1
|
Ladeira C, Møller P, Giovannelli L, Gajski G, Haveric A, Bankoglu EE, Azqueta A, Gerić M, Stopper H, Cabêda J, Tonin FS, Collins A. The Comet Assay as a Tool in Human Biomonitoring Studies of Environmental and Occupational Exposure to Chemicals-A Systematic Scoping Review. TOXICS 2024; 12:270. [PMID: 38668493 PMCID: PMC11054096 DOI: 10.3390/toxics12040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
Biomonitoring of human populations exposed to chemical substances that can act as potential mutagens or carcinogens, may enable the detection of damage and early disease prevention. In recent years, the comet assay has become an important tool for assessing DNA damage, both in environmental and occupational exposure contexts. To evidence the role of the comet assay in human biomonitoring, we have analysed original research studies of environmental or occupational exposure that used the comet assay in their assessments, following the PRISMA-ScR method (preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews). Groups of chemicals were designated according to a broad classification, and the results obtained from over 300 original studies (n = 123 on air pollutants, n = 14 on anaesthetics, n = 18 on antineoplastic drugs, n = 57 on heavy metals, n = 59 on pesticides, and n = 49 on solvents) showed overall higher values of DNA strand breaks in the exposed subjects in comparison with the unexposed. In summary, our systematic scoping review strengthens the relevance of the use of the comet assay in assessing DNA damage in human biomonitoring studies.
Collapse
Affiliation(s)
- Carina Ladeira
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, 1172 Copenhagen, Denmark;
| | - Lisa Giovannelli
- Department NEUROFARBA, Section Pharmacology and Toxicology, University of Florence, 50121 Florence, Italy;
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (G.G.); (M.G.)
| | - Anja Haveric
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany; (E.E.B.); (H.S.)
| | - Amaya Azqueta
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain;
| | - Marko Gerić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (G.G.); (M.G.)
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany; (E.E.B.); (H.S.)
| | - José Cabêda
- Guarda Nacional Republicana, Destacamento Territorial de Vila Franca de Xira, Núcleo de Proteção Ambiental, 1500-124 Lisbon, Portugal;
| | - Fernanda S. Tonin
- Pharmaceutical Care Research Group, Universidad de Granada, 18012 Granada, Spain;
| | - Andrew Collins
- Department of Nutrition, University of Oslo, 0316 Oslo, Norway;
| |
Collapse
|
2
|
Sapbamrer R, Sittitoon N, Thongtip S, Chaipin E, Sutalangka C, Chaiut W, La-up A, Thirarattanasunthon P, Thammachai A, Suwannakul B, Sangkarit N, Kitro A, Panumasvivat J. Acute health symptoms related to perception and practice of pesticides use among farmers from all regions of Thailand. Front Public Health 2024; 11:1296082. [PMID: 38259756 PMCID: PMC10800609 DOI: 10.3389/fpubh.2023.1296082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Occupational exposure to pesticides may cause acute health effects for farmers and agricultural workers. Therefore, this study aims to investigate the prevalence of poisoning symptoms related pesticide exposure among farmers from all regions of Thailand, as well as factors linked to poisoning symptoms of neurological and neuromuscular systems, the respiratory system, and eye and skin disorders. Methods A cross sectional study was conducted in 4,035 farmers who lived in four regions of Thailand. The samples were chosen using stratified random sampling, with 746 for the Central region, 2,065 for the North-East, 586 for the North, and 638 for the South. Results The results found that the highest prevalence of poisoning symptoms was found in association with neurological and neuromuscular systems (75%), followed by the respiratory system (60.4%), the eyes (41.2%), and skin (14.8%). The most prevalent symptoms were muscle pain (49%) for neurological and neuromuscular symptoms, burning nose (37.6%) for respiratory symptoms, itchy eyes (26.3%) for eye symptoms, and rashes (14.4%) for skin symptoms. The remarkable findings were that types of pesticide use, task on the farm, types of pesticide sprayers, and perception are the crucial factors affecting all poisoning symptoms. Discussion The findings are also beneficial to the Thai government and other relevant organizations for launching measures, campaigns, or interventions to lower modifiable risk factors, resulting in reducing health risks associated with pesticide exposure.
