1
|
Zhang Y, Xie X, Sun S, Wang Y. Coupled redox cycling of arsenic and sulfur regulates thioarsenate enrichment in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173776. [PMID: 38862046 DOI: 10.1016/j.scitotenv.2024.173776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
High‑arsenic groundwater is influenced by a combination of processes: reductive dissolution of iron minerals and formation of secondary minerals, metal complexation and redox reactions of organic matter (OM), and formation of more migratory thioarsenate, which together can lead to significant increases in arsenic concentration in groundwater. This study was conducted in a typical sulfur- and arsenic-rich groundwater site within the Datong Basin to explore the conditions of thioarsenate formation and its influence on arsenic enrichment in groundwater using HPLC-ICPMS, hydrogeochemical modeling, and fluorescence spectroscopy. The shallow aquifer exhibited a highly reducing environment, marked by elevated sulfide levels, low concentrations of Fe(II), and the highest proportion of thioarsenate. In the middle aquifer, an optimal ∑S/∑As led to the presence of significant quantities of thioarsenate. In contrast, the deep aquifer exhibited low sulfide and high Fe(II) concentration, with arsenic primarily originating from dissolved iron minerals. Redox fluctuations in the sediment driven by sulfur‑iron minerals generated reduced sulfur, thereby facilitating thioarsenate formation. OM played a crucial role as an electron donor for microbial activities, promoting iron and sulfate reduction processes and creating conditions conducive to thioarsenate formation in reduced and high‑sulfur environments. Understanding the process of thioarsenate formation and the influencing factors is of paramount importance for comprehending the migration and redistribution of arsenic in groundwater systems.
Collapse
Affiliation(s)
- Yuyao Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China.
| | - Shutang Sun
- School of Resource and Environmental Sciences, Wuhan University, 430072, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
2
|
Shoaib SM, Afzal S, Feezan A, Akash MSH, Nadeem A, Mir TM. Metabolomics Analysis and Biochemical Profiling of Arsenic-Induced Metabolic Impairment and Disease Susceptibility. Biomolecules 2023; 13:1424. [PMID: 37759824 PMCID: PMC10526798 DOI: 10.3390/biom13091424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Our study aimed to conduct a comprehensive biochemical profiling and metabolomics analysis to investigate the effects of arsenic-induced metabolic disorders, with a specific focus on disruptions in lipid metabolism, amino acid metabolism, and carbohydrate metabolism. Additionally, we sought to assess the therapeutic potential of resveratrol (RSV) as a remedy for arsenic-induced diabetes, using metformin (MF) as a standard drug for comparison. We measured the total arsenic content in mouse serum by employing inductively coupled plasma mass spectrometry (ICP-MS) after administering a 50-ppm solution of sodium arsenate (50 mg/L) in purified water. Our findings revealed a substantial increase in total arsenic content in the exposed group, with a mean value of 166.80 ± 8.52 ppb (p < 0.05). Furthermore, we investigated the impact of arsenic exposure on various biomarkers using enzyme-linked immunosorbent assay (ELISA) methods. Arsenic exposed mice exhibited significant hyperglycemia (p < 0.001) and elevated levels of homeostatic model assessment of insulin resistance (HOMA-IR), hemoglobin A1c (Hb1Ac), Inflammatory biomarkers as well as liver and kidney function biomarkers (p < 0.05). Additionally, the levels of crucial enzymes linked to carbohydrate metabolism, including α-glucosidase, hexokinase, and glucose-6-phosphatase (G6PS), and oxidative stress biomarkers, such as levels of glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD), were significantly reduced in the arsenic-exposed group compared to the control group (p < 0.05). However, the level of MDA was significantly increased. Molecular analysis of gene expression indicated significant upregulation of key enzymes involved in lipid metabolism, such as carnitine palmitoyl-transferase-I (CPT-I), carnitine palmitoyl-transferase-II (CPT-II), lecithin-cholesterol acyltransferase (LCAT), and others. Additionally, alterations in gene expression related to glucose transporter-2 (GLUT-2), glucose-6-phosphatase (G6PC), and glucokinase (GK), associated with carbohydrate metabolism, were observed. Amino acid analysis revealed significant decreases in nine amino acids in arsenic-exposed mice. Metabolomics analysis identified disruptions in lipid metabolomes, amino acids, and arsenic metabolites, highlighting their involvement in essential metabolic pathways. Histopathological observations revealed significant changes in liver architecture, hepatocyte degeneration, and increased Kupffer cells in the livers of arsenic-exposed mice. In conclusion, these findings enhance our comprehension of the impact of environmental toxins on metabolic health and offer potential avenues for remedies against such disruptions.
