1
|
Zhou W, Peng S, Yuan J, Gao Y. Application of bio-electrochemical systems for phosphorus resource recovery: Progress and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124220. [PMID: 39884201 DOI: 10.1016/j.jenvman.2025.124220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
This review focuses on applying bio-electrochemical systems (BES) for phosphorus (P) recovery. Microbial fuel cells (MFCs) degrade pollutants to generate electricity and recover P, with the structure and electrode materials playing a significant role in P recovery efficiency. Microbial electrolysis cells (MECs) recover P while simultaneously producing hydrogen or methane, with factors such as voltage and pH influencing performance. Microbial desalination cells (MDCs) recover P through ion separation, although they face challenges such as membrane fouling. Novel BES technologies are emerging as promising solutions for water ecological remediation, particularly in removing P. P recovery products, including hydroxyapatite (HAP), struvite (MAP), and Vivianite. Factors such as pH, ion concentration, electrode materials, and temperature all influence P recovery. BES offers the advantages of high efficiency and environmental sustainability. Future research should focus on optimizing system structures and minimizing by-product deposition to further promote P resource recycling.
Collapse
Affiliation(s)
- Wenbiao Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shiyuan Peng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junyi Yuan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan Gao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Zhang Y, Li H, Li S, Li Y, Ding Y. Enhanced degradation of nitrate by a combined electrolysis precipitation process. Sci Rep 2024; 14:21649. [PMID: 39289505 PMCID: PMC11408714 DOI: 10.1038/s41598-024-72529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Nitrate can be electrolyzed mainly into N2, but the generated ammonia, as its secondary intermediate, is soluble and remained in the wastewater yet, which affects negatively the degradation of nitrate and total nitrogen. In this work, an electrolytic reactor constructed with Ti/RuSn anode and Fe cathode, was applied to electrolyze nitrate, and magnesium chloride was used as electrolyte and precipitant simultaneously, while disodium hydrogen phosphate (DSP) was added only as precipitant of ammonia. The results indicated that, most part of generated ammonia could be precipitated as magnesium ammonium phosphate (MAP) and some residual ammonia may be transformed into N2 by breakpoint chlorination. Thus, the nitrate and total nitrogen (TN) degradation efficiencies could be enhanced obviously by the combined electrolysis precipitation process.
Collapse
Affiliation(s)
- Yang Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Haokang Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuo Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yifan Li
- Department of Environmental Design, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Yuanhong Ding
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
3
|
Zbair M, Limousy L, Drané M, Richard C, Juge M, Aemig Q, Trably E, Escudié R, Peyrelasse C, Bennici S. Integration of Digestate-Derived Biochar into the Anaerobic Digestion Process through Circular Economic and Environmental Approaches-A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3527. [PMID: 39063819 PMCID: PMC11278828 DOI: 10.3390/ma17143527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The growing energy consumption and the need for a circular economy have driven considerable interest in the anaerobic digestion (AD) of organic waste, offering potential solutions through biogas and digestate production. AD processes not only have the capability to reduce greenhouse gas emissions but also contribute to the production of renewable methane. This comprehensive review aims to consolidate prior research on AD involving different feedstocks. The principles of AD are explored and discussed, including both chemical and biological pathways and the microorganisms involved at each stage. Additionally, key variables influencing system performance, such as temperature, pH, and C/N ratio are also discussed. Various pretreatment strategies applied to enhance biogas generation from organic waste in AD are also reviewed. Furthermore, this review examines the conversion of generated digestate into biochar through pyrolysis and its utilization to improve AD performance. The addition of biochar has demonstrated its efficacy in enhancing metabolic processes, microorganisms (activity and community), and buffering capacity, facilitating Direct Interspecies Electron Transfer (DIET), and boosting CH4 production. Biochar also exhibits the ability to capture undesirable components, including CO2, H2S, NH3, and siloxanes. The integration of digestate-derived biochar into the circular economy framework emerges as a vital role in closing the material flow loop. Additionally, the review discusses the environmental benefits derived from coupling AD with pyrolysis processes, drawing on life cycle assessment investigations. Techno-economic assessment (TEA) studies of the integrated processes are also discussed, with an acknowledgment of the need for further TEA to validate the viability of integrating the biochar industry. Furthermore, this survey examines the techno-economic and environmental impacts of biochar production itself and its potential application in AD for biogas generation, aiming to establish a more cost-effective and sustainable integrated system.
Collapse
Affiliation(s)
- Mohamed Zbair
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, IS2M UMR 7361, 68100 Mulhouse, France; (M.Z.); (M.D.); (S.B.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Lionel Limousy
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, IS2M UMR 7361, 68100 Mulhouse, France; (M.Z.); (M.D.); (S.B.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Méghane Drané
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, IS2M UMR 7361, 68100 Mulhouse, France; (M.Z.); (M.D.); (S.B.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Charlotte Richard
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France; (C.R.); (M.J.); (Q.A.)
| | - Marine Juge
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France; (C.R.); (M.J.); (Q.A.)
| | - Quentin Aemig
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France; (C.R.); (M.J.); (Q.A.)
| | - Eric Trably
- INRAE, University of Montpellier, LBE, 102 Av. des Etangs, 11100 Narbonne, France; (E.T.); (R.E.)
| | - Renaud Escudié
- INRAE, University of Montpellier, LBE, 102 Av. des Etangs, 11100 Narbonne, France; (E.T.); (R.E.)
| | | | - Simona Bennici
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, IS2M UMR 7361, 68100 Mulhouse, France; (M.Z.); (M.D.); (S.B.)
- Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
4
|
Song H, Li J, Zhou M, Li H, Fan L, Xu P, Shao S, Li J, Xu C, Zhou W, Qian J. Improving algal growth in an anaerobic digestion piggery effluent by fungal pretreatment: Process optimization, the underlying mechanism of fungal decolorization, and nitrogen removal. CHEMOSPHERE 2023; 337:139416. [PMID: 37414296 DOI: 10.1016/j.chemosphere.2023.139416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Anaerobic digestion piggery effluent (ADPE) shows high chromaticity and ammonium levels, severely inhibiting algal growth. Fungal pretreatment has great potential for decolorization and nutrient removal from wastewater, which coupled with microalgal cultivation may be a reliable strategy for sustainable ADPE resource utilization. In this study, we selected and identified two locally isolated eco-friendly fungal strains for ADPE pretreatment, and fungal culture conditions were optimized for decolorization and ammonium nitrogen (NH4+-N) removal. Subsequently, the underlying mechanisms of fungal decolorization and nitrogen removal were investigated, and the feasibility of using pretreated ADPE for algal cultivation was explored. The results showed that two fungal strains were identified as Trichoderma harzianum and Trichoderma afroharzianum, respectively, presenting good growth and decolorization performance for ADPE pretreatment. The optimized culture conditions were as follows: 20% ADPE, 8 g L-1 glucose, initial pH 6, 160 rpm, 25-30 °C, and 0.15 g L-1 initial dry-weight. ADPE decolorization was mainly caused by fungal biodegradation of color-related humic substances through manganese peroxidase secretion. The removed nitrogen was completely converted into fungal biomass as nitrogen assimilated, ca. 90% of which was attributed to NH4+-N removal. The pretreated ADPE significantly improved algal growth and nutrient removal, demonstrating the feasibility of developing an eco-friendly fungi-based pretreatment technology.