Collapse
Affiliation(s)
- Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nalin Sittitoon
- School of Environmental Health, Institute of Public Health, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sakesun Thongtip
- Department of Environmental Health, School of Public Health, University of Phayao, Phayao, Thailand
| | - Eakasit Chaipin
- Department of Public Health, Faculty of Science, Rajabhat Lampang University, Lampang, Thailand
| | - Chatchada Sutalangka
- Department of Physical Therapy, School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Wilawan Chaiut
- Department of Physical Therapy, School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Aroon La-up
- Nakhonsawan Campus, Mahidol University, Nakhon Sawan, Thailand
| | | | - Ajchamon Thammachai
- Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Boonsita Suwannakul
- Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Noppharath Sangkarit
- Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Amornphat Kitro
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jinjuta Panumasvivat
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Ataei M, Abdollahi M. A systematic review of mechanistic studies on the relationship between pesticide exposure and cancer induction. Toxicol Appl Pharmacol 2022; 456:116280. [DOI: 10.1016/j.taap.2022.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 01/01/2023]
|
4
|
Thammachai A, Sapbamrer R, Rohitrattana J, Tongprasert S, Hongsibsong S, Wangsan K. Differences in Knowledge, Awareness, Practice, and Health Symptoms in Farmers Who Applied Organophosphates and Pyrethroids on Farms. Front Public Health 2022; 10:802810. [PMID: 35186843 PMCID: PMC8847372 DOI: 10.3389/fpubh.2022.802810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/10/2022] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE This cross-sectional study aimed to examine farmers' knowledge, awareness, practices regarding pesticide use, and prevalence of health symptoms related to pesticides exposure among farmers who applied organophosphates (OP) and pyrethroids (PY). METHODS Data regarding demographic variables and health symptoms pertinent to pesticide use was collected from 67 farmers who applied OP and 50 farmers who applied PY using interviews from January to March 2021. RESULTS The farmers who applied OP had lower knowledge, awareness, and prevention practices regarding pesticide use than those who applied PY. After adjustment of covariate variables, the farmers who applied OP had a significantly higher prevalence of respiratory conditions (OR = 8.29 for chest pain, OR = 6.98 for chest tightness, OR = 27.54 for dry throat, and OR = 5.91 for cough), neurological symptoms (OR = 10.62 for fatigue and OR = 6.76 for paresthesia), and neurobehavioral symptoms (OR = 13.84 for poor concentration, OR = 3.75 for short term memory, and OR = 8.99 for insomnia) related to pesticide exposure than those who applied PY. CONCLUSION Our findings suggest that OP had a more adverse effect on human health than PY, resulting in a higher prevalence of pesticide-related symptoms. The outcomes of this study have the benefit of providing vital information for all stakeholders with regard to the implementation of safe practices in the utilization of personal protective equipment (PPE) and pesticide use in a health intervention and health promotion program.
Collapse
Affiliation(s)
- Ajchamon Thammachai
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Juthasiri Rohitrattana
- Center for Safety, Health and Environment of Chulalongkorn University, Bangkok, Thailand
| | - Siam Tongprasert
- Department of Rehabilitation Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kampanat Wangsan
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Santos ADSE, Hauser-Davis RA, Rocha RCC, Saint'Pierre TD, Meyer A. Metal exposure and oxidative stress biomarkers in a Brazilian agricultural community. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2021; 77:611-620. [PMID: 34554048 DOI: 10.1080/19338244.2021.1980759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We examined the association between exposure to metals, metalloids, and oxidative stress biomarkers among rural community residents in Brazil. Multiple linear regression was used to evaluate associations between serum metal and metalloid concentrations and blood oxidative stress biomarkers, adjusting for sex, age, education, smoking, and alcohol use. After adjustment for covariates, glutathione peroxidase activity (GPx) was inversely and significantly associated with an increase in serum arsenic (As) levels. Positive and significant associations were seen between elevated glutathione reductase (GR) activity and serum cadmium (Cd), barium (Ba), and lead (Pb) concentrations. In addition, we observed a significant increase in malondialdehyde (MDA) levels in association with an increase in Ba levels. These findings suggest that toxic metals and metalloids such as As, Ba, Cd, and Pb alter antioxidant enzyme activities. In addition, Ba seems to promote lipid peroxidation.
Collapse
Affiliation(s)
- Aline de Souza Espindola Santos
- Occupational and Environmental Health Branch, Public Health Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Tatiana D Saint'Pierre
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Armando Meyer
- Occupational and Environmental Health Branch, Public Health Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Djekkoun N, Lalau JD, Bach V, Depeint F, Khorsi-Cauet H. Chronic oral exposure to pesticides and their consequences on metabolic regulation: role of the microbiota. Eur J Nutr 2021; 60:4131-4149. [PMID: 33837455 DOI: 10.1007/s00394-021-02548-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Pesticides have long been used in agriculture and household treatments. Pesticide residues can be found in biological samples for both the agriculture workers through direct exposure but also to the general population by indirect exposure. There is also evidence of pesticide contamination in utero and trans-generational impacts. Whilst acute exposure to pesticides has long been associated with endocrine perturbations, chronic exposure with low doses also increases the prevalence of metabolic disorders such as obesity or type 2 diabetes. Dysmetabolism is a low-grade inflammation disorder and as such the microbiota plays a role in its etiology. It is therefore important to fully understand the role of microbiota on the genesis of subsequent health effects. The digestive tract and mostly microbiota are the first organs of contact after oral exposure. The objective of this review is thus to better understand mechanisms that link pesticide exposure, dysmetabolism and microbiota. One of the key outcomes on the microbiota is the reduced Bacteroidetes and increased Firmicutes phyla, reflecting both pesticide exposure and risk factors of dysmetabolism. Other bacterial genders and metabolic activities are also involved. As for most pathologies impacting microbiota (including inflammatory disorders), the role of prebiotics can be suggested as a prevention strategy and some preliminary evidence reinforces this axis.
