1
|
Kadam R, Kim M, Yang H, Jo S, Jun H, Park J. Magnetite addition reduces nitrite requirement for efficient anaerobic ammonium oxidation by facilitating mutualism of ANAMMOX and FEAMMOX bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174497. [PMID: 38969131 DOI: 10.1016/j.scitotenv.2024.174497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Partial nitrification (PN) is crucial for anaerobic ammonium oxidation (ANAMMOX), but faces challenges such as high energy demands and process control. Recent research has highlighted additives like magnetite as potential alternatives to conventional electron acceptors (O₂ and NO₂-) for enhancing ammonium (NH4+) oxidation with lower energy consumption. This study investigated the effect of adding 50 mg/L of magnetite to ANAMMOX reactors, resulting in improved nitrogen (N) removal efficiency. The magnetite-added ANAMMOX (M-ANA) reactor yielded N removal efficiencies of 71 %, 66 %, and 57 % for NH4+:NO2- molar ratios of 1:1.3, 1:0.8, and 1:0.5, respectively. The M-ANA reactor operated under a 0.5 mol lower NO2- concentration achieved similar performance to the control ANAMMOX (C-ANA) reactor operated with a theoretical amount of NO2-. Moreover, the M-ANA reactor showed the potential to remove NH4+ by 56 % without any NO2- supplementation. Metagenomic analysis showed that the addition of magnetite significantly improved the relative abundance of microorganisms involved in the FEAMMOX reaction, such as Fimbriimonas ginsengisoli and Pseudomonas stutzeri. It also facilitated positive mutualism between ANAMMOX and FEAMMOX reactions. In addition, M-ANA granules exhibited a dense and compact structure compared with C-ANA, and the presence of magnetite facilitated the formation of resilient granules. Notably, the useful protein (Heme C) concentration and specific microbial activity in the M-ANA reactor were 1.3 and 2.2 times higher than those in the C-ANA reactor. Overall, the results demonstrate that an appropriate amount of magnetite can enhance the N removal efficiency while reducing the energy input requirements and associated carbon emissions. These findings can guide the future development of carbon- and energy-neutral N removal processes.
Collapse
Affiliation(s)
- Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea
| | - Minji Kim
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyeonmyeong Yang
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sangyeol Jo
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea.
| |
Collapse
|
2
|
Park J, Song M, Cho M, Shin YU, Jeong S, Hwang K, Bae H. Iron particle-integrated anammox granules in baffled reactor: Enhanced settling property and nitrogen removal performance. BIORESOURCE TECHNOLOGY 2024; 402:130792. [PMID: 38703962 DOI: 10.1016/j.biortech.2024.130792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
This study evaluates iron particle-integrated anammox granules (IP-IAGs) to enhance wastewater treatment efficiency. The IP-IAGs resulted in notable improvements in settleability and nitrogen removal. The settling velocity of IP-IAGs increased by 17.91 % to 2.92 ± 0.20 cm/s, and the total nitrogen removal efficiency in batch mode improved by 6.82 %. These changes indicate enhanced biological activity for effective treatment. In continuous operation, the IP-IAGs reactor showed no accumulation of nitrite until 40 d, reaching a peak nitrogen removal rate (NRR) of 1.54 kg-N/m3·d and a nitrogen removal efficiency of 82.61 %. Furthermore, a partial nitritation-anammox reactor that treated anaerobic digestion effluent achieved a NRR of 1.41 ± 0.09 kg-N/m3·d, proving the applicability of IP-IAGs in real wastewater conditions. These results underscore the potential of IP-IAGs to enhance the efficiency and stability of anammox-based processes, marking a significant advancement in environmental engineering for wastewater treatment.