Collapse
Affiliation(s)
- Hanwu Song
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Jun Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Mi Zhou
- Xinjiang Rao River Hydrological and Water Resources Monitoring Center, Shangrao, 334000, China
| | - Hongwu Li
- Faculty of Science and Engineering, Soka University, Tokyo, 1928577, Japan
| | - Liangliang Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Peilun Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Shengxi Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Chengyu Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
5
|
Zhou Y, Wang J. Detection and removal technologies for ammonium and antibiotics in agricultural wastewater: Recent advances and prospective. CHEMOSPHERE 2023; 334:139027. [PMID: 37236277 DOI: 10.1016/j.chemosphere.2023.139027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
With the extensive development of industrial livestock and poultry production, a considerable part of agricultural wastewater containing tremendous ammonium and antibiotics have been indiscriminately released into the aquatic systems, causing serious harms to ecosystem and human health. In this review, ammonium detection technologies, including spectroscopy and fluorescence methods, and sensors were systematically summarized. Antibiotics analysis methodologies were critically reviewed, including chromatographic methods coupled with mass spectrometry, electrochemical sensors, fluorescence sensors, and biosensors. Current progress in remediation methods for ammonium removal were discussed and analyzed, including chemical precipitation, breakpoint chlorination, air stripping, reverse osmosis, adsorption, advanced oxidation processes (AOPs), and biological methods. Antibiotics removal approaches were comprehensively reviewed, including physical, AOPs, and biological processes. Furthermore, the simultaneous removal strategies for ammonium and antibiotics were reviewed and discussed, including physical adsorption processes, AOPs, biological processes. Finally, research gaps and the future perspectives were discussed. Through conducting comprehensive review, future research priorities include: (1) to improve the stabilities and adaptabilities of detection and analysis techniques for ammonium and antibiotics, (2) to develop innovative, efficient, and low cost approaches for simultaneous removal of ammonium and antibiotics, and (3) to explore the underlying mechanisms that governs the simultaneous removal of ammonium and antibiotics. This review could facilitate the evolution of innovative and efficient technologies for ammonium and antibiotics treatment in agricultural wastewater.
Collapse
Affiliation(s)
- Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
6
|
Wu H, Foster X, Kazemian H, Vaneeckhaute C. N, P, K recovery from hydrolysed urine by Na-chabazite adsorption integrated with ammonia stripping and (K-)struvite precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159277. [PMID: 36216069 DOI: 10.1016/j.scitotenv.2022.159277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the recovery of K+ along with NH4+-N and PO43--P from hydrolyzed urine by technical integration. The K adsorption capacities of biochar, clinoptilolite, artificial zeolite and chabazite were firstly compared. Due to the high K recovery efficiency and additional P recovery capacity, Na-chabazite was selected as the adsorbent in this study. Its kinetics and isotherm analysis indicated that the high molarity of NH4+-N seriously hindered the K adsorption onto Na-chabazite in synthetic hydrolyzed urine (SHU). However, this competition between NH4+ and K+ got diminished when their molarity is the same, i.e. in the SHU after ammonia stripping (ASSHU). Based on this key finding, Na-chabazite adsorption was integrated with ammonia stripping and struvite precipitation under different configurations. Simultaneous ammonia stripping was inadequate to diminish the competitive effect of NH4+ on K+ adsorption. Depending on the demand for fertilizer, two sequential configurations were recommended, respectively.
Collapse
Affiliation(s)
- Haotian Wu
- BioEngine, Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| | - Xavier Foster
- BioEngine, Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| | - Hossein Kazemian
- Northern Analytical Lab Services, University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Canada.
| | - Céline Vaneeckhaute
- BioEngine, Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
7
|
Kundu D, Dutta D, Samanta P, Dey S, Sherpa KC, Kumar S, Dubey BK. Valorization of wastewater: A paradigm shift towards circular bioeconomy and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157709. [PMID: 35908693 DOI: 10.1016/j.scitotenv.2022.157709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Limitation in the availability of natural resources like water is the main drive for focussing on resource recovery from wastewater. Rapid urbanization with increased consumption of natural resources has severely affected its management and security. The application of biotechnological processes offers a feasible approach to concentrating and transforming wastewater for resource recovery and a step towards a circular economy. Wastewater generally contains high organic materials, nutrients, metals and chemicals, which have economic value. Hence, its management can be a valuable resource through the implementation of a paradigm transformation for value-added product recovery. This review focuses on the circular economy of "close loop" process by wastewater reuse and energy recovery identifying the emerging technologies for recovering resources across the wastewater treatment phase. Conventional wastewater treatment technologies have been discussed along with the advanced treatment technologies such as algal treatment, anammox technology, microbial fuel cells (MFC). Apart from recovering energy in the form of biogas and biohydrogen, second and third-generation biofuels as well as biohythane and electricity generation have been deliberated. Other options for resource recovery are single-cell protein (SCP), biopolymers as well as recovery of metals and nutrients. The paper also highlights the applications of treated wastewater in agriculture, aquaponics, fisheries and algal cultivation. The concept of Partitions-release-recover (PRR) has been discussed for a better understanding of the filtration treatment coupled with anaerobic digestion. The review provides a critical evaluation on the importance of adopting a circular economy and their role in achieving sustainable development goals (SDGs). Thus, it is imperative that such initiatives towards resource recovery from wastewater through integration of concepts can aid in providing wastewater treatment system with resource efficiency.
Collapse
Affiliation(s)
- Debajyoti Kundu
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Deblina Dutta
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, West Bengal 735210, India
| | - Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal 713 104, India
| | - Knawang Chhunji Sherpa
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Sunil Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India.
