changes Induced by Exposure of RAW 264.7 Macrophages to Particulate Matter of Air Pollution: The Role of Endotoxins. Biomolecules 2022; 12:biom12081100. [PMID: 36008994 PMCID: PMC9405577 DOI: 10.3390/biom12081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the variable chemical and physical characteristics of particulate air pollutants, inflammation and oxidative stress have been identified as common mechanisms for cell damage and negative health influences. These effects are produced by organic components, especially by endotoxins. This study analyzed the gene expression profile after exposure of RAW 264.7 cells to the standard particulate matter (PM) material, NIST1648a, and PM with a reduced organic matter content, LAp120, in comparison to the effects of lipopolysaccharide (LPS). The selected parameters of cell viability, cell cycle progression, and metabolic and inflammatory activity were also investigated. Both forms of PM negatively influenced the parameters of cell activity. These results were generally reflected in the gene expression profile. Only NIST1648a, excluding LAp120, contained endotoxins and showed small but statistically significant pro-inflammatory activity. However, the gene expression profiling revealed strong pro-inflammatory cell activation induced by NIST1648a that was close to the effects of LPS. Changes in gene expression triggered by LAp120 were relatively small. The observed differences in the effects of NIST1648a and LAp120 were related to the content of organic matter in which bacterial endotoxins play an important role. However, other organic compounds and their interactions with other PM components also appear to be of significant importance.
Collapse
|
9
|
Chen S, Yin X, He Y, He Q, Li X, Yan M, Huang S, Lu J, Yang B. Joint effects of polycyclic aromatic hydrocarbons, smoking, and XPC polymorphisms on damage in exon 2 of KRAS gene among young coke oven workers. Front Public Health 2022; 10:945955. [PMID: 35991047 PMCID: PMC9389884 DOI: 10.3389/fpubh.2022.945955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic polymorphisms may contribute to individual susceptibility to DNA damage induced by environmental exposure. In this study, we evaluate the effects of co-exposure to PAHs, smoking and XPC polymorphisms, alone or combined, on damage in exons. A total of 288 healthy male coke oven workers were enrolled into this study, and urinary 1-hydroxypyrene (1-OH-Pyr) was detected. Base modification in exons of KRAS and BRAF gene, and polymorphisms of XPC were determined in plasma by real-time PCR. We observed 1-OH-Pyr was positively related to damage in exon 2 of KRAS (KRAS-2) and in exon 15 of BRAF (BRAF-15), respectively, and KRAS-2 and BRAF-15 were significantly associated with increased 1-OH-Pyr. A stratified analysis found 1-OH-Pyr was significantly associated with KRAS-2 in both smokers and non-smokers, while 1-OH-Pyr was significantly associated with BRAF-15 only in smokers. Additionally, individuals carrying both rs2228001 G-allele (GG+GT) and rs3731055 GG homozygote (GG) genotype appeared to have more significant effect on KRAS-2. The high levels of 1-OH-Pyr were associated with KRAS-2 only in rs2228001 GG+GT genotype carriers and the high levels of 1-OH-Pyr were associated with KRAS-2 only in rs3731055 GG genotype carriers and the most severe KRAS-2 was observed among subjects carrying all four of the above risk factors. Our findings indicated the co-exposure effect of PAHs and smoking could increase the risk of KRAS-2 by a mechanism partly involving XPC polymorphisms.
Collapse
Affiliation(s)
- Siqin Chen
- Innovation Center for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingyue Yin
- Innovation Center for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuefeng He
- Department of Environmental and Occupational Health, School of Public Health, Kunming Medical University, Kunming, China
| | - Qinghua He
- Innovation Center for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Li
- Innovation Center for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Maosheng Yan
- Department of Physical Factors and Occupational Health, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Binyao Yang
- Innovation Center for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Binyao Yang
| |
Collapse
|
10
|
Silver and Copper Nanoparticles Induce Oxidative Stress in Bacteria and Mammalian Cells. NANOMATERIALS 2022; 12:nano12142402. [PMID: 35889626 PMCID: PMC9319685 DOI: 10.3390/nano12142402] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
Silver and copper nanoparticles (AgNPs and CuNPs) coated with stabilizing moieties induce oxidative stress in both bacteria and mammalian cells. Effective antibacterial agents that can overcome existing mechanisms of antibacterial resistance will greatly improve biomedical interventions. In this study, we analyzed the effect of nanoparticle-induced stress. Escherichia coli and normal human bronchial epithelial (BEAS-2B) cells were selected for this study. The nanoparticle constructs tested showed low toxicity to mammalian cells except for the polyvinylpyrrolidone-surface-stabilized copper nanoparticles. In fact, both types of copper nanoparticles used in this study induced higher levels of reactive oxygen species than the surface-stabilized silver nanoparticles. In contrast to mammalian cells, the surface-stabilized silver and copper nanoparticles showed varying levels of toxicity to bacteria cells. These data are expected to aid in bridging the knowledge gap in differential toxicities of silver and copper nanoparticles against bacteria and mammalian cells and will also improve infection interventions.
Collapse
|
11
|
Khan F, Jaoui M, Rudziński K, Kwapiszewska K, Martinez-Romero A, Gil-Casanova D, Lewandowski M, Kleindienst TE, Offenberg JH, Krug JD, Surratt JD, Szmigielski R. Cytotoxicity and oxidative stress induced by atmospheric mono-nitrophenols in human lung cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119010. [PMID: 35217136 PMCID: PMC9171836 DOI: 10.1016/j.envpol.2022.119010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 05/17/2023]
Abstract
Nitrophenols (NPs) are hazardous pollutants found in various environmental matrices, including ambient fine particulate matter (PM2.5), agricultural residues, rainwater, wildfires, and industrial wastes. This study showed for the first time the effect of three pure nitrophenols and their mixture on human lung cells to provide basic understanding of the NP influence on cell elements and processes. We identified NPs in ambient PM2.5 and secondary organic aerosol (SOA) particles generated from the photooxidation of monocyclic aromatic hydrocarbons in the U.S. EPA smog chamber. We assessed the toxicity of identified NPs and their equimolar mixture in normal bronchial epithelial (BEAS-2B) and alveolar epithelial cancer (A549) lung cell lines. The inhibitory concentration-50 (IC50) values were highest and lowest in BEAS-2B cells treated with 2-nitrophenol (2NP) and 4-nitrophenol (4NP), respectively, at 24 h of exposure. The lactate dehydrogenase (LDH) assay showed that 4NP, the most abundant NP we identified in PM2.5, was the most cytotoxic NP examined in both cell lines. The annexin-V/fluorescein isothiocyanate (FITC) analysis showed that the populations of late apoptotic/necrotic BEAS-2B and A549 cells exposed to 3NP, 4NP, and NP equimolar mixture increased between 24 and 48 h. Cellular reactive oxygen species (ROS) buildup led to cellular death post exposure to 3NP, 4NP and the NP mixtures, while 2NP induced the lowest ROS buildup. An increased mitochondrial ROS signal following NP exposure occurred only in BEAS-2B cells. The tetramethylrhodamine, methyl ester, perchlorate (TMRM) assay showed that exposed cells exhibited collapse of the mitochondrial membrane potential. TMRM signals decreased significantly only in BEAS-2B cells, and most strongly with 4NP exposures. Our results suggest that acute atmospheric exposures to NPs may be toxic at high concentrations, but not at ambient PM2.5 concentrations. Further chronic studies with NP and NP-containing PM2.5 are warranted to assess their contribution to lung pathologies.