Collapse
Affiliation(s)
- Jihye Park
- Department of Civil and Environmental Engineering, Pusan National University, Busandeahak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Minsu Song
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Minkee Cho
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Yong-Uk Shin
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Sanghyun Jeong
- Department of Civil and Environmental Engineering, Pusan National University, Busandeahak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Kwanghyun Hwang
- Environment Business Division, Environment Solution Research Team, GS E&C, GRAN SEOUL, 33 Jong-ro, Jongno-gu, Seoul 03159, Republic of Korea
| | - Hyokwan Bae
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Li H, Song A, Qiu L, Liang S, Chi Z. Deep groundwater irrigation altered microbial community and increased anammox and methane oxidation in paddy wetlands of Sanjiang Plain, China. Front Microbiol 2024; 15:1354279. [PMID: 38450168 PMCID: PMC10915080 DOI: 10.3389/fmicb.2024.1354279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
The over-utilizing of nitrogen fertilizers in paddy wetlands potentially threatens to the surrounding waterbody, and a deep understanding of the community and function of microorganisms is crucial for paddy non-point source pollution control. In this study, top soil samples (0-15 cm) of paddy wetlands under groundwater's irrigation at different depths (H1: 6.8 m, H2: 13.7 m, H3: 14.8 m, H4: 15.6 m, H5: 17.0 m, and H6: 17.8 m) were collected to investigate microbial community and function differences and their interrelation with soil properties. Results suggested some soil factor differences for groundwater's irrigation at different depths. Deep-groundwater's irrigation (H2-H6) was beneficial to the accumulation of various electron acceptors. Nitrifying-bacteria Ellin6067 had high abundance under deep groundwater irrigation, which was consistent with its diverse metabolic capacity. Meanwhile, denitrifying bacteria had diverse distribution patterns. Iron-reducing bacteria Geobacter was abundant in H1, and Anaeromyxobacter was abundant under deep groundwater irrigation; both species could participate in Fe-anammox. Furthermore, Geobacter could perform dissimilatory nitrate reduction to ammonia using divalent iron and provide substrate supply for anammox. Intrasporangium and norank_f_Gemmatimonadacea had good chromium- and vanadium-reducting potentials and could promote the occurrence of anammox. Low abundances of methanotrophs Methylocystis and norank_f_Methyloligellaceae were associated with the relatively anoxic environment of paddy wetlands, and the presence of aerobic methane oxidation was favorable for in-situ methane abatement. Moisture, pH, and TP had crucial effects on microbial community under phylum- and genus-levels. Microorganisms under shallow groundwater irrigation were highly sensitive to environmental changes, and Fe-anammox, nitrification, and methane oxidation were favorable under deep groundwater irrigation. This study highlights the importance of comprehensively revealing the microbial community and function of paddy wetlands under groundwater's irrigation and reveals the underlying function of indigenous microorganisms in agricultural non-point pollution control and greenhouse gas abatement.
Collapse
Affiliation(s)
- Huai Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Aiwen Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Qiu
- Second Hospital of Jilin University, Changchun, China
| | - Shen Liang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
4
|
Chi Z, Zhang P, Hou L, Li H, Liang S, Song A. Effects of chromate on nitrogen removal and microbial community in two-stage vertical-flow constructed wetlands. CHEMOSPHERE 2023; 345:140556. [PMID: 37890796 DOI: 10.1016/j.chemosphere.2023.140556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Nitrogen and chromium (Cr(VI)) pollution in waterbodies pose great threats to human health, and a cost-effective alternative with Cr(VI) and nitrogen simultaneous removal is still needed. This study investigated the influence of Cr(VI) on nitrogen removal in the two-stage vertical-flow constructed wetlands (TS-VFCWs) along with iron ore and woodchip, and explored relationship between Cr(VI) and nitrogen removal. The results showed that efficient Cr(VI) and nitrogen removal were simultaneously achieved in TS-VFCWs together with iron-ore and woodchip under 2 mg/L-Cr(VI), whereas 10 mg/L-Cr(VI) gave significant and recoverable inhibition of nitrogen removal. Cr(VI) supplementation promoted the beneficiation of Cr(VI)-reducing/resistant bacteria IMCC26207 and Bryobacter on iron-ore. Woodchip enriched Cr(VI)-reducing bacteria Streptomyces and Thiobacillus. XRD and XPS showed that abundant bound-Cr existed in the surface of iron ore and woodchip, and Cr(III) precipitation/oxide was the major product. High abundances of nitrifying and autotrophic/heterotrophic denitrifying bacteria ensured good nitrogen removal at Cr(VI) stress.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Pengdong Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Lining Hou
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China.
| | - Shen Liang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China
| | - Aiwen Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China
| |
Collapse
|
5
|
Yan C, Huang J, Lin X, Wang Y, Cao C, Qian X. Performance of constructed wetlands with different water level for treating graphene oxide wastewater: Characteristics of plants and microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117432. [PMID: 36764192 DOI: 10.1016/j.jenvman.2023.117432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Constructed wetlands (CWs) have been expected advantages in emerging pollutant removal, but with less known on their characteristic when treating wastewater containing graphene oxide (GO). In present study, we investigated characteristics of Iris pseudacorus, microorganisms, and pollutant removal in CWs with 60 cm and 37 cm water level (termed HCW and LCW). Plants in LCW had higher chlorophyll content and lower activities of antioxidant enzyme (superoxide dismutase, catalase, peroxidase) as well as malondialdehyde content. Substrate enzyme activities were affected by time and CW type. LCW increased only dehydrogenase activities, while HCW increased catalase, urease, neutral phosphatase, and arylsulfatase activities. Sequencing analysis revealed that microbial community showed higher richness and diversity in LCW, but this dissimilarity could be eased by time-effect. Proteobacteria (25.62-60.36%) and Actinobacteria (13.86-56.20%) were stable dominant phyla in CWs. Ratio of Proteobacteria/Acidobacteria indicated that trophic status of plant rhizosphere zone was lower in LCW. Nitrospirae were enriched to 0.16-0.68% and 0.75-1.42% in HCW and LCW. The enrichment of phyla Proteobacteria and Firmicutes in HCW was attributed to class Gammaproteobacteria and genus Enterococcus. GO transformation showed some reductions in CWs, which could be affected by water depth and substrate depth. Overall, HCW achieved nitrogen and phosphorus removal for 48.78-62.99% and 95.01%, which decreased by 8.41% and 7.31% in LCW. COD removal was less affected reaching 93%. This study could provide some new evidence for CWs to treat wastewater containing GO.