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302, India
| |
Collapse
|
8
|
Eraky M, Elsayed M, Qyyum MA, Ai P, Tawfik A. A new cutting-edge review on the bioremediation of anaerobic digestate for environmental applications and cleaner bioenergy. ENVIRONMENTAL RESEARCH 2022; 213:113708. [PMID: 35724728 DOI: 10.1016/j.envres.2022.113708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Circular agriculture and economy systems have recently emerged around the world. It is a long-term environmental strategy that promotes economic growth and food security while reducing negative environmental consequences. Anaerobic digestion (AD) process has a high contribution and effective biodegradation route for bio-wastes valorization and reducing greenhouse gases (GHGs) emissions. However, the remaining massive digestate by-product contains non-fermented organic fractions, macro and/or micro-nutrients, heavy metals, and metalloids. Direct application of digestate in agriculture negatively affected the properties of the soil due to the high load of nutrients as well as the residuals of GHGs are emitted to the environment. Recycling and valorizing of anaerobic digestate is the main challenge for the sustainable biogas industry and nutrients recovery. To date, there is no global standard process for the safe digestate handling. This review described the biochemical composition and separation processes of anaerobic digestate. Further, advanced physical, chemical, and biological remediation's of the diverse digestate are comprehensively discussed. Moreover, recycling technologies such as phyco-remediation, bio-floc, and entomoremediation were reviewed as promising solutions to enhance energy and nutrient recovery, making the AD technology more sustainable with additional profits. Finally, this review gives an in-depth discussion of current biorefinery technologies, key roles of process parameters, and identifies challenges of nutrient recovery from digestate and prospects for future studies at large scale.
Collapse
Affiliation(s)
- Mohamed Eraky
- College of Engineering, Huazhong Agricultural University, 430070, Wuhan, China
| | - Mahdy Elsayed
- Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Muhammad Abdul Qyyum
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Ping Ai
- College of Engineering, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, P.O. Box 12622, Giza, Egypt.
| |
Collapse
|
9
|
Tian J, He F, Cheng Z, Zhang X, Yang C, Gao B, Xu Z, Tian Y. Aerobic Denitrification of Pseudomonas stutzeri yjy-10 and Genomic Analisis of This Process. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Wang J, Cao L, Liu Y, Huang Z, Li C, Wu D, Ruan R. Multiple hydrolyses of rice straw by domesticated paddy soil microbes for methane production via liquid anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 354:127184. [PMID: 35447327 DOI: 10.1016/j.biortech.2022.127184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to investigate the hydrolysis of rice straw (RS) using domesticated paddy soil microbes (DPSMs) with swine wastewater (SW) as the nitrogen source and the multiple hydrolyses for CH4 production via liquid anaerobic digestion (L-AD). Three hydrolyses of RS with a 45% inoculation ratio (IR) under the conditions of a carbon/nitrogen ratio (C/N ratio) of 40, temperature of 37 °C, inoculum/substrate ratio (I/S ratio) of 2:1, and immersion depth of 6.0 cm were optimal, attaining maximum volatile fatty acids (VFAs) after five days, possibly owing to the synergistic effect of aerobic microbes (Firmicutes and Actinomycetes) and anaerobic microbes (Bacteroidetes and Acidobacteria). After three hydrolyses, the degradation rates of hemicellulose, cellulose, and lignin in RS were 88.45%, 83.19% and 70.09%, respectively. The accumulative CH4 production reached 462.11 mL/g VS after three hydrolyses, and its curve fitted well with the modified Gompertz model (R2 > 0.984).
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Zhenghua Huang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Congmiao Li
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Daishe Wu
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, 330047 Nanchang, China
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
11
|
Technologies for Biological and Bioelectrochemical Removal of Inorganic Nitrogen from Wastewater: A Review. NITROGEN 2022. [DOI: 10.3390/nitrogen3020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Water contamination due to various nitrogenous pollutants generated from wastewater treatment plants is a crucial and ubiquitous environmental problem now-a-days. Nitrogen contaminated water has manifold detrimental effects on human health as well as aquatic life. Consequently, various biological treatment processes are employed to transform the undesirable forms of nitrogen in wastewater to safer ones for subsequent discharge. In this review, an overview of various conventional biological treatment processes (viz. nitrification, denitrification, and anammox) have been presented along with recent novel bioelectrochemical methods (viz. microbial fuel cells and microbial electrolysis cells). Additionally, nitrogen is an indispensable nutrient necessary to produce artificial fertilizers by fixing dinitrogen gas from the atmosphere. Thus, this study also explored the potential capability of various nitrogen recovery processes from wastewater (like microalgae, cyanobacteria, struvite precipitation, stripping, and zeolites) that are used in industries. Further, the trade-offs, challenges posed by these processes have been dwelt on along with other biological processes like CANON, SHARON, OLAND, and others.
Collapse
|
12
|
Ammonium and Phosphate Recovery from Biogas Slurry: Multivariate Statistical Analysis Approach. SUSTAINABILITY 2022. [DOI: 10.3390/su14095617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Livestock biogas slurry is an effluent containing nutrients such as ammonium and phosphate that are released by the industries. Therefore, recovery and reuse of ammonium and phosphorus is highly necessary. In recent years, many studies have been devoted to the use of different multivariate statistical analyses to investigate the interrelationship of one factor to another factor. The overall objective of this research study was to understand the significance of phosphate and ammonium recovery from biogas slurry using the multivariate statistical approach. This study was conducted using a range of salts that are commonly found in biogas slurry (ZnCl2, FeCl3, FeCl2, CuCl2, Na2CO3, and NaHCO3). Experiments with a biogas digester and aqueous solution were conducted at pH 9, with integration with NH4+, Mg2+, and PO43− molar ratios of 1.0, 1.2, and 1.8, respectively. The removal efficiency of ammonium and phosphate increased from 15.0% to 71.0% and 18.0% to 99.0%, respectively, by increasing the dose of respective ions K+, Zn2+, Fe3+, Fe2+, Cu2+, and CO32−. The elements were increased from 58.0 to 71.0 for HCO3−, with the concentration increasing from 30 mg L−1 to 240 mg L−1. Principal component, regression, path analysis, and Pearson correlation analyses were used to investigate the relationships of phosphate and ammonium recovery under different biochar, pyrolysis temperature, element concentration and removal efficiencies. Multivariate statistical analysis was also used to comprehensively evaluate the biochar and struvite effects on recovery of ammonium and phosphate from biogas slurry. The results showed that combined study of multivariate statistics suggested that all the indicators positively or negatively affected each other. Pearson correlation was insignificant in many ionic concentrations, as all were more than the significant 0.05. The study concluded that temperature, biochar type, and varying levels of components, such as K+, Zn2+, Fe3+, Fe2+, Cu2+, CO32−, and HCO3−, all had a substantial impact on P and NH4+ recovery. Temperature and varying amounts of metal salts enhanced the efficacy of ammonium and phosphate recovery. This research elucidated the methods by which biochar effectively reuses nitrogen and phosphate from biogas slurry, presenting a long-term agricultural solution.
