1
|
Liu S, Kong Z, Guo H, Zhang Y, Han X, Gao Y, Daigger GT, Zhang G, Li R, Liu Y, Zhang P, Song G. Performance, mechanism regulation and resource recycling of bacteria-algae symbiosis system for wastewater treatment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125019. [PMID: 39326826 DOI: 10.1016/j.envpol.2024.125019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
The bacteria-algae synergistic wastewater treatment process not only efficiently eliminates nutrients and absorbs heavy metals, but also utilizes photosynthesis to convert light energy into chemical energy, generating valuable bioresource. The study systematically explores the formation, algal species, and regulatory strategies of the bacterial-algal symbiosis system. It provides a detailed analysis of various interaction mechanisms, with a particular focus on nutrient exchange, signal transduction, and gene transfer. Additionally, the efficacy of the system in removing nitrogen, phosphorus, and heavy metals, as well as its role in CO2 reduction and bioresource recycling, is thoroughly elaborated. Potential future research of bacteria-algae cell factory producing bioenergy production, feed or fertilizers are summarized. This paper clearly presents effective strategies for efficiently removing pollutants, reducing carbon emissions, and promoting resource recycling in the field of wastewater treatment. It also provides recommendations for further research on utilizing microbial-algal symbiotic systems to remove novel pollutants from wastewater and extract value-added products from the resulting biomass.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Tseng YS, Patel AK, Haldar D, Chen CW, Dong CD, Singhania RR. Microalgae and nano-cellulose composite produced via a co-culturing strategy for ammonia removal from the aqueous phase. BIORESOURCE TECHNOLOGY 2023; 389:129801. [PMID: 37813315 DOI: 10.1016/j.biortech.2023.129801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
This study addresses the pressing need for sustainable bioremediation solutions to combat increasing pollution challenges in alignment with sustainability development goals. The research focuses on developing a co-culture approach involving microalgae and Komagataeibacter europaeus BCRC 14148 bacterium to create a biocomposite for efficient ammonia removal. Nanocellulose, produced by the bacterium, serves as a substrate for microalgae attachment. Optimization using specific growth media ratios resulted in biocomposite yields of 4.05 ± 0.16 g/L and 3.83 ± 0.13 g/L in HS medium with fructose and glucose, respectively. The optimal conditions include a 40:60 ratio of HS-F to TAP medium, 25 ℃ incubation, 6000 Lux light intensity, pH 5.5, and a 48-hour incubation period. When applied to wastewater treatment, the biocomposite demonstrated exceptional ammonium removal efficiency at 91.64 ± 1.27 %. This co-culture-derived biocomposite offers an eco-friendly, recyclable, and effective solution for sustainable environmental bioremediation.
Collapse
Affiliation(s)
- Yi-Sheng Tseng
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India; The College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; The College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; The College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India.
| |
Collapse
|
3
|
Tong CY, Li HZ, Derek CJC. A microscale system for in situ investigation of immobilized microalgal cell resistance against liquid flow in the early inoculation stage. LAB ON A CHIP 2023; 23:4052-4066. [PMID: 37609763 DOI: 10.1039/d3lc00415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In attached microalgae cultivation systems, cell detachment due to fluid hydrodynamic flow is not a subject matter that is commonly looked into. However, this phenomenon is of great relevance to optimizing the operating parameters of algae cultivation and feasible reactor design. Hence, this current work miniaturizes traditional benchtop assays into a microfluidic platform to study the cell detachment of green microalgae, Chlorella vulgaris, from porous substrates during its early cultivation stage under precisely controlled conditions. As revealed by time lapse microscopy, an increase in bulk flow velocity facilitated nutrient transport but also triggered cell detachment events. At a flow rate of 1000 μL min-1 of growth medium for 120 min, the algal cell coverage was up to 5% lower than those at 5 μL min-1 and 50 μL min-1. In static seeding, the evolution of attached cell resistance toward liquid flows was dependent on hydrodynamic zones. The center zone of the microchannel was shown to be a "comfortable zone" of the attached cells to sequester nutrients effectively at lower medium flow rates but there was a profile transition where outlet zones favored cell attachment the most at higher flow rates (1.13 times higher than the center zone for 1000 μL min-1). Besides, computational fluid dynamics (CFD) simulations illustrated that the focusing band varied between cross-sections and depths, while the streamline was the least concentrated along the side walls and bottom plane of the microfluidic devices. It was intriguing to learn that cell detachment was not primarily happening along the symmetry streamline. Insight gained from this study could be further applied in the optimization of operating conditions of attached cultivation systems whilst preserving laminar flow conditions.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia.
