1
|
Baysal A, Saygin H, Soyocak A. A Comparative Study on the Interaction Between Protein and PET Micro/Nanoplastics: Structural and Surface Characteristics of Particles and Impacts on Lung Carcinoma Cells (A549) and Staphylococcus aureus. ENVIRONMENTAL TOXICOLOGY 2024; 39:4899-4926. [PMID: 38923375 DOI: 10.1002/tox.24366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The interaction between particles and proteins is a key factor determining the toxicity responses of particles. Therefore, this study aimed to examine the interaction between the emerging pollutant polyethylene terephthalate micro/nanoplastics from water bottles with bovine serum albumin. The physicochemical characteristics of micro/nanoplastics were investigated using nuclear magnetic resonance, x-ray diffraction, Fourier transform infrared, dynamic light scattering, and x-ray energy dispersive spectroscopy after exposure to various concentrations and durations of protein. Furthermore, the impact of protein-treated micro/nanoplastics on biological activities was examined using the mitochondrial activity and membrane integrity of A549 cells and the activity and biofilm production of Staphylococcus aureus. The structural characteristics of micro/nanoplastics revealed an interaction with protein. For instance, the assignment of protein-related new proton signals (e.g., CH2, methylene protons of CH2O), changes in available protons s (e.g., CH and CH3), crystallinity, functional groups, elemental ratios, zeta potentials (-11.3 ± 1.3 to -12.4 ± 1.7 to 25.5 ± 2.3 mV), and particle size (395 ± 76 to 496 ± 60 to 866 ± 82 nm) of micro/nanoplastics were significantly observed after protein treatment. In addition, the loading (0.012-0.027 mM) and releasing (0.008-0.013 mM) of protein also showed similar responses with structural characteristics. Moreover, the cell-based responses were changed regarding the structural and surface characteristics of micro/nanoplastics and the loading efficiencies of protein. For example, insignificant mitochondrial activity (2%-10%) and significant membrane integrity (12%-28%) of A549 cells increased compared with control, and reductions in bacterial activity (5%-40%) in many cases and biofilm production specifically at low dose of all treatment stages (13%-46% reduction) were observed.
Collapse
Affiliation(s)
- Asli Baysal
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Istanbul, Turkey
| | - Ahu Soyocak
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
2
|
Guo N, Li X, Xie L, Hao S, Zhou X. A quantitative review of the effects of biochar application on the reduction of Cu concentration in plant: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60731-60748. [PMID: 39392574 DOI: 10.1007/s11356-024-34789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Contamination and toxicity of copper (Cu) in soils are global issues, particularly in regions where Cu-based fungicides are utilized. Elevated Cu concentrations can lead to soil contamination and pose significant risks to the ecosystem, including plant life, wildlife, and human health. The application of biochar has been proposed as a viable strategy to mitigate Cu accumulation in plants. However, there is no quantitative and data-based consensus on the impact of biochar on plant Cu accumulation. In this meta-analysis, 624 data records from 65 published literature were collected and the effects of various factors, including biochar properties, experimental conditions, and soil properties on Cu accumulation in plants, were examined through meta-subgroup analysis and meta-regression models. The results obtained indicate a significant dose-dependent effect of biochar in decreasing Cu concentration in plants by an average of 23.45%. Soils with acidic pH values and medium textures were more conducive for biochar to mitigate Cu accumulation in plant tissues. In addition, manure biochar and green waste biochar were found to be more successful in decreasing Cu concentrations in plants compared to other biochar types. Biochar types with pyrolysis temperatures of > 600 °C and pH values of ≥ 10 resulted in greater decreases in plant Cu concentration. Regarding biochar application, biochar minimum range of 1% in potting experiments and 20 t/ha in field experiments have been recommended to effectively decrease Cu concentration in plants. Overall, these findings provide valuable insights into Cu transfer mitigation through food chain to human bodies and for policymakers to take preventive measures.
Collapse
Affiliation(s)
- Ningyu Guo
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xue Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Linzhi Xie
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Shangyan Hao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Sapkota S, Ghimire R, Bista P, Hartmann D, Rahman T, Adhikari S. Greenhouse gas mitigation and soil carbon stabilization potential of forest biochar varied with biochar type and characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172942. [PMID: 38719032 DOI: 10.1016/j.scitotenv.2024.172942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Biochar is increasingly used in climate-smart agriculture, yet its impact on greenhouse gas (GHG) emissions and soil carbon (C) sequestration remains poorly understood. This study examined biochar-mediated changes in soil properties and their contribution to C stabilization and GHG mitigation by evaluating four types of biochar. Soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions, soil chemical and biological properties, and soil organic carbon (SOC) mineralization kinetics were monitored using greenhouse, laboratory, and modeling experiments. Three pine wood biochars pyrolyzed at 460 °C (PB-460), 500 °C (PB-500), 700 °C (PB-700), and one pine bark biochar from gasification at 760 °C (GB-760) were added into soil at 1 % w/w basis. Soils amended with biochar were used to cultivate sorghum for three months in a greenhouse, followed by three months of laboratory incubation. Data obtained from laboratory incubation was modeled using various statistical approaches. The PB-500 and PB-700 reduced cumulative N2O-N emissions by 68.5 % and 73.9 % and CO2 equivalent C emissions by 66.9 % and 72.4 %, respectively, compared to unamended control. The N2O emissions were positively associated with soil nitrate N, available P, and biochar ash content while negatively associated with SOC. The CO2 emission was negatively related to biochar C:N ratio and volatile matter content. Biochar amended soils had 49.2 % (PB-500) to 87.7 % (PB-700) greater SOC and 22.9 % (PB-700) to 48.1 % (GB-760) greater sorghum yield than the control. While PB-700 had more saprophytes than the control, the GB-760 yielded a greater yield than biochars prepared by pyrolysis. Microbial biomass C was 7.23 to 23.3 % greater in biochar amended soils than in control. The double exponential decay model best explained the dynamics of C mineralization, which was associated with initial soil nitrate N and available P positively and total fungi and protozoa biomass negatively. Biochar amendment could be a climate smart agricultural strategy. Pyrolysis pine wood biochar showed the greatest potential to reduce GHG emissions and enhance SOC storage and stability, and gasification biochar contributed more to SOC storage and increased crop yield.