Collapse
|
13
|
Xiang S, Liu Y, Lu F, Zhang Q, Wang Y, Xiong J, Huang Z, Yu Z, Ruan R, Cui X. The combination of aerobic and microaerobic promote hydrolysis and acidification of rice straw and pig manure: Balance of insoluble and soluble substrate. BIORESOURCE TECHNOLOGY 2022; 350:126880. [PMID: 35202829 DOI: 10.1016/j.biortech.2022.126880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Separated hydrolysis and acidification is an effective pretreatment method for anaerobic digestion of lignocellulose. However, excess consumption of soluble substrates remains a problem. Rice straw and pig manure were used as substrates with biogas slurry as the inoculum, combined with aerobic and microaerobic conditions in the 14-day hydrolysis and acidification. Aeration can significantly accelerate volatile solid degradation (38.25%), especially the lignocellulose. Soluble chemical oxygen demand (29157 mg/L) and volatile fatty acids (13219 mg/L) of the group with 4 days aerobic treatment, reached their peaks on day 5, obtaining a balanced insoluble substrate degradation and soluble substrate consumption. Candida, Lactobacillus, Bifidobacterium, and Acetobacter were enriched at the balanced point for positive contribution to the degradation of the insoluble substrate and the generation of soluble substrate. This study not only reveals the balance between degradation and consumption, but also provides new insight into biogas slurry recycling and anaerobic digestion precursor substrate production.
Collapse
Affiliation(s)
- Shuyu Xiang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Feihu Lu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Jianghua Xiong
- Agricultural Ecology and Resources Protection Station of Jiangxi Province, Nanchang 330046, China
| | - Zhenxia Huang
- Agricultural Ecology and Resources Protection Station of Jiangxi Province, Nanchang 330046, China
| | - Zhigang Yu
- Advanced Water Management Centre, The University of Queensland, Brisbane 4072, Australia
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Paul 55108, USA
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.
| |
Collapse
|
14
|
High-Solid Anaerobic Digestion: Reviewing Strategies for Increasing Reactor Performance. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-solid and solid-state anaerobic digestion are technologies capable of achieving high reactor productivity. The high organic load admissible for this type of configuration makes these technologies an ideal ally in the conversion of waste into bioenergy. However, there are still several factors associated with these technologies that result in low performance. The economic model based on a linear approach is unsustainable, and changes leading to the development of a low-carbon model with a high degree of circularity are necessary. Digestion technology may represent a key driver leading these changes but it is undeniable that the profitability of these plants needs to be increased. In the present review, the digestion process under high-solid-content configurations is analyzed and the different strategies for increasing reactor productivity that have been studied in recent years are described. Percolating reactor configurations and the use of low-cost adsorbents, nanoparticles and micro-aeration seem the most suitable approaches to increase volumetric production and reduce initial capital investment costs.
Collapse
|
15
|
Wang J, Cao L, Liu Y, Zhang Q, Ruan R, Luo X. Effect of acclimatized paddy soil microorganisms using swine wastewater on degradation of rice straw. BIORESOURCE TECHNOLOGY 2021; 332:125039. [PMID: 33845317 DOI: 10.1016/j.biortech.2021.125039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Rice straw (RS) is one of abundant agricultural waste for biogas production in China. However, the low carbon-methane conversion rate limits its wide application due to the low degradation rate of RS during fermentation. This study investigated the effect of acclimatized paddy soil microorganisms using swine wastewater on degradation of RS before anaerobic digestion. The total organic carbon, reducing sugar and NH4+-N content of paddy soil + RS + swine wastewater (PRS) (653.50 mg/L) was higher than that of other groups after 19 days. The carboxymethyl cellulose activity (4.01 IU), cellulose/lignin ratio (5.25) and the degradation rate of lignin (51.96%) in PRS were higher than those of other groups. The Firmicutes (21.02%), Chloroflexi (12.48%), Proteobacteria (20.92%), and Bacteroidetes (25.78%) were the main fermentation phyla in PRS during acclimatization. These results indicated that the acclimatized paddy soil microorganisms using swine wastewater (SW) could degrade RS more efficiently.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Xuan Luo
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| |
Collapse
|
16
|
Değermenci N, Yildiz E. Ammonia stripping using a continuous flow jet loop reactor: mass transfer of ammonia and effect on stripping performance of influent ammonia concentration, hydraulic retention time, temperature, and air flow rate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31462-31469. [PMID: 33608788 DOI: 10.1007/s11356-021-13005-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
When wastewater containing ammonia is discharged into the receiving environment without any kind of treatment, it causes both environmental problems and negatively affects human health. In this study, the aim was to strip ammonia using air in a continuous flow jet loop reactor (JLR) and investigate the effects of ammonia concentration, hydraulic retention time (HRT), air flow rate, and temperature on ammonia removal within this scope. By changing the ammonia concentration in the influent, no significant change was observed in ammonia removal efficiency. With air flow rate 45 L min-1, temperature 50 °C, pH 11, and HRT 7.5 h, mean 88.1% ammonia removal was achieved. Increasing the HRT, air flow rate, and temperature increased the ammonia removal efficiency. Later the ammonia stripping process in the continuous flow JLR was modeled and the volumetric mass transfer coefficient (KLa) for each parameter was calculated from the model equation. While the experimental parameters of air flow rate and temperature had a significant effect on the mass transfer coefficient, influent ammonia concentration and HRT were determined to have no effect.
Collapse
Affiliation(s)
- Nejdet Değermenci
- Faculty of Architecture and Engineering, Department of Environmental Engineering, Kastamonu University, Kastamonu, Turkey.
| | - Ergun Yildiz
- Faculty of Engineering, Department of Environmental Engineering, Atatürk University, Erzurum, Turkey
| |
Collapse
|
17
|
The Recovery of Phosphate and Ammonium from Biogas Slurry as Value-Added Fertilizer by Biochar and Struvite Co-Precipitation. SUSTAINABILITY 2021. [DOI: 10.3390/su13073827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biowaste materials could be considered a renewable source of fertilizer if methods for recovering P from waste can be developed. Over the last few decades, there has been a high level of interest in using biochar to remove contaminants from aqueous solutions. This study was conducted using a range of salts that are commonly found in biogas slurry (ZnCl2, FeCl3, FeCl2, CuCl2, Na2CO3, and NaHCO3). Experiments with a biogas digester and aqueous solution were conducted at pH nine integration with NH4+, Mg2+, and PO43− molar ratios of 1.0, 1.2, and 1.8, respectively. The chemical analysis was measured to find out the composition of the precipitate, and struvite was employed to remove the aqueous solutions. The study found that the most efficient removal of phosphate and ammonium occurred at pH nine in Tongan sludge urban biochar and rice biochar, respectively. Increasing the concentration of phosphate and ammonium increased the phosphate and ammonium content. Moreover, increasing the biochar temperature and increasing the concentration of phosphate and ammonium increased the efficiency of the removal of ammonium and phosphate. The removal efficiency of ammonium and phosphate increased from 15.0% to 71.0% and 18.0% to 99.0%, respectively, by increasing the dose of respective ions K+, Zn2+, Fe3+, Fe2+, Cu2+, and CO32.The elements were increased from 58.0 to 71.0 for HCO3− with the increasing concentration from 30 mg L−1 to 240 mg L−1.This study concluded that phosphate and ammonium can be recovered from mushroom soil biochar and rice biochar, and phosphate can be effectively recovered via the struvite precipitation method.