Collapse
Affiliation(s)
- Chunni Yan
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Juan Huang
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Xiaoyang Lin
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Yaoyao Wang
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Chong Cao
- Department of Municipal Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiuwen Qian
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
6
|
Dai B, Yang Y, Wang Z, Wang J, Yang L, Cai X, Wang Z, Xia S. Enhancement and mechanisms of iron-assisted anammox process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159931. [PMID: 36343824 DOI: 10.1016/j.scitotenv.2022.159931] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a sustainable biological nitrogen removal technology that has limited large-scale applications owing to the low cell yield and high sensitivity of anammox bacteria (AnAOB). Fortunately, iron-assisted anammox, being a highly practical method could be an effective solution. This review focused on the iron-assisted anammox process, especially on its performance and mechanisms. In this review, the effects of iron in three different forms (ionic iron, zero-valent iron and iron-containing minerals) on the performance of the anammox process were systematically reviewed and summarized, and the strengthening effects of Fe (II) seem to be more prominent. Moreover, the detailed mechanisms of iron-assisted anammox in previous researches were discussed from macro to micro perspectives. Additionally, applicable iron-assisted methods and unified strengthening mechanisms for improving the stability of nitrogen removal and shortening the start-up time of the system in anammox processes were suggested to explore in future studies. This review was intended to provide helpful information for scientific research and engineering applications of iron-assisted anammox.
Collapse
Affiliation(s)
- Ben Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yifeng Yang
- Shanghai Municipal Engineering Design and Research Institute, Shanghai 200092, China
| | - Zuobing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiangming Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiang Cai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Li H, Liang S, Chi Z, Wu H, Yan B. Unveiling microbial community and function involved in anammox in paddy vadose under groundwater irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157876. [PMID: 35940267 DOI: 10.1016/j.scitotenv.2022.157876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The extensive application of nitrogen fertilizer in intensive irrigation areas poses a potential threat to groundwater. Given that the vadose zone acts as a buffer zone for the underground entry of surface pollutants, an in-depth understanding of its microbial community structure and function was crucial for controlling groundwater nitrogen pollution. In this study, soil samples from paddy vadose under groundwater irrigation with different depths (G1: 6.8 m, G2: 13.7 m, G3: 15.6 m, and G4: 17.8 m) were collected to unravel the differences in microbial community structure and function at different vadose depths (0-250 cm), as well as their relationship with soil properties. Results showed some differences among soil physicochemical factors under groundwater irrigation with different depths and that some electron acceptors were more abundant than others under deep groundwater irrigation (G2-G4). Remarkable differences in microbial communities under shallow- and deep-groundwater irrigation were found. The high abundances of anammox bacteria Candidatus_Brocadia in G2 and G3 indicated that deep groundwater irrigation was beneficial to its enrichment. Iron-reducing bacteria Anaeromyxobacter and sulfate-reducing bacteria Desulfovibrio were widely distributed in vadose zone and possessed the potential for anammox coupled with Fe(III)/sulfate reduction. Norank_f_Gemmatimonadaceae had nitrate- and vanadium-reducing abilities and could participate in anammox in vadose zone. Dissimilatory nitrate reduction to ammonia (DNRA) bacteria Geobacter facilitated Fe(II)-driven DNRA and thus provided electron donors and acceptors to anammox bacteria. Soil nutrients and electron donors/acceptors played important roles in shaping microbial community structure at phylum and genus levels. Microorganisms in vadose zone under groundwater irrigation showed good material/energy metabolism levels. Deep groundwater irrigation was conducive to the occurrence of anammox coupled with multi-electron acceptors. Our findings highlight the importance of understanding the structure and function of microbial communities in paddy vadose under groundwater irrigation and reveal the potential role of indigenous microorganisms in in-situ nitrogen removal.
Collapse
Affiliation(s)
- Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Shen Liang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China.
