1
|
Wang L, Liu D, Sun Y, Zhang Y, Chen W, Yuan Y, Hu S, Li S. Machine learning-based analysis of heavy metal contamination in Chinese lake basin sediments: Assessing influencing factors and policy implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116815. [PMID: 39094459 DOI: 10.1016/j.ecoenv.2024.116815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Sediments are important heavy metal sinks in lakes, crucial for ensuring water environment safety. Existing studies mainly focused on well-studied lakes, leaving gaps in understanding pollution patterns in specific basins and influencing factors.We compiled comprehensive sediment contamination data from literature and public datasets, including hydro-geomorphological, climatic, soil, landscape, and anthropogenic factors. Using advanced machine learning, we analyzed typical pollution factors to infer potential sources and migration pathways of pollutants and predicted pollution levels in basins with limited data availability. Our analysis of pollutant distribution data revealed that Cd had the most extensive pollution range, with the most severe pollution occurring in the Huaihe and Yangtze River basins. Furthermore, we identified distinct groups of driving factors influencing various heavy metals. Cd, Cr, and Pb were primarily influenced by human activities, while Cu and Ni were affected by both anthropogenic and natural factors, and Zn tended more towards natural sources. Our predictions indicated that, in addition to the typical highly polluted areas, the potential risk of Cd, Cu and Ni is higher in Xinjiang, and in Tibet and Qinghai, the potential risk of Cd, Cr, Cu and Ni is higher. Pb and Zn presented lower risks, except in the Huaihe and Yangtze River Basins. Temperature, wind, precipitation, precipitation rate, and the cation exchange capacity of soil significantly impacted the predictions of heavy metal pollution in sediments, suggesting that particulate migration, rainfall runoff, and soil erosion are likely the main pathways for pollutant migration into sediments. Considering the migration, pathways, and sources of pollutants, we propose strategies such as low-impact development and promoting sustainable transportation to mitigate pollution. This study provides the latest insights into heavy metal pollution in Chinese lake sediments, offering references for policy-making and water resource management.
Collapse
Affiliation(s)
- Luqi Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Dongsheng Liu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yifan Sun
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yinsheng Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China; School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Wei Chen
- Yangtze Clean Energy Conservation and Environmental Protection Co., Ltd, Shanghai 201718, PR China
| | - Yi Yuan
- Yangtze Clean Energy Conservation and Environmental Protection Co., Ltd, Shanghai 201718, PR China
| | - Shengchao Hu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Sen Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
2
|
Das B, Islam MA, Tamim U, Ahmed FT, Hossen MB. Heavy metal analysis of water and sediments of the Kaptai Lake in Bangladesh: Contamination and concomitant health risk assessment. Appl Radiat Isot 2024; 210:111358. [PMID: 38776733 DOI: 10.1016/j.apradiso.2024.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/14/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
In this study, concentrations of 9 heavy metals (Cr, Fe, Co, Ni, Cu, Zn, As, Cd, and Pb) in water and sediments of the Kaptai Lake were determined by neutron activation analysis and atomic absorption spectrometry techniques to study their distribution and contamination in the lake. Average concentrations of Cr and Co in sediments, and Fe and Pb in water were higher than those of some international guideline values. Different environmental pollution indexes (individual and synergistic) suggested that the sediments of Kaptai Lake are minorly enriched by As and Zn, and have low severity of contamination at most of the sampling sites. For residential receptors exposed to the heavy metals in lake water, both non-carcinogenic and carcinogenic hazards were assessed which indicated that there is no carcinogenic risk for As while Cr shows a slightly carcinogenic risk. Moreover, estimated potential ecological risks and different SQGs suggested low ecotoxicological risks in the sediments of Kaptai Lake. Multivariate statistical analyses revealed the correlation among the studied heavy metals and indicated that the origin of most of the metals is mainly lithogenic and a small number of metals (Cu and Pb) from anthropogenic sources. The results of this study will be helpful in developing a pollution control strategy for the lake.
Collapse
Affiliation(s)
- Biplob Das
- Department of Physics, Chittagong University of Engineering & Technology, Chittagong, 4349, Bangladesh
| | - Mohammad Amirul Islam
- Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Ashulia, Dhaka, 1349, Bangladesh.
| | - Umma Tamim
- Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Ashulia, Dhaka, 1349, Bangladesh
| | - Farah Tasneem Ahmed
- Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Ashulia, Dhaka, 1349, Bangladesh
| | - Mohammad Belal Hossen
- Department of Physics, Chittagong University of Engineering & Technology, Chittagong, 4349, Bangladesh
| |
Collapse
|
3
|
Zhang Y, Miao G, Ma Q, Niu Y, Zhu Q, Ke X. Cumulative characteristics and ecological risk source analysis of soil potentially toxic elements in the northern margin of the Tibetan Plateau. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:351. [PMID: 39080079 DOI: 10.1007/s10653-024-02138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/17/2024] [Indexed: 09/07/2024]
Abstract
To understand the soil toxic and hazardous elements content, pollution level, and ecological risk status in the northern margin of the Tibetan Plateau, we collected and analyzed 8273 sets of surface soil samples. Evaluations were conducted using the single-factor pollution index, geo-accumulation, pollution load, and potential ecological risk indices, and source identification correlation and principal component analysis. The results revealed that, compared with the background levels in China, the accumulation of soil arsenic, cadmium, nickel, and chromium was greater in the surface soil of the study area. Additionally, in comparison with Qinghai Province, more mercury accumulated in the surface soil of the study area and owing to the influence of anthropogenic activities. Benchmarking against soil environmental quality standards, the study area exhibited pollution control zones primarily dominated by arsenic and cadmium (3.9%). The spatial distribution revealed distinct zones: a ridge mountain type characterized by arsenic-cadmium-chromium-nickel, a Daban mountain type with solely cadmium presence, and a Longyangxia-Jianzha South type dominated by arsenic. Compared with the Qinghai Province soil background values, evaluations using the Pollution loading index, Geological Cumulative Index, and Potential Ecological Risk Index methods revealed varying degrees of potentially toxic element content exceedance. From an ecological risk perspective, the individual element with the highest potential ecological risk coefficients were mercury, followed by cadmium and arsenic; however, the region's overall ecological risk index was classified as low. Three distinct sources were identified: natural sources leading to high background levels of chromium, nickel, copper, zinc, and mercury; mixed natural and industrial/agricultural sources contributing to elevated cadmium levels; and human activity-related mercury enrichment. Based on the evaluation results, synergistic monitoring of soil and biota in naturally occurring risk zones is recommended to ensure the safety of agricultural and pastoral products. Additionally, ecological impact assessments and pollution source mitigation studies should be conducted in regions influenced by human activities to curb the further degradation of soil ecological quality.