Collapse
Affiliation(s)
- Faria Khan
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mohammed Jaoui
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Krzysztof Rudziński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Alicia Martinez-Romero
- Cytomics Core Facility, Príncipe Felipe Research Center, Avda. Eduardo Primo Yúfera, 3, 46012, Valenica, Spain
| | - Domingo Gil-Casanova
- Cytomics Core Facility, Príncipe Felipe Research Center, Avda. Eduardo Primo Yúfera, 3, 46012, Valenica, Spain
| | - Michael Lewandowski
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Tadeusz E Kleindienst
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - John H Offenberg
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Jonathan D Krug
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Rafal Szmigielski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
12
|
Guerra E Oliveira T, Trancoso IA, Lorençoni MF, Souza Júnior AD, Campagnaro BP, Coco LZ, Weitzel Dias Carneiro MT, do Espírito Santo Lemos M, Endringer DC, Fronza M. Toxicological effects of air settled particles from the Vitoria Metropolitan Area mediated by oxidative stress, pro-inflammatory mediators and NFΚB pathway. ENVIRONMENTAL RESEARCH 2022; 204:112015. [PMID: 34509484 DOI: 10.1016/j.envres.2021.112015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric pollution is a major environmental and public health risk due to its effect on global air quality and climate. Increase in pollutants concentrations, especially particulate matter (PM), are associated with increased respiratory diseases. The pathophysiology of respiratory diseases involves molecular and cellular mechanisms as inflammatory biomarkers and reactive oxygen species production. Thus, the present study aimed to investigate the in vitro cytotoxic and pro-inflammatory effects of particulate matter (PM) of six monitoring stations (1-6) from the Vitoria Metropolitan Area (VMA), Espirito Santo, Brazil in 2018. The PM was chemically characterized by inductively coupled plasma mass spectrometry. In vitro cytotoxic effects of PM (3.12-200.0 μg/mL) were analyzed in human lung epithelial cells (A549) and macrophage cells (RAW 264.7) by MTT assay (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide). To investigate the pro-inflammatory effects of PM in RAW 264.7 cells, the levels of proinflammatory mediators such as nitric oxide (NO), superoxide anion (O2•-), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and the activation of nuclear factor kappa B (NF- κB) were measured. The comet assay evaluated genotoxicity. Cell cycle, oxidative stress (DCF and DHE), and apoptosis were analyzed by flow cytometry. Chemical analysis of PM revealed aluminum (Al) and Iron (Fe) as the major chemical elements in all studied monitoring stations. In addition, worrying concentrations of mercury (Hg) were detected in the PM. The in vitro results showed that PM presents a dose-dependent cytotoxic effect in macrophage and pulmonary epithelial cell lines. The PM increased the production of NO, O2•-, and pro-inflammatory cytokines TNF-α and IL-6. PM also promoted alterations in the cell cycle, increased apoptosis frequency, and DNA damage. Moreover, PM increased the expression NF-κB. In addition, a positive correlation between Al and Fe and ROS production was observed. Based on the results obtained during the study period, it was concluded that the sedimented particles from the VMA might have deleterious effects on human health, which was evidenced by the increase in oxidative stress, an increase in pro-inflammatory mediators, and genotoxic effects partially mediated by the NF-κB pathway. These results add aspects to elucidate the molecular mechanisms involved in the effects of sedimented particles in vivo and in vitro.
Collapse
Affiliation(s)
- Trícia Guerra E Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Isabelle Araújo Trancoso
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Mariane Fioroti Lorençoni
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Antônio Domingos Souza Júnior
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Bianca Prandi Campagnaro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Fisiologia Translacional, Universidade Vila Velha, Vila Velha, Brazil
| | - Larissa Zambom Coco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Fisiologia Translacional, Universidade Vila Velha, Vila Velha, Brazil
| | | | | | - Denise Coutinho Endringer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Marcio Fronza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil.