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| |
Collapse
|
8
|
Liu W, Li T, Wang J, Shen Y, Ji X, Yang D. A new concept of waste iron recycling for the enhancement of the anammox process. CHEMOSPHERE 2022; 307:136151. [PMID: 36028122 DOI: 10.1016/j.chemosphere.2022.136151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
As a by-product of industry, waste iron scraps (WIS) are low-cost and widely available, which was potential for the development of iron-assisted anammox. In this study, the feasibility of adding WIS to enhance the nitrogen removal of the anammox process (also called WIS-assisted anammox) was demonstrated. Results indicated that the WIS-assisted anammox reactors performed a 15-35% higher nitrogen removal efficiency than that of the control. Compared to the sludge from the control, the sludge from the WIS-assisted anammox reactors had a higher iron content (78-113 g kg-1 SS) and a better specific anammox activity (10.8-15.5 mg N g-1 VSS h-1). The enhanced growth of the anammox bacteria (related to Ca. Kuenenia stuttgartiensis with 99% similarity) in the WIS-assisted anammox reactors was also confirmed by high-throughput sequencing and qPCR. Furthermore, the functional genes predicted by PICRUSt2 revealed a higher level of hydroxylamine oxidoreductase (hao)-like proteins expression of the biomass from the WIS-assisted anammox reactors, implying that the hydroxylamine-related anammox pathway was promoted. Additionally, the observation of cytoplasmic nitrate reductase (narG), copper-containing nitrite reductase (nirK), and nitric oxide reductase (norB) suggested that the introduction of WIS might promote the denitrification ability. This was correlated to the lower ΔNO3-/ΔNH4+ ratio observed in these WIS-assisted anammox reactors. Overall, the WIS-assisted anammox offers a sustainable nitrogen removal process for wastewater treatment with waste iron recycling.
Collapse
Affiliation(s)
- Wenru Liu
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Tianhao Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jianfang Wang
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yaoliang Shen
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| |
Collapse
|
9
|
Yan C, Huang J, Cao C, Li X, Lin X, Wang Y, Qian X. Iris pseudacorus as precursor affecting ecological transformation of graphene oxide and performance of constructed wetland. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129164. [PMID: 35739704 DOI: 10.1016/j.jhazmat.2022.129164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The role of plants is largely unknown in constructed wetlands (CWs) exposed to phytotoxic nanomaterials. Present study investigated transformation of graphene oxide (GO) and performance of CWs with Iris pseudacorus as precursor. GO was trapped by CWs without dependence on plants. GO could move to lower substrate layer and present increases on defects/disorders with stronger effects in planted CW. Before adding GO, planted CW achieved better removal both of phosphorus and nitrogen. After adding GO, phosphorus removal in planted CW was 93.23-95.71% higher than 82.55-90.07% in unplanted CW. However, total nitrogen removal was not improved, showing 48.20-56.66% and 53.44-56.04% in planted and unplanted CWs. Plant improved urease, phosphatase, and arylsulfatase, but it decreased β-glucosidase and had less effects on dehydrogenase and catalase. Pearson correlation matrix revealed that plant enhanced microbial interaction with high degree of positive correlation. Moreover, there were obvious shifts in microbial community at phylum and genus level, which presented closely positive action on substrate enzyme activities. The functional profile was less affected due to functional redundancy in microbial system, but time effects were obvious in CWs, especially in planted CW. These findings could provide the basis on understanding role of plants in CWs for treating nanoparticles wastewater.
Collapse
Affiliation(s)
- Chunni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Li
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210019, China
| | - Xiaoyang Lin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yaoyao Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
10
|
Wan L, Liu H, Wang X. Anaerobic ammonium oxidation coupled to Fe(III) reduction: Discovery, mechanism and application prospects in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151687. [PMID: 34788664 DOI: 10.1016/j.scitotenv.2021.151687] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Fe(III) reduction coupled with anaerobic ammonium oxidation is known as Feammox. Feammox, which was first discovered in wetland ecosystems, has the potential to be used in wastewater treatment systems due to its ability to remove ammonium. Feammox can produce N2, NO2- or NO3- through the reduction of Fe(III) and oxidation of ammonium, which is a potential process to nitrogen loss from aquatic ecosystems and terrestrial ecosystems. The Acidimicrobiaceae sp. A6 was the first Feammox functional bacteria that was successfully isolated from wetlands. The nitrogen removal effect of Feammox can be influenced by many environmental factors, such as pH, organic matter, and different sources of Fe(III). Feammox has broad application prospects, but more exploration is needed to apply this principle to wastewater treatment. This review introduces the development, mechanism, functional microbes and factors affecting the Feammox process, and discusses its potential applications.