- Laboratory of Reactions and Process Engineering, University of Lorraine, CNRS, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France.
| | - Huai Z Li
- Laboratory of Reactions and Process Engineering, University of Lorraine, CNRS, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France.
| | - C J C Derek
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
4
|
Tong CY, Honda K, Derek CJC. A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. ENVIRONMENTAL RESEARCH 2023; 228:115872. [PMID: 37054838 DOI: 10.1016/j.envres.2023.115872] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023]
Abstract
Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment. Hence, the main purpose of this review is to shed light on how bacteria fuels microalgal metabolism or vice versa during mutualistic interactions, building upon the phycosphere which is a hotspot for chemical exchange. Nutrients exchange and signal transduction between two not only increase the algal productivity, but also facilitate in the degradation of bio-products and elevate the host defense ability. Main chemical mediators such as photosynthetic oxygen, N-acyl-homoserine lactone, siderophore and vitamin B12 were identified to elucidate beneficial cascading effects from the bacteria towards microalgal metabolites. In terms of applications, the enhancement of soluble microalgal metabolites is often associated with bacteria-mediated cell autolysis while bacterial bio-flocculants can aid in microalgal biomass harvesting. In addition, this review goes in depth into the discussion on enzyme-based communication via metabolic engineering such as gene modification, cellular metabolic pathway fine-tuning, over expression of target enzymes, and diversion of flux toward key metabolites. Furthermore, possible challenges and recommendations aimed at stimulating microalgal metabolite production are outlined. As more evidence emerges regarding the multifaceted role of beneficial bacteria, it will be crucial to incorporate these findings into the development of algal biotechnology.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
5
|
Li X, Liu J, Tian J, Pan Z, Chen Y, Ming F, Wang R, Wang L, Zhou H, Li J, Tan Z. Co-cultivation of microalgae-activated sludge for municipal wastewater treatment: Exploring the performance, microbial co-occurrence patterns, microbiota dynamics and function during the startup stage. BIORESOURCE TECHNOLOGY 2023; 374:128733. [PMID: 36774984 DOI: 10.1016/j.biortech.2023.128733] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Microalgae consortium is a promising technology for achieving low-carbon and resource utilization goals in municipal wastewater treatment. However, little is known about how the consortium affects the treatment performance in the startup stage of co-cultivation. Herein, photobioreactors were constructed with different contents of microalgae and activated sludge (AS) (wt.microalgae: wt.AS ≥ 50 %). The results showed that the concentration of microalgae increased by more than 20 % with AS, and the effluents were close or lower than Chinese discharge standards within HRT 24 h (NH4+-N, TP, and COD ≤ 5.0, 0.5, and 50 mg L-1). Furthermore, the co-occurrence pattern of microbial populations experienced inhibition-reconstruction and reconstruction-inhibition processes, respectively, and the inter-species relationship was directly related to the effluent quality. Microalgal concentration and temperature were the key factors to the microbial community profiling. The potential microorganisms in AS could promote the growth of microalgae, and the bacteria and fungi formed co-metabolism through functional complementation.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian Liu
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang 621000, China
| | - Jiansong Tian
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang 621000, China
| | - Zhicheng Pan
- Haitian Water Group Co., LTD., Chengdu 610203, China
| | - Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Ming
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang 621000, China
| | - Rui Wang
- Haitian Water Group Co., LTD., Chengdu 610203, China
| | - Lin Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Junjie Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
6
|
Lacroux J, Llamas M, Dauptain K, Avila R, Steyer JP, van Lis R, Trably E. Dark fermentation and microalgae cultivation coupled systems: Outlook and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161136. [PMID: 36587699 DOI: 10.1016/j.scitotenv.2022.161136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The implementation of a sustainable bio-based economy is considered a top priority today. There is no doubt about the necessity to produce renewable bioenergy and bio-sourced chemicals to replace fossil-derived compounds. Under this scenario, strong efforts have been devoted to efficiently use organic waste as feedstock for biohydrogen production via dark fermentation. However, the technoeconomic viability of this process needs to be enhanced by the valorization of the residual streams generated. The use of dark fermentation effluents as low-cost carbon source for microalgae cultivation arises as an innovative approach for bioproducts generation (e.g., biodiesel, bioactive compounds, pigments) that maximizes the carbon recovery. In a biorefinery context, after value-added product extraction, the spent microalgae biomass can be further valorised as feedstock for biohydrogen production. This integrated process would play a key role in the transition towards a circular economy. This review covers recent advances in microalgal cultivation on dark fermentation effluents (DFE). BioH2 via dark fermentation processes and the involved metabolic pathways are detailed with a special focus on the main aspects affecting the effluent composition. Interesting traits of microalgae and current approaches to solve the challenges associated to the integration of dark fermentation and microalgae cultivation are also discussed.