| |
Collapse
|
13
|
Guo C, Lv S, Liu Y, Li Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126760. [PMID: 34396970 DOI: 10.1016/j.jhazmat.2021.126760] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of epidemiological evidence have confirmed the atmospheric particulate matter (PM2.5) exposure was positively correlated with the morbidity and mortality of respiratory diseases. Nevertheless, its pathogenesis remains incompletely understood, probably resulting from the activation of oxidative stress, inflammation, altered genetic and epigenetic modifications in the lung upon PM2.5 exposure. Currently, biomarker investigations have been widely used in epidemiological and toxicological studies, which may help in understanding the biologic mechanisms underlying PM2.5-elicited adverse health outcomes. Here, the emerging biomarkers to indicate PM2.5-respiratory system interactions were summarized, primarily related to oxidative stress (ROS, MDA, GSH, etc.), inflammation (Interleukins, FENO, CC16, etc.), DNA damage (8-OHdG, γH2AX, OGG1) and also epigenetic modulation (DNA methylation, histone modification, microRNAs). The identified biomarkers shed light on PM2.5-elicited inflammation, fibrogenesis and carcinogenesis, thus may favor more precise interventions in public health. It is worth noting that some inconsistent findings may possibly relate to the inter-study differentials in the airborne PM2.5 sample, exposure mode and targeted subjects, as well as methodological issues. Further research, particularly by -omics technique to identify novel, specific biomarkers, is warranted to illuminate the causal relationship between PM2.5 pollution and deleterious lung outcomes.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Rui C, Defu L, Lingling W, Jiahui D, Richeng X, Yuanyuan Y, Zhenhui G, Wenjie H. Cigarette Smoke or Motor Vehicle Exhaust Exposure Induces PD-L1 Upregulation in Lung Epithelial Cells in COPD Model Rats. COPD 2022; 19:206-215. [PMID: 35416743 DOI: 10.1080/15412555.2022.2058924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
A high smoking-independent chronic obstructive pulmonary disease (COPD) prevalence is observed in lung cancer patients. However, the underlying connection between these two diseases still remains unclear. Cigarette smoking and ambient air pollution are common risk factors for COPD and lung cancer. In this study, we established rat COPD model through exposure to cigarette smoke (CS) or motor vehicle exhaust (MVE). The model rats developed COPD-like phenotypes, manifested as lung functions decline, lung inflammation, emphysema-like alveolar enlargement and airway remodeling. The programmed death-ligand 1 (PD-L1), a factor contributing to immune escape of tumor cells, was overexpressed in lungs from COPD model rats, though more severe COPD phenotypes did not bring with further PD-L1 overexpression in lung. The upregulations of proinflammatory cytokines and PD-L1 were also observed in cultured human bronchial epithelial cells BEAS-2B upon treatment with cigarette smoke extract (CSE) or diesel-related particulate matter 2.5 (PM2.5, SEM1650b). The inflammatory cytokines produced in BEAS-2B cells reflected the PD-L1 levels. Furthermore, ERK1/2, a kinase mediating PD-L1 upregulation in premalignant bronchial cells or NSCLC cells, and STAT1/3, which was reportedly associated with PD-L1 expression in lung tumors, were activated in COPD rats' lungs or in BEAS-2B cells treated with CSE or PM2.5. Therefore, we proposed that inflammation associated PD-L1 overexpression in airway epithelial cells could be the underlying factor facilitating lung cancer incidence in COPD.
Collapse
Affiliation(s)
- Chen Rui
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Li Defu
- Department of Respiratory Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Wang Lingling
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Dong Jiahui
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Xiong Richeng
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Ye Yuanyuan
- Department of Respiratory Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Guo Zhenhui
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Huang Wenjie
- Department of Respiratory Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
| |
Collapse
|
15
|
Han X, Tian M, Shliaha PV, Zhang J, Jiang S, Nan B, Alam MN, Jensen ON, Shen H, Huang Q. Real-world particulate matters induce lung toxicity in rats fed with a high-fat diet: Evidence of histone modifications. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126182. [PMID: 34492953 DOI: 10.1016/j.jhazmat.2021.126182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Exposure to ambient particulate matters (PMs) has been associated with a variety of lung diseases, and high-fat diet (HFD) was reported to exacerbate PM-induced lung dysfunction. However, the underlying mechanisms for the combined effects of HFD and PM on lung functions remain poorly unraveled. By performing a comparative proteomic analysis, the current study investigated the global changes of histone post-translational modifications (PTMs) in rat lung exposed to long-term, real-world PMs. In result, after PM exposure the abundance of four individual histone PTMs (1 down-regulated and 3 up-regulated) and six combinatorial PTMs (1 down-regulated and 5 up-regulated) were significantly altered in HFD-fed rats while only one individual PTM was changed in rats with normal diet (ND) feeding. Histones H3K18ac, H4K8ac and H4K12ac were reported to be associated with DNA damage response, and we found that these PTMs were enhanced by PM in HFD-fed rats. Together with the elevated DNA damage levels in rat lungs following PM and HFD co-exposure, we demonstrate that PM exposure combined with HFD could induce lung injury through altering more histone modifications accompanied by DNA damage. Overall, these findings will augment our knowledge of the epigenetic mechanisms for pulmonary toxicity caused by ambient PM and HFD exposure.
Collapse
Affiliation(s)
- Xuejingping Han
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Pavel V Shliaha
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 4221-117 Xiang An Nan Road, Xiamen 361102, China.
| | - Shoufang Jiang
- Department of Occupational and Environmental Health, School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Md Nur Alam
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 4221-117 Xiang An Nan Road, Xiamen 361102, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
16
|
Liu Z, Zhu Q, Song E, Song Y. Characterization of blood protein adsorption on PM 2.5 and its implications on cellular uptake and cytotoxicity of PM 2.5. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125499. [PMID: 33662789 DOI: 10.1016/j.jhazmat.2021.125499] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/28/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
In biological fluids, micro- or nano-size particles are prone to adsorb proteins and form a layer. The ambient air fine particulate matter (PM2.5) is inhaled via the lung, penetrates biological barriers and eventually reaches systemic blood circulation. However, there are very few data available regarding the adsorption of proteins on PM2.5. Here, we compared protein corona formed in plasma after bronchoalveolar lavage fluid (BALF) exposure with those formed in plasma alone. Using purified coronal proteins, we explored their adsorption behaviors on PM2.5 and their influence on biological reactivity of PM2.5. Liquid-chromatography tandem mass-spectrometry (LC-MS/MS) analysis revealed that exposure to BALF significantly changed the blood protein profile on PM2.5. Regardless of the presence of BALF, the protein corona on PM2.5 contained an abundance of serum albumin, hemoglobin (Hb) and fibrinogen (Fg) proteins. Using Fg as a corona surrogate, we found that van der Waals interactions, hydrophobic interactions, π-π stacking and electrostatic attractions contributed to the Fg adsorption and led to the conformational changes of Fg. In addition, Fg decoration decreased cellular internalization of PM2.5 and corresponding subsequent oxidative stress responses in a murine RAW264.7 macrophage. These results support the view that the formation of PM2.5 corona should be considered for toxicity assessment of PM2.5.