Collapse
Affiliation(s)
- Liuyang Wan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xingzu Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
11
|
Wang H, Fan Y, Zhou M, Wang W, Li X, Wang Y. Function of Fe(III)-minerals in the enhancement of anammox performance exploiting integrated network and metagenomics analyses. WATER RESEARCH 2022; 210:117998. [PMID: 34968878 DOI: 10.1016/j.watres.2021.117998] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Iron is a recognized physiological requirement for microorganisms but, for anaerobic ammonium oxidation (anammox) bacteria, its role extends well beyond that of a nutritional necessity. In this study, the function of two typical Fe(III)-minerals (ferrihydrite and magnetite) in anammox processes was evaluated in the absence/presence of Fe(II) by integrated network and metagenomics analyses. Results showed that Fe-(III) minerals addition increased the activity of cellular processes and pathways associated with granule formation, enabling the peak values of particle size to increase by 144% and 115%, respectively. Notably, ferrihydrite (5 mM) enhanced nitrogen removal by 4.8% and 4.1%, respectively, in the short-term and long-term absence of Fe(II). Ferrihydrite also promoted the retention of anammox bacteria affiliated with phylum Planctomycetes in the reactor, contributing to an 11% higher abundance with ferrihydrite amendment when compared with the control (without iron additions) in the short-term absence of Fe(II). Network-based analyses revealed that ferrihydrite facilitated the microbial community to form densely clustered and complex topologies to improve resistance to environmental disturbance (i.e., Fe(II) deficiency), and effectively increased the underlying cooperation and facilitation in the community. Metagenomic analysis revealed that there was limited promotion of anammox central metabolism by the extra addition of Fe(III)-minerals in the presence of Fe(II), highlighting the poor utilization of Fe(III)-minerals by anammox bacteria under Fe(II) sufficiency. This study deepens our understanding of the function of Fe(III)-minerals in anammox systems at the community and functional level, and provides a fundamental basis for developing Fe-based anammox enhancement technologies.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China
| | - Yufei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China.
| |
Collapse
|
12
|
Comprehensive analysis of the impacts of iron-based nanoparticles and ions on Anammox process. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108371] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Chi Z, Hou L, Li H. Effects of pollution load and salinity shock on nitrogen removal and bacterial community in two-stage vertical flow constructed wetlands. BIORESOURCE TECHNOLOGY 2021; 342:126031. [PMID: 34582988 DOI: 10.1016/j.biortech.2021.126031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
To understand the denitrification performance and microbial community of two-stage vertical flow constructed wetlands (TS-VFCWs) with iron ore/manganese ore and wood chips, COD and nitrogen removal were investigated under pollution load and salinity shock. High removal of COD (87%), NH4+-N (97%), and NO3--N (98%) were achieved with increasing load, but the high pollutant load inhibited the denitrification performance in TS-VFCW with iron ore and wood chips. TS-VFCW with iron ore and wood chips showed good recovery potential with decreasing load. High NH4+-N removal was observed in TS-VFCW with manganese ore and wood chips. Treatment with 3% salinity decreased COD and NH4+-N removal but improved NO3--N removal, maintaining relatively good nitrogen removal. The addition of iron ore and manganese ore enriched nitrifying bacteria Flavobacterium and autotrophic denitrifying bacteria, while wood chips promoted heterotrophic denitrification and organic degradation. In addition, ubiquitous denitrifying bacteria under salinity ensured excellent denitrification performance.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Lining Hou
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| |
Collapse
|
14
|
Yang XR, Li H, Su JQ, Zhou GW. Anammox Bacteria Are Potentially Involved in Anaerobic Ammonium Oxidation Coupled to Iron(III) Reduction in the Wastewater Treatment System. Front Microbiol 2021; 12:717249. [PMID: 34566922 PMCID: PMC8461334 DOI: 10.3389/fmicb.2021.717249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Anaerobic ammonium oxidation coupled to nitrite reduction (termed as Anammox) was demonstrated as an efficient pathway to remove nitrogen from a wastewater treatment system. Recently, anaerobic ammonium oxidation was also identified to be linked to iron(III) reduction (termed Feammox) with dinitrogen, nitrite, or nitrate as end-product, reporting to enhance nitrogen removal from the wastewater treatment system. However, little is known about the role of Anammox bacteria in the Feammox process. Here, slurry from wastewater reactor amended with ferrihydrite was employed to investigate activity of Anammox bacteria in the Feammox process using the 15N isotopic tracing technique combined with 16S rRNA gene amplicon sequencing. A significantly positive relationship between rates of 15N2 production and iron(III) reduction indicated the occurrence of Feammox during incubation. Relative abundances of Anammox bacteria including Brocadia, Kuenenia, Jettenia, and unclassified Brocadiaceae were detected with low relative abundances, whereas Geobacteraceae dominated in the treatment throughout the incubation. 15N2 production rates significantly positively correlated with relative abundances of Geobacter, unclassified Geobacteraceae, and Anammox bacteria, revealing their contribution to nitrogen generation via Feammox. Overall, these findings suggested Anammox bacteria or cooperation between Anammox bacteria and iron(III) reducers serves a potential role in Feammox process.
