1
|
Chen B, Koziel JA, Bialowiec A, O'Brien SC. The potential role of biochar in mitigating gaseous emissions from livestock waste - A mini-review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122692. [PMID: 39401477 DOI: 10.1016/j.jenvman.2024.122692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024]
Abstract
The livestock industry plays a significant role in the economic well-being of many parts of the world with a host of environmental challenges. Key amongst them is the management of gaseous emissions emitted from livestock manure. Mitigation of gaseous emissions from livestock operations such as odor, odorous volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), and greenhouse gases (GHGs) have been of research interest for the last couple of decades. Biochar, a low-cost-value byproduct of biorenewable energy and thermochemical waste processing compared with syngas and bio-oil, has been actively researched as a potential surficial treatment of manure and emissions from stored or co-composted manure. Yet, the efficacy of biochar treatment differs, partly because biochar properties vary with feedstock and thermochemical processing conditions. To date, the results from laboratory-scale trials are encouraging, but a more focused effort is needed to bring this technology closer to farm-scale applications. Therefore, this review aims to summarize and highlight current research related to mitigating gaseous emissions from manure treated with biochar. Various types of biochar, and modes of biochar applications, e.g., manure additives and co-composting, dosage, and timing, are discussed in the context of targeted gas emissions mitigation. Gaps in knowledge remain, including demonstrated larger-scale mitigation performance and verifiable technoecomics. Standardization and certification of biochar properties suitable for specific environmental management applications are recommended. The potential synergy between mitigating emissions, improving manure quality, carbon, and nitrogen cycling in animal and crop production agriculture is found. Biochar can be a comprehensive solution to gaseous emissions while also upgrading manure as a high-quality additive that could improve the sustainability of animal and crop production systems.
Collapse
Affiliation(s)
- Baitong Chen
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA.
| | - Jacek A Koziel
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA; USDA-ARS Conservation and Production Research Laboratory, Bushland, TX, 79012, USA.
| | - Andrzej Bialowiec
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA; Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 37a Chełmonskiego Str., 51-630, Wroclaw, Poland.
| | - Samuel C O'Brien
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
2
|
Long XX, Yu ZN, Liu SW, Gao T, Qiu RL. A systematic review of biochar aging and the potential eco-environmental risk in heavy metal contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134345. [PMID: 38696956 DOI: 10.1016/j.jhazmat.2024.134345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Biochar is widely accepted as a green and effective amendment for remediating heavy metals (HMs) contaminated soil, but its long-term efficiency and safety changes with biochar aging in fields. Currently, some reviews have qualitatively summarized biochar aging methods and mechanisms, aging-induced changes in biochar properties, and often ignored the potential eco-environmental risk during biochar aging process. Therefore, this review systematically summarizes the study methods of biochar aging, quantitatively compares the effects of different biochar aging process on its properties, and discusses the potential eco-environmental risk due to biochar aging in HMs contaminated soil. At present, various artificial aging methods (physical aging, chemical aging and biological aging) rather than natural field aging have been applied to study the changes of biochar's properties. Generally, biochar aging increases specific surface area (SSA), pore volume (PV), surface oxygen-containing functional group (OFGs) and O content, while decreases pH, ash, H, C and N content. Chemical aging method has a greater effect on the properties of biochar than other aging methods. In addition, biochar aging may lead to HMs remobilization and produce new types of pollutants, such as polycyclic aromatic hydrocarbons (PAHs), environmentally persistent free radicals (EPFRs) and colloidal/nano biochar particles, which consequently bring secondary eco-environmental risk. Finally, future research directions are suggested to establish a more accurate assessment method and model on biochar aging behavior and evaluate the environmental safety of aged biochar, in order to promote its wider application for remediating HMs contaminated soil.
Collapse
Affiliation(s)
- Xin-Xian Long
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Ze-Ning Yu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shao-Wen Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ting Gao
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rong-Liang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Hou R, Zhang J, Fu Q, Li T, Gao S, Wang R, Zhao S, Zhu B. The boom era of emerging contaminants: A review of remediating agricultural soils by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172899. [PMID: 38692328 DOI: 10.1016/j.scitotenv.2024.172899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Emerging contaminants (ECs) are widely sourced persistent pollutants that pose a significant threat to the environment and human health. Their footprint spans global ecosystems, making their remediation highly challenging. In recent years, a significant amount of literature has focused on the use of biochar for remediation of heavy metals and organic pollutants in soil and water environments. However, the use of biochar for the remediation of ECs in agricultural soils has not received as much attention, and as a result, there are limited reviews available on this topic. Thus, this review aims to provide an overview of the primary types, sources, and hazards of ECs in farmland, as well as the structure, functions, and preparation types of biochar. Furthermore, this paper emphasizes the importance and prospects of three remediation strategies for ECs in cropland: (i) employing activated, modified, and composite biochar for remediation, which exhibit superior pollutant removal compared to pure biochar; (ii) exploring the potential synergistic efficiency between biochar and compost, enhancing their effectiveness in soil improvement and pollution remediation; (iii) utilizing biochar as a shelter and nutrient source for microorganisms in biochar-mediated microbial remediation, positively impacting soil properties and microbial community structure. Given the increasing global prevalence of ECs, the remediation strategies provided in this paper aim to serve as a valuable reference for future remediation of ECs-contaminated agricultural lands.
Collapse
Affiliation(s)
- Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jian Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shijun Gao
- Heilongjiang Water Conservancy Research Institute, Harbin, Heilongjiang 150080, China
| | - Rui Wang
- Heilongjiang Province Five building Construction Engineering Co., LTD, Harbin, Heilongjiang 150090, China
| | - Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
4
|
Tran HT, Binh QA, Van Tung T, Pham DT, Hoang HG, Hai Nguyen NS, Xie S, Zhang T, Mukherjee S, Bolan NS. A critical review on characterization, human health risk assessment and mitigation of malodorous gaseous emission during the composting process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124115. [PMID: 38718963 DOI: 10.1016/j.envpol.2024.124115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Composting has emerged as a suitable method to convert or transform organic waste including manure, green waste, and food waste into valuable products with several advantages, such as high efficiency, cost feasibility, and being environmentally friendly. However, volatile organic compounds (VOCs), mainly malodorous gases, are the major concern and challenges to overcome in facilitating composting. Ammonia (NH3) and volatile sulfur compounds (VSCs), including hydrogen sulfide (H2S), and methyl mercaptan (CH4S), primarily contributed to the malodorous gases emission during the entire composting process due to their low olfactory threshold. These compounds are mainly emitted at the thermophilic phase, accounting for over 70% of total gas emissions during the whole process, whereas methane (CH4) and nitrous oxide (N2O) are commonly detected during the mesophilic and cooling phases. Therefore, the human health risk assessment of malodorous gases using various indexes such as ECi (maximum exposure concentration for an individual volatile compound EC), HR (non-carcinogenic risk), and CR (carcinogenic risk) has been evaluated and discussed. Also, several strategies such as maintaining optimal operating conditions, and adding bulking agents and additives (e.g., biochar and zeolite) to reduce malodorous emissions have been pointed out and highlighted. Biochar has specific adsorption properties such as high surface area and high porosity and contains various functional groups that can adsorb up to 60%-70% of malodorous gases emitted from composting. Notably, biofiltration emerged as a resilient and cost-effective technique, achieving up to 90% reduction in malodorous gases at the end-of-pipe. This study offers a comprehensive insight into the characterization of malodorous emissions during composting. Additionally, it emphasizes the need to address these issues on a larger scale and provides a promising outlook for future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Quach An Binh
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Tra Van Tung
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho 900000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 23000, Viet Nam
| | - Shiyu Xie
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Santanu Mukherjee
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
5
|
Wang W, Wang X, Zhang X, Bai Z, Ma L. Modified lignin can achieve mitigation of ammonia and greenhouse gas emissions simultaneously in composting. BIORESOURCE TECHNOLOGY 2024; 402:130840. [PMID: 38750829 DOI: 10.1016/j.biortech.2024.130840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
The constant ammonia gas (NH3) and greenhouse gases (GHG) emissions were considered as a deep-rooted problem in composting which caused air pollution and global climate change. To achieve the mitigation of NH3 and GHG, a novel additive derived from wasted straw, with modified structure and functional groups, has been developed. Results showed that the adsorption capacity of modified lignin (ML) for both ammonium and nitrate was significantly increased by 132.5-360.8 % and 313.7-454.3 % comparing with biochar (BC) and phosphogypsum (PG) after reconstructing porous structure and grafting R-COOH, R-SO3H functional groups. The application of ML could reduce 36.3 % NH3 emission during composting compared with control. Furthermore, the synergetic mitigation NH3 and GHG in ML treatment resulted in a reduction of global warming potential (GWP) by 31.0-64.6 % compared with BC and PG. These findings provide evidence that ML can be a feasible strategy to effectively alleviate NH3 and GHG emissions in composting.
Collapse
Affiliation(s)
- Weishuai Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Xuan Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Xinyuan Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
6
|
Changotra R, Rajput H, Liu B, Murray G, He QS. Occurrence, fate, and potential impacts of wood preservatives in the environment: Challenges and environmentally friendly solutions. CHEMOSPHERE 2024; 352:141291. [PMID: 38280646 DOI: 10.1016/j.chemosphere.2024.141291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Wood preservation has gained global prevalence in recent years, primarily owing to the renewable nature of wood and its capacity to act as a carbon sink. Wood, in its natural form, lacks intrinsic resilience and is prone to decay if left untreated; hence, wood preservatives (WPs) are used to improve wood's longevity. The fate and potential hazards of wood preservatives to human health, ecosystems, and the environment are complex and depend on various aspects, including the type of the preservative compounds, their physicochemical properties, application methods, exposure pathways, environmental conditions, and safety measures and guidelines. The occurrence and distribution of WPs in environmental matrices such as soil and water can result in hazardous pollutants seeping into surface water, groundwater, and soil, posing health hazards, and polluting the environment. Bioremediation is crucial to safeguarding the environment and effectively removing contaminants through hydrolytic and/or photochemical reactions. Phytoremediation, vermicomposting, and sustainable adsorption have demonstrated significant efficacy in the remediation of WPs in the natural environment. Adsorbents derived from biomass waste have been acknowledged for their ability to effectively remove WPs, while also offering cost-efficiency and environmental sustainability. This paper aims to identify wood preservatives' sources and fate in the environment and present a comprehensive overview of the latest advancements in environmentally friendly methods relevant to the removal of the commonly observed contaminants associated with WPs in environmental matrices.