Collapse
Affiliation(s)
- Sundar Sapkota
- New Mexico State University, Department of Plant and Environmental Sciences, Las Cruces, NM, USA
| | - Rajan Ghimire
- New Mexico State University, Department of Plant and Environmental Sciences, Las Cruces, NM, USA; New Mexico State University, Agricultural Science Center, Clovis, NM, USA.
| | - Prakriti Bista
- New Mexico State University, Department of Plant and Environmental Sciences, Las Cruces, NM, USA; New Mexico State University, Agricultural Science Center, Clovis, NM, USA
| | - Dale Hartmann
- Biosystems Engineering Department, Auburn University, 200 Corley Building, Auburn, AL 36849, USA
| | - Tawsif Rahman
- Biosystems Engineering Department, Auburn University, 200 Corley Building, Auburn, AL 36849, USA
| | - Sushil Adhikari
- Biosystems Engineering Department, Auburn University, 200 Corley Building, Auburn, AL 36849, USA
| |
Collapse
|
4
|
Zhang W, Li Q, He Y, Wang Y, Wang L, Zhu Y. Effects of inherent components and disposal temperature on the melting behavior of petrochemical sludge char during CO 2 gasification. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132922. [PMID: 37939566 DOI: 10.1016/j.jhazmat.2023.132922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Pyrolysis-coupled gasification-melting is a promising technology as it can dispose of the petrochemical sludge (PS) and recover the leftover energy. Unfortunately, there has been little research investigating the effects of pyrolysis degree on melting characteristics of the pyrolysis residue (PR) and the transformation properties of the heavy metal (HM). In this study, the function of inherent components and disposal temperature were elucidated. The results show that the moisture and light volatile could disperse the melting residue (MR) during gasification-melting treatment, causing different morphology and color of the MR. In addition, as pyrolysis temperature increased, the HMs speciation (e.g. Zn, Cu, and Cr) in the PR was transformed from bioavailable to a stable state, and the yield of PR decreased from 66.8% to 36.5%. The PR produced at 800 °C could decrease about 0.9 ∼ 1.9 potential ecological risk of releasing substances during the subsequent high-temperature gasification-melting owing to its stable HMs state and less char composition. Moreover, the gasification at 1250 °C could realize the safe disposal of the PR. Further increasing the gasification temperature to 1450 °C could not improve the acid-leaching resistance of the HMs, although the apparent concentration of C and the acid dissolution proportion of slag decreased by 6.3% and 1.7%, respectively.
Collapse
Affiliation(s)
- Wenqi Zhang
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic Solid Wastes Deeply Treatment and Hydrogen Production, Jiangsu, China
| | - Qingdong Li
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic Solid Wastes Deeply Treatment and Hydrogen Production, Jiangsu, China
| | - Yahui He
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic Solid Wastes Deeply Treatment and Hydrogen Production, Jiangsu, China
| | - Yinfeng Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic Solid Wastes Deeply Treatment and Hydrogen Production, Jiangsu, China.
| | - Lei Wang
- Jiangsu Province Engineering Research Center of Organic Solid Wastes Deeply Treatment and Hydrogen Production, Jiangsu, China; School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yuezhao Zhu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic Solid Wastes Deeply Treatment and Hydrogen Production, Jiangsu, China
| |
Collapse
|
5
|
Ogbuagu C, Robinson S, Sizmur T. Feedstock nitrogen content mediates maximum possible Pb sorption capacity of biochars. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2102-2109. [PMID: 37909880 DOI: 10.1039/d3em00246b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The use of biochar for the adsorption of contaminants from soil and water has received considerable interest due to biochar's high surface area, negative charge, and resistance to degradation. However, a knowledge gap still exists concerning the optimum selection of feedstocks and pyrolysis temperatures to maximise sorption capacity for metals. In this study, biochars were produced from 4 different feedstock materials (hay, wheat straw, coco coir, and pine bark) at 10 pyrolysis temperatures ranging from 300 °C to 750 °C, at 50 °C intervals. Batch sorption experiments were conducted to determine the maximum Pb sorption capacity for each biochar using the Langmuir model. The sorption isotherms fit the Langmuir model well (generally R2 > 0.7). The Langmuir maximum sorption capacity increased with an increase in pyrolysis temperature, according to a sigmoidal relationship. A sigmoidal model was fit to the data to derive the theoretical maximum possible sorption capacity obtainable from a feedstock. We observed a positive correlation between the nitrogen content of the feedstock and the theoretical maximum possible sorption capacity obtainable from the feedstock. This relationship highlights the importance of nitrogen content in feedstock to create biochars with a high Pb sorption capacity. It is possible that cation-π interactions with heterocyclic N structures are the primary mechanism for the sorption of Pb to these biochars, and this warrants further investigation.
Collapse
Affiliation(s)
- Chinonso Ogbuagu
- Soil Research Centre, Department of Geography and Environmental Science, University of Reading, Reading, UK.
| | - Steve Robinson
- Soil Research Centre, Department of Geography and Environmental Science, University of Reading, Reading, UK.
| | - Tom Sizmur
- Soil Research Centre, Department of Geography and Environmental Science, University of Reading, Reading, UK.
| |
Collapse
|
6
|
Tang Y, Wang C, Holm PE, Hansen HCB, Brandt KK. Impacts of biochar materials on copper speciation, bioavailability, and toxicity in chromated copper arsenate polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132067. [PMID: 37478594 DOI: 10.1016/j.jhazmat.2023.132067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Trace element polluted soils pose risks to human and environmental health. Biochar can decrease trace element bioavailability in soils, but their resulting ability to reduce soil toxicity may vary significantly depending on feedstocks used, pyrolysis conditions, and the target pollutants. Chromated copper arsenate (CCA) polluted sites are common, but only very few types of biochar have been tested for these sites. Hence, we tested fourteen well-characterized biochar materials for their ability to bind Cu and reduce toxicity in a CCA polluted soil in a 56-day experiment. Biochar (1%, wt/wt) increased plant (wheat, Triticum aestivum L.) shoot and root growth by 6-58% and 0-73%, reduced soil toxicity to Arthrobacter globiformis by 7-55%, decreased bioavailable Cu (Pseudomonas fluorescens bioreporter) by 5-65%, and decreased free Cu2+ ion activities by 27-89%. The A. globiformis solid-contact test constituted a sensitive ecotoxicological endpoint and deserves further attention for assessment of soil quality. Oil seed rape straw biochar generally performed better than other tested biochar materials. Biochar performance was positively correlated with its high cation exchange capacity, multiple surface functional groups, and high nitrogen and phosphorus content. Our results pave the way for future selection of feedstocks for creation of modified biochar materials with optimal performance in CCA polluted soil.