Collapse
Affiliation(s)
- Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences (CAS), Xiamen, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences (CAS), Xiamen, China
| | - Hu Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences (CAS), Xiamen, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences (CAS), Xiamen, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences (CAS), Xiamen, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences (CAS), Xiamen, China
| | - Guo-Wei Zhou
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences (CAS), Xiamen, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences (CAS), Xiamen, China.,School of Resources and Environmental Engineering, Anhui University, Hefei, China
| |
Collapse
|
15
|
Chi Z, Zhu Y, Li H, Wu H, Yan B. Unraveling bacterial community structure and function and their links with natural salinity gradient in the Yellow River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145673. [PMID: 33940756 DOI: 10.1016/j.scitotenv.2021.145673] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Salinization can change the soil environment and affect microbial processes. In this study, soil samples were collected from Zone A (Phragmites australis wetlands), Zone B (P. australis and Suaeda salsa wetlands), and Zone C (Spartina alterniflora wetlands) in the Yellow River Delta. The microbial community and functional potential along the natural salinity gradient were investigated. Total nitrogen, ammonia nitrogen, and soil organic matter presented a downward trend, and salinity first increased and then decreased from Zone A to Zone C. Nitrospira and norank_f_Nitrosomonadaceae were widely distributed throughout the zones. Denitrifying bacteria Alcanivorax, Marinobacterter, and Marinobacterium were abundant in Zone B and preferred high salinity levels. However, denitrifying bacteria Azoarcus, Flavobacterium, and Pseudomonas were mainly distributed in low-salinity Zones A and C, suggesting their high sensitivity to salinity. Dissimilatory nitrate reduction to ammonia (DNRA) bacteria Aeromonas and Geobacter dominated Zone C, whereas Caldithrix performed DNRA in Zone B. Interestingly, DNRA with organic matter as the electron donor (C-DNRA) occurred in Zone A; DNRA coupled with sulfide oxidation (S-DNRA) was dominant in Zone B; and C-DNRA and DNRA with divalent iron as electron donor and S-DNRA occurred simultaneously in Zone C. Salinity was the key factor distinguishing low and high salinity zones, and total nitrogen and total phosphorus had important effects at the phylum and genus levels. The abundance of genes encoding cell growth and death was relatively stable, indicating that the microbial community had good environmental adaptability. The genes related to the biodegradation of xenobiotics and the metabolism of terpenoids and polyketides were abundant in Zone B, revealing high metabolic potential for exogenous refractory substances. The microorganisms under low-salinity Zones A and C were more sensitive to environmental changes than those under Zone B. These results suggest that salinity plays important roles in microbial processes and shapes specific functional zones in coastal wetlands.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Yuhuan Zhu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| |
Collapse
|
16
|
Xing Y, Harper WF. The effects of engineered nanoparticles on nitrification during biological wastewater treatment. Biotechnol Bioeng 2021; 118:2401-2410. [PMID: 33682924 DOI: 10.1002/bit.27746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 10/08/2020] [Accepted: 03/04/2021] [Indexed: 11/12/2022]
Abstract
Technological advancements in the past few decades have made it possible to manufacture nanomaterials at a large scale, and engineered nanoparticles (ENPs) are increasingly found in consumer products, such as cosmetics, sports products, and LED displays. A large amount of these ENPs end up in wastewater and potentially impact the performance of wastewater treatment plants (WWTPs). One important function of the WWTP is nitrification, which is carried out by the actions of two groups of bacteria, ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB). Since most ENPs are found to have or are designed to have antimicrobial activities, it is a legitimate concern that ENPs entering WWTPs may have negative impacts on nitrification. In this paper, the effects of ENPs on nitrification are discussed, focusing mainly on autotrophic nitrification by AOBs and NOBs. This review also covers ENP effects on anaerobic ammonium oxidation (anammox). Generally, nitrifiers in pure and mixed cultures can be inhibited by a variety of ENPs, but stress response mechanisms may attenuate toxicity. Long-term studies demonstrated that a wide range of NPs could cause severe deterioration of AOBs and/or NOBs when the influent concentration exceeded an inhibition threshold. Proposed mechanisms include the generation of reactive oxygen species, dissolved metals, physical disruption of cell membranes, bacterial engulfment, and intracellular accumulation of ENPs. Future research needs are also discussed.