Collapse
Affiliation(s)
- Rahil Changotra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Himadri Rajput
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Baoshu Liu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, China
| | - Gordon Murray
- Stella-Jones Inc. Truro, Nova Scotia, B2N 5C1, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
7
|
Yin Y, Tao X, Du Y, Li M, Yang S, Zhang W, Yang C, Li H, Wang X, Chen R. Biochar improves the humification process during pig manure composting: Insights into roles of the bacterial community and metabolic functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120463. [PMID: 38430882 DOI: 10.1016/j.jenvman.2024.120463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Biochar could promote humification in composting, nevertheless, its mechanism has not been fully explored from the perspective of the overall bacterial community and its metabolism. This study investigated the effects of bamboo charcoal (BC) and wheat straw biochar (WSB) on the humic acid (HA) and fulvic acid (FA) contents during pig manure composting. The results showed that BC enhanced humification more than WSB, and significantly increased the HA content and HA/FA ratio. The bacterial community structure under BC differed from those under the other treatments, and BC increased the abundance of bacteria associated with the transformation of organic matter compared with the other treatments. Furthermore, biochar enhanced the metabolism of carbohydrates and amino acids in the thermophilic and cooling phases, especially BC. Through Mantel tests and network analysis, we found that HA was mainly related to carbon source metabolism and the bacterial community, and BC might change the interaction patterns among carbohydrates, amino acid metabolism, Bacillales, Clostridiales, and Lactobacillales with HA and FA to improve the humification process during composting. These results are important for understanding the mechanisms associated with the effects of biochar on humification during composting.
Collapse
Affiliation(s)
- Yanan Yin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China.
| | - Xiaohui Tao
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Yifei Du
- Yellow River Institute of Eco-Environmental Research, No.6 Changchun Road, Zhengzhou, 450003, PR China
| | - Mengtong Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Sai Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Wenrong Zhang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Chao Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Haichao Li
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms Väg 9, 750 07, Uppsala, Sweden
| | - Xiaochang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| |
Collapse
|
8
|
Gao G, Yan L, Tong K, Yu H, Lu M, Wang L, Niu Y. The potential and prospects of modified biochar for comprehensive management of salt-affected soils and plants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169618. [PMID: 38157902 DOI: 10.1016/j.scitotenv.2023.169618] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Soil salinization has become a global problem that threatens farmland health and restricts crop production. Salt-affected soils seriously restrict the development of agricultural, mainly because of sodium ion (Na+) toxicity, nutrient deficiency, and structural changes in the soil. Biochar is a carbon (C)-based substance produced by heating typical biomass waste at high temperatures in anaerobic circumstances. It has high cation exchange capacity (CEC), adsorption capacity, and C content, which is often used as a soil amendment. Biochar generally reduces the concentration of Na+ in soil colloids through its strong adsorption, or uses the calcium (Ca) or magnesium (Mg) rich on its surface to exchange sodium ions (Ex-Na) from soil colloids through cation exchange to accelerate salt leaching during irrigation. Nowadays, biochar is widely used for acidic soils improvement due to its alkaline properties. Although the fact that biochar has gained increasing attention for its significant role in saline alkali soil remediation, there is currently a lack of systematic research on biochar improvers and their potential mechanisms for identifying physical, chemical, and biological indicators of soil eco-environment assessment and plant growth conditions affected by salt stress. This paper reviews the preparation, modification, and activation of biochar, the effects of biochar and its combination with beneficial salt-tolerant strains on salt-affected soils and plant growth. Finally, the limitations, benefits, and future needs of biochar-based soil health assessment technology in salt-affected soils and plant were discussed. This article elaborates on the future opportunities and challenges of biochar in the treatment of saline land, and a green method was provided for the integrate control to salt-affected soils.
Collapse
Affiliation(s)
- Guang Gao
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Kaiqing Tong
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Hualong Yu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Mu Lu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Lu Wang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; School of Tourism and Geography Science, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Wang J, Wang B, Bian R, He W, Liu Y, Shen G, Xie H, Feng Y. Bibliometric analysis of biochar-based organic fertilizers in the past 15 years: Focus on ammonia volatilization and greenhouse gas emissions during composting. ENVIRONMENTAL RESEARCH 2024; 243:117853. [PMID: 38070856 DOI: 10.1016/j.envres.2023.117853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
Biochar-based organic fertilizer is a new type of ecological fertilizer formulated with organic fertilizers using biochar as the primary conditioning agent, which has received wide attention and application in recent years. This study conducted a comprehensive bibliometric analysis of the main hot spots and research trends in the field of biochar-based organic fertilizer research by collecting indicators (publication year, number, prominent authors, and research institutions) in the Web of Science database. The results showed that the research in biochar-based organic fertilizer has been in a rapid development stage since 2015, with exponential growth in publications number; the main institution with the highest publications number was Northwest Agriculture & Forestry University; the researchers with the highest number of publications was Mukesh Kumar Awasthi; the most publications country is China by Dec 30, 2022. The hot spots of biochar-based organic fertilizer research have been nitrogen utilization, greenhouse gas emission, composting product quality and soil fertility. Biochar reduces ammonia volatilization and greenhouse gas emissions from compost mainly through adsorption. The results showed that adding 10% biochar was an effective measure to achieve co-emission reduction of ammonia and greenhouse gases in composting process. In addition, biochar modification or combination with other additives should be the focus of future research to mitigate ammonia and greenhouse gas emissions from composting processes.
Collapse
Affiliation(s)
- Jixiang Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture and Center of Biomass and Biochar Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Weijiang He
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yang Liu
- Research Center of IoT Agriculture Applications/Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Guangcai Shen
- Baoshan Branch of Yunnan Tobacco Company, Baoshan, 67800, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
10
|
Lu Y, Zeng H, Lin H, Liang Y, Feng M, Zhou Z, Liang Z, Li H, Chen G. Synergistic removal performance and mechanism of Cd(II) and As(III) from irrigation water by iron sulfide-based porous biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11591-11604. [PMID: 38221557 DOI: 10.1007/s11356-024-31932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Since Cd(II) and As(III) have extremely opposite chemical characteristics, it is a huge challenging to simultaneously remove these two ions from aqueous solutions. Therefore, a novel iron sulfide-based porous biochar (FSB) was synthesized and used to evaluate its Cd(II) and As(III) removal performance and mechanisms. The characterization and batch experiments results indicated that FeS was successfully loaded on the surface of biochar and increased its adsorption sites. The iron sulfide-based porous biochar was very favorable for the removal of Cd(II) and As(III) in the weakly acidic environment. The maximum adsorption of Cd(II) and As(III) by FSB was 108.8 mg g-1 and 76.3 mg g-1, respectively, according to the Langmuir and Freundlich isothermal adsorption model, and the adsorption equilibrium time was 12 h and 4 h, respectively, according to the pseudo-second-order kinetic model. In the coexisting ion system, Cd(II) adsorption was suppressed by Ca2+, Mg2+, and humic acid, but enhanced by PO43- and As(III). As(III) adsorption was inhibited by PO43- and humic acid. Precipitation and complexation are the predominant adsorption mechanisms of Cd(II) and As(III), which contribute to the formation of Cd-O, Fe-O-Cd, As-O, Fe-O-As, ternary complex Cd-Fe-As, and stable compounds FeAsO4·2H2O and CdS. Therefore, The iron sulfide-based porous biochar can be an efficient and environmentally friendly candidate for the treatment of Cd(II) and As(III) co-polluted irrigation water.
Collapse
Affiliation(s)
- Yuxi Lu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Yanpeng Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Mi Feng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Zijian Zhou
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Zihao Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Huawei Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Gongning Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
11
|
Zhang Z, Jin B, Zhang Y, Huang Z, Li C, Tan M, Huang J, Lei T, Qi Y, Li H. The synergistic regulation of sewage sludge biodrying and greenhouse gas reduction by additives. BIORESOURCE TECHNOLOGY 2024; 394:130180. [PMID: 38086457 DOI: 10.1016/j.biortech.2023.130180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
As a dewatering method of high moisture solid waste sludge, biodrying still faces environmental problems such as material loss and greenhouse gas emission in the process of treatment. In this study, biochar and magnesium chloride were used to explore the synergistic effect of enhancing sludge biodrying and reducing greenhouse gas emissions. The highest temperature of biodrying was raised to 68.2 °C within 3 days, extending the longest high-temperature period to 5 days, which reduced the water content to 28.8 % in the single addition of biochar treatment. The complex addition increased the NH4+-N content of materials by 57.49 % and decreased the NO3--N content of materials by 40.62 %. The use of additives significantly reduced the emissions of CO2, CH4, and N2O compared to the no-addition treatment. The increase in dominant Actinomycetes and Chloroflexibacter was the main reason for the reduction in gas emissions.
Collapse
Affiliation(s)
- Zhiguo Zhang
- College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Baicheng Jin
- College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yanru Zhang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Mengjiao Tan
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Tingzhou Lei
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Youxiang Qi
- Zhilan Ecological Environment Construction Co., Ltd, 410004, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
12
|
Ren Y, Wang G, Bai X, Su Y, Zhang Z, Han J. Research progress on remediation of organochlorine pesticide contamination in soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:25. [PMID: 38225511 DOI: 10.1007/s10653-023-01797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Deteriorated soil pollution has grown into a worldwide environmental concern over the years. Organochlorine pesticide (OCP) residues, featured with ubiquity, persistence and refractoriness, are one of the main pollution sources, causing soil degradation, fertility decline and nutritional imbalance, and severely impacting soil ecology. Furthermore, residual OCPs in soil may enter the human body along with food chain accumulation and pose a serious health threat. To date, many remediation technologies including physicochemical and biological ways for organochlorine pollution have been developed at home and abroad, but none of them is a panacea suitable for all occasions. Rational selection and scientific decision-making are grounded in in-depth knowledge of various restoration techniques. However, soil pollution treatment often encounters the interference of multiple factors (climate, soil properties, cost, restoration efficiency, etc.) in complex environments, and there is still a lack of systematic summary and comparative analysis of different soil OCP removal methods. Thus, to better guide the remediation of contaminated soil, this review summarized the most commonly used strategies for OCP removal, evaluated their merits and limitations and discussed the application scenarios of different methods. It will facilitate the development of efficient, inexpensive and environmentally friendly soil remediation strategies for sustainable agricultural and ecological development.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xuanjiao Bai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
13
|
Nie W, He S, Lin Y, Cheng JJ, Yang C. Functional biochar in enhanced anaerobic digestion: Synthesis, performances, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167681. [PMID: 37839485 DOI: 10.1016/j.scitotenv.2023.167681] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Anaerobic digestion technology is crucial in bioenergy recovery and organic waste management. At the same time, it often encounters challenges such as low organic digestibility and inhibition of toxic substances, resulting in low biomethane yields. Biochar has recently been used in anaerobic digestion to alleviate toxicity inhibition, improve the stability of anaerobic digestion processes, and increase methane yields. However, the practical application of biochar is limited, for the properties of pristine biochar significantly affect its application in anaerobic digestion. Although much research focuses on understanding original biochar's fundamental properties and functionalization, there are few reviews on the applications of functional biochar and the effects of critical properties of pristine biochar on anaerobic digestion. This review systematically reviewed functionalization strategies, key performances, and applications of functional biochar in anaerobic digestion. The properties determining the role of biochar were reviewed, the synthesis methods of functional biochar were summarized and compared, the mechanism of functional biochar was discussed, and the factors affecting the function of functional biochar were reviewed. This review provided a comprehensive understanding of functional biochar in anaerobic digestion processes, which would be helpful for the development and applications of engineered biochar.