Collapse
Affiliation(s)
- Julien Lacroux
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Mercedes Llamas
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France; Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Edificio 46., Ctra. de Utrera km. 1, 41013 Sevilla, Spain
| | - Kevin Dauptain
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Romina Avila
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | | | - Robert van Lis
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Eric Trably
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France.
| |
Collapse
|
7
|
The intrinsic characteristics of microalgae biofilm and their potential applications in pollutants removal — A review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Torres-Franco AF, Silva G, Freitas MP, Passos F, Mota Filho CR, Figueredo CC. Effect of digestate loading rates on microalgae-based treatment under low LED light intensity. ENVIRONMENTAL TECHNOLOGY 2022; 43:3023-3036. [PMID: 33830869 DOI: 10.1080/09593330.2021.1914178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Low red-LED irradiances are an attractive alternative for enhancing microalgae photobioreactors treating digestate due to their potential contribution in decreasing area footprints with low energy consumptions. However, more information is required regarding the influence of digestate load on treatment performance and biomass valorisation when low-intensity red-LEDs are applied. Thus, this study assessed microalgae-based photobioreactors treating food waste digestate under different concentrations (5%, 25%, 50%, and 75%, v/v) at low red-LED irradiance (15 µmol·m-2·s-1). The removal efficiencies of soluble chemical oxygen demand (sCOD) at the end of the experiment ranged from 45% to 75% when treating influent loads between 5.3 and 79.1 g sCOD·m-3·d-1 (5% and 75%-digestate), respectively. Total ammonia nitrogen (TAN) was applied in loading rates between 3.2 and 48.5 g TAN·m-3·d-1 (5% and 75%, respectively) and removed with maximum efficiencies of 90%-100% in all trials. Nitrification-denitrification was proportionally more relevant when treating 5%-digestate, whereas volatilisation was the primary process in 25%, 50% and 75% concentrations. Microalgae presented adequate yields in all treatments, except in 75%-digestate, likely due to the blocking of light by the high solids concentrations. The assessment of the microalgae community and chlorophyll-a and carotenoids suggested that chlorophytes, mainly Dictyosphaerium pulchellum and Scenedesmus sp. grew autotrophically, whereas cyanobacteria Pseudanabaena sp. grew mixotrophically. Moreover, the sustainability of red LED lighting applications can be increased by anaerobic digestion or agricultural valorisation of the biomass, enabled by its high N and P contents. Low-intensity red-LEDs may have promissory applications in the treatment of high-strength wastewaters.
Collapse
Affiliation(s)
- Andrés Felipe Torres-Franco
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Matheus Pascoal Freitas
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabiana Passos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - César Rossas Mota Filho
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cleber Cunha Figueredo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
|
10
|
A Review about Microalgae Wastewater Treatment for Bioremediation and Biomass Production—A New Challenge for Europe. ENVIRONMENTS 2021. [DOI: 10.3390/environments8120136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microalgae have received much attention in the last few years. Their use is being extended to different fields of application and technologies, such as food, animal feed, and production of valuable polymers. Additionally, there is interest in using microalgae for removal of nutrients from wastewater. Wastewater treatment with microalgae allows for a reduction in the main chemicals responsible for eutrophication (nitrogen and phosphate), the reduction of organic substrates (by decreasing parameters such as BOD and COD) and the removal of other substances such as heavy metals and pharmaceuticals. By selecting and reviewing 202 articles published in Scopus between 1992 and 2020, some aspects such as the feasibility of microalgae cultivation on wastewater and potential bioremediation have been investigated and evaluated. In this review, particular emphasis was placed on the different types of wastewaters on which the growth of microalgae is possible, the achievable bioremediation and the factors that make large-scale microalgae treatment feasible. The results indicated that the microalgae are able to grow on wastewater and carry out effective bioremediation. Furthermore, single-step treatment with mixotrophic microalgae could represent a valid alternative to conventional processes. The main bottlenecks are the large-scale feasibility and costs associated with biomass harvesting.