Collapse
Affiliation(s)
- Yinqi Tang
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Chen Wang
- Section for Environmental Chemistry and Physics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Peter E Holm
- Section for Environmental Chemistry and Physics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Hans Chr Bruun Hansen
- Section for Environmental Chemistry and Physics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Kristian K Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
7
|
Baysal A, Saygin H. Multispectroscopic Characterization of Surface Interaction between Antibiotics and Micro(nano)-sized Plastics from Surgical Masks and Plastic Bottles. ACS OMEGA 2023; 8:12739-12751. [PMID: 37065040 PMCID: PMC10099137 DOI: 10.1021/acsomega.2c07927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Recent studies have shown that plastic particles can sorb antibiotics, and these sorption properties have been examined in various studies; however, the possible mechanism responsible for the interactions requires a deeper investigation in terms of further interaction with living systems. Moreover, the usage of disposable surgical masks and plastic bottles has increased the plastic pollution risk for living systems like humans. Therefore, this study aimed to examine the sorption characteristics between antibiotics (amoxicillin and spiramycin) and plastic particles from surgical masks and plastic bottles through batch sorption experiments. In the study, their surface interactions were characterized using multispectroscopic approaches including FTIR, Raman spectrometry, and SEM-EDX, and various surface indicators (e.g., surface oxidation, deformation, and biological potential) were examined. The sorption results showed that adsorption kinetics and the isotherm of amoxicillin and spiramycin on micro(nano)plastics from surgical masks and plastic bottles closely fit the pseudo-second-order kinetic model and Langmiur isotherm. These results indicated that the evidence for the antibiotic interaction with particles was changes in the surface functional group intensities and up-shifting, and this correlated with the sorption of antibiotics on micro(nano)-sized plastics. The C/N ratio of the plastic particles before and after antibiotic treatment was used as an indicator for the surface biological interaction, and the results showed that C/N ratios of surgical mask particles increased with both types of antibiotic sorption. However, the C/N of the particles from plastic bottles showed antibiotic type-dependence. The surface deformation indicators (e.g., O/C, C=O, C=C, and O-H indices) showed that the O/C ratios of micro(nano)plastics from surgical masks were higher with the amoxicillin and spiramycin sorption, and the C=O indices were positively linked with the amoxicillin sorption stages, whereas the C=C and O-H had a negative correlation with the amoxicillin sorption stages. Moreover, amoxicillin sorption influenced the O/C ratio and indices of O-H and C=C of micro(nano)plastics from plastic bottles in a limited manner. The C=O groups of the micro(nano)plastics from plastic bottles were positively influenced by the spiramycin sorption stages, whereas it was negatively linked with amoxicillin sorption stages. Overall, the findings from surface indicators indicated that the micro(nano)plastics from surgical masks can be more influenced with antibiotic sorption compared to plastic bottles.
Collapse
Affiliation(s)
- Asli Baysal
- Istanbul
Technical University, Science and Letters
Faculty, Chemistry Department, Maslak, Sariyer, Istanbul 34467, Turkey
| | - Hasan Saygin
- Istanbul
Aydin University, Application and
Research Center for Advanced Studies, Sefakoy, Kucukcekmece, Istanbul 34295, Turkey
| |
Collapse
|
8
|
Labanya R, Srivastava PC, Pachauri SP, Shukla AK, Shrivastava M, Mukherjee P, Srivastava P. Sorption-desorption of some transition metals, boron and sulphur in a multi-ionic system onto phyto-biochars prepared at two pyrolysis temperatures. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2378-2397. [PMID: 36321468 DOI: 10.1039/d2em00212d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The sorption-desorption of transition metals, B and S onto phyto-biochars prepared from lantana, pine needles and wheat straw by pyrolysis at 300 °C and 450 °C were studied using the batch method. Their sorption-desorption onto phyto-biochars conformed to Freundlich isotherms. Phyto-biochars pyrolyzed at 450 °C had higher sorption capacity for transition metals (Zn, Cu, Fe, and Mn) but lower sorption capacity for S as compared to those pyrolyzed at 300 °C. The desorption capacity of phyto-biochars pyrolyzed at 450 °C for transition metals, B and S was also higher than that of phyto-biochars pyrolyzed at 300 °C except for S in pine needle biochar. Percent desorption of all transition metals, B and S was lower for phyto-biochars pyrolyzed at 450 °C compared to those pyrolyzed at 300 °C; however, an opposite trend was noted for Mn and S in the case of pine needle and wheat biochars, respectively. Simple correlation analysis of Freundlich model constants, desorption index and percent desorption values of transition metals, B and S with the properties of phyto-biochars and changes in Fourier transform infra-red spectra after sorption revealed that several conjunctive mechanisms such as cation exchange, complexation and co-precipitation for the sorption of transition metals, H-bonding/ligand exchange for B and H-bonding/cation bridging for S were operative in phyto-biochars. Phyto-biochars produced from plant biomass wastes by pyrolysis at 300 °C, which have been enriched with Zn, Cu, Fe, Mn, B and S may serve as a potential slow-release nutrient carrier in agriculture.