Collapse
|
18
|
Wang W, Lee DJ. Valorization of anaerobic digestion digestate: A prospect review. BIORESOURCE TECHNOLOGY 2021; 323:124626. [PMID: 33418353 DOI: 10.1016/j.biortech.2020.124626] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is recognized as promising technology for bioenergy production from biowaste, with huge quantity of digestate being produced as the residual waste. The digestate contains substantial amounts of organic and inorganic matters that be considered highly risky contaminants to the receiving environments if not properly treated, but also potential renewable resources if are adequately recovered. This prospect review summarized the current research efforts on digestate valorization, including aspects of resource recovery and the proposed applications, particularly on the conversion techniques and economic feasibility. The prospects for digestate valorization were highlighted at the end of this review.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
19
|
Alengebawy A, Jin K, Ran Y, Peng J, Zhang X, Ai P. Advanced pre-treatment of stripped biogas slurry by polyaluminum chloride coagulation and biochar adsorption coupled with ceramic membrane filtration. CHEMOSPHERE 2021; 267:129197. [PMID: 33338710 DOI: 10.1016/j.chemosphere.2020.129197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Biogas slurry retention is a critical problem that cannot be solved by using the reuse method. Therefore, a new approach was taken to compensate for the shortcomings in the reuse method. In this study, after ammonia stripping, the ammonia nitrogen concentration in the stripped biogas slurry (SBS) still cannot reach the effluent standard (80 mg/L), so a variety of processes were needed to treat the SBS. Polyaluminum chloride (PAC) and rice husk biochar (B) were used to pretreat SBS. The effect of different pre-treatments on the COD value, ammonia nitrogen concentration, turbidity, total phosphorus (TP), and other indicators was investigated. After different pre-treatments by PAC and biochar, the pretreated SBS was filtered by a ceramic membrane, and the indicators of SBS were removed in the next step. After adding PAC and biochar together, ammonia nitrogen concentration was decreased to 68.09 mg/L, with a removal rate of 63%. The total phosphorus (TP) was also decreased, and its removal rate reached 92.5%. When the SBS was pretreated with PAC and biochar and then filtered through a ceramic membrane under different operating pressures, the removal rates of COD, total nitrogen (TN), turbidity, and suspended solids (SS) reached 81%, 88%, 96%, and 99% respectively. Moreover, by increasing the pressure from 0.1 to 0.3 MPa, the membrane flux was improved from 45 to 100.6 L/m2·h. This study proves that the combined pre-treatments of PAC and biochar can comprehensively remove various indicators from SBS while ensuring membrane flux during the membrane filtration process.
Collapse
Affiliation(s)
- Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keda Jin
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Ran
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Risk Assessment Lab of the Quality Safety of Biomass Fermentation Products (Chengdu), Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China
| | - Jingjing Peng
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuzhi Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Ai
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
20
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Liu Y, Deng L, Chen Z. Evaluation of a continuous flow microbial fuel cell for treating synthetic swine wastewater containing antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144133. [PMID: 33279188 DOI: 10.1016/j.scitotenv.2020.144133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/01/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Microbial fuel cell (MFC) systems are promising technologies for wastewater treatment and renewable energy generation simultaneously. Performance of a double-chamber microbial fuel cell (MFC) to treat synthetic swine wastewater containing sulfonamide antibiotics (SMs) was evaluated in this study. The MFC was operated in continuous modes at different conditions. Results indicated that the current was successfully generated during the operation. The performance of MFC under the sequential anode-cathode operating mode is better than that under the single continuous running mode. Specifically, higher removal efficiency of chemical oxygen demand (>90%) was achieved under the sequential anode-cathode operating mode in comparison with that in the single continuous mode (>80%). Nutrients were also be removed in the MFC's cathode chamber with the maximum removal efficiency of 66.6 ± 1.4% for NH4+-N and 32.1 ± 2.8% for PO43--P. Meanwhile, SMs were partly removed in the sequential anode-cathode operating with the value in a range of 49.4%-59.4% for sulfamethoxazole, 16.8%-19.5% for sulfamethazine and 14.0%-16.3% for sulfadiazine, respectively. SMs' inhibition to remove other pollutants in both electrodes of MFC was observed after SMs exposure, suggesting that SMs exert toxic effects on the microorganisms. A positive correlation was found between the higher NH4+-N concentration used in this study and the removal efficiency of SMs in the cathode chamber. In short, although the continuous flow MFC is feasible for treating swine wastewater containing antibiotics, its removal efficiency of antibiotics requires to be further improved.
Collapse
Affiliation(s)
- Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China
| | - Lijuan Deng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
21
|
Li G, Cao Y, Zhang Z, Hao L. Removal of ammonia nitrogen from water by mesoporous carbon electrode-based membrane capacitance deionization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7945-7954. [PMID: 33047265 DOI: 10.1007/s11356-020-11109-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
The removal of ammonia nitrogen from wastewater is always a focus in current water treatment. In this study, a combination of mesoporous carbon electrode and selective ion exchange membrane was used to assemble a membrane capacitor deionization system (MCDI). The optimal process parameters were determined as follows: the plate spacing was 1 mm, the voltage was 1.2 V, and the flow rate was 23.8 mL/min. Under the optimal conditions, the removal efficiency of ammonia nitrogen can reach more than 80%. The quasi-first order kinetics and Langmuir adsorption isotherm model can well describe the adsorption process of MCDI. The nature of physical adsorption between ammonia nitrogen cations and mesoporous carbon electrode was demonstrated by the calculation of activation energy and thermodynamic parameters. Moreover, 1500 mg/L NH4Cl, NaNO2, and NaNO3 solutions were tested respectively. The results showed that the removal efficiencies of NH4+, NO2-, and NO3- were 82.33%, 90.96%, and 97.73% respectively, indicating that MCDI is feasible to removal different forms of inorganic nitrogen from water.