Collapse
Affiliation(s)
- Yafeng Zhang
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
- Qinghai Engineering Research Center for Selenium-Rich Resource Utilization, Xining, 810099, Qinghai, China
| | - Guowen Miao
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
- Qinghai Engineering Research Center for Selenium-Rich Resource Utilization, Xining, 810099, Qinghai, China
| | - Qiang Ma
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
- Qinghai Engineering Research Center for Selenium-Rich Resource Utilization, Xining, 810099, Qinghai, China
| | - Yao Niu
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
| | - Qiaohui Zhu
- College of Resources and Environment, Yangtze University, Wuhan, China.
| | - Xinying Ke
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
4
|
Chen Q, Wu L, Zhou C, Liu G, Yao L. A study of environmental pollution and risk of heavy metals in the bottom water and sediment of the Chaohu Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19658-19673. [PMID: 38361101 DOI: 10.1007/s11356-024-32141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Most of the existing research for heavy metals in water at present is focusing on surface water. However, potential environmental risk of heavy metals in the bottom water of lakes cannot be ignored. In this study, the content, distribution, and speciation of nine heavy metals (As, V, Cr, Co, Ni, Cu, Zn, Cd, and Pb) in the bottom water and sediment of Chaohu Lake were studied. Some pollution assessment methods were used to evaluate the environmental effect of heavy metals. Positive matrix factorization was conducted to investigate the potential sources of heavy metals in sediment. The contents of heavy metals in the bottom water of Chaohu Lake mean that its environmental pollution can be ignored. In sediment, Cd and Zn have showed stronger ecological risk. pH and redox potential are more likely to affect the stability of heavy metals in the bottom water of Chaohu Lake during the dry reason. Industrial sources (16%) are no longer the largest source of heavy metal pollution; traffic sources (33.6%) and agricultural sources (23.4%) have become the main sources of pollution at present. This study can provide some support and suggestions for the treatment of heavy metals in lakes.
Collapse
Affiliation(s)
- Qiang Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Lei Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Anhui Provincial Academy of Eco-Environmental Science Research, Hefei, 230061, Anhui, China.
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Chuncai Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Gang Liu
- Chaohu Administration Environmental Protection Monitoring Station, Hefei, 238000, Anhui, China
| | - Long Yao
- Chaohu Administration Environmental Protection Monitoring Station, Hefei, 238000, Anhui, China
| |
Collapse
|
5
|
Zhou Y, Guo S, Zhang W, Yang Y, Wang B, Zhu J, Chen S. Ecological risk assessment of heavy metals in riverine sediments of rural area driven by urbanization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92193-92205. [PMID: 37488379 DOI: 10.1007/s11356-023-28772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
Rural revitalization denotes the gathering of large populations in rural areas and the subsequent gradual urbanization. Rural environments have been deteriorated by heavy metals (HMs) over the last few years. Without the existence of large-scale industries, the accumulation of HMs in sediments due to population aggregation in rural environments needs to be scientifically confirmed. Therefore, in this study we first understand the sediment pollution in rural environments in China and across the globe, and subsequently investigate HMs in sediments in rural micro water. The study area, Sichuan Province, China, was divided into two areas, namely, sparsely populated areas (SPA) and densely populated areas (DPA). Eight typical HMs (As, Zn, Ni, Hg, Cd, Cr, Cu, and Pb) were selected to target in riverine sediments, and the content and spatial distribution characteristics were analyzed. The results indicate that As, Hg, Cd, and Pb concentrations in sediments were higher than background values (BVs), with high concentration sample sites located in the DPA. In addition, the geo-accumulation index (Igeo), pollution load index (PLI) and potential ecological risk index (RI) were used to quantitatively evaluate the pollution characteristics of HMs in sediments, revealing that the sediments exhibited high As and Hg pollution in the DPA (PLI = 1.09). In general, mild (RI = 48.76) and moderate (RI = 154.92) HM pollution was observed in the sediments of the SPA and DPA, respectively, based on the high PLI (> 1.0) and RI (> 150) values. Correlation analysis and principal component analysis (PCA) indicate that the Cd in the sediment generally originated from geogenic sources, while the other elements (Zn, As, Cu, Cr, Hg, Ni and Pb) were primarily linked to anthropogenic sources. Finally, the results demonstrate that population aggregation will lead to the enrichment of HMs.
Collapse
Affiliation(s)
- Yi Zhou
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Shushu Guo
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Wanping Zhang
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Yuankun Yang
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Bin Wang
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Jingping Zhu
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Shu Chen
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China.
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
6
|
de Carvalho VS, Felix CSA, da Silva Junior JB, de Oliveira OMC, de Andrade JB, Ferreira SLC. Determination and evaluation of the ecological risk of mercury in different granulometric fractions of sediments from a public supply river in Brazil. MARINE POLLUTION BULLETIN 2023; 192:115083. [PMID: 37245321 DOI: 10.1016/j.marpolbul.2023.115083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
This work reports the quantification of total mercury in sediments collected in periods with and without rain from the Joanes River, Bahia, Brazil. Determinations were made using Direct Mercury Analysis (DMA), the accuracy of which was confirmed with two certified reference materials. The highest total mercury concentrations were found at the sampling point close to commercial areas and large residential condominiums. On the other hand, the lowest levels were found in the site close to a mangrove region. The geoaccumulation index was applied to the total mercury results, evidencing low contamination in the region studied. The contamination factor showed that of the seven stations investigated, four samples collected in the rainy season showed moderate contamination. The results of the ecological risk assessment were utterly consistent with the contamination factor data. This study showed that the smaller sediment particles concentrate more mercury, corroborating what has been predicted by the adsorption processes.