Collapse
Affiliation(s)
- Rini Labanya
- Department of Soil Science, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India.
| | - Prakash C Srivastava
- Department of Soil Science, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India.
| | - Satya P Pachauri
- Department of Soil Science, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India.
| | - Arvind K Shukla
- Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal 462038, MP, India
| | - Manoj Shrivastava
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Poulomi Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Prashant Srivastava
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, Waite Campus, Waite Road, Urrbrae, SA 5064, Australia
| |
Collapse
|
9
|
Lin J, Cui C, Sun S, Ma R, Yang W, Chen Y. Synergistic optimization of syngas quality and heavy metal immobilization during continuous microwave pyrolysis of sludge: Competitive relationships, reaction mechanisms, and energy efficiency assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129451. [PMID: 35777144 DOI: 10.1016/j.jhazmat.2022.129451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
To realize the efficient resource utilization of sewage sludge, this work explored the competitive relationship and reaction mechanisms between syngas quality optimization and heavy metals (HMs) immobilization. The results showed that continuous microwave pyrolysis (CMP) technology with an instantaneous temperature increase could shorten the pyrolysis time, and the biogas yield and syngas concentration reached 51.68 wt% and 83.6 vol%, respectively. Although a higher pyrolysis (750 °C) temperature could optimize the syngas quality, the HMs immobilization efficiency was reduced due to the deep pyrolysis of the biochar. The moderate pyrolysis temperature (650 °C) facilitated the rapid formation of biochar with abundant surface functional groups and pore structure, thus enhancing HMs immobilization. Furthermore, the HMs could also form more stable crystalline compounds with inorganic components (SiO2, Al2O3, inorganic sulfur). By optimizing the process parameters, the risk factor of HMs in the sludge decreased from 117.36 to 62.5 while obtaining high-quality syngas. The energy utilization efficiency of microwave pyrolysis also increased significantly from 11.20% to 82.01%. This work provided new insight into the efficient resource utilization and environmentally friendly treatment of sludge, and demonstrated that CMP technology has significant potential for future industrial applications as an alternative to traditional pyrolysis.
Collapse
Affiliation(s)
- Junhao Lin
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chongwei Cui
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Research Center for Water Science and Environmental Engineering, Shenzhen University, 518055, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Weichen Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
James AL, Perkins WT, Sian J, Hammond D, Hodgson EM. Application of biochar for minewater remediation: Effect of scaling up production on performance under laboratory and field conditions. BIORESOURCE TECHNOLOGY 2022; 359:127439. [PMID: 35680090 DOI: 10.1016/j.biortech.2022.127439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Metals discharged from abandoned mines are a major source of pollution in many parts of the world. As a result, there is a growing need for suitable low-cost remediation methods. While a large literature base exists demonstrating the efficacy of biochar to remove metals from solution, most studies are confined to the laboratory. This study examines the effects on the biochar quality when scaling up production from laboratory to pilot scale. Pilot scale biochars were produced using a 600 kg batch pyrolysis reactor, these chars were then deployed in the field using a series of 100 mm × 1200 mm cylindrical treatment cells installed at the point of discharge from an abandoned mine site. Most biochars produced at a pilot removed more zinc under laboratory conditions, however all of the biochars showed a reduced performance when tested in the field, this ranged from a 14% to an 85% reduction depending on the biochar.
Collapse
Affiliation(s)
- Alun L James
- Aberystwyth University, Institute of Geography and Earth Science, SY23 3DB Aberystwyth, Wales, UK.
| | - William T Perkins
- Aberystwyth University, Institute of Geography and Earth Science, SY23 3DB Aberystwyth, Wales, UK
| | - Jones Sian
- Aberystwyth University, Institute of Biological, Environmental & Rural Sciences, SY23 3EE Aberystwyth, Wales, UK
| | - Damon Hammond
- Aberystwyth University, Institute of Biological, Environmental & Rural Sciences, SY23 3EE Aberystwyth, Wales, UK
| | - Edward M Hodgson
- Aberystwyth University, Institute of Biological, Environmental & Rural Sciences, SY23 3EE Aberystwyth, Wales, UK
| |
Collapse
|
11
|
Rodríguez-Vila A, Atuah L, Abubakari AH, Atorqui DW, Abdul-Karim A, Coole S, Hammond J, Robinson S, Sizmur T. Effect of Biochar on Micronutrient Availability and Uptake Into Leafy Greens in Two Urban Tropical Soils With Contrasting Soil pH. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.821397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biochars have been proposed as a novel biotechnology to increase crop yields in acidic soils due to a liming effect. However, the application of biochar to soils with a neutral soil pH is less likely to improve yield. A rise in pH typically increases the availability of macronutrients (e.g., PO43-, NO3-) but biochar is known to immobilize some elements due to a pH increase and adsorption on the biochar surface. Therefore, biochar application may reduce the uptake of important micronutrients (e.g., Cu, Fe, and Zn) into the edible portions of food crops. Before recommending indiscriminate biochar application to tropical soils, an understanding of the potentially negative impacts of biochar application to contrasting soil types should be fully appreciated to prevent unintended consequences. Our aim was to determine the impact of biochar amendment to an acidic soil and a neutral soil on micronutrient availability and uptake into leafy greens. We produced biochars from 3 different organic feedstock materials (corn cobs, rice husk and teak sawdust) and applied these in pot experiments to an acidic tropical soil (pH 4.5) and a neutral tropical soil (pH 6.9) collected from urban farms in Tamale and Kumasi, respectively, in Ghana. We grew leafy greens (Amaranthus, Corchorus, and Lettuce) and measured their growth and the uptake of Cu, Fe, and Zn, alongside supporting measurements of soil pH and micronutrient availability in the soil. We also measured water soluble Cu, Fe, and Zn in the soils amended with biochars pyrolyzed at different temperatures. The corn cobs biochar increased soil pH and considerably increased plant growth in the acidic soil from Tamale. In the neutral soil from Kumasi we found that, while corn cob biochar increased soil pH, rice husk biochar decreased soil pH. Furthermore, corn cob biochar considerably reduced plant growth in the neutral soil. The concentration of micronutrients in the edible portions of leafy greens was not greatly affected by biochar application, but the total uptake (i.e., concentration multiplied by biomass) of micronutrients into leaves was generally increased by biochar application in the acidic (Tamale) soil and application of the corn cob biochar generally decreased total uptake of micronutrients in the neutral (Kumasi) soil. Our results highlight the need for site-specific information on biochar feedstock and soil pH prior to recommending biochar application to tropical urban soils so that the benefits can be optimized and unintended consequences can be prevented.