Collapse
Affiliation(s)
- Yun Xing
- Department of Systems Engineering and Management, Air Force Institute of Technology, Environmental Engineering and Science Program, Wright-Patterson AFB, Ohio, USA
| | - Willie F Harper
- Department of Systems Engineering and Management, Air Force Institute of Technology, Environmental Engineering and Science Program, Wright-Patterson AFB, Ohio, USA
| |
Collapse
|
17
|
Lu G, Ma Y, Zang L, Sun Y, Yu F, Xue R. Effects of granular activated carbon and Fe-modified granular activated carbon on anammox process start-up. RSC Adv 2021; 11:10625-10634. [PMID: 35423568 PMCID: PMC8695589 DOI: 10.1039/d1ra00384d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, granular activated carbon (GAC) and Fe-modified granular activated carbon (FeGAC) prepared by ultrasonic impregnation method were added into respective up-flow anaerobic sludge blanket (UASB) reactors to explore their effects on the anammox process start-up. The results showed that the time of anammox system start-up could be reduced from 108 d in R1 (control group) to 94 d in R2 (GAC reactor) and to 83 d in R3 (FeGAC reactor). After 120 days of operation, the nitrogen removal rates (NRR) of all reactors could reach more than 0.8 kg-N m−3 d−1. Extracellular polymeric substance (EPS) amount, heme c content and the anammox bacterial functional gene copy numbers gradually increased in all reactors with the passage of culture time, and manifested the superiority in R3 especially. High throughput sequencing revealed that Candidatus Kuenenia was the dominant species in all reactors in the end. It was also demonstrated that FeGAC markedly strengthened the growth and aggregation of anammox bacteria, which is promising for the practical application of the anammox process. In this study, granular activated carbon (GAC) and Fe-modified granular activated carbon (FeGAC) prepared by ultrasonic impregnation method were added into respective up-flow anaerobic sludge blanket (UASB) reactors to explore their effects on the anammox process start-up.![]()
Collapse
Affiliation(s)
- Guangsong Lu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China +86-531-89631680 +86-531-89631680
| | - Yunqian Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China +86-531-89631680 +86-531-89631680.,Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Lihua Zang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China +86-531-89631680 +86-531-89631680
| | - Yan Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China +86-531-89631680 +86-531-89631680
| | - Fei Yu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China +86-531-89631680 +86-531-89631680.,Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology Jinan 250353 China
| | - Rong Xue
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China +86-531-89631680 +86-531-89631680
| |
Collapse
|
18
|
Xu JJ, Cheng YF, Jin RC. Long-term effects of Fe 3O 4 NPs on the granule-based anaerobic ammonium oxidation process: Performance, sludge characteristics and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122965. [PMID: 32474323 DOI: 10.1016/j.jhazmat.2020.122965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The performance of anaerobic ammonium oxidation (anammox) granules were studied under long-term exposure to Fe3O4 NPs. The Fe3O4 NPs had no negative impacts on nitrogen removal performance with the addition of 2-200 mg L-1. The specific anammox activity (SAA) slightly decreased from 287.0 ± 13.2 to -253.0 ± 9.2 mg TN g-1VSS d-1 with the increase in Fe3O4 NPs level from 2 to 60 mg L-1, and then significantly enhanced to 381.8 ± 15.7 mg TN g-1VSS d-1 at 200 mg L-1 Fe3O4 NPs. And the change trends of the heme c content, extracellular polymeric substance amount and settling velocity were consistent with that of SAA. The Candidatus_Kuenenia was the dominant species during the entire experiment and its relative abundance was up to 33.4 % at the end the experiment. The results provide some useful information for comprehending the impact of Fe3O4 NPs on the performance of wastewater biological treatment systems.
Collapse
Affiliation(s)
- Jia-Jia Xu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ya-Fei Cheng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
19
|
Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol Adv 2020; 44:107610. [DOI: 10.1016/j.biotechadv.2020.107610] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
20
|
Chen S, Yan M, Huang T, Zhang H, Liu K, Huang X, Li N, Miao Y, Sekar R. Disentangling the drivers of Microcystis decomposition: Metabolic profile and co-occurrence of bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140062. [PMID: 32544693 DOI: 10.1016/j.scitotenv.2020.140062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/06/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
In aquatic ecosystems, water microbial communities can trigger the outbreak or decline of cyanobacterial blooms. However, the microbiological drivers of Microcystis decomposition in reservoirs remain unclear. Here, we explored the bacterial community metabolic profile and co-occurrence dynamics during Microcystis decomposition. The results showed that the decomposition of Microcystis greatly altered the metabolic characteristics and composition of the water bacterial community. Significant variations in bacterial community composition were observed: the bacterial community was mainly dominated by Proteobacteria, Actinobacteria, Planctomycetes, and Bacteroidetes during Microcystis decomposition. Additionally, members of Exiguobacterium, Rhodobacter, and Stenotrophomonas significantly increased during the terminal stages. Dissolved organic matters (DOM) primarily composed of fulvic-like, humic acid-like, and tryptophan-like components, which varied distinctly during Microcystis decomposition. Additionally, the metabolic activity of the bacterial community showed a continuous decrease during Microcystis decomposition. Functional prediction showed a sharp increase in the cell communication and sensory systems of the bacterial communities from day 12 to day 22. Co-occurrence networks showed that bacteria responded significantly to variations in the dynamics of Microcystis decomposition through close interactions between each other. Redundancy analysis (RDA) indicated that Chlorophyll a, nitrate nitrogen (NO3--N), dissolved oxygen (DO), and dissolved organic carbon (DOC) were crucial drivers for shaping the bacterial community structure. Taken together, these findings highlight the dynamics of the water bacterial community during Microcystis decomposition from the perspective of metabolism and community composition, however, further studies are needed to understand the algal degradation process associated with bacteria.