Collapse
Affiliation(s)
- Vanessa S de Carvalho
- Universidade Federal da Bahia, Instituto de Química, Campus Ondina, 40170-270 Salvador, Bahia, Brazil; Universidade Federal da Bahia, Instituto Nacional de Ciência e Tecnologia de Energia & Ambiente, INCT, 40170-115 Salvador, Bahia, Brazil
| | - Caio S A Felix
- Universidade Federal da Bahia, Instituto Nacional de Ciência e Tecnologia de Energia & Ambiente, INCT, 40170-115 Salvador, Bahia, Brazil; Universidade Federal da Bahia, Centro Interdisciplinar de Energia & Ambiente, CIEnAm, 40170-115 Salvador, Bahia, Brazil.
| | - Jucelino B da Silva Junior
- Universidade Federal da Bahia, Instituto Nacional de Ciência e Tecnologia de Energia & Ambiente, INCT, 40170-115 Salvador, Bahia, Brazil; Universidade Federal da Bahia, Instituto de Geociências, Campus Ondina, 40170-270 Salvador, Bahia, Brazil
| | - Olivia M C de Oliveira
- Universidade Federal da Bahia, Instituto de Geociências, Campus Ondina, 40170-270 Salvador, Bahia, Brazil
| | - Jailson B de Andrade
- Universidade Federal da Bahia, Instituto Nacional de Ciência e Tecnologia de Energia & Ambiente, INCT, 40170-115 Salvador, Bahia, Brazil; Universidade Federal da Bahia, Centro Interdisciplinar de Energia & Ambiente, CIEnAm, 40170-115 Salvador, Bahia, Brazil; Centro Universitário SENAI, CIMATEC, Avenida Orlando Gomes, 1845, 41650-000 Salvador, Bahia, Brazil
| | - Sergio L C Ferreira
- Universidade Federal da Bahia, Instituto de Química, Campus Ondina, 40170-270 Salvador, Bahia, Brazil; Universidade Federal da Bahia, Instituto Nacional de Ciência e Tecnologia de Energia & Ambiente, INCT, 40170-115 Salvador, Bahia, Brazil.
| |
Collapse
|
7
|
Li Q, Dai J, Zhang H, Wan Z, Xu J. Potentially toxic elements in lake sediments in China: Spatial distribution, ecological risks, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161596. [PMID: 36646219 DOI: 10.1016/j.scitotenv.2023.161596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Potentially toxic elements (PTEs) pollution in lake sediments is a serious threat to the ecological safety of lake water and human health, owing to anthropogenic activities. Studies on the distribution of pollution, the differences in lake types, and the influencing factors in China as a whole are lacking. This study collected data on PTEs (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in Chinese lake sediments published from 2005 to 2021, and aimed to evaluate pollution levels and spatial distribution characteristics of PTEs in lake sediments, differences in pollution in different types of lakes, and influencing factors. The results showed that (1) All metals in the lake sediments accumulated to different degrees, when compared to the background values. (2) The lake type pollution levels were ranked: urban lakes > reservoirs > plateau lakes > natural lakes. (3) The geoaccumulation and potential ecological risk indexes both indicated that Cd and Hg are the main pollutants, and that the overall ecological risk level of lake sediments in China is high. (4) The degree of economic and population growth is highly correlated with the concentrations of eight PTEs; the amount of fertilizer and pesticide used in agricultural activities are the main factors affecting As and Hg; industrial activities and traffic pollution emissions are the predominant factors affecting Cu and Ni. (5) In the interaction detection analysis, the Cr content was mainly influenced by natural factors; Cd, Pb, and Zn contents were affected more by human activities. This study provides a reference for understanding the current status and influencing factors of PTE pollution in Chinese lakes.
Collapse
Affiliation(s)
- Qi Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Junfeng Dai
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541004, China.
| | - Hongyan Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Zupeng Wan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jingxuan Xu
- Guilin Water and Resources Bureau, Guilin 541199, China
| |
Collapse
|
8
|
Dou Y, Yu X, Liu L, Ning Y, Bi X, Liu J. Effects of hydrological connectivity project on heavy metals in Wuhan urban lakes on the time scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158654. [PMID: 36089017 DOI: 10.1016/j.scitotenv.2022.158654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Metal pollution in lakes threatens the ecological environment and human health. When environmental conditions change, heavy metals (HMs) in lake sediments can cause secondary pollution. At present, the implementation of the Hydrological Connectivity Project (HCP) is a significant means of lake governance. In this study, the accumulation, potential ecological risk, and sources of HMs in Four lakes (Houguan Lake, Tangxun Lake, Moshui Lake, and Chen Lake) in Wuhan city were compared before and after the completion of the HCP. The results indicated that the HCP reduced the enrichment factor of HMs and the potential ecological risk in the heavily polluted Moshui Lake but caused secondary pollution in the less polluted Houguan Lake. Moreover, the degree of purification of lakes that took a longer time to complete the HCP (Moshui Lake) was significantly higher than that of lakes with a shorter HCP completion time (Tangxun Lake). Water exchange caused by the HCP leading to exchange of the primary pollution source between Houguan Lake and Moshui Lake to a certain extent. This study provides a reference for evaluating the implementation effect of the HCP on HM pollution in lakes and for future governance planning.