Collapse
|
11
|
Mainardis M, Buttazzoni M, Cottes M, Moretti A, Goi D. Respirometry tests in wastewater treatment: Why and how? A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148607. [PMID: 34182438 DOI: 10.1016/j.scitotenv.2021.148607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Respirometry tests are a widely employed method in wastewater treatment field to characterize wastewater streams, assess toxic/inhibitory effects to the biomass, calibrate mathematical models. Respirometry can allow to fractionize the chemical oxygen demand (COD) in biodegradable and inert fractions, but also provide information related to biomass kinetics and stoichiometry through standardized laboratory techniques. Considering the increasing number of emerging contaminants detected in wastewater effluents, such as pharmaceuticals, personal care products and pesticides, respirometry can be a useful tool to promptly assess any toxic or inhibitory effect in wastewater treatment plants (WWTPs) operations. Beside conventional activated sludge (CAS), in recent years respirometric methods have been applied to innovative fields, such as moving-bed bio-reactors (MBBRs), fungi and microalgae, exploiting natural remediation methods. In particular, respirometry application to microalgae, through the so-called photo-respirometry, has been investigated in the latest years in the treatment of high-nutrient loaded streams, allowing resource recovery in biomass form. In this work, respirometric methods are first introduced from a theoretical basis and then critically discussed by considering the experimental apparatus, the available characterization protocols and the fields of application; the most recent literature findings on respirometry are coupled with authors' experience in the field. A comparison between physicochemical methods and respirometry is made, considering common protocols for WWTP modelling and calibration. The future research needed on the topic is finally outlined, including the coupling of respirometry with microbial community analysis, potentially leading to an enhanced process understanding, an extended respirometry utilization to get specific kinetic and stoichiometric parameters for modelling purposes, and a wider respirometry application as diagnosis tool in WWTP operations.
Collapse
Affiliation(s)
- Matia Mainardis
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy.
| | - Marco Buttazzoni
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Mattia Cottes
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Alessandro Moretti
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Daniele Goi
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| |
Collapse
|
12
|
Kumsiri B, Pekkoh J, Pathom-Aree W, Lumyong S, Phinyo K, Pumas C, Srinuanpan S. Enhanced production of microalgal biomass and lipid as an environmentally friendly biodiesel feedstock through actinomycete co-culture in biogas digestate effluent. BIORESOURCE TECHNOLOGY 2021; 337:125446. [PMID: 34175768 DOI: 10.1016/j.biortech.2021.125446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
In this study, an innovative approach to enhance the production of microalgal biomass and lipid as a promising sustainable feedstock for biodiesel was proposed using an actinomycetes co-culture with microalgae in the biogas digestate effluent (BDE) that can be employed as an environmentally friendly and cost-effective strategy. Among tested actinomycete isolates, Piscicocus intestinalis WA3 produced indole-3-acetic acid and siderophores as algal growth promoting agents and showed effective lipid accumulation with satisfying fatty acids composition. During co-cultivation of P. intestinalis WA3 with microalga Tetradesmus obliquus AARL G022 in the BDE, biomass production, chlorophyll a content, and lipid productivity were significantly increased by 1.30 folds, 1.39 folds, and 1.55 folds, respectively, compared to microalgae monoculture. The accumulated lipids contained long-chain fatty acids with better fuel properties that could potentially be used as biodiesel feedstock. The overall results evidenced that actinomycete co-culture would contribute greatly to the cost-effective production of environmental-friendly microbial-based biofuel.
Collapse
Affiliation(s)
- Bancha Kumsiri
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Manhaeghe D, Allosserie A, Rousseau DPL, Van Hulle SWH. Model based analysis of carbon fluxes within microalgae-bacteria flocs using respirometric-titrimetric data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147048. [PMID: 33894600 DOI: 10.1016/j.scitotenv.2021.147048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
With the emerging need of nutrient recycling in resource recovery facilities, the use of microalgae-bacteria flocs has received considerable attention in the past few years. However, although the main biological processes are already known, the complex interactions occurring between algae and bacteria are not fully understood. In this work, a combined respirometric-titrimetric unit was used to assess the microorganisms' kinetics within microalgae-bacteria flocs under different growth regimes (i.e. photoautotrophic, heterotrophic and mixotrophic) and different ratios of inorganic (IC) to organic carbon (OC) (IC:OC-ratios). Using this respirometric-titrimetric data, a new model was developed, calibrated and successfully validated. The model takes into account the heterotrophic growth of bacteria, the photoautotrophic, heterotrophic and mixotrophic growth of algae and the production and consumption of extracellular polymeric substances (EPS) by both bacteria and algae. As such, the model can be used for detailed analysis of the carbon fluxes within microalgae-bacteria flocs in an efficient way. Model analysis revealed the high importance of the EPS regulatory mechanism. Firstly, under heterotrophic growth conditions, OC-uptake occurred during the first 10-15 min. This was linked with internal OC storage (49% of added OC) and EPS production (40%), as such providing carbon reserves which can be consumed during famine conditions. Moreover, the algae were able to compete with bacteria for OC. Secondly, under photoautotrophic conditions, algae used the added IC to grow (57% of added IC) and to produce EPS (29%), which consecutively stimulated heterotrophic bacteria growth (20%). Finally, under mixotrophic conditions, low IC:OC-ratios resulted in an extensive OC-storage and EPS production (50% of added C) and an enhanced microalgal CO2 reuse, resulting in an increased algal growth of up to 29%.