Collapse
|
12
|
Chen M, Wang D, Xu X, Zhang Y, Gui X, Song B, Xu N. Biochar nanoparticles with different pyrolysis temperatures mediate cadmium transport in water-saturated soils: Effects of ionic strength and humic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150668. [PMID: 34597543 DOI: 10.1016/j.scitotenv.2021.150668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/28/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Biochar is advocated as an environment-friendly and cost-effective material for removing both heavy metals and organic contaminants in soil remediation. However, our understandings on the cotransport potential of contaminants with the nanoscale biochar downward along soil profiles (e.g., potential environmental risks towards groundwater) remain largely unknown. This study investigated the effects of wheat straw-derived biochar nanoparticles pyrolyzed at 350 °C and 500 °C (BNP350 and BNP500) on the transport of cadmium (Cd(II)) in water-saturated soil packed columns. Different ionic strengths (ISs) without/with humic acid (HA) were tested to mimic the scenarios during soil remediation. BNPs could act as a vehicle mediating Cd(II) transport in soils. At a low IS (1.0 mM KCl), compared to the limited transport of individual Cd(II), BNP500 enhanced (69 times) Cd(II) transport (Cd(II) mass recovery (M) = 7.59%) in soils, which was greater than that by BNP350 (54 times, M = 5.92%), likely due to the higher adsorption of Cd(II) onto BNP500. HA further increased the Cd(II) transport by BNPs (M = 8.40% for BNP350 and M = 11.95% for BNP500), which was mainly due to the increased mobility of BNPs carrying more absorbed Cd(II). In contrast, at a high IS (10 mM KCl), BNP500 dramatically inhibited the transport of Cd(II) (M = 12.9%), decreasing by about 61.6%, compared to the BNPs absence (M = 33.6%). This is because a large amount of BNP500-Cd(II) was retained in soils at a high IS. This inhibition effect of Cd(II) transport by BNPs was reinforced with the presence of HA. Our findings suggest that the pyrolysis temperature of biochar should be carefully considered when applying biochar for in-situ remediation of soils contaminated by heavy metals such as Cd(II) under various organic matter and IS conditions.
Collapse
Affiliation(s)
- Ming Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingqing Song
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
13
|
Zhao N, Zhao C, Liu K, Zhang W, Tsang DCW, Yang Z, Yang X, Yan B, Morel JL, Qiu R. Experimental and DFT investigation on N-functionalized biochars for enhanced removal of Cr(VI). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118244. [PMID: 34592327 DOI: 10.1016/j.envpol.2021.118244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/07/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
In this study, N-functionalized biochars with varied structural characteristics were designed by loading poplar leaf with different amounts of urea at 1:1 and 1:3 ratios through pyrolysis method. The addition of urea significantly increased the N content of biochar and facilitated the formation of amine (-NH-, -NH2), imine (-HCNH), benzimidazole (-C7H5N2), imidazole (-C3H3N2), and pyrimidine (-C4H3N2) groups due to substitution reaction and Maillard reaction. The effect of pH on Cr(VI) removal suggested that decrease in solution pH favored the formation of electrostatic attraction between the protonated functional groups and HCrO4-. And, experimental and density functional theory study were used to probe adsorption behaviors and adsorption mechanism which N-functionalized biochars interacted with Cr(VI). The protonation energy calculations indicated that N atoms in newly formed N-containing groups were better proton acceptors. Adsorption kinetics and isotherm experiments exhibited that N-functionalized biochars had greater removal rate and removal capacity for Cr(VI). The removal rate of Cr(VI) on N-functionalized biochar was 10.5-15.5 times that of untreated biochar. Meanwhile, N-functionalized biochar of NB3 with the largest number of adsorption sites for -C7H5N2, -NH2, -OH, -C3H3N2, and phthalic acid (-C8H5O4) exhibited the supreme adsorption capacity for Cr(VI) through H bonds and the highest adsorption energy was -5.01 kcal/mol. These mechanistic findings on the protonation and adsorption capacity are useful for better understanding the functions of N-functionalized biochars, thereby providing a guide for their use in various environmental applications.
Collapse
Affiliation(s)
- Nan Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Chuanfang Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Kunyuan Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Weihua Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zaikuan Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xixiang Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China; School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou Higher Education Mega Center, South China Normal University, Guangzhou, PR China
| | - Bofang Yan
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jean Louis Morel
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, 2, avenue de la forêt de Haye - BP 20163, 54505, Vandœuvre-lès-Nancy, France
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
14
|
Effect of Pyrolysis Temperature on Copper Aqueous Removal Capability of Biochar Derived from the Kelp Macrocystis pyrifera. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seaweed biochar is an efficient alternative bioadsorbent for Cu2+ removal due to its low cost and heavy metal removal capacity. Using the slow pyrolysis process, we produced biochars from Macrocystis pyrifera at 300 (BC300), 450 (BC450), and 600 °C (BC600). The physicochemical and structural properties of the biochar samples improved with increasing pyrolysis temperature from 300 to 450 °C, whereas no significant differences were observed with further increases in temperature to 600 °C. The yield ranged between 49% and 62% and had a high ash content (57.5–71.1%). BC450 and BC600 presented the highest surface areas and higher porosities. The FTIR spectra indicated that an increase of temperature decreased the acidic functional groups due to depolymerization and the dehydration processes, increasing the aromatic structures and the presence of calcium carbonate. The fittings of the kinetic models were different for the BCs: for the BC450 and BC600 samples, the Cu2+ adsorption was well-represented by a pseudo-first-order model; for BC300, a better fit was obtained with the pseudo-second-order model. The rate-limiting step of Cu2+ adsorption on BCs was represented by both models, liquid film diffusion and intraparticle diffusion, with surface diffusion being more important in BC300 and BC600, and intraparticle diffusion in BC450, in agreement with the pore size of the biochar samples. The adsorption isotherms of all BCs showed Langmuir behavior, representative of a chemisorption process, which was corroborated by the energy adsorption values determined by the D–R model. The maximum monolayer Cu2+ adsorption capacities were 93.55 and 58.0 mg g−1 for BC600 and BC450, respectively, whereas BC450 presented the highest affinity. Other mechanisms involved in controlling heavy metal removal from aqueous suspensions using these seaweed biochars remain to be explored. We conclude that BC450 and BC600 from M. pyrifera are the most efficient adsorbents for Cu2+ aqueous removal and are thus an appropriate alternative for bioremediation.