Collapse
Affiliation(s)
- Yuhang Dou
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Xunru Yu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Li Liu
- Hubei Geological Survey, Wuhan 430034, China
| | - Yongqiang Ning
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Xiangyang Bi
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
9
|
Ren Z, Jia X, Zhang Y, Ma K, Zhang C, Li X. Biogeography and environmental drivers of zooplankton communities in permafrost-affected lakes on the Qinghai-Tibet Plateau. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
10
|
Environmental Assessment of Potentially Toxic Elements Using Pollution Indices and Data-Driven Modeling in Surface Sediment of the Littoral Shelf of the Mediterranean Sea Coast and Gamasa Estuary, Egypt. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coastal environmental assessment techniques have evolved into one of the most important fields for the long-term development and management of coastal zones. So, the overall aim of the present investigation was to provide effective approaches for making informed decisions about the Gamasa coast sediment quality. Over a two-year investigation, sediment samples were meticulously collected from the Gamasa estuary and littoral shelf. The inductively coupled plasma mass spectra (ICP-MS) was used to the total concentrations of Al, Fe, Ti, Mg, Mn, Cu, P, V, Ba, Cr, Sr, Co, Ni, Zn, Pb, Zr, and Ce. Single elements environmental pollution indices including the geoaccumulation index (Igeo), contamination factor (CF), and enrichment factor (EF), as well as multi-elements pollution indices comprising the potential ecological risk index (RI), degree of contamination (Dc), and pollution load index (PLI) were used to assess the sediment and the various geo-environmental variables affecting the Mediterranean coastal system. Furthermore, the Dc, PLI, and RI were estimated using the random forest (RF) and Back-Propagation Neural Network (BPNN) depending on the selected elements. According to the Dc results, all the investigated sediment samples categories were considerably contaminated. Cr, Co, Ni, Cu, Zr, V, Zn, P, and Mn showed remarkable enrichment in sediment samples and were originated from anthropogenic sources based on the CF, EF, and Igeo data. Moreover, the RI findings revealed that all the samples tested pose a low ecologically risk. Meanwhile, based on PLI, 70% of the Gamasa estuary samples were polluted, while 93.75% of littoral shelf sediment was unpolluted. The BPNNs -PCs-CD-17 model performed the best and demonstrated a better association between exceptional qualities and CD. With R2 values of 1.00 for calibration (Cal.) and 1.00 for validation (Val.). The BPNNs -PCs-PLI-17 models performed the best in terms of measuring PLI with respective R2 values of 1.00 and 0.98 for the Cal. and Val. datasets. The findings showed that the RF and BPNN models may be used to precisely quantify the pollution indices (Dc, PLI, and RI) in calibration (Cal.) and validation (Val.) datasets utilizing potentially toxic elements of surface sediment.
Collapse
|
11
|
Zeng J, Han G, Zhang S, Liang B, Qu R, Liu M, Liu J. Potentially toxic elements in cascade dams-influenced river originated from Tibetan Plateau. ENVIRONMENTAL RESEARCH 2022; 208:112716. [PMID: 35026184 DOI: 10.1016/j.envres.2022.112716] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Rivers originated from Tibetan Plateau are of great significance due to their environmental sensibility and fragility. However, the pollution of suspended particulate matter (SPM) in these rivers is rarely reported, in particular, the potentially toxic elements (PTEs) contamination. To clarify the status, sources, behavior, and risks of PTEs in SPM, a full investigation was conducted in dams-influenced Lancangjiang River basin. The findings revealed that the PTEs content (mg kg-1) ranked Mn (766) > V (151.7) > Zn (131.0) > Cr (94.6) > Ni (44.2) > Pb (36.7) > Cu (29.4) > Co (14.6) > Sb (2.6) > Mo (1.6) > Tl (0.78) > Cd (0.48). The multi-index assessment suggested that Sb and Cd were moderately severe to severe enriched PTEs with the enrichment factor values of 10.0 and 8.8 and the geo-accumulation index values of 2.2 and 2.0, respectively, while the rest of PTEs were minor/no enrichment. In contrast, Cr and Ni were major toxic elements in SPM which contributed 25 ± 10%, 24 ± 8% to the total toxic risk index. The high partition coefficients (e.g., 6.1 for Cr) were observed in most PTEs and resulted in the 96.3% of Cr, 85.2% of Zn, 83.6% of Pb, 77.8% of Ni, and 63.2% of Cu transportation in the SPM form. Natural inputs (e.g., soil erosion) are the main source (53.6%∼61.9%) of V, Cr, Mn, Co, Ni, and Tl, while fuel burning contributed 40.9% of Zn, 32.5% of Pb, and 37.3% of Cd. Moreover, 51.2% of Sb was attributed to industrial waste source, while porphyry copper/molybdenum deposits related milltailings were the co-source of Mo (54.4%) and Cu (34.8%). Overall, the PTEs geochemistry of SPM showed the potential in tracing regional environmental change.
Collapse
Affiliation(s)
- Jie Zeng
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Guilin Han
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Shitong Zhang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Bin Liang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Rui Qu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Man Liu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jinke Liu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
12
|
He H, Wei H, Wang Y, Wang L, Qin Z, Li Q, Shan F, Fan Q, Du Y. Geochemical and Statistical Analyses of Trace Elements in Lake Sediments from Qaidam Basin, Qinghai-Tibet Plateau: Distribution Characteristics and Source Apportionment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042341. [PMID: 35206531 PMCID: PMC8872242 DOI: 10.3390/ijerph19042341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/05/2022]
Abstract
The safety of lake ecosystems on the Qinghai-Tibet Plateau (QTP) has attracted increasing attention, owing to its unique location and ecological vulnerability. Previous studies have shown that the aquatic systems on the QTP have been polluted to varying degrees by trace elements. However, little is known of the distribution and sources of trace elements in lakes in the northeast QTP. Here, 57 sediment samples were collected from six lakes (Dasugan Lake, Xiaoqaidam Lake, Kreuk Lake, Toson Lake, Gahai Lake and Xiligou Lake) in the Qaidam Basin, northeast QTP, and the trace elements (V, Cr, Ni, Cu, Zn, As, Ba, Tl, Cd, Pb, and U) were analyzed. The results indicated that Ba, Zn, V, and Cr had a higher content and a wider distribution relative to the other tested elements. Correlation coefficient matrix results showed that the trace elements in the study area were strongly correlated, revealing their source of similarity. Self-organizing maps (SOM, an artificial neural network algorithm) results indicated that the degree of pollution in Xiaoqaidam Lake was the highest, and that of Dasugan Lake was the lowest. Furthermore, all sampling points were clustered into four categories through K-means clustering. The positive matrix factorization (PMF) results indicated that atmospheric deposition and anthropogenic inputs were the main trace elements sources in these lakes, followed by traffic emission and geological sources. Collectively, trace elements of six lakes in Qinghai-Tibet Plateau presented high-content and pollution characteristics. This research provides a scientific basis for better water environment management and ecological protection on the QTP.