Collapse
Affiliation(s)
- Shengnan Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Miaomiao Yan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaiwen Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutian Miao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
21
|
Witthayaphirom C, Chiemchaisri C, Chiemchaisri W. Optimization of reactive media for removing organic micro-pollutants in constructed wetland treating municipal landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24627-24638. [PMID: 31346849 DOI: 10.1007/s11356-019-06010-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The removal of organic micro-pollutants (OMPs) from landfill leachate in constructed wetland (CW) media having different material mixtures of sand (S), clay (C), and iron powder (Fe) was investigated using experimental column study. The use of S:C:Fe media consisting of 60:30:10% (w/w) and cattail as vegetation was found optimum for the removals of 2,6-DTBP, BHT, DEP, DBP, and DEHP at 67.5-75.4% during long-term operation of 373 days. Adsorption and biodegradation were confirmed as predominant mechanisms for their removal in CW media but their contribution in total removal varied depending on chemical properties of OMPs. Adsorption kinetic could be well explained by pseudo-second-order whereas biodegradation kinetic followed first-order reaction. The adsorption affinity of OMPs to CW media was S:C:Fe > S:C > S in descending order. This study demonstrated high and sustainable removal of OMPs during long-term operation of CW with the optimized reactive media.
Collapse
Affiliation(s)
- Chayanid Witthayaphirom
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Chart Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand.
| | - Wilai Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
22
|
Xu H, Guo L, Guo S, Wang Y, She Z, Gao M, Zhao Y, Jin C. Effect of magnetic powder on denitrification using the sludge alkaline fermentation liquid as a carbon source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7712-7719. [PMID: 31879873 DOI: 10.1007/s11356-019-07461-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
This work evaluates the impact of the different concentrations of Fe3O4 on nitrate removal and organic matters utilization in the sequencing batch reactors (SBRs) using the sludge alkaline digestion supernatant as external sludge carbon source. Results indicated that the optimal concentration of Fe3O4 was 1 g/L for enhancing denitrification with NO3--N removal efficiency of 93.13% (up to a 11.93% increase) and without NO2--N accumulation after 18 days. The changes of soluble chemical oxygen demand (SCOD), protein, and carbohydrate during denitrification process were analyzed to gauge the utilization of sludge fermentation products by denitrifiers. The SCOD was consumed for organisms involved in NO3--N removal and the Fe3O4 could promote the utilization of carbohydrate better than protein by denitrifiers during denitrification process. Denitrification rate (VDN) and the nitrate-to-nitrite transformation ratio (NTR), as the kinetics parameters, were also investigated in different concentrations of Fe3O4.
Collapse
Affiliation(s)
- Haiqing Xu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Shiliang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
23
|
Li H, Chi Z, Li J, Wu H, Yan B. Bacterial community structure and function in soils from tidal freshwater wetlands in a Chinese delta: Potential impacts of salinity and nutrient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:134029. [PMID: 31470319 DOI: 10.1016/j.scitotenv.2019.134029] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 05/16/2023]
Abstract
Microorganisms in tidal freshwater wetlands affect biogeochemical cycling of nutrients, but the structures and functions of the wetland communities change due to natural and anthropogenic stresses. Soil samples were collected along a 350-m sampling belt in typical tidal freshwater wetlands of Yellow River Delta to investigate nutrient distributions, bacterial community structures and potential metabolic functions under tide and runoff stress by high-throughput sequencing and PICRUSt analysis. The total nitrogen (TN) contents varied greatly while total phosphorous (TP) contents were relatively stable. The bacterial community structures and predicted functions varied along a 350-m sampling belt. Some sulfate-reducing bacteria, nitrifying bacteria, Marmoricola, unclassified_f_Salinisphaeraceae and Oceanococcus exhibited a decreased trend with increasing distances far away from the river bank (B-0m). However, Salinisphaera was more dominant far away from the river bank (B-350m), indicating the stronger tolerance degree under salt stress. Marinobacterium and Marinobacter could be widely detected from B-0m to B-350m, demonstrating that those bacteria could tolerate a broad range of salinity and have its exceptional adaptation capacities. Redundancy analysis (RDA) indicated that nutrient and salinity played an important role in shaping bacterial community composition. NH4+-N and AP were the key factors in explaining the variance of the genus level. Predicted by PICRUSt analysis, nitrogen fixation (NF), nitrogen mineralization (NM), denitrification and dissimilatory nitrate reduction to ammonium (DNRA) might be the dominant processes of nitrogen metabolism and related genes abundance were abundant in tidal freshwater wetland soils. These findings could provide new insights into the prevention and control of potential nutrient pollution in tidal freshwater wetlands under the dual stress of tide and runoff.
Collapse
Affiliation(s)
- Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China.
| | - Jiuling Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| |
Collapse
|