Collapse
Affiliation(s)
- Wenkai Nie
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
14
|
Aragão FB, Galter IN, Grecco KD, Coelho EJR, da Silva TT, Bonomo MM, Fernandes MN, Matsumoto ST. Toxic risk evaluation of effluents from a swine biodigester in the plant models Lactuca sativa and Allium cepa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:64. [PMID: 38112861 DOI: 10.1007/s10661-023-12173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Pig farming is recognized as an activity with great polluting potential. The aim was to investigate possible environmental risks of effluents from the stabilization pond (SP) and the raw effluent (RE) from the biodigestion process of swine residues, in different concentrations in the models Lactuca sativa and Allium cepa. Seeds were germinated in different dilutions, 100% (C1), 50% (C2), 25% (C3), 12.5% (C4), 6.25% (C5), 3.12% (C6), 0.78% (C7), and 0.39% (C8). Distilled water was used as the negative control (CN) and trifluralin (0.84 g/L-1) as the positive control. Germination (GR), root growth (RG), cell cycle, and oxidative stress (OS) were analyzed. To assess OS, the activity of the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) and the quantification of glutathione (GSH) and lipid peroxidation (LPO) were analyzed. Data were submitted to ANOVA (one way), followed by the Kruskal-Wallis mean test (P ≤ 0.05). Chemical analysis showed high values of Cu, Fe, Mn, and Zn. Dilutions (C1, C2, C3 RE) and (C1 and C2 SP) inhibited GR and RG of L. sativa and A. cepa than other concentrations. The mitotic index showed a reduction in C5 (RE), C6, and C7 (SP) of L. sativa and C3 and C4 (SP) of A. cepa in relation to CN and higher frequencies of chromosomal alterations. Regarding the OS, only the concentrations of SP treatment showed statistical difference in relation to the NC: in L. sativa model, GSH at (C5 and C8) concentrations and LPO (C7); in A. cepa model, SOD (C3 and C4), GST (C4, C5 and C6), GSH (C5 and C8), and CAT (C3 and C7). The alterations in metabolism are possibly related to the metals, such as zinc and copper, observed in high amounts in the raw waste. The results allowed us to conclude that the raw and stabilization pond effluents offer environmental risks, requiring caution and monitoring in the use of these effluents.
Collapse
Affiliation(s)
- Francielen Barroso Aragão
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil.
| | - Iasmini Nicoli Galter
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| | - Kalia Dável Grecco
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| | - Edvar Junior Roncetti Coelho
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| | - Tainá Turial da Silva
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| | - Marina Marques Bonomo
- Physiological Sciences Department, Center of Human and Health, Federal University of São Carlos, Sao Carlos, SP, 13565-905, Brazil
| | - Marisa Narciso Fernandes
- Physiological Sciences Department, Center of Human and Health, Federal University of São Carlos, Sao Carlos, SP, 13565-905, Brazil
| | - Silvia Tamie Matsumoto
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| |
Collapse
|
15
|
Weldon S, Rivier PA, Joner EJ, Coutris C, Budai A. Co-composting of digestate and garden waste with biochar: effect on greenhouse gas production and fertilizer value of the matured compost. ENVIRONMENTAL TECHNOLOGY 2023; 44:4261-4271. [PMID: 35727051 DOI: 10.1080/09593330.2022.2089057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Biogas digestate is a nitrogen (N) rich waste product that has potential for application to soil as a fertilizer. Composting of digestate is recognized as an effective step to reduce potentially negative consequences of digestate application to soils. However, the structure of the digestate and the high N content can hinder effective composting. Biochar, which can be produced through the pyrolysis of waste biomass, has shown the potential to improve compost structure and increase N retention in soils. We studied how a high-temperature wood biochar affects the composting process, including greenhouse gas emissions, and the fertilizer value of the compost product including nutrient content, leachability and plant growth. The high Biochar dose (17% w/w) had a significantly positive effect on the maximum temperature (5°C increase vs. no biochar) and appeared to improve temperature stability during composting with less variability between replicates. Biochar addition reduced cumulative N2O emission by 65-70%, but had no significant effect on CO2 and CH4 emission. Biochar did not contribute to greater retention of nitrogen (N) contained in the digestate, but had a dilution effect on both N content and mineral nutrients. Fertilization with compost enhanced plant growth and nutrient retention in soil compared to mineral fertilization (NPK), but biochar had no additional effects on these parameters. Our results show that biochar improves the composting of digestate with no subsequent negative effects on plants.
Collapse
Affiliation(s)
- Simon Weldon
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, Ås, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
| | - Pierre-Adrien Rivier
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, Ås, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
| | - Erik J Joner
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, Ås, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
| | - Claire Coutris
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, Ås, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
| | - Alice Budai
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, Ås, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
| |
Collapse
|
16
|
Yu J, Chang JS, Guo H, Han S, Lee DJ. Sodium ions removal by sulfuric acid-modified biochars. ENVIRONMENTAL RESEARCH 2023; 235:116592. [PMID: 37423365 DOI: 10.1016/j.envres.2023.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Sulfuric acid modifies the biochar derived from corn cobs, stalks, and reeds. Amongst the modified biochar, corn cobs-biochar has the highest BET (101.6 m2 g-1), followed by reeds-biochars (96.1 m2 g-1). The Na+ adsorption capacities for pristine biochars are corn cobs-pristine biochar: 24.2 mg g-1, corn stalks-pristine biochar: 7.6 mg g-1, and reeds-pristine biochar: 6.3 mg g-1, relatively low for field applications. The acid-modified corn cobs biochar has a superior Na+ adsorption capacity of up to 221.1 mg g-1, much higher than literature reports and the other two tested biochars. This corn cobs-modified biochar has also a satisfactory Na+ adsorption capacity (193.1 mg g-1) from actual water collected from a sodium-contaminated city, Daqing, China. The FT-IR spectroscopy and XPS spectrum reveal that the embedded surface -SO3H groups onto the biochar correlate with its superior Na + adsorption, attributable to the ion exchange mechanisms. The biochar surface accessible to sulfonic group grafting can generate a superior Na+ adsorbing surface, which is for the first time reported and has great application potential for the remediation of sodium-contaminated water.
Collapse
Affiliation(s)
- Jie Yu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan
| | - Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Song Han
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan.
| |
Collapse
|
17
|
Xu D, Yu X, Chen J, Li X, Chen J, Li J. Effects of compost as a soil amendment on bacterial community diversity in saline-alkali soil. Front Microbiol 2023; 14:1253415. [PMID: 37829448 PMCID: PMC10565496 DOI: 10.3389/fmicb.2023.1253415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Soil salinization poses a worldwide challenge that hampers agricultural productivity. Methods Employing high-throughput sequencing technology, we conducted an investigation to examine the impact of compost on the diversity of bacterial communities in saline soils. Our study focused on exploring the diversity of bacterial communities in the inter-root soil of plants following composting and the subsequent addition of compost to saline soils. Results Compared to the initial composting stage, Alpha diversity results showed a greater diversity of bacteria during the rot stage. The germination index reaches 90% and the compost reaches maturity. The main bacterial genera in compost maturation stage are Flavobacterium, Saccharomonospora, Luteimonas and Streptomyces. Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla in the soil after the addition of compost. The application of compost has increased the abundance of Actinobacteria and Chloroflexi by 7.6 and 6.6%, respectively, but decreased the abundance of Firmicutes from 25.12 to 18.77%. Redundancy analysis revealed that soil factors pH, solid urease, organic matter, and total nitrogen were closely related to bacterial communities. Discussion The addition of compost effectively reduced soil pH and increased soil enzyme activity and organic matter content. An analysis of this study provides theoretical support for compost's use as a saline soil amendment.
Collapse
Affiliation(s)
- Daolong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowen Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jin Chen
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiufen Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - JiangHua Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Tran HT, Bolan NS, Lin C, Binh QA, Nguyen MK, Luu TA, Le VG, Pham CQ, Hoang HG, Vo DVN. Succession of biochar addition for soil amendment and contaminants remediation during co-composting: A state of art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118191. [PMID: 37210821 DOI: 10.1016/j.jenvman.2023.118191] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
This paper aimed to highlight the succession of biochar addition for soil amendment and contaminants remediation during composting process. Biochar incorporated into the compost mixture promotes composting performance and enhances contaminants reduction. Co-composting with biochar for soil biota has been demonstrated via modified soil biological community abundance and diversity. On the other hand, adverse alterations to soil properties were noted, which had a negative impact on the communication of microbe-to-plant interactions within the rhizosphere. As a result, these changes influenced the competition between soilborne pathogens and beneficial soil microorganisms. Co-composting with biochar promoted the heavy metals (HMs) remediation efficiency in contaminated soils by around 66-95%. Notably, applying biochar during composting could improve nutrient retention and mitigate leaching. The adsorption of nutrients such as nitrogen and phosphorus compounds by biochar can be applied to manage environmental contamination and presents an excellent opportunity to enhance soil quality. Additionally, the various specific functional groups and large specific surface areas of biochar allow for excellent adsorption of persistent pollutants (e.g., pesticides, polychlorinated biphenyls (PCBs)) and emerging organic pollutants, such as microplastic, phthalate acid esters (PAEs) during co-composting. Finally, future perspectives, research gaps, and recommendations for further studies are highlighted, and potential opportunities are discussed.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 700000, Viet Nam
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Chitsan Lin
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Quach An Binh
- Department of Academic Affair and Testing, Dong Nai Technology University, Bien Hoa, Dong Nai, 810000, Viet Nam
| | - Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam.
| | - The Anh Luu
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 111000, Viet Nam
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 111000, Viet Nam
| | - Cham Q Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai, 810000, Viet Nam
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
19
|
Qian S, Zhou X, Fu Y, Song B, Yan H, Chen Z, Sun Q, Ye H, Qin L, Lai C. Biochar-compost as a new option for soil improvement: Application in various problem soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162024. [PMID: 36740069 DOI: 10.1016/j.scitotenv.2023.162024] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Due to the synergistic effects of biochar and compost/composting, the combined application of biochar and compost (biochar-compost) has been recognized as a highly promising and efficient method of soil improvement. However, the willingness to apply biochar-compost for soil improvement is still low compared to the use of biochar or compost alone. This paper collects data on the application of biochar-compost in several problem soils that are well-known and extensively investigated by agronomists and scientists, and summarizes the effects of biochar-compost application in common problem soils. These typical problem soils are classified based on three different characteristics: climatic zones, abiotic stresses, and contaminants. The improvement effect of biochar-compost in different soils is assessed and directions for further research and suggestions for application are made. Generally, biochar-compost mitigates the high mineralization rate of soil organic matter, phosphorus deficiency and aluminum toxicity, and significantly improves crop yields in most tropical soils. Biochar-compost can help to achieve long-term sustainable management of temperate agricultural soils by sequestering carbon and improving soil physicochemical properties. Biochar-compost has shown positive performance in the remediation of both dry and saline soils by reducing the threat of soil water scarcity or high salinity and improving the consequent deterioration of soil conditions. By combining different mechanisms of biochar and compost to immobilize or remove contaminants, biochar-compost tends to perform better than biochar or compost alone in soils contaminated with heavy metals (HMs) or organic pollutants (OPs). This review aims to improve the practicality and acceptability of biochar-compost and to promote its application in soil. Additionally, the prospects, challenges and future directions for the application of biochar-compost in problem soil improvement were foreseen.