Collapse
|
15
|
Bilias F, Nikoli T, Kalderis D, Gasparatos D. Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements. TOXICS 2021; 9:184. [PMID: 34437502 PMCID: PMC8402515 DOI: 10.3390/toxics9080184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022]
Abstract
Soil contamination with potentially toxic elements (PTEs) is considered one of the most severe environmental threats, while among remediation strategies, research on the application of soil amendments has received important consideration. This review highlights the effects of biochar application on soil properties and the bioavailability of potentially toxic elements describing research areas of intense current and emerging activity. Using a visual scientometric analysis, our study shows that between 2019 and 2020, research sub-fields like earthworm activities and responses, greenhouse gass emissions, and low molecular weight organic acids have gained most of the attention when biochar was investigated for soil remediation purposes. Moreover, biomasses like rice straw, sewage sludge, and sawdust were found to be the most commonly used feedstocks for biochar production. The effect of biochar on soil chemistry and different mechanisms responsible for PTEs' immobilization with biochar, are also briefly reported. Special attention is also given to specific PTEs most commonly found at contaminated soils, including Cu, Zn, Ni, Cr, Pb, Cd, and As, and therefore are more extensively revised in this paper. This review also addresses some of the issues in developing innovative methodologies for engineered biochars, introduced alongside some suggestions which intend to form a more focused soil remediation strategy.
Collapse
Affiliation(s)
- Fotis Bilias
- Soil Science Laboratory, Soil Science and Agricultural Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Thomai Nikoli
- Laboratory of Soil Science and Plant Diagnostics, Mediterranean Agronomic Institute of Chania, 73100 Chania, Greece;
| | - Dimitrios Kalderis
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133 Chania, Greece;
| | - Dionisios Gasparatos
- Laboratory of Soil Science and Agricultural Chemistry, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
16
|
Sui L, Tang C, Du Q, Zhao Y, Cheng K, Yang F. Preparation and characterization of boron-doped corn straw biochar: Fe (Ⅱ) removal equilibrium and kinetics. J Environ Sci (China) 2021; 106:116-123. [PMID: 34210427 DOI: 10.1016/j.jes.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, iron ions as a ubiquitous heavy metal pollutant are gradually concerned and the convenient and quick removal of excessive iron ions in groundwater has become a major challenge for the safety of drinking water. In this study, boron-doped biochar (B-BC) was successfully prepared at various preparation conditions with the addition of boric acid. The as-prepared material has a more developed pore structure and a larger specific surface area (up to 897.97 m²/g). A series of characterization results shows that boric acid effectively activates biochar, and boron atoms are successfully doped on biochar. Compared with the ratio of raw materials, the pyrolysis temperature has a greater influence on the amount of boron doping. Based on Langmuir model, the maximum adsorption capacity of 800B-BC1:2 at 25 °C, 40 °C, 55 °C are 50.02 mg/g, 95.09 mg/g, 132.78 mg/g, respectively. Pseudo-second-order kinetic model can better describe the adsorption process, the adsorption process is mainly chemical adsorption. Chemical complexation, ions exchange, and co-precipitation may be the main mechanisms for Fe2+ removal.
Collapse
Affiliation(s)
- Long Sui
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Chunyu Tang
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qing Du
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhao
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Kui Cheng
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Fan Yang
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Zhao N, Zhao C, Tsang DCW, Liu K, Zhu L, Zhang W, Zhang J, Tang Y, Qiu R. Microscopic mechanism about the selective adsorption of Cr(VI) from salt solution on O-rich and N-rich biochars. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124162. [PMID: 33065456 DOI: 10.1016/j.jhazmat.2020.124162] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
The adsorption of Cr(VI) on biochars can be suppressed by coexisting anions, but the roles of O-containing functional groups and in particular N-containing functional groups are unclear. In this study, we combined spectroscopic and molecular simulation approaches to investigate the selective adsorption of Cr(VI) on the O-rich (PB, UB1) and N-rich (UB3, UB5) biochars under strong competition of anions. The elemental analysis and pyrolysis-gas chromatography/mass spectrometry indicated that the structures of PB and UB1 were similar, and so were the UB3 and UB5. Quantification of functional groups showed that for UB1, 75.3% of Cr(VI) removal was attributed to O-containing groups, while 53.3-72.7% of that was mediated by N-containing groups in UB3 and UB5. X-ray photoelectron spectra and density functional theory calculations confirmed that for O-rich biochars, surface complexation and strong H-bonds between carboxyl/hydroxyl and HCrO4- improved Cr(VI) removal in the presence of anions, while for N-rich biochars, Cr(VI) adsorption was depressed by coexisting anions in the order of Cl->NO3- >SO42- because of the weaker H-bond between protonated amino groups and HCrO4-. This study presents a novel approach for quantitative, molecular-level evaluation of the roles of biochar functional groups in the Cr(VI) removal from complex environmental systems.
Collapse
Affiliation(s)
- Nan Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China; School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chuanfang Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Kunyuan Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Weihua Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jing Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yetao Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China; School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
18
|
Hasan MS, Geza M, Petersen JB, Gadhamshetty V. Graphene oxide transport and retention in biochar media. CHEMOSPHERE 2021; 264:128397. [PMID: 33032229 DOI: 10.1016/j.chemosphere.2020.128397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
This study explores the use of biochar (BC), an inexpensive filtration media, for removing graphene oxide (GO) contaminants from the aquatic subsurface environments. Mass balance approaches and column dissection tests were used to analyze the retention behavior of GO in a series of model fixed-bed columns as a function of ionic strength (IS) and flowrate. The column based on the biochar media (BC) displayed 3.6-fold higher retention compared to the quartz sand (control). To overcome the challenges of unfavorable electrostatic interactions between GO and BC, we used a facile functionalization strategy to modify the BC surfaces with nanoscale zero-valent iron (BC-nZVI). The BC-nZVI (5:1, w/w) retained 2.6-fold higher amounts of GO compared with bare biochar. Furthermore, the performance of BC-nZVI increased with decreasing values of IS, attributed to the attachment of GO to nZVI where nZVI was partially dissolved by the presence of higher chloride ion at high IS. A better GO retention (86%) at higher IS was observed in BC where the GO was primarily retained due to the higher aggregation via straining.