Collapse
Affiliation(s)
- Zixuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qiushuang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
17
|
Pardo M, Li C, Fang Z, Levin-Zaidman S, Dezorella N, Czech H, Martens P, Käfer U, Gröger T, Rüger CP, Friederici L, Zimmermann R, Rudich Y. Toxicity of Water- and Organic-Soluble Wood Tar Fractions from Biomass Burning in Lung Epithelial Cells. Chem Res Toxicol 2021; 34:1588-1603. [PMID: 34033466 PMCID: PMC8277191 DOI: 10.1021/acs.chemrestox.1c00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/28/2022]
Abstract
Widespread smoke from wildfires and biomass burning contributes to air pollution and the deterioration of air quality and human health. A common and major emission of biomass burning, often found in collected smoke particles, is spherical wood tar particles, also known as "tar balls". However, the toxicity of wood tar particles and the mechanisms that govern their health impacts and the impact of their complicated chemical matrix are not fully elucidated. To address these questions, we generated wood tar material from wood pyrolysis and isolated two main subfractions: water-soluble and organic-soluble fractions. The chemical characteristics as well as the cytotoxicity, oxidative damage, and DNA damage mechanisms were investigated after exposure of A549 and BEAS-2B lung epithelial cells to wood tar. Our results suggest that both wood tar subfractions reduce cell viability in exposed lung cells; however, these fractions have different modes of action that are related to their physicochemical properties. Exposure to the water-soluble wood tar fraction increased total reactive oxygen species production in the cells, decreased mitochondrial membrane potential (MMP), and induced oxidative damage and cell death, probably through apoptosis. Exposure to the organic-soluble fraction increased superoxide anion production, with a sharp decrease in MMP. DNA damage is a significant process that may explain the course of toxicity of the organic-soluble fraction. For both subfractions, exposure caused cell cycle alterations in the G2/M phase that were induced by upregulation of p21 and p16. Collectively, both subfractions of wood tar are toxic. The water-soluble fraction contains chemicals (such as phenolic compounds) that induce a strong oxidative stress response and penetrate living cells more easily. The organic-soluble fraction contained more polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs and induced genotoxic processes, such as DNA damage.
Collapse
Affiliation(s)
- Michal Pardo
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Zheng Fang
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | | | - Nili Dezorella
- Electron
Microscopy Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hendryk Czech
- Joint
Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA), Cooperation Group Helmholtz Zentrum München
- German Research Center for Environmental Health GmbH, Gmunder Str. 37, 81379 München, Germany
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Patrick Martens
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Uwe Käfer
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Thomas Gröger
- Joint
Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA), Cooperation Group Helmholtz Zentrum München
- German Research Center for Environmental Health GmbH, Gmunder Str. 37, 81379 München, Germany
| | - Christopher P. Rüger
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Lukas Friederici
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Ralf Zimmermann
- Joint
Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA), Cooperation Group Helmholtz Zentrum München
- German Research Center for Environmental Health GmbH, Gmunder Str. 37, 81379 München, Germany
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
18
|
Lu X, Li R, Yan X. Airway hyperresponsiveness development and the toxicity of PM2.5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6374-6391. [PMID: 33394441 DOI: 10.1007/s11356-020-12051-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/10/2020] [Indexed: 04/16/2023]
Abstract
Airway hyperresponsiveness (AHR) is characterized by excessive bronchoconstriction in response to nonspecific stimuli, thereby leading to airway stenosis and increased airway resistance. AHR is recognized as a key characteristic of asthma and is associated with significant morbidity. At present, many studies on the molecular mechanisms of AHR have mainly focused on the imbalance in Th1/Th2 cell function and the abnormal contraction of airway smooth muscle cells. However, the specific mechanisms of AHR remain unclear and need to be systematically elaborated. In addition, the effect of air pollution on the respiratory system has become a worldwide concern. To date, numerous studies have indicated that certain concentrations of fine particulate matter (PM2.5) can increase airway responsiveness and induce acute exacerbation of asthma. Of note, the concentration of PM2.5 does correlate with the degree of AHR. Numerous studies exploring the toxicity of PM2.5 have mainly focused on the inflammatory response, oxidative stress, genotoxicity, apoptosis, autophagy, and so on. However, there have been few reviews systematically elaborating the molecular mechanisms by which PM2.5 induces AHR. The present review separately sheds light on the underlying molecular mechanisms of AHR and PM2.5-induced AHR.
Collapse
Affiliation(s)
- Xi Lu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Rongqin Li
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
19
|
Urban Aerosol Particulate Matter Promotes Necrosis and Autophagy via Reactive Oxygen Species-Mediated Cellular Disorders that are Accompanied by Cell Cycle Arrest in Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2021; 10:antiox10020149. [PMID: 33498524 PMCID: PMC7909535 DOI: 10.3390/antiox10020149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Urban particulate matter (UPM) is recognized as a grave public health problem worldwide. Although a few studies have linked UPM to ocular surface diseases, few studies have reported on retinal dysfunction. Thus, the aim of the present study was to evaluate the influence of UPM on the retina and identify the main mechanism of UPM toxicity. In this study, we found that UPM significantly induced cytotoxicity with morphological changes in ARPE-19 human retinal pigment epithelial (RPE) cells and increased necrosis and autophagy but not apoptosis. Furthermore, UPM significantly increased G2/M arrest and simultaneously induced alterations in cell cycle regulators. In addition, DNA damage and mitochondrial dysfunction were remarkably enhanced by UPM. However, the pretreatment with the potent reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) effectively suppressed UPM-mediated cytotoxicity, necrosis, autophagy, and cell cycle arrest. Moreover, NAC markedly restored UPM-induced DNA damage and mitochondrial dysfunction. Meanwhile, UPM increased the expression of mitophagy-regulated proteins, but NAC had no effect on mitophagy. Taken together, although further studies are needed to identify the role of mitophagy in UPM-induced RPE injury, the present study provides the first evidence that ROS-mediated cellular damage through necrosis and autophagy is one of the mechanisms of UPM-induced retinal disorders.
Collapse
|
20
|
Jo YJ, Yoon SB, Park BJ, Lee SI, Kim KJ, Kim SY, Kim M, Lee JK, Lee SY, Lee DH, Kwon T, Son Y, Lee JR, Kwon J, Kim JS. Particulate Matter Exposure During Oocyte Maturation: Cell Cycle Arrest, ROS Generation, and Early Apoptosis in Mice. Front Cell Dev Biol 2020; 8:602097. [PMID: 33324650 PMCID: PMC7726243 DOI: 10.3389/fcell.2020.602097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Particulate matter (PM) is a general atmospheric pollutant released into the air by an anthropogenic and naturally derived mixture of substances. Current studies indicate that fine dust can result in different health defects, including endothelial dysfunction, asthma, lung cancer, cardiovascular diseases, uterine leiomyoma, deterioration in sperm quality, and overall birth impairment. However, the most prominent effects of PM10 (diameter < 10 μM) exposure on the female reproductive system, especially with respect to oocyte maturation, remain unclear. In the present study, maturing mouse oocytes were treated with PM10 and the phenotypes of the resulting toxic effects were investigated. Exposure to PM10 led to impairment of maturation capacity by inducing cell cycle arrest and blocking normal polar body extrusion during in vitro maturation and activation of fertilization of mouse oocytes. Additionally, defects in tubulin formation and DNA alignment were observed in PM10-treated oocytes during metaphase I to anaphase/telophase I transition. Moreover, PM10 induced reactive oxygen species generation, mitochondrial dysfunction, DNA damage, and early apoptosis. Taken together, these results indicate that PM10 exposure leads to a decline in oocyte quality and affects the subsequent embryonic development potential of mammalian oocytes.