Collapse
Affiliation(s)
- Shixian Qian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhexin Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Qian Sun
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoyang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
20
|
Castilla-Alcantara JC, Posada-Baquero R, Balseiro-Romero M, Fernández-López C, García JL, Fernandez-Vazquez A, Parsons JR, Cantos M, Ortega-Calvo JJ. Risk reductions during pyrene biotransformation and mobilization in a model plant-bacteria-biochar system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161600. [PMID: 36681341 DOI: 10.1016/j.scitotenv.2023.161600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The productive application of motile microorganisms for degrading hydrophobic contaminants in soil is one of the most promising processes in modern remediation due to its sustainability and low cost. However, the incomplete biodegradation of the contaminants and the formation of the intermediary metabolites in the process may increase the toxicity in soil during bioremediation, and motile inoculants may mobilize the pollutants through biosorption. Therefore, controlling these factors should be a fundamental part of soil remediation approaches. The aim of this study was to evaluate the sources of risk associated with the cometabolism-based transformation of 14C-labeled pyrene by inoculated Pseudomonas putida G7 and identify ways to minimize risk. Our model scenario examined the increase in bioaccessibility to a distant source of contamination facilitated by sunflower (Helianthus annuus L.) roots. A biochar trap for mobilized pollutant metabolites and bacteria has also been employed. The experimental design consisted of pots filled with a layer of sand with 14C-labeled pyrene (88 mg kg-1) as a contamination focus located several centimeters from the inoculation point. Half of the pots included a biochar layer at the bottom. The pots were incubated in a greenhouse with sunflower plants and P. putida G7 bacteria. Pots with sunflower plants showed a higher biodegradation of pyrene, its mobilization as metabolites through the percolate and the roots, and bacterial mobilization toward the source of contamination, also resulting in increased pyrene transformation. In addition, the biochar layer efficiently reduced the concentrations of pyrene metabolites collected in the leachates. Therefore, the combination of plants, motile bacteria and biochar safely reduced the risk caused by the biological transformation of pyrene.
Collapse
Affiliation(s)
| | - Rosa Posada-Baquero
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - Maria Balseiro-Romero
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - Carmen Fernández-López
- Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, Santiago de la Ribera, Murcia, Spain
| | - José Luis García
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | | | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Manuel Cantos
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | | |
Collapse
|
21
|
Ashok Kumar K, Subalakshmi R, Jayanthi M, Abirami G, Vijayan DS, Venkatesa Prabhu S, Baskaran L. Production and characterization of enriched vermicompost from banana leaf biomass waste activated by biochar integration. ENVIRONMENTAL RESEARCH 2023; 219:115090. [PMID: 36529329 DOI: 10.1016/j.envres.2022.115090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Vermicomposting uses less energy and requires fewer infrastructures, and it is capable of restoring soil nutrition and carbon. Banana cultivation produces lots of trash in a single crop season, with 30 tonnes of waste generated per acre. The biodegradable fraction of banana leaf waste is thrown out in large quantities from temples, markets place wedding halls, hotels, and residential areas. Vermicomposting can be used for recovering lignin, cellulose, pectin, and hemicellulose from banana leaves. Earthworm digests organic materials with the enzymes produced in gut microflora. Biochar adds bulk to vermicomposting, increases its value as fertilizer. The goal of this study was to amend biochar (0, 2, 4 and 6%) with banana leaf waste (BLW) + cow dung (CD) in three different combinations (1:1, 2:1 and 3:1) using Eisenia fetida to produce enriched vermicompost. In the vermicompost with biochar groups, there were higher levels of physicochemical parameters, as well as macro- and micronutrient contents. The growth and reproduction of earthworms were higher in groups with biochar. A maximum of 1.82, 1.18 and 1.67% of total nitrogen, total phosphorus and total potassium was found in the final vermicompost recovered from BLW + CD (1:1) amended with 4% biochar; while the other treatments showed lower levels of nutrients. A lower C/N ratio of 18.14 was observed in BLW + CD (1:1) + 4% biochar followed by BLW + CD (1:1) + 2% biochar amendment (19.92). The FTIR and humification index studies show that degradation of organic matter has occurred in the final vermicompost and the substrates with 4% biochar in 1:1 combination showed better degradation and this combination can be used for nutrient rich vermicompost production.
Collapse
Affiliation(s)
- K Ashok Kumar
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, 600 117, Chennai, Tamil Nadu, India.
| | - R Subalakshmi
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, 600 117, Chennai, Tamil Nadu, India
| | - M Jayanthi
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, 600 117, Chennai, Tamil Nadu, India
| | - G Abirami
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, 600 117, Chennai, Tamil Nadu, India
| | - D S Vijayan
- Department of Civil Engineering, Aarupadai Veedu Institute of Technology, VMRF, Paiyanur, Chennai, 603104, Tamil Nadu, India
| | - S Venkatesa Prabhu
- Center of Excellence for Bioprocess and Biotechnology, Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Ethiopia
| | - L Baskaran
- Department of Botany, Annamalai University, Annamalai Nagar, Chidambaram, 608 002, Tamil Nadu, India; PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
22
|
Liu Y, Zhang X, Xu Y, Liu Q, Ngo HH, Cao W. Transport behaviors of biochar particles in saturated porous media under DC electric field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159084. [PMID: 36179834 DOI: 10.1016/j.scitotenv.2022.159084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The mobility of biochar in saturated quartz sand under a direct current (DC) electric field was investigated by column transport test. The effects of biochar preparation temperature (350 and 550 °C), solution chemistry (pH of 4, 7, and 10, and ion strength of 1, 10, 100 mM) and voltage gradient (0, 0.5 and 1.0 V cm-1) on the mobility of biochar were explored. It was found that DC electric field could significantly promote the migration of biochar, and the recovery rate of particles could be improved by 0.5-6.1 folds under 0.5 V cm-1. Higher voltage potential, solution pH and ionic strength were more favorable for biochar migration. The transport of biochar could be well interpreted by deterministic nonequilibrium convection-dispersion equation model. The enhanced mobility caused by DC electric field was attributed to the following reasons: enhanced electromigration following electrostatic attraction from the anode; increasing surface negative charges and functional groups on biochar surface as a result of electrochemical oxidization; reducing size blocking of biochar particles by decreasing particle size. Moreover, the interaction between biochar particles and electrode could alter solution chemistry, in particular, increasing solution pH, which in turn facilitated the transport of biochar. This study provided a perspective to modulate the transport behavior of biochar particle in the soil for the remediation of polluted sites.
Collapse
Affiliation(s)
- Yangyang Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Xiaolei Zhang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China.
| | - Yunfeng Xu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Weimin Cao
- College of Sciences, Shanghai University, No. 99 Shangda Rd., Shanghai 200444, China
| |
Collapse
|
23
|
Raclavská H, Růžičková J, Raclavský K, Juchelková D, Kucbel M, Švédová B, Slamová K, Kacprzak M. Effect of biochar addition on the improvement of the quality parameters of compost used for land reclamation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8563-8581. [PMID: 34716551 DOI: 10.1007/s11356-021-16409-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The 5% addition of biochar in composting in rows contributes significantly to reducing volatile organic compound(VOC) emissions. When composting with the addition of biochar, the average temperature increased by 13 ± 6.7 °C during the whole period, and the thermophilic phase was extended by 11 days. The higher temperature supported a reduction in the time necessary for achieving the biological stability observed by the oxygen uptake rate by more than 10 days. For organic compounds formed by the degradation of easily degradable primary components (proteins), the addition of biochar significantly reduces the release of organic compounds with heterocyclically bound nitrogen (Norg-VOCs) and volatile sulfur compounds (VSCs). The end of the biodegradation process is indicated by a decrease in VOC concentrations below initial values in the input material. This state was achieved in the compost with added biochar after 47 days, while in compost without added biochar, it lasted 60 days.
Collapse
Affiliation(s)
- Helena Raclavská
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic
| | - Jana Růžičková
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic
| | - Konstantin Raclavský
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic
| | - Dagmar Juchelková
- Department of Electronics, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic
| | - Marek Kucbel
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic.
| | - Barbora Švédová
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic
| | - Karolina Slamová
- Institute of Foreign Languages, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic
| | - Małgorzata Kacprzak
- Faculty of Infrastructure and Environment, Institute of Environmental Engineering, Czestochowa University of Technology, J.H. Dąbrowskiego 69, 42-201, Czestochowa, Poland
| |
Collapse
|
24
|
Wang X, Liu X, Wang Z, Sun G, Li J. Greenhouse gas reduction and nitrogen conservation during manure composting by combining biochar with wood vinegar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116349. [PMID: 36179479 DOI: 10.1016/j.jenvman.2022.116349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The constant greenhouse gases (GHGs) and ammonia emissions during pig manure (PM) composting have made large contributions to air pollution and global temperature rise. This study aimed to evaluate the addition of biochar (B) and wood vinegar (WV) to reduce GHGs emissions and improve nitrogen retention and microbial activities during PM composting. Different treatments, carried out under a 1:2 ratio (dry weight) of PM and sawdust mixture with the addition of B (5%) and various proportions of WV, include a control treatment (CT) without the addition of B and WV and, B, B+0.5%WV, B+1.0%WV, B+1.5%WV, and B+2.0%WV treatments. The results indicated that the addition of B could accelerate the composting process in contrast to CT. In addition, various amounts of WV with B decreased NH3, CO2, CH4 and N2O emissions by 18.82-35.88%, 1.38-15.39%, 16.98-62.73%, and 4.47-19.91%, respectively. Furthermore, in contrast to the B treatment, WV addition was more effective in decreasing GHGs and NH3 emissions, and the B+1.0% WV treatment displayed the lowest nitrogen loss (2.12%) and GHGs emissions (11.62 g/kg). The bacterial community analysis demonstrated that synergistic application of WV and B can increase the relative abundance of Proteobacteria which can contribute to nitrogen fixation and reduction of nitrogen loss. The results proved that combining B with WV can be a feasible strategy to effectively reduce GHGs emissions and improve nitrogen conservation in the composting industry.