Collapse
Affiliation(s)
- Dave Manhaeghe
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium.
| | - Anton Allosserie
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Diederik P L Rousseau
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Stijn W H Van Hulle
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| |
Collapse
|
14
|
Flores-Salgado G, Thalasso F, Buitrón G, Vital-Jácome M, Quijano G. Kinetic characterization of microalgal-bacterial systems: Contributions of microalgae and heterotrophic bacteria to the oxygen balance in wastewater treatment. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Modeling the oxygen inhibition in microalgae: An experimental approach based on photorespirometry. N Biotechnol 2020; 59:26-32. [PMID: 32683047 DOI: 10.1016/j.nbt.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 11/23/2022]
Abstract
Microalgae cultivation has been the object of relevant interest for many industrial applications. Where high purity of the biomass/product is required, closed photobioreactors (PBRs) appear to be the best technological solution. However, as well as cost, the major drawback of closed systems is oxygen accumulation, which is well known to be responsible for growth inhibition. Only a few quantitative approaches have attempted to describe and model oxygen inhibition, which is the result of different biological mechanisms. Here, we have applied a photorespirometric protocol to assess and quantify the effect of high oxygen concentration on photosynthetic production rate. In particular, the effects of light intensity and biomass concentration were assessed, resulting in different maximum inhibitory oxygen concentrations. Literature models available were found not to fully represent experimental data as a function of concentration and light. Accordingly, a new formulation was proposed and validated to describe the photosynthetic rate as a function of external oxygen concentration.
Collapse
|
16
|
Nguyen TTD, Nguyen TT, An Binh Q, Bui XT, Ngo HH, Vo HNP, Andrew Lin KY, Vo TDH, Guo W, Lin C, Breider F. Co-culture of microalgae-activated sludge for wastewater treatment and biomass production: Exploring their role under different inoculation ratios. BIORESOURCE TECHNOLOGY 2020; 314:123754. [PMID: 32650264 DOI: 10.1016/j.biortech.2020.123754] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 05/23/2023]
Abstract
In this study, mixed culture (microalgae:activated sludge) of a photobioreactor (PBR) were investigated at different inoculation ratios (1:0, 9:1, 3:1, 1:1, 0:1 wt/wt). This work was not only to determine the optimal ratio for pollutant remediation and biomass production but also to explore the role of microorganisms in the co-culture system. The results showed high total biomass concentrations were obtained from 1:0 and 3:1 ratio being values of 1.06, 1.12 g L-1, respectively. Microalgae played a dominant role in nitrogen removal via biological assimilation while activated sludge was responsible for improving COD removal. Compared with the single culture of microalgae, the symbiosis between microalgae and bacteria occurred at 3:1 and 1:1 ratio facilitated a higher COD removal by 37.5-45.7 %. In general, combined assessment based on treatment performance and biomass productivity facilitated to select an optimal ratio of 3:1 for the operation of the co-culture PBR.