Collapse
Affiliation(s)
- Haifang He
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; (H.H.); (Z.Q.); (Q.L.); (F.S.); (Q.F.); (Y.D.)
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haicheng Wei
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; (H.H.); (Z.Q.); (Q.L.); (F.S.); (Q.F.); (Y.D.)
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China
- Correspondence: (H.W.); (L.W.)
| | - Yong Wang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
| | - Lingqing Wang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
- Correspondence: (H.W.); (L.W.)
| | - Zhanjie Qin
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; (H.H.); (Z.Q.); (Q.L.); (F.S.); (Q.F.); (Y.D.)
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China
| | - Qingkuan Li
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; (H.H.); (Z.Q.); (Q.L.); (F.S.); (Q.F.); (Y.D.)
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China
| | - Fashou Shan
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; (H.H.); (Z.Q.); (Q.L.); (F.S.); (Q.F.); (Y.D.)
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China
| | - Qishun Fan
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; (H.H.); (Z.Q.); (Q.L.); (F.S.); (Q.F.); (Y.D.)
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China
| | - Yongsheng Du
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; (H.H.); (Z.Q.); (Q.L.); (F.S.); (Q.F.); (Y.D.)
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China
| |
Collapse
|
13
|
Elsagh A, Jalilian H, Ghaderi Aslshabestari M. Evaluation of heavy metal pollution in coastal sediments of Bandar Abbas, the Persian Gulf, Iran: Mercury pollution and environmental geochemical indices. MARINE POLLUTION BULLETIN 2021; 167:112314. [PMID: 33838600 DOI: 10.1016/j.marpolbul.2021.112314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 05/10/2023]
Abstract
Mercury has been measured by using Cold Vapor-Atomic Absorption Spectrophotometry in coastal sediments of the Persian Gulf (Bandar Abbas region). The mean concentration of the six stations followed a decreasing order of S6 (3.95) > S1 (3.75) > S4 (3.55) > S5 (3.33) > S2 (2.72) > S3 (2.17), and the mean concentration ± standard error was calculated to be 3.24 ± 0.28 (μgg-1 dry weight) for the heavy element Mercury in the sediments. The statistical investigation indicated that the concentration means of the Mercury existing in transects sediments are meaningfully different from each other (p < 0.05). To properly assess the availability and mobility of elements, Enrichment Factor (EF), Geoaccumulation index (Igeo), Contamination factor (Cf) and Toxicity Risk Index (TRI) were provided. The results show that the pollution caused by Mercury in sediments is highly polluted and the source of the presence of Mercury in the region is human-made.
Collapse
Affiliation(s)
- Akbar Elsagh
- Faculty of Chemistry, Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran 1651153311, Iran.
| | - Hamidreza Jalilian
- Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran.
| | | |
Collapse
|
14
|
Wang H, Hou L, Liu Y, Liu K, Zhang L, Huang F, Wang L, Rashid A, Hu A, Yu C. Horizontal and vertical gene transfer drive sediment antibiotic resistome in an urban lagoon system. J Environ Sci (China) 2021; 102:11-23. [PMID: 33637236 DOI: 10.1016/j.jes.2020.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Rapid urbanization has resulted in pervasive occurrence of antibiotic resistance genes (ARGs) in urban aquatic ecosystems. However, limited information is available concerning the ARG profiles and the forces responsible for their assembly in urban landscape lagoon systems. Here, we employed high-throughput quantitative PCR (HT-qPCR) to characterize the spatial variations of ARGs in surface and core sediments of Yundang Lagoon, China. The results indicated that the average richness and absolute abundance of ARGs were 11 and 53 times higher in the lagoon sediments as compared to pristine reference Tibetan lake sediments, highlighting the role of anthropogenic activities in ARG pollution. Co-occurrence network analysis indicated that various anaerobic prokaryotic genera belonging to Alpha-, Deltaproteobacteria, Bacteroidetes, Euryarchaeota, Firmicutes and Synergistetes were the potential hosts of ARGs. The partial least squares-path modeling (PLS-PM) analysis revealed positive and negative indirect effects of physicochemical factors and heavy metals on the lagoon ARG profiles, via biotic factors, respectively. The horizontal (mediated by mobile genetic elements) and vertical (mediated by prokaryotic communities) gene transfer may directly contribute the most to drive the abundance and composition of ARGs, respectively. Furthermore, the neutral community model demonstrated that the assembly of sediment ARG communities was jointly governed by deterministic and stochastic processes. Overall, this study provides novel insights into the diversity and distribution of ARGs in the benthic habitat of urban lagoon systems and underlying mechanisms for the spread and proliferation of ARGs.