Collapse
Affiliation(s)
- Yu-Jin Jo
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Seung-Bin Yoon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Byoung-Jin Park
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Sang Il Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Ki Jin Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Se-Yong Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Minseong Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Jun-Ki Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Sang-Yong Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Dong-Ho Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Taeho Kwon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Yeonghoon Son
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Ja-Rang Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Jeongwoo Kwon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| |
Collapse
|
21
|
Huff RD, Carlsten C, Hirota JA. An update on immunologic mechanisms in the respiratory mucosa in response to air pollutants. J Allergy Clin Immunol 2020; 143:1989-2001. [PMID: 31176381 DOI: 10.1016/j.jaci.2019.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Every day, we breathe in more than 10,000 L of air that contains a variety of air pollutants that can pose negative consequences to lung health. The respiratory mucosa formed by the airway epithelium is the first point of contact for air pollution in the lung, functioning as a mechanical and immunologic barrier. Under normal circumstances, airway epithelial cells connected by tight junctions secrete mucus, airway surface lining fluid, host defense peptides, and antioxidants and express innate immune pattern recognition receptors to respond to inhaled foreign substances and pathogens. Under conditions of air pollution exposure, the defenses of the airway epithelium are compromised by reductions in barrier function, impaired host defense to pathogens, and exaggerated inflammatory responses. Central to the mechanical and immunologic changes induced by air pollution are activation of redox-sensitive pathways and a role for antioxidants in normalizing these negative effects. Genetic variants in genes important in epithelial cell function and phenotype contribute to a diversity of responses to air pollution in the population at the individual and group levels and suggest a need for personalized approaches to attenuate the respiratory mucosal immune responses to air pollution.
Collapse
Affiliation(s)
- Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeremy A Hirota
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
22
|
Liu B, Shen LJ, Zhao TX, Sun M, Wang JK, Long CL, He DW, Lin T, Wu SD, Wei GH. Automobile exhaust-derived PM 2.5 induces blood-testis barrier damage through ROS-MAPK-Nrf2 pathway in sertoli cells of rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110053. [PMID: 31862514 DOI: 10.1016/j.ecoenv.2019.110053] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) derived from automobile exhaust can lead to serious male spermatogenesis dysfunction, but its specific molecular mechanism is unclear. In this experiment, we focused on the blood-testis barriers (BTB) and explored the intracellular mechanisms underlying the fertility toxicity of PM2.5 originating from automobile exhaust in the primary cultured Sertoli cells(SCs) of rats. After PM2.5 exposure, excessive reactive oxygen species (ROS) and increased apoptosis of SCs were detected. The expression of the BTB related proteins including ZO-1, Occludin, N-cadherin and β-catenin were significantly decreased and the spatial arrangement of F-actin was completely disordered through Immunofluorescence and Western blots tests. The phosphorylation of Jun N-terminal kinase (JNK), extracellular signal regulatory kinase (ERK), p38 mitogen-activated protein kinase (MAPK) were upregulated and nuclear factor (erythroid-derived 2) -like 2-related factor (Nrf2) was downregulated respectively. However, combined utilization of vitamin C and E were observed to prevent the increase of ROS generation, reduce celluar apoptosis, increase the expression of BTB related proteins, reconstructed the spatial arrangement of F-actin as well as improved the Nrf2 expression and attenuated the phosphorylation of the MAPK kinases and cleaved caspase-3 levels. Furthermore, ERK inhibitor (SCH772984), JNK inhibitor (SP600125) and p38 MAPK inhibitor (SB203580) obviously up-regulated BTB-related proteins expression as well as activated Nrf2 expression at varying degrees, indicating that ROS-MAPKs-Nrf2 is involved in the signaling pathway that leads to PM2.5-induced spermatogenesis dysfunction. These findings indicate that PM2.5 derived from automobile exhaust causes oxidative stress, which in turn causes cellular apoptosis of SCs and damage of the blood-testis barrier, resulting male spermatogenesis dysfunction, in which ROS-MAPK-Nrf-2 pathways may play a key role.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China; Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P.R China
| | - Lian-Ju Shen
- Department of Urology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China
| | - Tian-Xin Zhao
- Department of Urology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China
| | - Mang Sun
- Department of Urology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China
| | - Jun-Ke Wang
- Department of Urology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China
| | - Chun-Lan Long
- Department of Urology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China
| | - Da-Wei He
- Department of Urology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China
| | - Tao Lin
- Department of Urology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China
| | - Sheng-de Wu
- Department of Urology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China.
| | - Guang-Hui Wei
- Department of Urology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P.R China.
| |
Collapse
|
23
|
Stueckle TA, White A, Wagner A, Gupta RK, Rojanasakul Y, Dinu CZ. Impacts of Organomodified Nanoclays and Their Incinerated Byproducts on Bronchial Cell Monolayer Integrity. Chem Res Toxicol 2019; 32:2445-2458. [PMID: 31698904 DOI: 10.1021/acs.chemrestox.9b00277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Incorporation of engineered nanomaterials (ENMs) into nanocomposites using advanced manufacturing strategies is set to revolutionize diverse technologies. Of these, organomodified nanoclays (ONCs; i.e., smectite clays with different organic coatings) act as nanofillers in applications ranging from automotive to aerospace and biomedical systems. Recent toxicological evaluations increased awareness that exposure to ONC can occur along their entire life cycle, namely, during synthesis, handling, use, manipulation, and disposal. Compared to other ENMs, however, little information exists describing which physicochemical properties contribute to induced health risk. This study conducted high content screening on bronchial epithelial cell monolayers for coupled high-throughput in vitro assessment strategies aimed to evaluate acute toxicity of a library of ONCs (all of prevalent use) prior to and after simulated disposal by incineration. Coating-, incineration status-, and time-dependent effects were considered to determine changes in the pulmonary monolayer integrity, cell transepithelial resistance, apoptosis, and cell metabolism. Results showed that after exposure to each ONC at its half-maximal inhibitory concentration (IC50) there is a material-induced toxicity effect with pristine nanoclay, for instance, displaying acute loss of monolayer coverage, resistance, and metabolism, coupled with increased number of apoptotic cells. Conversely, the other three ONCs tested displayed little loss of monolayer integrity; however, they exhibited differential coating-dependent increased apoptosis and up to 40-45% initial reduction in cell metabolism. Moreover, incinerated byproducts of ONCs exhibited significant loss of monolayer coverage and integrity, increased necrosis, with little evidence of monolayer re-establishment. These findings indicate that characteristics of organic coating type largely determine the mechanism of cytotoxicity and the ability of the monolayer to recover. Use of high content screening coupled with traditional in vitro assays proves to serve as a rapid pulmonary toxicity assessment tool to help define prevention by targeted physicochemical material properties design strategies.