Collapse
Affiliation(s)
- Thi-Thuy-Duong Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam
| | - Thanh-Tin Nguyen
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam
| | - Quach An Binh
- Faculty of Applied Sciences-Health, Dong Nai Technology University, Dong Nai 810000, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Hoang Nhat Phong Vo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Chitsan Lin
- National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Florian Breider
- ENAC, IIE, Central Environmental Laboratory (CEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Petrini S, Foladori P, Donati L, Andreottola G. Comprehensive respirometric approach to assess photosynthetic, heterotrophic and nitrifying activity in microalgal-bacterial consortia treating real municipal wastewater. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Application of photorespirometry to unravel algal kinetic parameters of nitrogen consumption in complex media. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Fan J, Cao L, Gao C, Chen Y, Zhang TC. Characteristics of wastewater treatment by Chlorella sorokiniana and comparison with activated sludge. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:892-901. [PMID: 31746796 DOI: 10.2166/wst.2019.329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Characteristics of Chlorella sorokiniana treating wastewater with consideration of HRT (6 d, 16 h, 8 h), hydraulic conditions, light or dark culture were evaluated and compared with activated sludge. Results showed that optimal HRT was 8 h; if longer, effluent chemical oxygen demand (COD) and NH4 +-N in the dark began to rebound. Mixing was beneficial to COD removal of algae, while aeration was suitable for nutrient removal. Growth of C. sorokiniana in the light was mixotrophic growth and 1.3-1.7 times more than that of dark heterotrophic growth. The maximum specific growth rate (µmax), productivity, and biomass yields on COD (YCOD), N (YNH4), P (YP) of algae were higher in the light than that in the dark. COD assimilation capacity of algae was similar to activated sludge but with different dynamics. N and P assimilation capacity of algae was 1.4, 1.2-2.5 times more than activated sludge; N and P removal efficiency of algae was 5%-10%, 10%-55% respectively higher than activated sludge. This study confirmed the advantage of algae over activated sludge and reveal why algae could assist the activated sludge process.
Collapse
Affiliation(s)
- Jie Fan
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan, China E-mail:
| | - Liang Cao
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan, China E-mail:
| | - Cheng Gao
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan, China E-mail:
| | - Yue Chen
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan, China E-mail:
| | - Tian C Zhang
- Department of Civil Engineering, University of Nebraska-Lincoln, Omaha, NE, USA
| |
Collapse
|
20
|
Mai L, Lian Y, van den Akker B, Fallowfield HJ. Nitrification performance of high rate nitrifying trickling filters at low ammonia concentrations: does the aspect ratio matter? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20520-20529. [PMID: 31102227 DOI: 10.1007/s11356-019-05256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Nitrifying trickling filters (NTFs) are often introduced to pre-treat waters before chlorination process, to reduce the ammonia-driven chlorine consumption in wastewater treatment. As a passive aerated system, the only power needed is to transport the water to the top of the filter for distribution. Thus, understanding the role of filter aspect ratio on ammonia oxidation might save energy cost. In the present study, a pilot-scale comparison NTF system was conducted on two filters with different aspect ratios (height/diameter) and the same specific surface area. The nitrification efficiencies of these two filters under relatively low influent ammonia-nitrogen concentrations (1.0-4.0 mg NH4-N L-1) were investigated. Results obtained from the present study indicated that the constructional aspect ratio of NTF showed no significant effect on nitrification performance of NTFs. Additionally, the operational parameters showed similar effects on nitrification in NTFs with different aspect ratios. Our findings could provide important information for the construction design of future NTFs.
Collapse
Affiliation(s)
- Lei Mai
- Department of Environmental Health, School of Environment, Flinders University, Bedford Park, SA, 5042, Australia.
- School of Environmental, Jinan University, Guangzhou, 511486, China.
| | - Yu Lian
- Department of Environmental Health, School of Environment, Flinders University, Bedford Park, SA, 5042, Australia
- School of Environmental Science and Technology, Hunan University, Yuelu District, Changsha, 410082, China
| | - Ben van den Akker
- Department of Environmental Health, School of Environment, Flinders University, Bedford Park, SA, 5042, Australia
- Australian Water Quality Centre, Adelaide, SA, 5001, Australia
| | - Howard J Fallowfield
- Department of Environmental Health, School of Environment, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
21
|
Mixotrophy in Synechocystis sp. for the treatment of wastewater with high nutrient content: effect of CO2 and light. Bioprocess Biosyst Eng 2019; 42:1661-1669. [DOI: 10.1007/s00449-019-02162-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022]
|
22
|
Sforza E, Pastore M, Barbera E, Bertucco A. Respirometry as a tool to quantify kinetic parameters of microalgal mixotrophic growth. Bioprocess Biosyst Eng 2019; 42:839-851. [DOI: 10.1007/s00449-019-02087-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
|
23
|
Sforza E, Pastore M, Santeufemia Sanchez S, Bertucco A. Bioaugmentation as a strategy to enhance nutrient removal: Symbiosis between Chlorella protothecoides and Brevundimonas diminuta. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|