Collapse
Affiliation(s)
- Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyuan Hou
- Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Keshao Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuyi Huang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lin Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar 25000, Pakistan
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Changping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
15
|
Geochemistry and pollution status of surface sediments of Loktak Lake, Manipur, India. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Nujkić M, Milić S, Spalović B, Dardas A, Alagić S, Ljubić D, Papludis A. Saponaria officinalis L. and Achillea millefolium L. as possible indicators of trace elements pollution caused by mining and metallurgical activities in Bor, Serbia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44969-44982. [PMID: 32772299 DOI: 10.1007/s11356-020-10371-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
This study evaluates bioaccumulation and translocation potentials of trace elements (TEs) by Saponaria officinalis L. (soapwort) and Achillea millefolium L. (yarrow) in order to select and optimize phytoremediation methods for the polluted environment of the city of Bor, Serbia. According to the enrichment factor for soil (i.e., 57.9-128.8 for Cd and As), pollution index (i.e., 6.6-84.7 for Cu), pollution load index (2.9-98.8), individual potential risk factors (11.5-5163), and potential ecological risk index values (260-6379), urban and rural soils from the city of Bor were classified as very contaminated with the investigated TEs. The results from all the indices and statistical analysis showed significant ecological risks of Cu, As, and Cd at the investigated sites and urge the need for remediation. The enrichment factor of the plants for As (566.3) and Cd (306.2) indicated a high enrichment level of the herb organs at all the sites. Since there are small differences in metal accumulation index values between the herbs and their parts (root, shoot), soapwort and yarrow can be considered as potential bioindicators. Based on the biological concentration and translocation factors, soapwort can be recommended as a suitable herb for phytoextraction purposes of Pb, As, and Cd polluted areas. Yarrow shows good characteristics for phytoextraction of Cu, Pb, and As from the contaminated soil. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) results indicate their similar origin from atmospheric deposition. Therefore, these herbs can be utilized as a bioindicator and phytoremediator in polluted areas influenced by metallurgical activities to detect possible levels of TEs.
Collapse
Affiliation(s)
- Maja Nujkić
- Department of Chemical Technology, Technical Faculty Bor, University of Belgrade, V.J. 12, Bor, 19210, Serbia.
| | - Snežana Milić
- Department of Chemical Technology, Technical Faculty Bor, University of Belgrade, V.J. 12, Bor, 19210, Serbia
| | - Boban Spalović
- Department of Chemical Technology, Technical Faculty Bor, University of Belgrade, V.J. 12, Bor, 19210, Serbia
| | - Anastassios Dardas
- School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Slađana Alagić
- Department of Chemical Technology, Technical Faculty Bor, University of Belgrade, V.J. 12, Bor, 19210, Serbia
| | - Darko Ljubić
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Aleksandra Papludis
- Department of Chemical Technology, Technical Faculty Bor, University of Belgrade, V.J. 12, Bor, 19210, Serbia
| |
Collapse
|
17
|
Che F, Chen J, Zhang B, Jiang X, Wang S. Distribution, risk and bioavailability of metals in sediments of Lake Yamdrok Basin on the Tibetan Plateau, China. J Environ Sci (China) 2020; 97:169-179. [PMID: 32933732 DOI: 10.1016/j.jes.2020.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Total contents of metals in soil and sediments on the Tibetan Plateau of China have been widely analyzed, but existing information is insufficient to effectively evaluate metal ecological risk because of a lack of metal bioavailability data. In this study, distribution, potential risk, mobility and bioavailability of metals in sediments of Lake Yamdrok Basin in Tibet of China were explored by combined use of total digestion, sequential extraction and the diffusive gradient in thin-films (DGT). Average concentrations of Cr, Ni, Cu, Zn, As, Cd and Pb in surface sediments were 31.25, 30.31, 22.00, 45.04, 31.32, 0.13 and 13.39 mg/kg, respectively. Higher levels of metals were found near the inflowing rivers. Residual form was dominant in Cr, Ni, Zn, Cd and Pb, and reducible form was dominant in As and Cd. Metals in surface sediments showed a low enrichment degree overall, but Cd and As had higher ecological risk levels than the other metals. Furthermore, there was a larger average proportion of exchangeable form of As (20.4%) and Cd (9.0%) than the other metals (1.7%-3.3%), implying their higher mobility and release risk. Average DGT-labile concentrations of Cr, Ni, Cu, Zn, As, Cd and Pb were 0.5, 4.5, 0.7, 25.1, 60.0, 0.22 and 1.0 µg/L, respectively. The DGT-labile As was significantly correlated with extractable As forms (p< 0.01), suggesting that extractable As in sediments acts as a "mobile pool" for bioavailable As. These results suggest potential risks of As and Cd, especially As, deserve further attention in Lake Yamdrok Basin.
Collapse
Affiliation(s)
- Feifei Che
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Junyi Chen
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Bo Zhang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Shuhang Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing100012, China.
| |
Collapse
|
18
|
Wu T, Zhu G, Chen J, Yang T. In-situ observations of internal dissolved heavy metal release in relation to sediment suspension in lake Taihu, China. J Environ Sci (China) 2020; 97:120-131. [PMID: 32933727 DOI: 10.1016/j.jes.2020.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Despite laboratory experiments that have been performed to study internal heavy metal release, our understanding of how heavy metals release in shallow eutrophic lakes remains limited for lacking in-situ evidence. This study used automatic environmental sensors and a water sampling system to conduct high-frequency in-situ observations (1-hr intervals) of water environmental variables and to collect water samples (3-hr intervals), with which to examine the release of internal heavy metals in Lake Taihu, China. Under conditions of disturbance by strong northerly winds, sediment resuspension in both the estuary area and the lake center caused particulate heavy metal resuspension. However, the patterns of concentrations of dissolved heavy metals in these two areas were complex. The concentrations of dissolved Se and Mo increased in both areas, indicating that release of internal dissolved Se and Mo is triggered by sediment resuspension. The concentrations of dissolved Ni, Zn, As, Mn, Cu, V, and Co tended to increase in the estuary area but decrease in the lake center. The different trends between these two areas were controlled by pH and cyanobacteria, which are related to eutrophication. During the strong northerly winds, the decrease in concentrations of dissolved heavy metals in the lake center was attributable primarily to absorption by the increased suspended solids, and to growth-related assimilation or surface adsorption by the increased cyanobacteria. The findings of this study suggest that, short-term changes of environmental conditions are very important in relation to reliable monitoring and risk assessment of heavy metals in shallow eutrophic lakes.