Collapse
Affiliation(s)
- Narimane Djekkoun
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France
| | - Jean-Daniel Lalau
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France.,Service Endocrinologie, Diabétologie, Nutrition, CHU Amiens Picardie, Site Nord, 80054, Amiens cedex 1, France
| | - Véronique Bach
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France
| | - Flore Depeint
- Unité Transformations & Agroressources ULR7519, Institut Polytechnique UniLaSalle-Université d'Artois, 60026, Beauvais, France
| | - Hafida Khorsi-Cauet
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France.
| |
Collapse
|
7
|
Abdel-Shafy EA. Antioxidant status in pesticides-exposed agricultural workers. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Curl CL, Spivak M, Phinney R, Montrose L. Synthetic Pesticides and Health in Vulnerable Populations: Agricultural Workers. Curr Environ Health Rep 2020; 7:13-29. [PMID: 31960353 DOI: 10.1007/s40572-020-00266-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize epidemiological literature published between May 15, 2018, and May 14, 2019, that examines the relationship between exposure to synthetic pesticides and health of agricultural workers. RECENT FINDINGS Current research suggests that exposure to synthetic pesticides may be associated with adverse health outcomes. Agricultural workers represent a potentially vulnerable population, due to a combination of unique social and cultural risk factors as well as exposure to hazards inherent in agricultural work. Pesticide exposure among agricultural workers has been linked to certain cancers, DNA damage, oxidative stress, neurological disorders, and respiratory, metabolic, and thyroid effects. This review describes literature suggesting that agricultural workers exposed to synthetic pesticides are at an increased risk of certain cancers and neurological disorders. Recent research on respiratory effects is sparse, and more research is warranted regarding DNA damage, oxidative stress, metabolic outcomes, and thyroid effects.
Collapse
Affiliation(s)
- Cynthia L Curl
- Center for Excellence in Environmental Health and Safety, Boise State University, 1910 University Dr., Boise, ID, 83725, USA.
| | - Meredith Spivak
- Center for Excellence in Environmental Health and Safety, Boise State University, 1910 University Dr., Boise, ID, 83725, USA
| | - Rachel Phinney
- Center for Excellence in Environmental Health and Safety, Boise State University, 1910 University Dr., Boise, ID, 83725, USA
| | - Luke Montrose
- Center for Excellence in Environmental Health and Safety, Boise State University, 1910 University Dr., Boise, ID, 83725, USA
| |
Collapse
|
9
|
Effect of Occupational Exposure to Herbicides on Oxidative Stress in Sprayers. Saf Health Work 2020; 12:127-132. [PMID: 33732538 PMCID: PMC7940442 DOI: 10.1016/j.shaw.2020.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/21/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
Background Herbicides such as glyphosate, paraquat, and 2,4-dichlorophenoxyacetic acid have been reported to cause adverse side effects through production of reactive oxygen species. However, there were no data representing the adverse effects of a mixture herbicide usage in farmers, especially the changes in oxidative marker and antioxidant defense. This study aimed to determine the urinary malondialdehyde (MDA) and glutathione (GSH) level in farmers using mixed herbicides. Methods Ninety-three farmers were recruited, and two spot urine samples (before and after work) were collected. The urinary MDA level was evaluated by thiobarbituric acid reactive substance assay, and the urinary GSH level was determined using the enzymatic recycling method. Results Sixty-two percent of the participants were men, and 59% of the participants worked in a farm for 20–40 years. The common combinations of herbicide usage were glyphosate with 2,4-dichlorophenoxyacetic acid (36.5%). There was no significant difference between pre- and post-work urinary MDA and GSH levels among the 3 groups of herbicides. However, the urinary MDA levels in farmers using the combination of glyphosate and paraquat were significantly higher than those found in farmers using glyphosate alone. The associated factors with changes in MDA levels found that the exposure intensity index (B = 0.154), the cumulative exposure intensity index (B = 0.023), and wearing gloves while working (B = −2.347) were found to be significantly associated with MDA level. Conclusion The results suggest that the combined use of glyphosate and paraquat caused a significant increase in urinary MDA levels. Moreover, intensity of exposure to herbicide and wearing gloves were associated with the level of MDA.