Collapse
Affiliation(s)
- Xiuzhang Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Research Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, PR China
| | - Xiao Liu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Research Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, PR China
| | - Ziqi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guotao Sun
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Research Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, PR China.
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
25
|
Yu C, Lu Q, Fu C, Jiang Z, Huang J, Jiang F, Wei Z. Exploring the internal driving mechanism underlying bacterial community-induced organic component conversion and humus formation during rice straw composting with tricarboxylic acid cycle regulator addition. BIORESOURCE TECHNOLOGY 2022; 365:128149. [PMID: 36265785 DOI: 10.1016/j.biortech.2022.128149] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the effect of tricarboxylic acid (TCA) cycle regulators on CO2 emissions, the conversion of organic components and humus formation during composting. The addition of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NADH) reduced CO2 emissions during rice straw composting. According to co-occurrence networks results, ATP enhanced the connectivity and complexity of the network; NADH enhanced microbial interactions. The different kind of TCA cycle regulators had different effect on humus formation pathway. The structural equation model showed that ATP might promote lignin transformation into humus via the sugar-amine condensation pathway and lignin-protein pathway while NADH may promote cellulose degradation into soluble sugar and organic matter, which are transformed into humus. This work will provide valuable guidance for exploring the mechanism of TCA cycle regulators in promoting organic carbon fixation and reducing inorganic carbon mineralization.
Collapse
Affiliation(s)
- Chunjing Yu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Chang Fu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Ziwei Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Jiayue Huang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Fangzhi Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Zimin Wei
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; College of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Zhang J, Shen JL. Effects of biochar on soil microbial diversity and community structure in clay soil. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
We determined the microbial community diversity and structure in soil samples under different amounts of biochar added. Meanwhile, we also researched the relationships between soil microbial and soil physicochemical properties.
Method
In this study, a field experiment was set up, with a total of three experimental treatments: no biochar application, 10 t/m3 biochar application, and 20 t/m3 application. High-throughput sequencing technologies were used for soil samples of different treatment groups to understand soil microbial diversity and community structure.
Results
We found that the soil physicochemical properties after biochar addition were better than those without biochar addition, and the alpha diversity was higher in biochar addition level of 20 t/m3 than other processing groups. Proteobacteria, Cyanobacteria, and Actinobacteria were the dominant phyla of this study. The dominant genera were Skermanella, Nostoc, Frankia, and Unclassified-p-protecbacteria. At the gate level, Actinobacteria had significant differences among the three groups with different addition amounts. The microbial community structure was mainly influenced by soil porosity, soil moisture content, nitrogen fertilizer, and potassium fertilizer other than soil phosphate fertilizer and organic matter.
Conclusions
The results suggested that changes under different amounts of biochar added generate changes in soil physicochemical properties and control the soil composition of microbial communities. This provides a new basis for soil improvement.
Collapse
|
27
|
Bijoy G, Rajeev R, Benny L, Jose S, Varghese A. Enzyme immobilization on biomass-derived carbon materials as a sustainable approach towards environmental applications. CHEMOSPHERE 2022; 307:135759. [PMID: 35870606 DOI: 10.1016/j.chemosphere.2022.135759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Enzymes with their environment-friendly nature and versatility have become highly important 'green tools' with a wide range of applications. Enzyme immobilization has further increased the utility and efficiency of these enzymes by improving their stability, reusability, and recyclability. Biomass-derived matrices when used for enzyme immobilization offer a sustainable solution to environmental pollution and fuel depletion at low costs. Biochar and other biomass-derived carbon materials obtained are suitable for the immobilization of enzymes through different immobilization strategies. Environmental pollution has become an utmost topic of research interest due to an ever-increasing trend being observed in anthropogenic activities. This has widely contributed to the release of various toxic effluents into the environment in their native or metabolized forms. Therefore, more focus is being directed toward the utilization of immobilized enzymes in the bioremediation of water and soil, biofuel production, and other environmental applications. In this review, up-to-date literature concerning the immobilization and potential uses of enzymes immobilized on biomass-derived carbon materials has been presented.
Collapse
Affiliation(s)
- Geethanjali Bijoy
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Rijo Rajeev
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Libina Benny
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Sandra Jose
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
28
|
Wang X, Chu Z, Fan T, Liang S, Li G, Zhang J, Zhen Q. Application of Rice Husk Biochar and Earthworm on Concentration and Speciation of Heavy Metals in Industrial Sludge Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13463. [PMID: 36294040 PMCID: PMC9603306 DOI: 10.3390/ijerph192013463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to assess the total concentration and speciation variation of heavy metals (Pb, Cd, Cu and Zn) during composting and vermicomposting of industrial sludge with different addition rations of rice husk biochar. Results indicated that pH, EC, total phosphorus (TP) and total potassium (TK) were increased and total organic carbon (TOC) and total nitrogen (TN) were decreased during the composting of industrial sludge with biochar compared with the control (sludge without biochar). The addition of earthworm to the biochar-amended sludge further decreased pH and TOC but highly enhanced the EC, TN, TP and TK. Comparatively lower concentrations of total and DTPA-extractable heavy metals were observed in biochar-amended sludge treatments mixed with earthworm in comparison with the biochar-amended sludge treatments without earthworm or the control. Sequential extraction methods demonstrated that vermicomposting of sludge with biochar converted more metals bound with exchangeable, carbonate and organic matter into the residual fraction in comparison with those composting treatments of sludge with biochar. As a result, the combination of rice husk biochar and earthworm accelerated the passivation of heavy metals in industrial sludge during vermicomposting. Rice husk biochar and earthworm can play a positive role in sequestering the metals during the treatment of industrial sludge. This research proposed a potential method to dispose the heavy metals in industrial sludge to transform waste into resource utilization.
Collapse
Affiliation(s)
- Xingming Wang
- State Key Laboratory of Safety and Health for Metal Mines, Sinosteel Maanshan General Institute of Mining Research Company Limited, Maanshan 243000, China
- The State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241000, China
- Chuzhou Bureau of Ecology and Environment, Chuzhou 239000, China
- Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology (Wuhu), Wuhu 241000, China
- Engineering Laboratory of Comprehensive Utilization and Ecological Protection of Soil and Water Resources in High Diving Level Mining Area of Anhui Province, Huainan 232001, China
| | - Zhaoxia Chu
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Tingyu Fan
- The State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
- Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology (Wuhu), Wuhu 241000, China
- Engineering Laboratory of Comprehensive Utilization and Ecological Protection of Soil and Water Resources in High Diving Level Mining Area of Anhui Province, Huainan 232001, China
| | - Shuying Liang
- Chuzhou Bureau of Ecology and Environment, Chuzhou 239000, China
| | - Gang Li
- State Key Laboratory of Safety and Health for Metal Mines, Sinosteel Maanshan General Institute of Mining Research Company Limited, Maanshan 243000, China
| | - Jiamei Zhang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China
| | - Quan Zhen
- Department of Preventive Medicine, Bengbu Medical College, Bengbu 233033, China
| |
Collapse
|
29
|
Huang Z, Niu Q, Nie W, Li X, Yang C. Effects of heavy metals and antibiotics on performances and mechanisms of anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 361:127683. [PMID: 35882314 DOI: 10.1016/j.biortech.2022.127683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) is an efficacious technology to recover energy from organic wastes/wastewater, while the efficiency of AD could be limited by metals and antibiotics in substrates. It is of great significance to deeply understand the interaction mechanisms of metals and antibiotics with anaerobic microorganisms, as well as the combined effects of metals and antibiotics, which will help us break the inherent dysfunction of AD system and promote the efficient operation of AD. Therefore, this paper reviews the effects of metals, antibiotics and their combinations on AD performance, as well as the combined effects and interactional mechanisms of metals and antibiotics with anaerobic microorganisms. In addition, control strategies and future research needs are proposed. This review provides valuable information for the enhancement strategies and engineering applications of AD for organic wastes/wastewater containing metals and antibiotics.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wenkai Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan 410001, China.
| |
Collapse
|
30
|
Qin J, Wang J, Long J, Huang J, Tang S, Hou H, Peng P. Recycling of heavy metals and modification of biochar derived from Napier grass using HNO 3. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115556. [PMID: 35728377 DOI: 10.1016/j.jenvman.2022.115556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The disposal of biomass enriched with heavy metals (HMs) limits the application of phytoextraction. This study investigated the feasibility of obtaining K-rich fertilizer with low risk of HMs and biochar with good application prospect by extracting Napier grass biochar using 15% HNO3 and separating HMs from the filtrate using 40% KOH. In this study, Napier grass biochar produced at 500 °C showed better potential for utilization owing to its relatively low HM contents, high nutrient contents, and high yield. In fact, 61.26% Cd, 84.22% Zn, and more K were extracted from biochar when the pH was adjusted to 1 using 15% HNO3. Then, Cd and Zn could be almost separated from the filtrate by adjusting the pH to 10 or more by adding 40% KOH. The Cd content in the biochar was reduced from a low risk level to a no-risk level, and the Zn content in the biochar was reduced from a medium risk level to a low risk level when the pH was adjusted to 1 and 2 by adding 15% HNO3. The adsorption capacity of biochar to dyes was enhanced when the pH was adjusted to 1 using 15% HNO3. The cation exchange mechanism endows the biochar with better potential for reuse (for methylene blue). This work provides a safe, efficient, and maneuverable resource allocation method.