Collapse
Affiliation(s)
- Guiju Li
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
- Tianjin Key laboratory of Marine Resources & Chemistry, Tianjin, 300457, China
| | - Yaning Cao
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Zhen Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Linlin Hao
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
- Tianjin Key laboratory of Marine Resources & Chemistry, Tianjin, 300457, China.
| |
Collapse
|
22
|
Ngatiman M, Jami MS, Abu Bakar MR, Subramaniam V, Loh SK. Investigation of struvite crystals formed in palm oil mill effluent anaerobic digester. Heliyon 2021; 7:e05931. [PMID: 33490684 PMCID: PMC7810772 DOI: 10.1016/j.heliyon.2021.e05931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022] Open
Abstract
The formation of struvite crystals or magnesium ammonium phosphate (MgNH4PO4) in palm oil mill effluent (POME) occurs as early as in the secondary stage of POME treatment system. Its growth continues in the subsequent tertiary treatment which reduces piping diameter, thus affecting POME treatment efficiency. Hypothesis. The beneficial use of the crystal is the motivation. This occurrence is rarely reported in scientific articles despite being a common problem faced by palm oil millers. The aim of this study is to characterize struvite crystals found in an anaerobic digester of a POME treatment facility in terms of their physical and chemical aspects. The compositions, morphology and properties of these crystals were determined via energy dispersive spectroscopy (EDS), elemental analysis, scanning electron microscopy (SEM) and x-ray diffraction (XRD). Solubility tests were carried out to establish solubility curve for struvite from POME. Finally, crystal growth experiment was done applying reaction crystallization method to demonstrate struvite precipitation from POME. Results showed that high phosphorous (P) (24.85 wt%) and magnesium (Mg) (21.33 wt%) content was found in the struvite sample. Elemental analysis detected carbon (C), hydrogen (H), nitrogen (N) and sulfur (S) below 4 wt%. The crystals analysed by XRD in this study were confirmed as struvite with 94.8% struvite mineral detected from its total volume. Having an orthorhombic crystal system, struvite crystals from POME recorded an average density of 1.701 g cm−3. Solubility curve of struvite from POME was established with maximum solubility of 275.6 mg L−1 at pH 3 and temperature 40 °C. Minimum solubility of 123.6 mg L−1 was recorded at pH 7 and temperature 25 °C. Crystal growth experiment utilizing POME as the source medium managed to achieve 67% reduction in phosphorous content. This study concluded that there is a potential of harnessing valuable nutrients from POME in the form of struvite. Struvite precipitation technology can be adapted in the management of POME in order to achieve maximum utilization of the nutrients that are still abundant in POME. At the same time maximization of nutrient extractions from POME will also reduce pollutants loading in the final discharge.
Collapse
Affiliation(s)
- Muzzammil Ngatiman
- Engineering & Processing Division, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Mohammed Saedi Jami
- Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Rushdi Abu Bakar
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang Darul Makmur, Malaysia
| | - Vijaya Subramaniam
- Engineering & Processing Division, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Soh Kheang Loh
- Engineering & Processing Division, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| |
Collapse
|
23
|
López-Pacheco IY, Silva-Núñez A, García-Perez JS, Carrillo-Nieves D, Salinas-Salazar C, Castillo-Zacarías C, Afewerki S, Barceló D, Iqbal HNM, Parra-Saldívar R. Phyco-remediation of swine wastewater as a sustainable model based on circular economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111534. [PMID: 33129031 DOI: 10.1016/j.jenvman.2020.111534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/24/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
Pork production has expanded in the world in recent years. This growth has caused a significant increase in waste from this industry, especially of wastewater. Although there has been an increase in wastewater treatment, there is a lack of useful technologies for the treatment of wastewater from the pork industry. Swine farms generate high amounts of organic pollution, with large amounts of nitrogen and phosphorus with final destination into water bodies. Sadly, little attention has been devoted to animal wastes, which are currently treated in simple systems, such as stabilization ponds or just discharged to the environment without previous treatment. This uncontrolled release of swine wastewater is a major cause of eutrophication processes. Among the possible treatments, phyco-remediation seems to be a sustainable and environmentally friendly option of removing compounds from wastewater such as nitrogen, phosphorus, and some metal ions. Several studies have demonstrated the feasibility of treating swine wastewater using different microalgae species. Nevertheless, the practicability of applying this procedure at pilot-scale has not been explored before as an integrated process. This work presents an overview of the technological applications of microalgae for the treatment of wastewater from swine farms and the by-products (pigments, polysaccharides, lipids, proteins) and services of commercial interest (biodiesel, biohydrogen, bioelectricity, biogas) generated during this process. Furthermore, the environmental benefits while applying microalgae technologies are discussed.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - J Saúl García-Perez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, C.P. 45138, Zapopan, Jalisco, Mexico
| | | | | | - Samson Afewerki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Damiá Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain; Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003, Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Hafiz N M Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | | |
Collapse
|
24
|
Kim HJ, Won CH, Kim HW. Optimized Pretreatment of Non-Thermal Plasma for Advanced Sewage Oxidation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7694. [PMID: 33096880 PMCID: PMC7589952 DOI: 10.3390/ijerph17207694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 10/17/2020] [Indexed: 12/18/2022]
Abstract
This study investigates how the non-thermal plasma (NTP) process leads to advanced oxidation of sewage using response surface methodology. For environmentally viable and efficient operation of the NTP process, temperature and contact time were selected as two important independent variables. Their impacts on the performance were tested following an experimental design to figure out optimal operating conditions. Based on obtained treatment efficiency, statistically optimized conditions were derived by using an approach adapting the central composite design. Results show that coupling 40 °C of temperature and 4 h of contact time demonstrate optimal performance for total chemical oxygen demand (TCOD, 59%) and total suspended solids (85%), respectively. This implies that NTP may present efficient particulate destruction leading to organic solids dissolution. Statistical analysis reveals that the contact time shows more significant dependency than the temperature on the advanced oxidation of TCOD, possibly due to dissolved organic material. For total nitrogen removal, on the contrary, the optimal efficiency was strongly related to the higher temperature (~68 °C). This work provides an inroad to considering how NTP can optimally contribute to better oxidation of multiple pollutants.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Soil Environment Research Center, Department of Environmental Engineering, Division of Civil, Environmental, Mineral Resource and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Korea; (H.-J.K.); (C.-H.W.)
| | - Chan-Hee Won
- Soil Environment Research Center, Department of Environmental Engineering, Division of Civil, Environmental, Mineral Resource and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Korea; (H.-J.K.); (C.-H.W.)
| | - Hyun-Woo Kim
- Soil Environment Research Center, Department of Environmental Engineering, Division of Civil, Environmental, Mineral Resource and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Korea; (H.-J.K.); (C.-H.W.)