Collapse
|
10
|
Ochratoxin A exposure causes meiotic failure and oocyte deterioration in mice. Theriogenology 2019; 148:236-248. [PMID: 31735432 DOI: 10.1016/j.theriogenology.2019.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 01/10/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by fungi and occurs naturally in various foodstuffs and some animal-derived products. This mycotoxin can cause deleterious effects on kidney, liver, central nervous, and immune system. However, potential mechanisms regarding how OTA disrupts the mammalian oocyte quality have not been clearly defined. In this study, we proved that OTA weakened oocyte quality by impairing oocyte meiotic maturation. We found that female mice treated with 1 mg/kg body weight OTA by intraperitoneal (IP) injection for 7 days displayed ovarian dysfunction and decreased offspring number. We also found that OTA treatment at 7.5 μM for 16 h decreased the rate of first polar body extrusion by disrupting spindle and chromosome alignment. In addition, OTA caused oxidative stress by inducing the accumulation of reactive oxygen species and consumption of antioxidants during meiosis, consequently resulting in oocytes apoptosis. Mitochondrial damage and insufficient energy supply were also observed in OTA-pretreated oocytes, which led to the meiotic failure of oocyte. Moreover, the epigenetic modifications were also affected, showing with altered 5 mC, 5hmC, H3K9ac, and H3K9me3 levels in mice oocytes. In summary, these results showed that OTA could decrease oocyte maturation and fertility by inducing oxidative stress and epigenetic changes.
Collapse
|
11
|
León J, Sáenz JM, Artacho-Cordón F, Fernández MF, Martin-Olmedo P, Salamanca-Fernández E, Gómez-Peña C, Olea N, Arrebola JP. Contribution of sociodemographic, occupational, lifestyle and dietary characteristics to the oxidative stress microenvironment in adipose tissue. ENVIRONMENTAL RESEARCH 2019; 175:52-62. [PMID: 31102949 DOI: 10.1016/j.envres.2019.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 05/20/2023]
Abstract
The present study was conceived on the basis of the few previous reports suggesting a potential relevance of the oxidative stress microenvironment in the adipose tissue, a biological matrix which is closely related to the development of several chronic pathologies. Thus, our aim was to describe the levels of enzymatic and non-enzymatic antioxidants and markers of oxidative damage in adipose tissue samples from a Spanish cohort, as well as their main sociodemographic, lifestyle, and dietary predictors. The study was conducted in a subsample (n = 271 adults) of GraMo cohort, recruited in Granada (Southern Spain). A face-to-face questionnaire was used to gather data regarding sociodemographic characteristics, lifestyle, dietary habits, health status, and perceived exposure to chemicals. We analyzed adipose tissue levels of lipid peroxidation (TBARS), total superoxide dismutase (SOD) activity, heme oxygenase-1 (HO-1) activity, and glutathione cycle biomarkers. Potential predictors of oxidative stress markers were assessed using stepwise multivariable linear regression analyses. SOD and TBARS levels were mainly related to sociodemographic and occupational characteristics, while the components of the glutathione cycle and HO-1 were predominantly associated with dietary habits. Men showed significantly lower levels of oxidative stress levels than women. In the regression models including only women, the use of oral contraceptive and hormonal therapy was associated with lower levels of oxidative stress, while the number of children was positively associated with increased oxidative biomarkers. Our results suggest that adipose tissue is potentially important matrix for the assessment of oxidative stress, which can be affected by specific environmental factors. These findings might be relevant for public health.
Collapse
Affiliation(s)
- Josefa León
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, Spain; CIBER en Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| | - José M Sáenz
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; University of Granada, Radiology and Physical Medicine Department, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; University of Granada, Radiology and Physical Medicine Department, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - Piedad Martin-Olmedo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Escuela Andaluza de Salud Pública, Granada, Spain
| | - Elena Salamanca-Fernández
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Escuela Andaluza de Salud Pública, Granada, Spain
| | - Celia Gómez-Peña
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Unidad de Gestión Clínica de Farmacia Hospitalaria, Hospital Universitario San Cecilio, Granada, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; University of Granada, Radiology and Physical Medicine Department, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain; Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario San Cecilio de Granada, Granada, Spain
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain; University of Granada, Department of Preventive Medicine and Public Health, Spain.
| |
Collapse
|