Collapse
Affiliation(s)
- Tingfeng Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Guangwei Zhu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianghai Chen
- Shanghai Investigation Design & Research Institute Co., Ltd., Shanghai 200434, China
| | - Tengteng Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Almeida LC, da Silva Júnior JB, Dos Santos IF, de Carvalho VS, de Santana Santos A, Hadlich GM, Ferreira SLC. Assessment of toxicity of metals in river sediments for human supply: Distribution, evaluation of pollution and sources identification. MARINE POLLUTION BULLETIN 2020; 158:111423. [PMID: 32753207 DOI: 10.1016/j.marpolbul.2020.111423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Ten surface sediments collected from Joanes River, Bahia, Brazil in rainy and drought periods in 2019 were evaluated according to the enrichment factor (EF), potential ecological risk index (RI), potential contamination index (PCI), pollution load index (PLI), and index of geoaccumulation (Igeo). Initially the dry sediment was subjected to granulometric analysis and determination of the concentration of organic matter. Then, the samples were digested in HNO3 and analyzed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES) to determine the metals cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn). Zn and Cu were classified in that order as the most contaminated elements in most sediment. Comparison of the total metal concentrations with the threshold (TELs) and probable (PELs) effect levels in sediment quality guidelines suggested a more worrisome situation for Zn (648.83-1415.90 μg g-1; PELZn = 315 μg g-1), of which concentrations were occasionally associated with adverse biological effects in four sediments, followed by Cu in five sediments during dry and rainy periods; while adverse effects were rarely associated with Cd, Cr, Ni, and Pb. In another evaluation, Cd, Cu, Cr, and Zn could be considered the most dangerous in the entire river, as they were classified in the high levels of contamination by the PCI, associated with serious adverse effects in most samples. In an assessment regarding the ecological risks in the study environment, the sediment samples remained below the limit established by the risk index (IR). The Zn presented moderately severe enrichment (6.78-11.83) in all the collection stations in the dry and rainy periods, followed by the Cd that presented moderate enrichment (2.23-4.17), whose values exceeded almost 1000 times the background at one site. Through the PCA it was possible to evidence the existing correlation between metals, organic matter, and silt and clay fraction. The results obtained in the PCA represented more than 80% of the variance between the data. The environmental risk assessment revealed a significant increase in the risk associated with metals during the rainy season. This is probably due to the greater supply of organic matter from the leaching of the margins.
Collapse
Affiliation(s)
- Lucas Cintra Almeida
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-270 Salvador, BA, Brazil
| | - Jucelino Balbino da Silva Júnior
- Postgraduate Program in Geochemistry: Petroleum and Environment (POSPETRO), Geoscience Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-290 Salvador, BA, Brazil.
| | | | - Vanessa Sales de Carvalho
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-270 Salvador, BA, Brazil
| | - Adilson de Santana Santos
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-270 Salvador, BA, Brazil
| | - Gisele Mara Hadlich
- Postgraduate Program in Geochemistry: Petroleum and Environment (POSPETRO), Geoscience Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-290 Salvador, BA, Brazil
| | - Sérgio Luís Costa Ferreira
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-270 Salvador, BA, Brazil
| |
Collapse
|
20
|
Mao G, Zhang Y, Tong Y, Huang X, Mehr F. Ecological risk assessment of heavy metals to aquatic organisms in the Lhasa River, Tibet, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26091-26102. [PMID: 32358753 DOI: 10.1007/s11356-020-09021-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The Lhasa River is the largest and most important tributary of the Yarlung Tsangpo River on the Tibetan Plateau, China. It is an important source of drinking water and irrigation for the inhabitants living in the watershed. Despite the increasing focus on water chemistry, the ecological risk assessment (ERA) caused by heavy metals to aquatic organisms in the Lhasa River has not been performed before. Based on the documented monitoring data for heavy metals, the species sensitivity distributions (SSDs) method was applied in this study. The potential ecological risks induced by eight major heavy metals (including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn)) in the Lhasa River to four typical categories of freshwater organisms, including insects, crustaceans, fish, and mollusks, were assessed in different water periods (e.g., high, normal, and low water-periods). Results suggested that the downstream part of the Lhasa River and the Meldromarchu and Tölungchu tributaries are the principal zones for the high aquatic ecological risks. For most of the monitoring sites, the ecological risks decreased in the following order: high-water period > normal-water period > low-water period. During the high-water period, Cu had the highest ecological risks for all selected species. For the insects, the ecological risks were quite low (< 1%) throughout the year. These results suggested that particular attention should be paid to the contamination of certain heavy metals (e.g., Cu and Cr) in the future water management in the Lhasa River.
Collapse
Affiliation(s)
- Guozhu Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yu Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Xiang Huang
- Department of Chemistry and Environmental Sciences, Tibet University, Lhasa, 850000, Tibet, China
| | - Faryal Mehr
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
21
|
Li M, Zhang Q, Sun X, Karki K, Zeng C, Pandey A, Rawat B, Zhang F. Heavy metals in surface sediments in the trans-Himalayan Koshi River catchment: Distribution, source identification and pollution assessment. CHEMOSPHERE 2020; 244:125410. [PMID: 31790989 DOI: 10.1016/j.chemosphere.2019.125410] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Rivers flowing across the Himalayas are important water resources and deliver large amounts of sediment to regional and downstream ecosystems. However, the geochemistry of Himalayan river sediments has been less studied. Surface sediment samples collected from a typical trans-Himalayan river, the Koshi River (KR), were used to investigate the distribution, pollution status and potential sources of heavy metals. Heavy metals did not show significant spatial differences between the upstream and downstream areas of the river, but Cd and Pb displayed higher values in the upstream area. The average heavy metal concentrations in the KR sediments are comparable to the natural background values and are lower than the sediment guidelines. Pollution assessment using the geo-accumulation index (Igeo), enrichment factor (EF) and pollution load index (PLI) suggested negligible anthropogenic disturbances except for slight contamination by Cd, Pb and Cu at a few sites. Principal component analysis revealed that Cr, Co, Ni and Zn were primarily from the parent rock and that Cu, Cd and Pb were derived from both natural and anthropogenic sources. Despite contrasting environmental settings and human activities in the upper and lower reaches of the river, the heavy metals concentrations in the KR sediments showed consistency with natural backgrounds and negligible contamination. The geochemistry of river sediments is a useful indicator of environmental changes, and long-term observations of the geochemistry of trans-Himalayan river sediments are needed to understand the impacts of intensified climate change and human activities on the Himalayan environment.