Collapse
Affiliation(s)
- Jianjun Qin
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Jing Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Long
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Jing Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Shengshuang Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hongbo Hou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peiqin Peng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
31
|
Bianco F, Marcińczyk M, Race M, Papirio S, Esposito G, Oleszczuk P. Low temperature–produced and VFA–coated biochar enhances phenanthrene adsorption and mitigates toxicity in marine sediments. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Potential of Canna indica in Constructed Wetlands for Wastewater Treatment: A Review. CONSERVATION 2022. [DOI: 10.3390/conservation2030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This article reviews investigations in which Canna indica was utilized in constructed wetlands (CW) for wastewater treatment of a variety types. It is strongly urged that ornamental flowering plants be used in CWs as monoculture or mixed species to improve the appearance of CWs whilst still treating wastewater. Plants play important roles in CWs by giving the conditions for physical filtration of wastewater, a large specific surface area for microbial growth, and a source of carbohydrates for bacteria. They absorb nutrients and integrate them into plant tissues. They release oxygen into the substrate, establishing a zone in which aerobic microorganisms can thrive and chemical oxidation can occur. They also provide wildlife habitat and make wastewater treatment system more visually attractive. The selection of plant species for CW is an important aspect during the CW design process. Canna indica’s effectiveness in CWs has shown encouraging results for eliminating contaminants from wastewater. There is still a scarcity of information on the mechanisms involved in removal of specific contaminants such as pharmaceuticals, personal care products, hormones, pesticides and steroids and their potential toxicity to the plants. Therefore, this paper reviews some published information about the performance of Canna indica in wastewater treatment, as well as potential areas for future research.
Collapse
|
33
|
Nguyen MK, Lin C, Hoang HG, Sanderson P, Dang BT, Bui XT, Nguyen NSH, Vo DVN, Tran HT. Evaluate the role of biochar during the organic waste composting process: A critical review. CHEMOSPHERE 2022; 299:134488. [PMID: 35385764 DOI: 10.1016/j.chemosphere.2022.134488] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 05/21/2023]
Abstract
Composting is very robust and efficient for the biodegradation of organic waste; however secondary pollutants, namely greenhouse gases (GHGs) and odorous emissions, are environmental concerns during this process. Biochar addition to compost has attracted the interest of scientists with a lot of publication in recent years because it has addressed this matter and enhanced the quality of compost mixture. This review aims to evaluate the role of biochar during organic waste composting and identify the gaps of knowledge in this field. Moreover, the research direction to fill knowledge gaps was proposed and highlighted. Results demonstrated the commonly referenced conditions during composting mixed biochar should be reached such as pH (6.5-7.5), moisture (50-60%), initial C/N ratio (20-25:1), biochar doses (1-20% w/w), improved oxygen content availability, enhanced the performance and humification, accelerating organic matter decomposition through faster microbial growth. Biochar significantly decreased GHGs and odorous emissions by adding a 5-10% dosage range due to its larger surface area and porosity. On the other hand, with high exchange capacity and interaction with organic matters, biochar enhanced the composting performance humification (e.g., formation humic and fulvic acid). Biochar could extend the thermophilic phase of composting, reduce the pH value, NH3 emission, and prevent nitrogen losses through positive effects to nitrifying bacteria. The surfaces of the biochar particles are partly attributed to the presence of functional groups such as Si-O-Si, OH, COOH, CO, C-O, N for high cation exchange capacity and adsorption. Adding biochars could decrease NH3 emissions in the highest range up to 98%, the removal efficiency of CH4 emissions has been reported with a wide range greater than 80%. Biochar could absorb volatile organic compounds (VOCs) more than 50% in the experiment based on distribution mechanisms and surface adsorption and efficient reduction in metal bioaccessibilities for Pb, Ni, Cu, Zn, As, Cr and Cd. By applicating biochar improved the compost maturity by promoting enzymatic activity and germination index (>80%). However, physico-chemical properties of biochar such as particle size, pore size, pore volume should be clarified and its influence on the composting process evaluated in further studies.
Collapse
Affiliation(s)
- Minh Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Hong Giang Hoang
- Faculty of Health Sciences and Finance - Accounting, Dong Nai Technology University, Bien Hoa, Dong Nai, 76100, Viet Nam
| | - Peter Sanderson
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Bao Trong Dang
- HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 23000, Viet Nam
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam; School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Huu Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
34
|
Biochar Effect on the Benzo[a]pyrene Degradation Rate in the Cu Co-Contaminated Haplic Chernozem under Model Vegetation Experiment Conditions. Processes (Basel) 2022. [DOI: 10.3390/pr10061147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The research of the fundamentals of the behavior of behavior in the soil–plant system during their co-contamination is of high interest because of the absence of technologies for the creation of effective, environmentally friendly and cost-effective remediation methods, as well as integrated systems for predicting the quality of soils co-contaminated with HMs and PAHs. The unique model vegetation experiment was studied with Haplic Chernozem contaminated by one of the priority organic toxicants, benzo[a]pyrene (BaP), applied alone and co-contaminated with Cu with the subsequent vegetation of tomato (Solanum lycopersicum) and spring barley plants (Hordeum sativum Distichum). Biochar obtained from sunflower husks was used as a sorbent for the remediation of the contaminated soil. It was established that by increasing the BaP amount applied to the soil, the rate of BaP degradation improved. The effect was enhanced in the presence of biochar and decreased in the case of joint co-contamination with Cu, which is especially expressed for the soil of tomato plants. The half-degradation time of the BaP molecule varied from 8 up to 0.2 years for tomatoes and barley.
Collapse
|
35
|
Gaur VK, Gautam K, Sharma P, Gupta S, Pandey A, You S, Varjani S. Carbon-based catalyst for environmental bioremediation and sustainability: Updates and perspectives on techno-economics and life cycle assessment. ENVIRONMENTAL RESEARCH 2022; 209:112793. [PMID: 35090873 DOI: 10.1016/j.envres.2022.112793] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Global rise in the generation of waste has caused an enormous environmental concern and waste management problem. The untreated carbon rich waste serves as a breeding ground for pathogens and thus strategies for production of carbon rich biochar from waste by employing different thermochemical routes namely hydrothermal carbonization, hydrothermal liquefaction and pyrolysis has been of interest by researchers globally. Biochar has been globally produced due to its diverse applications from environmental bioremediation to energy storage. Also, several factors affect the production of biochar including feedstock/biomass type, moisture content, heating rate, and temperature. Recently the application of biochar has increased tremendously owing to the cost effectiveness and eco-friendly nature. Thus this communication summarized and highlights the preferred feedstock for optimized biochar yield along with the factor influencing the production. This review provides a close view on biochar activation approaches and synthesis techniques. The application of biochar in environmental remediation, composting, as a catalyst, and in energy storage has been reviewed. These informative findings were supported with an overview of lifecycle and techno-economical assessments in the production of these carbon based catalysts. Integrated closed loop approaches towards biochar generation with lesser/zero landfill waste for safeguarding the environment has also been discussed. Lastly the research gaps were identified and the future perspectives have been elucidated.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow, 226 001, Uttar Pradesh, India
| | - Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, 226 001, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | | | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, 226 001, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; India Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, Uttarakhand, India
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| |
Collapse
|
36
|
Ejileugha C. Biochar can mitigate co-selection and control antibiotic resistant genes (ARGs) in compost and soil. Heliyon 2022; 8:e09543. [PMID: 35663734 PMCID: PMC9160353 DOI: 10.1016/j.heliyon.2022.e09543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heavy metals (HMs) contamination raises the expression of antibiotic resistance (AR) in bacteria through co-selection. Biochar application in composting improves the effectiveness of composting and the quality of compost. This improvement includes the elimination and reduction of antibiotic resistant genes (ARGs). The use of biochar in contaminated soils reduces the bioaccessibility and bioavailability of the contaminants hence reducing the biological and environmental toxicity. This decrease in contaminant bioavailability reduces contaminants induced co-selection pressure. Conditions which favour reduction in HMs bioavailable fraction (BF) appear to favour reduction in ARGs in compost and soil. Biochar can prevent horizontal gene transfer (HGT) and can eliminate ARGs carried by mobile genetic elements (MGEs). This effect reduces maintenance and propagation of ARGs. Firmicutes, Proteobacteria, and Actinobacteria are the major bacteria phyla identified to be responsible for dissipation, maintenance, and propagation of ARGs. Biochar application rate at 2-10% is the best for the elimination of ARGs. This review provides insight into the usefulness of biochar in the prevention of co-selection and reduction of AR, including challenges of biochar application and future research prospects.
Collapse
Affiliation(s)
- Chisom Ejileugha
- Lancaster Environment Centre (LEC), Lancaster University, LA1 4YQ, United Kingdom
| |
Collapse
|
37
|
Awasthi MK. Engineered biochar: A multifunctional material for energy and environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118831. [PMID: 35032603 DOI: 10.1016/j.envpol.2022.118831] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Biochar is a stable carbon-rich product loaded with upgraded properties obtained by thermal cracking of biomasses in an oxygen-free atmosphere. The pristine biochar is further modified to produce engineered biochar via various physical, mechanical, and chemical methods. The hasty advancement in engineered biochar synthesis via different technologies and their application in the field of energy and environment is a topical issue that required an up-to-date review. Therefore, this review deals with comprehensive and recent mechanistic approaches of engineered biochar synthesis and its further application in the field of energy and the environment. Synthesis and activation of engineered biochar via various methods has been deliberated in brief. Furthermore, this review systematically covered the impacts of engineered biochar amendment in the composting process, anaerobic digestion (AD), soil microbial community encouragement, and their enzymatic activities. Finally, this review provided a glimpse of the knowledge gaps and challenges associated with application of engineered biochar in various fields, which needs urgent attention in future research.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
38
|
Bošković N, Bílková Z, Šudoma M, Bielská L, Škulcová L, Ribitsch D, Soja G, Vrana B, Hofman J. Effects of biochar on the fate of conazole fungicides in soils and their bioavailability to earthworms and plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23323-23337. [PMID: 34807391 DOI: 10.1007/s11356-021-17191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The study showed novel findings about changes in the fate and bioavailability of conazole fungicides (CFs) after biochar (BC) addition to soil. Two contrasting soils (low- and high-sorbing of CF; L soils, H soils) were amended by three BCs (low-, moderate-, and high-sorbing of CF; L-BC, M-BC, H-BC) at 0.2% and 2% doses. Epoxiconazole (EPC) and tebuconazole (TBC) were then added to the soil-BC mixtures, and their degradation, bioaccumulation in earthworms (Eisenia andrei), and bioconcentration in lettuce (Lactuca sativa) were studied for three months. Also, stir bar sorptive extraction (SBSE) was performed to determine CF (bio)accessibility. The EPC and TBC degradation in the soil-BC mixtures followed usually the first-order decay kinetics. The BC addition prevalently decreased the pesticides degradation in the L soil mixtures but often increased it in the H soil mixtures. In general, EPC degraded less than TBC. BC type and dose roles in the pesticides degradation were unclear. The BC addition significantly reduced pesticide uptake to the earthworms in the L soil mixtures (by 37-96%) and in the H soil mixtures (by 6-89%) with 2% BC. The BC addition reduced pesticide uptake to the lettuce roots and leaves significantly-up to two orders of magnitude, and this reduction was strong in H soil mixtures at 2% of BC. The BC addition reduced the CF (bio)accessibility measured by SBSE in all L soil mixtures and some H soil mixtures with 2% BC. Although not significant, it also seems that the pesticide bioaccumulation, bioconcentration, and (bio)accessibility were decreasing according to the BC type (L-BC > M-BC > H-BC). The pesticide concentrations in the earthworms and lettuce correlated significantly to the SBSE results, which indicates this technique as a possible predictor of biotic uptake. Our results showed that the interactions were hard to predict in the complex soil-BC-pesticide system.