Collapse
Affiliation(s)
- Syed Muhammad Shoaib
- Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Samina Afzal
- Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ali Feezan
- Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahir Maqbool Mir
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
3
|
Liu H, Xu R, Häggblom MM, Zhang J, Sun X, Gao P, Li J, Yan W, Gao W, Gao P, Liu G, Zhang H, Sun W. Immobile Iron-Rich Particles Promote Arsenic Retention and Regulate Arsenic Biotransformation in Treatment Wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15627-15637. [PMID: 36283075 DOI: 10.1021/acs.est.2c04421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Remediation of arsenic (As)-contaminated wastewater by treatment wetlands (TWs) remains a technological challenge due to the low As adsorption capacity of wetland substrates and the release of adsorbed As to pore water. This study investigated the feasibility of using immobile iron-rich particles (IIRP) to promote As retention and to regulate As biotransformation in TWs. Iron-rich particles prepared were immobilized in the interspace of a gravel substrate. TWs with IIRP amendment (IIRP-TWs) achieved a stable As removal efficiency of 63 ± 4% over 300 days, while no As removal or release was observed in TWs without IIRP after 180 days of continuous operation. IIRP amendment provided additional adsorption sites and increased the stability of adsorbed As due to the strong binding affinity between As and Fe oxides. Microbially mediated As(III) oxidation was intensified by iron-rich particles in the anaerobic bottom layer of IIRP-TWs. Myxococcus and Fimbriimonadaceae were identified as As(III) oxidizers. Further, metagenomic binning suggested that these two bacterial taxa may have the capability for anaerobic As(III) oxidation. Overall, this study demonstrated that abiotic and biotic effects of IIRP contribute to As retention in TWs and provided insights into the role of IIRP for the remediation of As contamination.
Collapse
Affiliation(s)
- Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rui Xu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Peng Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jiayi Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wangwang Yan
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen 518107, China
| | - Wenlong Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guoqiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
4
|
Usman M, Katsoyiannis I, Rodrigues JH, Ernst M. Arsenate removal from drinking water using by-products from conventional iron oxyhydroxides production as adsorbents coupled with submerged microfiltration unit. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59063-59075. [PMID: 32277417 PMCID: PMC8541963 DOI: 10.1007/s11356-020-08327-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/04/2020] [Indexed: 06/02/2023]
Abstract
Arsenic is among the major drinking water contaminants affecting populations in many countries because it causes serious health problems on long-term exposure. Two low-cost micro-sized iron oxyhydroxide-based adsorbents (which are by-products of the industrial production process of granular adsorbents), namely, micro granular ferric hydroxide (μGFH) and micro tetravalent manganese feroxyhyte (μTMF), were applied in batch adsorption kinetic tests and submerged microfiltration membrane adsorption hybrid system (SMAHS) to remove pentavalent arsenic (As(V)) from modeled drinking water. The adsorbents media were characterized in terms of iron content, BET surface area, pore volume, and particle size. The results of adsorption kinetics show that initial adsorption rate of As(V) by μTMF is faster than μGFH. The SMAHS results revealed that hydraulic residence time of As(V) in the slurry reactor plays a critical role. At longer residence time, the achieved adsorption capacities at As(V) permeate concentration of 10 μg/L (WHO guideline value) are 0.95 and 1.04 μg/mg for μGFH and μTMF, respectively. At shorter residence time of ~ 3 h, μTMF was able to treat 1.4 times more volumes of arsenic-polluted water than μGFH under the optimized experimental conditions due to its fast kinetic behavior. The outcomes of this study confirm that micro-sized iron oyxhydroxides, by-products of conventional adsorbent production processes, can successfully be employed in the proposed hybrid water treatment system to achieve drinking water guideline value for arsenic, without considerable fouling of the porous membrane. Graphical abstract.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173, Hamburg, Germany.
| | - Ioannis Katsoyiannis
- Department of Chemistry, Laboratory of Chemical and Environmental Technology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Josma Henna Rodrigues
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173, Hamburg, Germany
| | - Mathias Ernst
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173, Hamburg, Germany.