Collapse
Affiliation(s)
- Mingyue Li
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China.
| | - Xuejun Sun
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kabita Karki
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Zeng
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Aastha Pandey
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bakhat Rawat
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Zhang
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Chen M, Ding S, Gao S, Fu Z, Tang W, Wu Y, Gong M, Wang D, Wang Y. Efficacy of dredging engineering as a means to remove heavy metals from lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:181-190. [PMID: 30772548 DOI: 10.1016/j.scitotenv.2019.02.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Dredging is used worldwide to remove polluted sediments from water bodies. However, the dredging efficacy remains hard to identify. Here, we studied the efficacy of dredging engineering as a means to remove Cu, Cd, and Pb from polluted lake sediments, after six years of completion. Dissolved metals and DGT-labile metals were quantified in the non-dredged and post-dredged sediments by high-resolution dialysis (HR-Peeper) and diffusive gradients (DGT) in thin films techniques. April and July measurements showed that dredging was effectively remediate the polluted sediments. The dissolved Pb, Cd, and Cu contents decreased up to 30%, 44%, and 26%, and the DGT-labile contents decreased up to 51%, 27%, and 33% compared with the contents in the non-dredged zone. Dredging was thus proven efficient in decreasing the labile metal fractions, increasing the capacity of available solids to bind metals, and slowing the leaching of metals from available solids in the post-dredged sediments. In October and January, the dredging efficacy was counteracted by the decomposition of algae, which increased the dissolved and DGT-labile metal concentrations in the post-dredged zone.
Collapse
Affiliation(s)
- Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Shuaishuai Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Fu
- Nanjing University of Science and Technology, 200 Xiaolingwei Road, 210094 Nanjing, China
| | - Wanying Tang
- Nanjing University of Science and Technology, 200 Xiaolingwei Road, 210094 Nanjing, China
| | - Yuexia Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengdan Gong
- Shanghai Water Source Construction Development Co., Ltd., Shanghai 200437, China
| | - Dan Wang
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing EasySensor Environmental Technology Co., Ltd, Nanjing 210018, China
| |
Collapse
|
23
|
Yang Y, Liu G, Ye C, Liu W. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:283-293. [PMID: 30212791 DOI: 10.1016/j.jhazmat.2018.09.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 05/26/2023]
Abstract
Antibiotic resistance genes (ARGs) have been identified as emerging pollutants in the environment. However, little information is available for ARGs in natural wetlands at high altitude. In this study, we investigated 32 wetlands across the Qinghai-Tibetan Plateau, with the variation of wetland types, altitude, and environmental factors, to assess the determinant factor of ARGs in this area. ARGs were detected in all the wetlands, ranged from 1.80 × 105 to 1.35 × 107 copies per gram of soils. The ARGs in wetland soils were diverse and abundant, and varied from each site, but the spatial geographical distance did not influence the ARG profile. The mobile genetic elements in wetlands ranged from 3.13 × 103 to 1.02 × 106 copies per gram of soil, indicating the low abundance of mobile genetic elements suggests a lower transfer rate of ARGs between bacteria in the Plateau. Bacterial community composition was the main driver in shaping the ARG diversity and geographic distribution. Soil moisture and temperature were positively correlated with ARG abundance in this region. These results not only provide a better understanding of the background levels of ARGs in the Qinghai-Tibetan Plateau, but also shed light on the influence of climate change and increased human activities on the distribution of ARGs.
Collapse
Affiliation(s)
- Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Guihua Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chen Ye
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
24
|
Lu Y, He D, Lei H, Hu J, Huang H, Ren H. Adsorption of Cu (II) and Ni (II) from aqueous solutions by taro stalks chemically modified with diethylenetriamine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17425-17433. [PMID: 29656353 DOI: 10.1007/s11356-018-1932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Taro stalks (TS) were modified by diethylenetriamine (DETA) to obtain the modified taro stalks adsorbents (recorded as MTSA). This kind of raw material is unprecedented and the method of modification is relatively simple. The physicochemical properties of MTSA were characterized by scanning electron microscope (SEM), FTIR, and zeta potential analyzer. The capacity of MTSA for adsorbing heavy metals under different influencing factors was tested by UV-visible spectrophotometer. The results indicated that the gaps between the microspheres of MTSA are more, which are conducive to adsorption. The MTSA might have increased the amino-functional groups which are beneficial for adsorption, resulting in an increase in the adsorption capacity of copper and nickel ions (35.71 and 31.06 mg/g) of about 5-7 times compared to bare taro stalks (5.27 mg/g and 6.08 mg/g). High Cu2+ uptake on MTSA was observed over the pH range of 5.5-7.0, while for Ni2+ the range was 7.0-8.5, and the optimum dosage of adsorbent were both about 0.80 g for Cu2+ and Ni2+. The adsorption kinetics of Cu2+ and Ni2+ on MTSA could be interpreted with a pseudo-second order and the equilibrium data were best described by the Langmuir isotherm model. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Yao Lu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Deliang He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Huibin Lei
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jun Hu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Houqiang Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huiying Ren
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|