- Department of Environment and Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Korea
| |
Collapse
|
25
|
Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. SUSTAINABILITY 2020. [DOI: 10.3390/su12187538] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The abatement of nutrient compounds from aqueous waste and wastewater is currently a priority issue. Indeed, the uncontrolled discharge of high levels of nutrients into water bodies causes serious deteriorations of environmental quality. On the other hand, the increasing request of nutrient compounds for agronomic utilizations makes it strictly necessary to identify technologies able to recover the nutrients from wastewater streams so as to avoid the consumption of natural resources. In this regard, the removal and recovery of nitrogen and phosphorus from aqueous waste and wastewater as struvite (MgNH4PO4·6H2O) represents an attractive approach. Indeed, through the struvite precipitation it is possible to effectively remove the ammonium and phosphate content of many types of wastewater and to produce a solid compound, with only a trace of impurities. This precipitate, due to its chemical characteristics, represents a valuable multi-nutrients slow release fertilizer for vegetables and plants growth. For these reasons, the struvite precipitation technology constantly progresses on several aspects of the process. This manuscript provides a comprehensive review on the recent developments in this technology for the removal and recovery of nutrients from aqueous waste and wastewater. The theoretical background, the parameters, and the operating conditions affecting the process evolution are initially presented. After that, the paper focuses on the reagents exploitable to promote the process performance, with particular regard to unconventional low-cost compounds. In addition, the development of reactors configurations, the main technologies implemented on field scale, as well as the recent works on the use of struvite in agronomic practices are presented.
Collapse
|
26
|
Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: A Short Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12124971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the most promising systems to treat swine wastewater is air stripping. This system simultaneously recovers nitrogen salts, to be used as fertiliser, and reduces the organic pollutant load in the effluents of swine breeding farms. Several reviews have discussed the air stripping as a treatment for many types of industrial wastewater or nitrogen-rich digestate (the liquid effluent derived from the anaerobic digestion plants) for the stripping/recovery of nutrients. However, reviews about the use of air stripping as treatment for raw or anaerobically digested swine wastewater are not available in literature. To fill this gap, this study: (i) Summarises the experiences of air stripping for recovery of ammonium salts from both raw and digested swine wastewater; and (ii) compares air stripping efficiency under different operational conditions. Moreover, combined systems including air stripping (such as struvite crystallisation, chemical precipitation, microwave radiation) have been compared. These comparisons have shown that air stripping of raw and digested swine wastewater fits well the concept of bio-refinery, because this system allows the sustainable management of the piggery effluent by extracting value-added compounds, by-products, and/or energy from wastewater. On the other hand, air stripping of raw and digested swine wastewater has not been extensively studied and more investigations should be carried out.
Collapse
|
27
|
Rahimi S, Modin O, Mijakovic I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol Adv 2020; 43:107570. [PMID: 32531318 DOI: 10.1016/j.biotechadv.2020.107570] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022]
Abstract
Water contamination is a growing environmental issue. Several harmful effects on human health and the environment are attributed to nitrogen contamination of water sources. Consequently, many countries have strict regulations on nitrogen compound concentrations in wastewater effluents. Wastewater treatment is carried out using energy- and cost-intensive biological processes, which convert nitrogen compounds into innocuous dinitrogen gas. On the other hand, nitrogen is also an essential nutrient. Artificial fertilizers are produced by fixing dinitrogen gas from the atmosphere, in an energy-intensive chemical process. Ideally, we should be able to spend less energy and chemicals to remove nitrogen from wastewater and instead recover a fraction of it for use in fertilizers and similar applications. In this review, we present an overview of various technologies of biological nitrogen removal including nitrification, denitrification, anaerobic ammonium oxidation (anammox), as well as bioelectrochemical systems and microalgal growth for nitrogen recovery. We highlighted the nitrogen removal efficiency of these systems at different temperatures and operating conditions. The advantages, practical challenges, and potential for nitrogen recovery of different treatment methods are discussed.
Collapse
Affiliation(s)
- Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
28
|
Removal of Ammonium from Swine Wastewater Using Synthesized Zeolite from Fly Ash. SUSTAINABILITY 2020. [DOI: 10.3390/su12083423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Synthetic zeolites with pretreated fly ash as a raw material were used to remove ammonium from wastewater using a hydrothermal method in this study. Two pretreatment methods of fly ash were used to compare the ammonium removal of zeolites: water-washing and pickling. In addition, the effects of several factors including the time, temperature, pH, adsorbent dosage, coexisting ions and initial concentration were investigated to gain insight into the adsorption rate, behavior and mechanism of synthetic zeolites for ammonium. N2 adsorption/desorption isotherms showed that the synthetic zeolite was a mesoporous material with a higher specific area (13.05 m2/g) than the values for raw fly ash (0.34 m2/g). The X-ray diffraction result suggested that the synthetic products mainly belonged to zeolite P and Y. The adsorption kinetic data fitted well with a pseudo-second-order model. The maximum ammonium adsorption capacity was 32.16 mg/g. The synthetic zeolites were also applied to adsorb the ammonium from real swine wastewater. The ammonium removal efficiencies in raw swine wastewater and effluent from the biochemical unit were 64.34% and 79.61%, respectively, which indicated that the synthetic zeolites have a good application for real ammonium wastewater.
Collapse
|
29
|
Removal of chemical oxygen demand and ammonia nitrogen from lead smelting wastewater with high salts content using electrochemical oxidation combined with coagulation–flocculation treatment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116233] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Cao L, Keener H, Huang Z, Liu Y, Ruan R, Xu F. Effects of temperature and inoculation ratio on methane production and nutrient solubility of swine manure anaerobic digestion. BIORESOURCE TECHNOLOGY 2020; 299:122552. [PMID: 31923812 DOI: 10.1016/j.biortech.2019.122552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the effects of temperature and volatile solids (VS) ratio of feedstock to inoculum (F/I ratio) on methane (CH4) production and the solubility of nitrogen (N), phosphorus (P), cooper (Cu), and Zinc (Zn) after anaerobic digestion (AD) of swine manure. The highest cumulative CH4 yield of 470 L/kgVSfeed was obtained with F/I ratios of 2.0 and 3.0 with mesophilic (37 °C) temperature, and methane production rate decreased with the increase of F/I ratio. As F/I ratio increased from 0.5 to 4.0, the lag phase for methane production increased from 1.02 days to 13.52 days, indicating an initial inhibition at high F/I ratios. AD increased the concentrations of ammonia, Cu and Zn in the AD effluent supernatant, while decreased total and water extractive P concentrations. The changes of ammonia, Cu, Zn, and P concentrations were more significant with the increase of F/I ratio.