Collapse
Affiliation(s)
- Nikola Bošković
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Zuzana Bílková
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Marek Šudoma
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Lucie Bielská
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1/1665, 613 00, Brno, Czech Republic
| | - Lucia Škulcová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Doris Ribitsch
- Institute for Environmental Biotechnology, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Strasse 20, 3430, Tulln, Austria
| | - Gerhard Soja
- Environmental Resources & Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
- Institute of Chemical and Energy Engineering, University of Natural Resources and Life Sciences (BOKU), Muthgasse 107, 1190, Vienna, Austria
| | - Branislav Vrana
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Jakub Hofman
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
| |
Collapse
|
39
|
Biochar and/or Compost to Enhance Nursery-Produced Seedling Performance: A Potential Tool for Forest Restoration Programs. FORESTS 2022. [DOI: 10.3390/f13040550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Today, the use of nursery-produced seedlings is the most widely adopted method in forest restoration processes. To ensure and enhance the performance of transplanting seedlings into a specific area, soil amendments are often used due to their ability to improve soil physicochemical properties and, in turn, plant growth and development. The aim of the present study was to evaluate Populus euramericana growth and development on a growing substrate added with biochar and compost, both alone and in combination. To accomplish this aim, a pot experiment was performed to test biochar and/or compost effects on growing substrate physicochemical characteristics, plant morpho-physiological traits, and plant phenology. The results showed that biochar and/or compost improved growing substrate properties by increasing electrical conductivity, cation exchange capacity, and nutrient concentrations. On the one hand, these ameliorations accelerated poplar growth and development. On the other hand, amendments did not have positive effects on some plant morphological traits, although compost alone increased plant height, and very fine and fine root length. The combined use of biochar and compost did not show any synergistic or cumulative beneficial effects and led to a reduction in plant growth and development. In conclusion, compost alone seems to be the best solution in both ameliorating substrate characteristics and increasing plant growth, highlighting the great potential for its proper and effective application in large-scale forest restoration strategies.
Collapse
|
40
|
Lamolinara B, Pérez-Martínez A, Guardado-Yordi E, Guillén Fiallos C, Diéguez-Santana K, Ruiz-Mercado GJ. Anaerobic digestate management, environmental impacts, and techno-economic challenges. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:14-30. [PMID: 35032793 PMCID: PMC10466263 DOI: 10.1016/j.wasman.2021.12.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Digestate is a nutrient-rich by-product from organic waste anaerobic digestion but can contribute to nutrient pollution without comprehensive management strategies. Some nutrient pollution impacts include harmful algal blooms, hypoxia, and eutrophication. This contribution explores current productive uses of digestate by analyzing its feedstocks, processing technologies, economics, product quality, impurities, incentive policies, and regulations. The analyzed studies found that feedstock, processing technology, and process operating conditions highly influence the digestate product characteristics. Also, incentive policies and regulations for managing organic waste by anaerobic digestion and producing digestate as a valuable product promote economic benefits. However, there are not many governmental and industry-led quality assurance certification systems for supporting commercializing digestate products. The sustainable and safe use of digestate in different applications needs further development of technologies and processes. Also, incentives for digestate use, quality regulation, and social awareness are essential to promote digestate product commercialization as part of the organic waste circular economy paradigm. Therefore, future studies about circular business models and standardized international regulations for digestate products are needed.
Collapse
Affiliation(s)
- Barbara Lamolinara
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal - Zona Industrial, Marinha Grande 2430-028, Portugal
| | - Amaury Pérez-Martínez
- Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador
| | - Estela Guardado-Yordi
- Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador
| | - Christian Guillén Fiallos
- Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador
| | - Karel Diéguez-Santana
- Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador
| | - Gerardo J Ruiz-Mercado
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin L. King Dr. Cincinnati, OH 45268, USA; Chemical Engineering Graduate Program, University of Atlántico, Puerto Colombia 080007, Colombia.
| |
Collapse
|
41
|
Liu R, Zhang Y, Hu B, Wang H. Improved Pb(II) removal in aqueous solution by sulfide@biochar and polysaccharose-FeS@ biochar composites: Efficiencies and mechanisms. CHEMOSPHERE 2022; 287:132087. [PMID: 34523465 DOI: 10.1016/j.chemosphere.2021.132087] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Novel biochars, namely nano iron sulfide@ walnut shell biochar (FeS@WNS), Starch-FeS@WNS and Chitosan-FeS@WNS, were prepared by WNS loaded with nano FeS and starch (or chitosan). Nano FeS can be effectively improved lead ions (Pb(II)) removal and starch (or chitosan) improved the stability of FeS and the defect of easy agglomeration. The materials were characterized by SEM, EDS, FTIR and XRD, and the preparation was successful. The adsorption capacity of Pb(II) reached 63.5, 80.0, 84.7 mg g-1 under 0.5 g L-1 of FeS@WNS, Starch-FeS@WNS and Chitosan-FeS@WNS. The adsorption of Pb(II) on the materials was more consistent with the pseudo-second-order kinetic model (K2 = 0.001-0.005 g (mg·min)-1, R2 = 0.980-0.999) and Langmuir model (R2 = 0.974-1.00), indicating that the adsorption of Pb(II) was mainly monolayer adsorption dominated by chemical adsorption. △G < 0 (-3.7~-6.97) and △H > 0 (1.56-20.49) indicated that the reaction was a spontaneous endothermic process. The mechanisms of Pb(II) removal from aqueous solutions involved electrostatic attraction, hydrogen bonding, physical adsorption, ion exchange and oxidoreduction. Additionally, stability and reusability of FeS@WNS, Starch-FeS@WNS and Chitosan-FeS@WNS was good. The novel sorbents of Starch-FeS@WNS and Chitosan-FeS@WNS can be used in Pb(II) wastewater treatment.
Collapse
Affiliation(s)
- Renrong Liu
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang, 312000, PR China
| | - Yaohong Zhang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang, 312000, PR China
| | - Baowei Hu
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang, 312000, PR China
| | - Hai Wang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang, 312000, PR China.
| |
Collapse
|
42
|
Thangagiri B, Sakthivel A, Jeyasubramanian K, Seenivasan S, Dhaveethu Raja J, Yun K. Removal of hexavalent chromium by biochar derived from Azadirachta indica leaves: Batch and column studies. CHEMOSPHERE 2022; 286:131598. [PMID: 34325269 DOI: 10.1016/j.chemosphere.2021.131598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
This report details the preparation, characterization, and applications of an inexpensive adsorbent obtained from Azadirachta indica leaves (Neem biochar (NBC)) and used to remove Cr(VI) from the synthetic waste water. The obtained NBC was characterized by XRD, FTIR, FESEM, EDX and Zeta potential measurements. Adsorption experiments conducted at various pH levels confirmed that 58.54 mg g-1 of Cr(VI) was removed by NBC at pH 2. Experiments conducted at various temperatures revealed that the Cr(VI) adsorption on NBC fits the Langmuir-type adsorption isotherm. A fixed-bed column study was conducted to obtain breakthrough curve for the adsorption process, which confirmed that the NBC usage rate was 4.63 g/L. Cr(VI)NBC was reactivated by NaOH treatment, and the reactivated NBC was used as a sorbent to remove fresh Cr(VI) from the synthetic waste water repeatedly. A cost analysis was also performed for the Cr(VI) removal confirmed that the process was less expensive.
Collapse
Affiliation(s)
- B Thangagiri
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India
| | - A Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India.
| | - K Jeyasubramanian
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India
| | - S Seenivasan
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409-1163, USA
| | - J Dhaveethu Raja
- Department of Chemistry, The American College, Madurai, 625 005, India
| | - Kyusik Yun
- Department of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
43
|
Yin Y, Yang C, Li M, Zheng Y, Ge C, Gu J, Li H, Duan M, Wang X, Chen R. Research progress and prospects for using biochar to mitigate greenhouse gas emissions during composting: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149294. [PMID: 34332388 DOI: 10.1016/j.scitotenv.2021.149294] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 05/22/2023]
Abstract
Biochar possesses a unique porous structure and abundant surface functional groups, which can potentially help mitigate greenhouse gas (GHG) emissions from compost. This review summarizes the properties and functions of biochar, and the effects of biochar on common GHGs (methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O)) and ammonia (NH3, an indirect GHG) during composting. Studies have shown that it is possible to improve the mitigation of GHG emissions during composting by adjusting the biochar amount, type of raw material, pyrolysis temperature, and particle size. Biochar produced from crop residues and woody biomass has a greater effect on mitigating CH4, N2O, and NH3 emissions during composting, and GHG emissions can be reduced significantly by adding about 10% (w/w) biochar. Biochar produced by high temperature pyrolysis (500-900 °C) has a greater effect on mitigating CH4 and N2O emissions, whereas biochar generated by low temperature pyrolysis (200-500 °C) is more effective at reducing NH3 emissions. Interestingly, adding granular biochar is more beneficial for mitigating CH4 emissions, whereas adding powdered biochar is better at reducing NH3 emissions. According to the current research status, developing new methods for producing and using biochar (e.g., modified or combined with other additives) should be the focus of future research into mitigating GHG emissions during composting. The findings summarized in this review may provide a reference to allow the establishment of standards for using biochar to mitigate GHG emissions from compost.