Collapse
Affiliation(s)
- Todd A Stueckle
- Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia 26505 , United States
| | | | | | | | | | | |
Collapse
|
24
|
Chen Q, Luo XS, Chen Y, Zhao Z, Hong Y, Pang Y, Huang W, Wang Y, Jin L. Seasonally varied cytotoxicity of organic components in PM 2.5 from urban and industrial areas of a Chinese megacity. CHEMOSPHERE 2019; 230:424-431. [PMID: 31112865 DOI: 10.1016/j.chemosphere.2019.04.226] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 05/26/2023]
Abstract
The atmospheric fine particulate matters (PM2.5) induce significant negative effects on human health, such as in the form of oxidative stress and pro-inflammatory response. Organic pollutants are important harmful and toxic compositions in PM2.5, risks of which usually show temporal and spatial variations. To investigate the toxic effects of airborne organic pollutants on human lung epithelial cells A549, the PM2.5 samples were collected monthly from both urban and industrial areas during a whole year in Nanjing, eastern China. After exposure to organic components extracted from these PM2.5, the cell viability, lactate dehydrogenase content, oxidative stress index level and inflammatory factor expression level were measured. Supported by the concentrations of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes, results showed that, organic components of PM2.5 from cold season (winter and spring) typically influenced cell membrane, cell oxidation and inflammatory damage, while the urban samples of warm season (summer and autumn) impacted cell viability more prominently. Spatially, the toxicity of samples from industrial sources was generally stronger than that from urban source, but urban samples induced much stronger damage to cell membranes than industrial one. The correlations between the PAHs, n-alkanes contents and toxicity parameters indicated that, the airborne organic components derived from motor vehicle exhaust and coal combustion were possibly the key toxic sources.
Collapse
Affiliation(s)
- Qi Chen
- International Center for Ecology, Meteorology, and Environment, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yan Chen
- International Center for Ecology, Meteorology, and Environment, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhen Zhao
- International Center for Ecology, Meteorology, and Environment, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yuting Pang
- International Center for Ecology, Meteorology, and Environment, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Weijie Huang
- International Center for Ecology, Meteorology, and Environment, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yi Wang
- Jiangsu Meteorological Observatory, Nanjing, 210008, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
25
|
Abbas I, Badran G, Verdin A, Ledoux F, Roumie M, Lo Guidice JM, Courcot D, Garçon G. In vitro evaluation of organic extractable matter from ambient PM 2.5 using human bronchial epithelial BEAS-2B cells: Cytotoxicity, oxidative stress, pro-inflammatory response, genotoxicity, and cell cycle deregulation. ENVIRONMENTAL RESEARCH 2019; 171:510-522. [PMID: 30743243 DOI: 10.1016/j.envres.2019.01.052] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
A particular attention has been devoted to the type of toxicological responses induced by particulate matter (PM), since their knowledge is greatly complicated by the fact that it is a heterogeneous and often poorly described pollutant. However, despite intensive research effort, there is still a lack of knowledge about the specific chemical fraction of PM, which could be mainly responsible of its adverse health effects. We sought also to better investigate the toxicological effects of organic extractable matter (OEM) in normal human bronchial epithelial lung BEAS-2B cells. The wide variety of chemicals, including PAH and other related-chemicals, found in OEM, has been rather associated with early oxidative events, as supported by the early activation of the sensible NRF-2 signaling pathway. For the most harmful conditions, the activation of this signaling pathway could not totally counteract the ROS overproduction, thereby leading to critical oxidative damage to macromolecules (lipid peroxidation, oxidative DNA adducts). While NRF-2 is an anti-inflammatory, OEM exposure did not trigger any significant change in the secretion of inflammatory cytokines (i.e., TNFα, IL-1β, IL-6, IL-8, MCP-1, and IFNγ). According to the high concentrations of PAH and other related organic chemicals found in this OEM, CYP1A1 and 1B1 genes exhibited high transcription levels in BEAS-2B cells, thereby supporting both the activation of the critical AhR signaling pathway and the formation of highly reactive ultimate metabolites. As a consequence, genotoxic events occurred in BEAS-2B cells exposed to this OEM together with cell survival events, with possible harmful cell cycle deregulation. However, more studies are required to implement these observations and to contribute to better decipher the critical role of the organic fraction of air pollution-derived PM2.5 in the activation of some sensitive signaling pathways closely associated with G1/S and intra-S checkpoint blockage, on the one hand, and cell survival, on the other hand.
Collapse
Affiliation(s)
- Imane Abbas
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Ghidaa Badran
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon; Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France; CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé Humaine (IMPECS), Univ. Lille, Lille, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Mohamed Roumie
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Jean-Marc Lo Guidice
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé Humaine (IMPECS), Univ. Lille, Lille, France
| | | | - Guillaume Garçon
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé Humaine (IMPECS), Univ. Lille, Lille, France.