Collapse
Affiliation(s)
- Md Sazadul Hasan
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD, 57701, United States
| | - Mengistu Geza
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD, 57701, United States.
| | - Jacob B Petersen
- Engineering and Mining Experiment Station, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD, 57701, United States
| | - Venkataramana Gadhamshetty
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD, 57701, United States; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD, 57701, United States
| |
Collapse
|
19
|
G. Tsadik YK, Hailu AM, Asfaw SL, Mekonnen YS. The effect of brewery sludge biochar on immobilization of bio-available cadmium and growth of Brassica carinata. Heliyon 2020; 6:e05573. [PMID: 33305046 PMCID: PMC7711143 DOI: 10.1016/j.heliyon.2020.e05573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/09/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
Biochar has gained an attention in reducing the bio-availability of toxic heavy metals and minimize threat of entering into food chain from contaminated soil. This study was aimed at evaluating the potential use of brewery sludge biochar (BSB) as a soil amendment for reducing cadmium bio-availability and uptake by Brassica carinata in a pot experiment. In this pot experiment, artificially cadmium spiked, moderately fertile, and slightly basic silty-loam soil was used. The biochar was produced by pyrolyzing of the brewery sludge at 500 °C. The obtained biochar was sieved with 0.5 mm mesh size and applied at the rate of 4 % (w/w) on the Brassica carinata grown cadmium spiked soil. The additions of BSB to the soil contributed a significant reduction of the bio-availability of cadmium in the soil and its accumulation in the shoot of Brassica carinata by 86% and 93%, respectively. Besides, it remarkably increased the dry weight of the edible part of Brassica carinata by 228%. The results revealed that BSB is very effective additive in cadmium immobilization, in turn, significantly (p-value = 0.00) promoting vegetable (Brassica carinata) growth. Therefore, BSB can be used as agricultural soil remedy for cadmium contamination and as safe disposal of brewery sludge.
Collapse
Affiliation(s)
- Yordanos Kiros G. Tsadik
- Center for Environmental Science, College of Natural and Computational Sciences, Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Abrha Mulu Hailu
- Center for Environmental Science, College of Natural and Computational Sciences, Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
- Department of Chemistry, College of Natural and Computational Sciences, Aksum University, P.O. Box 1010, Axum, Ethiopia
| | - Seyoum Leta Asfaw
- Center for Environmental Science, College of Natural and Computational Sciences, Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Yedilfana Setarge Mekonnen
- Center for Environmental Science, College of Natural and Computational Sciences, Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
20
|
Allouss D, Essamlali Y, Chakir A, Khadhar S, Zahouily M. Effective removal of Cu(II) from aqueous solution over graphene oxide encapsulated carboxymethylcellulose-alginate hydrogel microspheres: towards real wastewater treatment plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7476-7492. [PMID: 31884538 DOI: 10.1007/s11356-019-06950-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
In the current study, the graphene oxide (GO) encapsulated carboxymethyl cellulose-Alginate (CMC-Alg) hydrogel microspheres were prepared via ionotropic gelation method and characterized using FTIR, TGA, SEM-EDS and surface charge by determining pHpzc. The adsorption of Cu2+ ions from aqueous solution on the graphene oxide embedded CMC-Alg was studied under different experimental conditions, and the results showed that embedded beads had high adsorption capacity compared with pure CMC-Alg beads due to synergetic effect between functional groups GO and CMC-Alg matrix. Adsorption capacities at equilibrium were calculated experimentally as 22.10, 39.96, 41.72 and 64 mg/g for pure CMC-Alg, CMC-Alg/GO 1%, CMC-Alg/GO 3% and CMC-Alg/GO 5%, respectively. The adsorption kinetics were found to follow the pseudo-second-order, and the equilibrium data fitted well with the Langmuir adsorption isotherm. Moreover, the intraparticle diffusion model has been inspected pointing that the adsorption process was found to be sequence of surface adsorption and intraparticle diffusion (IPD). The results suggest that graphene oxide embedded CMC-Alg bead matrix can be efficiently used as an adsorbent for metal ions removal from wastewater.
Collapse
Affiliation(s)
- Dalia Allouss
- Laboratoire de Matériaux, Catalyse et Valorisation des ressources naturelles (MaCaVa) URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca, Morocco
| | | | - Achraf Chakir
- Laboratoire de Matériaux, Catalyse et Valorisation des ressources naturelles (MaCaVa) URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca, Morocco
| | - Samia Khadhar
- Laboratoire de Géoressources (LGR), Centre de Recherche et des Technologies des Eaux, Soliman, Tunisia
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse et Valorisation des ressources naturelles (MaCaVa) URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca, Morocco.
- MAScIR Foundation, VARENA Center, Rabat, Morocco.
| |
Collapse
|
21
|
Hemati Matin N, Jalali M, Buss W. Synergistic immobilization of potentially toxic elements (PTEs) by biochar and nanoparticles in alkaline soil. CHEMOSPHERE 2020; 241:124932. [PMID: 31590018 DOI: 10.1016/j.chemosphere.2019.124932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 05/15/2023]
Abstract
Biochar and nanoparticle (NP) have the ability to sorb potentially toxic elements (PTEs) from soil and reduce toxicity and leaching into water bodies. However, there is need to tailor biochar formulations to soil types. In this study, we investigate the mobility and chemical forms of Cd, Cr, Cu, Ni, and Zn in a spiked, alkaline soil after amendment with combination of NPs (nano-Fe (NF), nano-clay (NC)) and biochars (almond shell 500 °C, walnut shell 400 °C) in different doses (0, 2.5, 5, and 10%). Many previous studies concluded biochar immobilized PTEs due to an increase in soil pH, which can be disregarded here (soil pH 7.9). In a twenty-week column leaching experiment biochar addition significantly decreased PTE leaching and NP addition further immobilized PTEs in most cases. On average almond biochar more effectively reduced Zn leaching and walnut biochar was more effective in decreasing the leaching of Cd, Cr, and Ni (e.g. 5% biochar reduced Cr leaching by 68%). Copper was immobilized effectively by both biochars. Nano-clay combined with walnut biochar performed best in all treatments, in particular for Cd, Ni, and Zn (e.g. 10% walnut biochar only and in combination with NC reduced Zn leaching by 14.2% and 58.5%, respectively). After amendment, PTEs were present in the Fe-Mn oxides, organic and residual fractions and less in the exchangeable fraction, reducing PTE availability and leachability. The results demonstrate that even for cationic PTEs that behave similarly in the environment optimal biochar-mineral formulations can differ.