Collapse
Affiliation(s)
- Leipeng Cao
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Food, Agricultural and Biological Engineering, Ohio State University, OH 44691, USA; State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Harold Keener
- Department of Food, Agricultural and Biological Engineering, Ohio State University, OH 44691, USA
| | - Zhenghua Huang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Roger Ruan
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Fuqing Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Food, Agricultural and Biological Engineering, Ohio State University, OH 44691, USA.
| |
Collapse
|
31
|
Zangarini S, Pepè Sciarria T, Tambone F, Adani F. Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5730-5743. [PMID: 31919818 DOI: 10.1007/s11356-019-07542-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Phosphorus is an essential element in the food production chain, even though it is a non-renewable and limited natural resource, which is going to run out soon. However, it is also a pollutant if massively introduced into soil and water ecosystems. This study focuses on the current alternative low-cost technologies for phosphorus recovery from livestock effluents. Recovering phosphorus from these wastewaters is considered a big challenge due to the high phosphorus concentration (between 478 and 1756 mg L-1) and solids content (> 2-6% of total solids). In particular, the methods discussed in this study are (i) magnesium-based crystallization (struvite synthesis), (ii) calcium-based crystallization, (iii) electrocoagulation and (iv) biochar production, which differ among them for some advantages and disadvantages. According to the data collected, struvite crystallization achieves the highest phosphorus removal (> 95%), even when combined with the use of seawater bittern (a by-product of sea salt processing) instead of magnesium chloride pure salt as the magnesium source. Moreover, the crystallizer technology used for struvite precipitation has already been tested in wastewater treatment plants, and data reported in this review showed the feasibility of this technology for use with high total solids (> 5%) livestock manure. Furthermore, economic and energetic analyses here reported show that struvite crystallization is the most practicable among the low-cost phosphorus recovery technologies for treating livestock effluents.
Collapse
Affiliation(s)
- Sara Zangarini
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy
| | - Tommy Pepè Sciarria
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy.
| | - Fulvia Tambone
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy
| |
Collapse
|
32
|
Ammonium removal characteristics of heterotrophic nitrifying bacterium Pseudomonas stutzeri GEP-01 with potential for treatment of ammonium-rich wastewater. Bioprocess Biosyst Eng 2020; 43:959-969. [DOI: 10.1007/s00449-020-02292-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/14/2020] [Indexed: 01/19/2023]
|
33
|
Nan L, Yingying L, Jixiang L, Dujuan O, Wenjuan W. Study on the removal of high contents of ammonium from piggery wastewater by clinoptilolite and the corresponding mechanisms. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn this study, a clinoptilolite was applied to remove ammonium from piggery wastewater. The performance of ammonium removal and the correspondingly mechanisms were discussed. Under the optimal conditions of clinoptilolite dosage of 12 g/L, solution pH value of 8.3, shaking speed of 280 rpm and contact time of 55 min obtained by using response surface methodology (RSM), 19.7 mg of ammonium can be adsorbed onto 1 g of clinoptilolite, which was declined when metal cations were presented in the piggery wastewater. The ammonium adsorption process by the clinoptilolite can be well fitted by Langmuir isotherm with a spontaneous nature and pseudo–second–order kinetics model. Furthermore, column study showed that to some extent, the increased flow rate was beneficial to the removal of ammonium, and the ammonium adsorption capacity of clinoptilolite in column study was much higher than those in batch study.
Collapse
Affiliation(s)
- Liu Nan
- Environmental Pollution Control and Ecological Restoration Henan Collaborative Innovation Center, Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou450001, China
| | - Li Yingying
- Environmental Pollution Control and Ecological Restoration Henan Collaborative Innovation Center, Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou450001, China
| | - Li Jixiang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201203, China
| | - Ouyang Dujuan
- Environmental Pollution Control and Ecological Restoration Henan Collaborative Innovation Center, Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou450001, China
| | - Wang Wenjuan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201203, China
| |
Collapse
|
34
|
Cao L, Li Z, Xiang S, Huang Z, Ruan R, Liu Y. Preparation and characteristics of bentonite-zeolite adsorbent and its application in swine wastewater. BIORESOURCE TECHNOLOGY 2019; 284:448-455. [PMID: 30981197 DOI: 10.1016/j.biortech.2019.03.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
The preparation of bentonite-zeolite (BZ) adsorbent using bentonite, aluminate, and rice husk was conducted. The adsorption experiment was performed for the removal of Cu2+ and Zn2+ from aqueous solution in single and binary systems. Results showed that gasification of rice husk could effectively improve the specific surface area and pore volume. The optimum pH for Cu2+ and Zn2+ adsorption on BZ was pH 5.0. The pseudo-first order kinetic and Langmuir isotherm model of BZ were the optimal model for Cu2+ and Zn2+. According to Langmuir isotherm model, the maximum adsorption capacity value (qm) was 16.39 and 12.72 mg·g-1 for Cu2+ and Zn2+, respectively. The adsorption affinity order of BZ in the binary solution was Cu2+ > Zn2+. NH4+-N concentration over 500 mg·L-1 significantly affected the adsorption capacity of BZ (P < 0.05). The adsorption capacity of BZ for Cu2+ and Zn2+ was higher than that artificial zeolite (AZ) and bentonite in SW.
Collapse
Affiliation(s)
- Leipeng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Zihan Li
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Shuyu Xiang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Zhenghua Huang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Roger Ruan
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Paul 55108, USA
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
35
|
The Influence of Alkalization and Temperature on Ammonia Recovery from Cow Manure and the Chemical Properties of the Effluents. SUSTAINABILITY 2019. [DOI: 10.3390/su11082441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Manure is a substantial source of ammonia volatilization into the atmosphere before and after soil application. The purpose of the study was to investigate the effects of temperature and alkalization treatments on the release of ammonia and ammonia recovery (AR) from cow manure and to characterize the chemical properties of the resultant effluents. In a closed glass reactor, 100 g of fresh cow manure was mixed with 100 mL of deionized water and the mixture was treated with various volume of KOH to increase the manure pH to 7, 9, and 12. Ammonia was distilled from the mixture at temperatures of 75, 85, 95, and 100 °C for a maximum of 5 h. Ammonia was received as diluted boric and sulfuric acids. Results indicated that the highest ammonia recovery was 86.3% and 90.2%, which were achieved at a pH of 12 and temperatures of 100 and 95 °C, respectively. The recovered ammonia in boric acid was higher than in sulfuric acid, except at a pH of 12 and temperatures of 95 and 100 °C. The effluents, after ammonia was removed, showed that the variation in pH ranged between 6.30 and 9.38. The electrical conductivity ranged between 4.5 and 9. (dS m−1) and total potassium ranged between 9.4 and 57.2 mg kg−1.
Collapse
|