| |
Collapse
|
26
|
An J, He H, Wang L, Jin Y, Kong J, Zhong Y, Liu M, Shang Y. Fresh and ozonized black carbon promoted DNA damage and repair responses in A549 cells. Toxicol Res (Camb) 2019; 8:180-187. [PMID: 30931099 PMCID: PMC6404160 DOI: 10.1039/c8tx00281a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/15/2018] [Indexed: 01/16/2023] Open
Abstract
Nano-sized ambient black carbon (BC) is hypothesized to pose a serious threat to human health. After emission into the air, the atmospheric oxidation process can modify its physiochemical properties and change its biological responses. In this study, we aimed to compare different DNA damage and repair responses promoted by fresh BC (FBC) and ozone oxidized-BC (OBC). The cell apoptosis, cell arrest, DNA damage and repair were investigated in A549 cells after treatment with FBC and OBC. Associated gene expressions were measured with the reverse transcription quantitative polymerase chain reaction (RT-qPCR) method. Both FBC and OBC could induce cell apoptosis in A549 cells with up-regulated gene of promyelocytic leukemia protein (pml) and down-regulated gene of anti-apoptotic B-cell lymphoma-2 (bcl-2). FBC caused cell cycle arrest at S and G2/M phases, which was associated with up-regulated ataxia telangiectasia mutated (atm), checkpoint kinase 2 (chk2), structural maintenance of chromosomes 1 (smc1) and cell division cycle 25 homolog A (cdc25a) genes. OBC promoted cell cycle arrest at the S phase with up-regulated genes of atm, chk2 and smc1. Both FBC and OBC induced oxidative DNA damage and time-dependent DNA repair responses with increased gene expressions of breast cancer susceptibility protein 1 (brca1), recombination protein A paralog B (rad51b), methyl methanesulfonate-sensitivity protein 22-like and tonsoku-like (mms22l). Compared to FBC, OBC could cause more sufficient DNA damage repair responses through cell cycle arrest at the S phase, resulting in relatively weaker DNA damages.
Collapse
Affiliation(s)
- Jing An
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China . ; Tel: +86 21 66137736
| | - Huixin He
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China . ; Tel: +86 21 66137736
| | - Lu Wang
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China . ; Tel: +86 21 66137736
| | - Yingying Jin
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China . ; Tel: +86 21 66137736
| | - Jiexing Kong
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China . ; Tel: +86 21 66137736
| | - Yufang Zhong
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China . ; Tel: +86 21 66137736
| | - Mingyuan Liu
- Department of Neurology , Yueyang Hospital of Integrated Chinese and Western Medicine , Shanghai University of Traditional Chinese Medicine , Shanghai 200437 , China . ; Tel: +86 21 65161782
| | - Yu Shang
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China . ; Tel: +86 21 66137736
| |
Collapse
|
27
|
Shi Y, Zhao T, Yang X, Sun B, Li Y, Duan J, Sun Z. PM 2.5-induced alteration of DNA methylation and RNA-transcription are associated with inflammatory response and lung injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:908-921. [PMID: 30308865 DOI: 10.1016/j.scitotenv.2018.09.085] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
The mechanisms of systemic pulmonary inflammation and toxicity of fine particulate matter (PM2.5) exposure remains unclear. The current study investigated the inflammatory response and lung toxicity of PM2.5 in rats following intratracheal instillation of PM2.5. After repeated (treated every 3 days for 30 days) PM2.5 exposure, total protein (TP), lactate dehydrogenase (LDH) activity and inflammatory cytokines including interleukin 6 (IL-6), interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) levels in bronchoalveolar lavage fluid (BALF) were markedly elevated. The expression levels of IL-6, IL-1β, TNF-α and NF-κB in rat lung tissue and BEAS-2B cells were significantly upregulated after PM2.5 exposure. Histopathological evaluation suggested that the major pathological changes were alveolar wall thickening and inflammatory cell infiltration of the lungs. Genome wide DNA methylation and RNA-transcription analysis was performed on human bronchial epithelial cells (BEAS-2B) to explore the potential mechanisms in vitro. PM2.5 induced genome wide DNA methylation and transcription changes. Differentially methylated CpGs were located in gene promoter region linked with CpG islands. Integrated analysis with DNA methylation and transcription data indicated a clear bias toward transcriptional alteration by differential methylation. Disease ontology of differentially methylated and expressed genes addressed their prominent role in respiratory disease. Functional enrichment revealed their involvement in inflammation or immune response, cellular community, cellular motility, cell growth, development and differentiation, signal transduction and responses to exogenous stimuli. Gene expression validation of ACTN4, CXCL1, MARK2, ABR, PSEN1, PSMA3, PSMD1 verified their functional participation in critical biological processes and supported the microarray bioinformatics analysis. Collectively, our data shows that PM2.5 induced genome wide methylome and transcriptome alterations that could be involved in pulmonary toxicity and pathological process of respiratory disease, providing new insight into the toxicity mechanisms of PM2.5.
Collapse
Affiliation(s)
- Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tong Zhao
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
28
|
Wang Y, Wu T, Zou L, Xiong L, Zhang T, Kong L, Xue Y, Tang M. Genome-wide identification and functional analysis of long non-coding RNAs in human endothelial cell line after incubation with PM2.5. CHEMOSPHERE 2019; 216:396-403. [PMID: 30384309 DOI: 10.1016/j.chemosphere.2018.10.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/06/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Epidemiological studies and experimental research have illustrated that PM2.5 has an association with cardiovascular adverse events. However, the underlying mechanisms are still unknown. Long non-coding RNAs (lncRNAs) have been proposed to take part in diverse diseases. To comprehensively gain insight into the molecular toxicity of PM2.5, expression patterns are analyzed in EA.hy926 cell line through RNAs microarray. A total of 356 lncRNA transcripts are dysregulated in 2.5 μg/cm2 group, and there are 1283 lncRNAs differentially expressed in 10 μg/cm2 group. From functional analysis, several lncRNAs may be implicated in the bio-pathways of phagosome, TNF signaling pathway, chemokine signaling pathway and gap junction. Moreover, certain lncRNAs participate in the toxicity of PM2.5 through cis- and/or trans-regulation of their co-expressed genes. Therefore, lncRNAs may be used as new candidate biomarkers and potentially preventive targets in cardiotoxicity of PM2.5. Our study indicates that not limited to transcriptional regulation, post-transcriptional regulation plays a pivotal role in PM2.5-caused toxicity.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lilin Xiong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Department of Environmental Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, 210003, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
29
|
Zhang Y, Mao P, Li G, Hu J, Yu Y, An T. Delineation of 3D dose-time-toxicity in human pulmonary epithelial Beas-2B cells induced by decabromodiphenyl ether (BDE209). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:661-669. [PMID: 30228062 DOI: 10.1016/j.envpol.2018.09.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Due to frequent detection in environment as well as in the human body, the adverse effects of decabromodiphenyl ether (BDE209) have been extensively studied in the past few years. However, information regarding the inhalation toxicity of BDE209 to humans is currently limited. In this study, the cytotoxicity, cell damage, and inflammation markers including IL-6, IL-8, and TNF-α in the Beas-2B cell line induced by BDE209 were measured using a central composite design. Results showed that as BDE209 concentrations (5-65 μg mL-1) and exposure time (6-30 h) were increased, cell viability sharply decreased from 99.7% to 29.7% and LDH activity increased from 0.1% to 13.1%. Furthermore, expression of IL-6, IL-8 and TNF-α transcripts were enhanced from 4.7 to 29.1 fold, 3.4-68.9 fold, and 2.8-47.0 fold, respectively, and the concentration of IL-6 and IL-8 proteins increased from 5.4 to 16.7 pg mL-1 and 71.0-550.0 pg mL-1, respectively. Results indicate that BDE209 exposure can inhibit cell viability, increase LDH leakage, and upregulate the transcript (mRNA) and protein levels of inflammatory markers of IL-6 and IL-8 in Beas-2B cells. Moreover, these effects were both dose- and time-dependent, and dose and time had a synergistic effect - enhancing toxicity when in combination. Cell density affected both LDH activity and IL-8 release but had little effect on cell activity and IL-6 release in the Beas-2B cells. In contrast, TNF-α protein was not detected but its mRNA expression level was upregulated. This study will provide a reference for human health risk assessment, especially for the toxic damage that BDE209 exposure can elicit in the respiratory tract.