Collapse
Affiliation(s)
- Yanan Yin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Chao Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Mengtong Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Chengjun Ge
- School of Ecology and Environment, Hainan University, Haikou 570228, PR China
| | - Jie Gu
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Haichao Li
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Manli Duan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, PR China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
44
|
Degradation of cephalexin by persulfate activated with magnetic loofah biochar: Performance and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118971] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Fu T, Shangguan H, Wu J, Tang J, Yuan H, Zhou S. Insight into the synergistic effects of conductive biochar for accelerating maturation during electric field-assisted aerobic composting. BIORESOURCE TECHNOLOGY 2021; 337:125359. [PMID: 34126360 DOI: 10.1016/j.biortech.2021.125359] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Electric field-assisted aerobic composting (EAC) has been considered as a novel and effective process for enhancing compost maturation. However, the poor conductivity of compost piles affects the efficiency and applicability of EAC. Thus, this study aims to examine how conductive biochar affects compost maturation in biochar-added electric field-assisted aerobic composting (b-EAC). Our results demonstrated that the germination index and humus index significantly increased, and the compost maturation time was shortened by nearly 25% during b-EAC compared to EAC. The total oxygen utilization rate and total relative abundance of electroactive bacteria during b-EAC increased by approximately two and three times those in EAC, respectively. These findings indicated that the addition of conductive biochar has a synergistic effect which facilitated oxygen utilization by reducing resistance and accelerating electron transfer. Therefore, the addition of conductive biochar is proved to be an effective and applicable strategy for optimizing the efficiency of EAC.
Collapse
Affiliation(s)
- Tao Fu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxiong Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Haijing Yuan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
46
|
Santos FTD, Fehmberger C, Aloisio CM, Bautitz IR, Hermes E. Composting of swine production chain wastes with addition of crude glycerin: organic matter degradation kinetics, functional groups, and carboxylic acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50542-50553. [PMID: 33959841 DOI: 10.1007/s11356-021-14063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Little is known about the effect of adding crude glycerin (CG) as a carbon source during the composting of agro-industrial residues, such as those generated in the swine production chain, especially concerning the impact on organic matter humification. Therefore, the aim of this work was to study the effect of adding crude glycerin during the composting of organic swine waste, using appropriate analyses to determine the degree of maturation of the organic material. The experiment was performed using composters constructed from pallets. The variables considered were temperature, mass, volume, organic matter, functional groups, carboxylic acids, pH, electrical conductivity, total organic carbon, total Kjeldahl nitrogen, total phosphorus, potassium, basal respiration, and germination index. For all the CG concentrations tested, thermophilic temperatures were reached, while higher amounts of CG (4.5 and 6.0%) maintained temperatures above 55 °C for longer periods (28 days). Fourier transform infrared spectroscopy analysis showed the presence of an aromatic stretching vibration signal at 1620 cm-1, confirming mineralization of the organic matter, while the decrease of carboxylic acids at the end of the composting period indicated stabilization. The organic composts presented high nutrient contents and absence of toxicity, indicating that they could be safely used in agriculture.
Collapse
Affiliation(s)
- Francielly Torres Dos Santos
- Program of Postgraduate in Biotechnology, Federal University of Paraná, Street Pioneiro, 2153, CEP: 85.950-000, Bairro Jardim Dallas, Palotina, PR, Brazil
| | - Cleide Fehmberger
- Program of Postgraduate in Biotechnology, Federal University of Paraná, Street Pioneiro, 2153, CEP: 85.950-000, Bairro Jardim Dallas, Palotina, PR, Brazil
| | - Cleiton Margatto Aloisio
- Program of Postgraduate in Biotechnology, Federal University of Paraná, Street Pioneiro, 2153, CEP: 85.950-000, Bairro Jardim Dallas, Palotina, PR, Brazil
| | - Ivonete Rossi Bautitz
- Program of Postgraduate in Biotechnology, Federal University of Paraná, Street Pioneiro, 2153, CEP: 85.950-000, Bairro Jardim Dallas, Palotina, PR, Brazil
| | - Eliane Hermes
- Program of Postgraduate in Biotechnology, Federal University of Paraná, Street Pioneiro, 2153, CEP: 85.950-000, Bairro Jardim Dallas, Palotina, PR, Brazil.
| |
Collapse
|
47
|
Li P, Fang J, Huang D, Tang J, Huang J, Meng F. A low-cost and effective bagasse-based magnetic porous biochar as an adsorbent for solid phase extraction of triazine herbicides in brown sugar. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3585-3591. [PMID: 34291246 DOI: 10.1039/d1ay00867f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A rapid and sensitive approach for enriching and extracting triazines from brown sugar samples was developed by combining magnetic dispersive solid-phase extraction and HPLC/UV. In this work, a magnetic porous biochar (MPB) derived from low-cost bagasse was prepared and successfully employed as an adsorbent. A particular emphasis was placed on optimizing the extraction conditions, including the amount of MPB, extraction time, pH, type and volume of eluent, and salt concentration. Under optimized MSPE conditions, the method showed satisfactory linearity over concentration ranges of 2-200 μg L-1 for four triazines, with correlation coefficient values no less than 0.9981. Low limits of detection (0.27-0.33 μg L-1), good recoveries (81.7-100.7%), and satisfactory repeatability (RSDs ≤ 8.1%) were also demonstrated with respect to the analytical performance. The results demonstrated that the developed method was simple, rapid, sensitive, and efficient, indicating that it could extract and enrich trace triazines from real samples.
Collapse
Affiliation(s)
- Peng Li
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
48
|
Hoang SA, Sarkar B, Seshadri B, Lamb D, Wijesekara H, Vithanage M, Liyanage C, Kolivabandara PA, Rinklebe J, Lam SS, Vinu A, Wang H, Kirkham MB, Bolan NS. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125702. [PMID: 33866291 DOI: 10.1016/j.jhazmat.2021.125702] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The term "Total petroleum hydrocarbons" (TPH) is used to describe a complex mixture of petroleum-based hydrocarbons primarily derived from crude oil. Those compounds are considered as persistent organic pollutants in the terrestrial environment. A wide array of organic amendments is increasingly used for the remediation of TPH-contaminated soils. Organic amendments not only supply a source of carbon and nutrients but also add exogenous beneficial microorganisms to enhance the TPH degradation rate, thereby improving the soil health. Two fundamental approaches can be contemplated within the context of remediation of TPH-contaminated soils using organic amendments: (i) enhanced TPH sorption to the exogenous organic matter (immobilization) as it reduces the bioavailability of the contaminants, and (ii) increasing the solubility of the contaminants by supplying desorbing agents (mobilization) for enhancing the subsequent biodegradation. Net immobilization and mobilization of TPH have both been observed following the application of organic amendments to contaminated soils. This review examines the mechanisms for the enhanced remediation of TPH-contaminated soils by organic amendments and discusses the influencing factors in relation to sequestration, bioavailability, and subsequent biodegradation of TPH in soils. The uncertainty of mechanisms for various organic amendments in TPH remediation processes remains a critical area of future research.
Collapse
Affiliation(s)
- Son A Hoang
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mien Trung University of Civil Engineering, Phu Yen 56000, Vietnam
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Dane Lamb
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, P.O. Box 02, Belihuloya 70140, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Chathuri Liyanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Pabasari A Kolivabandara
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
49
|
Peñalver-Alcalá A, Álvarez-Rogel J, Conesa HM, González-Alcaraz MN. Biochar and urban solid refuse ameliorate the inhospitality of acidic mine tailings and foster effective spontaneous plant colonization under semiarid climate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112824. [PMID: 34033987 DOI: 10.1016/j.jenvman.2021.112824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Phytomanagement is considered a suitable option in line with nature-based solutions to reduce environmental risks associated to metal(loid) mine tailings. We aimed at assessing the effectiveness of biochar from pruning trees combined with compost from urban solid refuse (USR) to ameliorate the conditions of barren acidic (pH ~5.5) metal(loid) mine tailing soils (total concentrations in mg kg-1: As ~220, Cd ~40, Mn ~1800, Pb ~5300 and Zn ~8600) from Mediterranean semiarid areas and promote spontaneous plant colonization. Two months after amendment addition were enough to observe improvements in chemical and physico-chemical tailing soil properties (reduced acidity, salinity and water-soluble metals and increased organic carbon and nutrients content), which resulted in lowered ecotoxicity for the soil invertebrate Enchytraeus crypticus. Recalcitrant organic carbon provided by biochar remained in soil whereas labile organic compounds provided by USR were consumed over time. These improvements were consistent for at least one year and led to lower bulk density, higher water retention capacity and higher scores for microbial/functional-related parameters in the amended tailing soil. Spontaneous growth of native vegetation was favored with amendment addition, but adult plants of remarkable size were only found after three years. This highlights the existence of a time-lag between the positive effects of the amendment on tailing soil properties being observed and these improvements being translated into effective spontaneous plant colonization.
Collapse
Affiliation(s)
- Antonio Peñalver-Alcalá
- Department of Agricultural Engineering of the E.T.S.I.A. & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, 30203, Cartagena, Spain
| | - José Álvarez-Rogel
- Department of Agricultural Engineering of the E.T.S.I.A. & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, 30203, Cartagena, Spain
| | - Héctor M Conesa
- Department of Agricultural Engineering of the E.T.S.I.A. & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, 30203, Cartagena, Spain
| | - M Nazaret González-Alcaraz
- Department of Agricultural Engineering of the E.T.S.I.A. & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, 30203, Cartagena, Spain; Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
50
|
He M, Xiong X, Wang L, Hou D, Bolan NS, Ok YS, Rinklebe J, Tsang DCW. A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125378. [PMID: 33652215 DOI: 10.1016/j.jhazmat.2021.125378] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/25/2020] [Accepted: 02/06/2021] [Indexed: 05/27/2023]
Abstract
Amendment of soil with biochar has been widely investigated for soil quality improvement in terms of biotic and abiotic functionalities. The performance of biochar-based amendment varies according to the site characteristics, biochar properties, and soil management targets. There is no existing review that summarizes a broad range of performance indicators to evaluate the health of biochar-amended soil. Based on the latest studies on soil amendment with biochar, this review critically analyzes the soil health indicators that reveal the potential impact of biochar amendment with respect to physicochemical properties, biological properties, and overall soil quality. It is found that soil pH, soil aggregate stability, and soil organic matter are the basic indicators that could influence most of the soil functions, which should be prioritized for measurement. Relevant functional indicators (e.g., erosion rate, crop productivity, and ecotoxicity) should be selected based on the soil management targets of biochar application in agricultural soils. With this review, it is expected that target-oriented performance indicators can be selected in future studies for field-relevant evaluation of soil amendment by biochar under different situations. Therefore, a more cost-effective and purpose-driven assessment protocol for biochar-amended soils can be devised by using relevant measurable attributes suggested in this review.
Collapse
Affiliation(s)
- Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinni Xiong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062 Dresden, Germany
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, Faculty of Science, Enginnering and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for High Performance Soils (Soil CRC), Callaghan, NSW 2308, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jörg Rinklebe
- Laboratory of Soil, and Groundwater-Management, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste, Management, University of Wuppertal, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|