Collapse
Affiliation(s)
- Narges Hemati Matin
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamadan, Iran.
| | - Mohsen Jalali
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamadan, Iran.
| | - Wolfram Buss
- Fenner School of Environment and Society, Australian National University, Canberra, Australia; Conversion Technologies of Biobased Resources, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
22
|
Yu S, Su W, Wu D, Yao Z, Liu J, Tang J, Wu W. Thermal treatment of flame retardant plastics: A case study on a waste TV plastic shell sample. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:651-657. [PMID: 31039499 DOI: 10.1016/j.scitotenv.2019.04.264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/13/2019] [Accepted: 04/17/2019] [Indexed: 05/28/2023]
Abstract
In this work, the combustion and pyrolysis characteristics of a waste TV plastic shell sample were investigated using a powerful Thermogravimetric-Fourier Infrared Spectrum-Mass Spectrum (TG-FTIR-MS) technique. The decomposition mechanisms of plastic waste and fate of bromines in both thermal processes were probed as well. The TG analysis revealed that the combustion rate was larger than that of pyrolysis at temperature of 456 °C below, whereas it decreased at temperature of 456-605 °C. As a result, the total weight loss was equivalent at temperature of 605 °C for both processes. The FTIR analysis indicated the plastic combusted vigorously at 300-500 °C and 800-900 °C. As a comparison, it decomposed drastically at 300-400 °C and 500-900° in pyrolysis. The MS analysis showed that the release of brominated products HBr, CH3Br, C2H5Br, C3H5Br, C3H7Br and C3H5BrO increased with an increase of temperature and reached maximum at 400-600 °C in both thermal processes. The release intensities of larger molecules C6H5Br, C6H5BrO and C6H4Br2 were in the descending order of C6H5Br > C6H4Br2 > C6H5BrO. It was not significant in the evolved products and decomposition pathway for both thermal processes. The entire decomposition of TV plastic shell sample could be divided into three stages, taking account of the evolved products. The backbone in acrylonitrile butadiene styrene resin and tetrabromobisphenol A first broke at 350 °C below, resulting in the form of 2-bromophenol, styrene, acrylonitrile and polybutadiene. Subsequently, the resulted 2-bromophenol debrominated forming HBr, which further reacted with hydrocarbons resulting in various brominated derivates. In addition, many small molecules, including CO2, CO and CH4 were generated in this stage. Further increasing temperature to 550 °C above, larger brominated derivates decomposed and smaller molecules predominated.
Collapse
Affiliation(s)
- Shaoqi Yu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weiping Su
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Daidai Wu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhitong Yao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China, Tsinghua University, Beijing 100084, China.
| | - Jie Liu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Junhong Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
23
|
Hoslett J, Ghazal H, Ahmad D, Jouhara H. Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:777-789. [PMID: 31003106 DOI: 10.1016/j.scitotenv.2019.04.085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Sustainable methods to produce filter materials are needed to remove a variety of pollutants found in water including organic compounds, heavy metals, and other harmful inorganic and biological contaminants. This study focuses on the removal of Cu(II) from copper aqueous solutions using non-activated char derived from the pyrolysis of mixed municipal discarded materials (MMDM) using a new heat pipe-based pyrolysis reactor. Adsorption experiments were conducted by adding the char to copper solutions of varying concentration (50-250 mg/L) at a constant temperature of 30 °C. The effect of pH on copper adsorption onto the char was also investigated in the range of pH 3 to 6. Copper removal using the char was found to be heavily dependent on pH, adsorption was observed to decrease below a pH of 4.5. However, the initial copper concentration had a little effect on the sorption of copper at high concentration solutions (above 100 mg/L). Overall, the biochar showed an effective copper adsorption capacity (4-5 mg/g) when using copper solutions with a concentration below100 mg/L and pH >4.5. Copper removal using the char tended to follow the pseudo second order kinetic model. Langmuir isothermal model was shown to be the closest fitting isotherm using the linearized Langmuir equation. However, the variety of feedstock used to produce the char led to a variation in results compared to other studies of more specific feedstocks.
Collapse
Affiliation(s)
- John Hoslett
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
| | - Heba Ghazal
- School of Pharmacy and Chemistry, Kingston University, Kingston Upon Thames KT1 2EE, UK
| | - Darem Ahmad
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
| | - Hussam Jouhara
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK.
| |
Collapse
|
24
|
Kumar H, Ganesan SP, Bordoloi S, Sreedeep S, Lin P, Mei G, Garg A, Sarmah AK. Erodibility assessment of compacted biochar amended soil for geo-environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:698-707. [PMID: 30974360 DOI: 10.1016/j.scitotenv.2019.03.417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Biochar amended soil (BAS) has been explored as a cover material for geo-environmental applications such as landfill cover due to its vegetation potential. Soil erosion in these infrastructures can progressively lead to failure and hamper the workability of the system. BAS is compacted for geo-environmental applications, unlike agricultural soil, which are loose in nature. Furthermore, the love-hate relationship of biochar with water can potentially affect the functioning of compacted cover system. Thus, the performance of compacted BAS in the context of erosion potential is not well understood. The major objective of this technical note was to explore the erosion potential of compacted BAS sourced from four distinct biochars. Biochar were produced in-house and mixed with soil at 5% and 10% by weight. In total, 81 pinhole erosion tests were performed to gauge the erosion rate of bare soil and BAS at three different compaction states at same compaction energy. It was revealed that the erosion rate decreased with gradual increment in water content for BAS, which was mainly attributed to the change of particle orientation from flocculated to dispersed along the compaction curve. Addition of biochar to soil resulted in decrease of erosion along the dry state whereas the opposite was observed for wet state. This was attributed to the surface functional groups as well as particle gradation of biochar. Erodibility coefficient and critical shear stress plot of soil and BAS revealed that addition of biochar had minimal effect on erosion of compacted silty sand.
Collapse
Affiliation(s)
- Himanshu Kumar
- Department of Civil and Environmental Engineering, Shantou University, China
| | | | - Sanandam Bordoloi
- Department of Civil Engineering, Indian Institute of Technology Guwahati, India
| | - S Sreedeep
- Department of Civil Engineering, Indian Institute of Technology Guwahati, India
| | - Peng Lin
- Department of Civil and Environmental Engineering, Shantou University, China
| | - Guoxiong Mei
- Department of Civil Engineering and Architecture, Guangxi University, China
| | - Ankit Garg
- Department of Civil and Environmental Engineering, Shantou University, China
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|