Collapse
Affiliation(s)
- Yanan Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Pu Mao
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510182, China
| | - Guiying Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
30
|
Effects of Ambient Atmospheric PM2.5, 1-Nitropyrene and 9-Nitroanthracene on DNA Damage and Oxidative Stress in Hearts of Rats. Cardiovasc Toxicol 2018; 19:178-190. [DOI: 10.1007/s12012-018-9488-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Tripathi P, Deng F, Scruggs AM, Chen Y, Huang SK. Variation in doses and duration of particulate matter exposure in bronchial epithelial cells results in upregulation of different genes associated with airway disorders. Toxicol In Vitro 2018; 51:95-105. [PMID: 29753051 PMCID: PMC6464127 DOI: 10.1016/j.tiv.2018.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 11/25/2022]
Abstract
Exposure to particulate matter < 2.5 μm (PM2.5) is associated with a variety of airway diseases. Although studies have demonstrated that high doses of PM2.5 cause cytotoxicity and changes to gene expression in bronchial epithelial cells, the effect of lower doses and repeated exposure to PM2.5 are less well studied. Here, we treated BEAS-2B cells with varying doses of PM2.5 for 1-7 days and examined the expression of a variety of genes implicated in airway disorders. At high doses, PM2.5 increased the expression of IL6, TNF, TSLP, CSF2, PTGS2, IL4R, and SPINK5. Other genes such as ADAM33, ORMDL3, DPP10 and CYP1A1, however, were increased by PM2.5 at much lower doses (≤1 μg/cm2). Repeated exposure to PM2.5 at 1 or 5 μg/cm2 every day for 7 days increased the sensitivity and magnitude of change for all of the aforementioned genes. Genes such as IL13 and TGFB1, increased only when cells were repeatedly exposed to PM2.5. Treatment with an antioxidant, or inhibitors to aryl hydrocarbon receptor or NF-κB attenuated the effect of PM2.5. These data demonstrate that PM2.5 exerts pleiotropic actions that differ by dose and duration that affect a variety of genes important to the development of airway disease.
Collapse
Affiliation(s)
- Priya Tripathi
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Furong Deng
- School of Public Health, Peking University, Beijing, China
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yahong Chen
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Shao J, Wheeler AJ, Chen L, Strandberg B, Hinwood A, Johnston FH, Zosky GR. The pro-inflammatory effects of particulate matter on epithelial cells are associated with elemental composition. CHEMOSPHERE 2018; 202:530-537. [PMID: 29587234 DOI: 10.1016/j.chemosphere.2018.03.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/04/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Adverse health effects of particulate matter (PM) vary with chemical composition; however, evidence regarding which elements are the most detrimental is limited. The roof space area provides an open and stable environment for outdoor PM to settle and deposit. Therefore, this study used roof space PM samples as a proxy of residential cumulative exposure to outdoor air pollution to investigate their pro-inflammatory effects on human lung cells and the contribution of the endotoxin and chemical content. METHODS Roof space PM samples of 36 different homes were collected and analysed using standardised techniques. We evaluated cytotoxicity and cytokine production of BEAS-2B cells after PM exposure using MTS and ELISA, respectively. Principle component analysis (PCA) and linear regression analyses were employed to assess the associations between cytokine production and the PM components. RESULTS PM caused significant time- and dose-dependent increases in cellular cytokine production (p < 0.05). PCA identified four factors that explained 68.33% of the variance in the chemical composition. An increase in Factor 1 (+Fe, +Al, +Mn) score and a decrease in Factor 2 (-Ca, +Pb, +PAH) score were associated with increased interleukin (IL)-6 (Factor 1; p = 0.010; Factor 2; p = 0.006) and IL-8 (Factor 1; p = 0.003; Factor 2; p = 0.020) production, however, only the association with Factor 1 was evident after correcting for endotoxin and particle size. CONCLUSIONS Our study provides novel insight into the positive associations between pro-inflammatory effects of roof space PM samples with Fe, Al and Mn levels.
Collapse
Affiliation(s)
- Jingyi Shao
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Amanda J Wheeler
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia; Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia 6017, Australia
| | - Ling Chen
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Bo Strandberg
- Section of Occupational and Environmental Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Andrea Hinwood
- Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia 6017, Australia; Environmental Protection Authority Victoria, Carlton, Victoria 3053, Australia
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Graeme R Zosky
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
33
|
A Review of Recent Advances in Research on PM 2.5 in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15030438. [PMID: 29498704 PMCID: PMC5876983 DOI: 10.3390/ijerph15030438] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/14/2018] [Accepted: 02/24/2018] [Indexed: 01/05/2023]
Abstract
PM2.5 pollution has become a severe problem in China due to rapid industrialization and high energy consumption. It can cause increases in the incidence of various respiratory diseases and resident mortality rates, as well as increase in the energy consumption in heating, ventilation, and air conditioning (HVAC) systems due to the need for air purification. This paper reviews and studies the sources of indoor and outdoor PM2.5, the impact of PM2.5 pollution on atmospheric visibility, occupational health, and occupants’ behaviors. This paper also presents current pollution status in China, the relationship between indoor and outdoor PM2.5, and control of indoor PM2.5, and finally presents analysis and suggestions for future research.
Collapse
|