| |
Collapse
|
5
|
Efficiency of Arsenic and Iron Removal Plants (AIRPs) for Groundwater Treatment in Rural Areas of Southwest Bangladesh. WATER 2021. [DOI: 10.3390/w13030354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic (As) removal plants were installed in As-endemic areas of Bangladesh to remove As from well water. In many cases, these removal plants did not perform satisfactorily. This study evaluated the efficiency of 20 As and iron (Fe) removal plants (AIRPs) during pre- and post-monsoon conditions in rural Bangladesh. Results revealed that As removal efficiencies ranged from 67% to 98% and 74 to 93% during the pre- and post-monsoons periods, respectively. In the post-monsoon season As removal at individual AIRP sites was on average (4.01%) greater than in the pre-monsoon season. However, two removal plants were unable to remove As below 50 µg L−1 (Bangladesh drinking water standard) during pre-monsoon, while 11 samples out of 20 were unable to remove As below the WHO provisional guideline value of 10 µg L−1. During post-monsoon, none of the samples exceeded 50 µg L−1, but eight of them exceeded 10 µg L−1. The Fe removal efficiencies of AIRPs were evident in more than 80% samples. Although As removal efficiency was found to be substantial, a cancer risk assessment indicates that hazard quotient (HQ) and carcinogenic risk (CR) of As in treated water for adults and children are above the threshold limits. Thus, additional reductions of As concentrations in treated water are needed to further reduce the excess cancer risk due to As in drinking water. Since 55% and 40% of the AIRPs were unable to remove As < 10 µg L−1 during pre-monsoon and post-monsoon, further improvement including changes in AIRP design, regular cleaning of sludge, and periodic monitoring of water quality are suggested. Future research is needed to determine whether these modifications improve the performance of AIRPs.
Collapse
|
6
|
Kasiuliene A, Carabante I, Bhattacharya P, Kumpiene J. Treatment of metal (loid) contaminated solutions using iron-peat as sorbent: is landfilling a suitable management option for the spent sorbent? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21425-21436. [PMID: 31119550 PMCID: PMC6647436 DOI: 10.1007/s11356-019-05379-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/03/2019] [Indexed: 05/22/2023]
Abstract
This study firstly aimed to investigate the potential of simultaneous metal (loid) removal from metal (oid) solution through adsorption on iron-peat, where the sorbent was made from peat and Fe by-products. Up-flow columns filled with the prepared sorbent were used to treat water contaminated with As, Cu, Cr, and Zn. Peat effectively adsorbed Cr, Cu, and Zn, whereas approximately 50% of inlet As was detected in the eluent. Iron-sand was effective only for adsorbing As, but Cr, Cu, and Zn were poorly adsorbed. Only iron-peat showed the simultaneous removal of all tested metal (loid)s. Metal (loid) leaching from the spent sorbent at reducing conditions as means to assess the behaviour of the spent sorbent if landfilled was also evaluated. For this purpose, a standardised batch leaching test and leaching experiment at reducing conditions were conducted using the spent sorbent. It was found that oxidising conditions, which prevailed during the standardised batch leaching test, could have led to an underestimation of redox-sensitive As leaching. Substantially higher amounts of As were leached out from the spent sorbents at reducing atmosphere compared with oxidising one. Furthermore, reducing environment caused As(V) to be reduced into the more-toxic As (III).
Collapse
Affiliation(s)
- Alfreda Kasiuliene
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, SE-97187, Lulea, Sweden.
| | - Ivan Carabante
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, SE-97187, Lulea, Sweden
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology, Teknikringen 76, SE-100 44, Stockholm, Sweden
| | - Jurate Kumpiene
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, SE-97187, Lulea, Sweden
| |
Collapse
|
7
|
Bioelectrochemical Systems for Removal of Selected Metals and Perchlorate from Groundwater: A Review. ENERGIES 2018. [DOI: 10.3390/en11102643] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Groundwater contamination is a major issue for human health, due to its largely diffused exploitation for water supply. Several pollutants have been detected in groundwater; amongst them arsenic, cadmium, chromium, vanadium, and perchlorate. Various technologies have been applied for groundwater remediation, involving physical, chemical, and biological processes. Bioelectrochemical systems (BES) have emerged over the last 15 years as an alternative to conventional treatments for a wide variety of wastewater, and have been proposed as a feasible option for groundwater remediation due to the nature of the technology: the presence of two different redox environments, the use of electrodes as virtually inexhaustible electron acceptor/donor (anode and cathode, respectively), and the possibility of microbial catalysis enhance their possibility to achieve complete remediation of contaminants, even in combination. Arsenic and organic matter can be oxidized at the bioanode, while vanadium, perchlorate, chromium, and cadmium can be reduced at the cathode, which can be biotic or abiotic. Additionally, BES has been shown to produce bioenergy while performing organic contaminants removal, lowering the overall energy balance. This review examines the application of BES for groundwater remediation of arsenic, cadmium, chromium, vanadium, and perchlorate, focusing also on the perspectives of the technology in the groundwater treatment field.
Collapse
|