1
|
Shaghaleh H, Alhaj Hamoud Y, Sun Q. Effective and green in-situ remediation strategies based on TEMPO-nanocellulose/lignin/MIL-100(Fe) hydrogel nanocomposite adsorbent for lead and copper in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124623. [PMID: 39069244 DOI: 10.1016/j.envpol.2024.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Hydrogel adsorbents are promising tools for reducing heavy metals' bioavailability in contaminated soil. However, their practical feasibility remains limited by the low stability, inefficient removal efficiency, and potential secondary pollution. Optimizing the adsorption operation and the functional properties of hydrogel adsorbents could eliminate this method's drawbacks. Herein, three innovative in-situ remediation strategies for Pb/Cu-contaminated soil were adopted based on the concept of novel TEMPO-cellulose (TO-NFCs)/lignin/acrylamide@MIL-100(Fe) nanocomposite hydrogel adsorbent (NCLMH). Characteristic analyses revealed ideal Pb/Cu adsorption mechanisms by swelling, complexation, electrical attraction, and ion exchange via carboxyl/hydroxyl/carbonyl groups and unsaturated Fe(III) sites on ANCMH besides FeOOH formation. The highest maximum theoretical adsorption capacities of Pb(II) and Cu(II) on ANCMH were 416.39 and 133.98 mg/g, under pH 6.5, governed by pseudo-second-order/Freundlich models. Greenhouse pot experiments with contaminated soils amended with two-depth layers of 0.5% NCLMHs (SA@NCLMH) displayed a decline in Pb and Cu bioavailability up to 85.9% and 74.5% within 45 d. Soil column studies simulating continuous water soil flushing coupled with NCLMH layers, instead of conventional extractant fluids, and connected to NCLMH-sand column as purification unit (CF@NCLMH) achieved higher removal rates for Pb, and Cu of 89.5% and 77.2% within 24 h. Alternatively, conducting multiple-pulse soil flushing mode (MF@NCLMH) gained the highest Pb and Cu removal of 96.5% and 85.4%, as the water flushing-stop flux events allowed adequate water movement/residence period, promoting Pb/Cu desorption-adsorption from soil to NCLMH. Also, the NCLMH-sand column conducting and easy separation of the stable/reusable NCLMHs prevented the potential secondary pollution. Interestingly, the three remediated soils reached the corresponding regulation of the permissible limits for Pb and Cu residential scenarios in medium-to-heavily agricultural polluted soils, alleviating the Pb/Cu bioaccumulation and phytotoxicity symptoms in cultivated wheat, especially after MF@NCLMH treatment. This study introduces promising alternative remediation strategies with high sustainability and feasibility in acidic-to-neutral heavy metal-contaminated agricultural soil.
Collapse
Affiliation(s)
- Hiba Shaghaleh
- Key Lab of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yousef Alhaj Hamoud
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Qin Sun
- Key Lab of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
2
|
Tan A, Wang H, Zhang H, Zhang L, Yao H, Chen Z. Reduction of Cr(VI) by Bacillus toyonensis LBA36 and its effect on radish seedlings under Cr(VI) stress. PeerJ 2024; 12:e18001. [PMID: 39346031 PMCID: PMC11430171 DOI: 10.7717/peerj.18001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 10/01/2024] Open
Abstract
Chromium, being among the most toxic heavy metals, continues to demand immediate attention in the remediation of Cr-contaminated environments. In this study, a strain of LBA36 (Bacillus toyonensis) was isolated from heavy metal contaminated soil in Luanchuan County, Luoyang City, China. The reduction and adsorption rates of LBA36 in 30 mg·L-1 Cr-containing medium were 97.95% and 8.8%, respectively. The reduction mechanism was confirmed by Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cr(VI) reduction by this strain predominantly occurred outside the cell, with hydroxyl, amide, carboxyl, C-N group, carbonyl, and sulfur carbonyl as the main reaction sites. XPS analysis revealed the presence of Cr2p1/2 and Cr2p3/2. Furthermore, the hydroponic experiment showed that the fresh weight and plant height of radish seedlings increased by 87.87% and 37.07%, respectively, after inoculation with LBA36 strain under 7 mg·L-1 Cr(VI) stress. The levels of chlorophyll, total protein, malondialdehyde, superoxide dismutase and catalase were also affected to different degrees. In conclusion, this study demonstrated the potential of microbial and phytoremediation in the treatment of heavy metal toxicity, and laid the foundation for the development of effective bioremediation methods for Cr(VI) pollution.
Collapse
Affiliation(s)
- Aobo Tan
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hui Wang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hehe Zhang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Longfei Zhang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hanyue Yao
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhi Chen
- Department of Civil and Environmental Engineering, Concordia University, Montreal, Canada
| |
Collapse
|
3
|
Tan AB, Wang H, Ji JT, Yao HY, Tang HY. Hg 2+ removal characteristics of a strain of mercury-tolerant bacteria screened from heavy metal-contaminated soil in a molybdenum-lead mining area. Int Microbiol 2024:10.1007/s10123-024-00559-x. [PMID: 39028370 DOI: 10.1007/s10123-024-00559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/19/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
In this study, the mercury-tolerant strain LTC105 was isolated from a contaminated soil sample collected from a molybdenum-lead mine in Luanchuan County, Henan Province, China. The strain was shown to be highly resistant to mercury, with a minimum inhibitory concentration (MIC) of 32 mg·L-1. After a 24-h incubation in LB medium with 10 mg·L-1 Hg2+, the removal, adsorption, and volatilization rates of Hg2+ were 97.37%, 7.3%, and 90.07%, respectively, indicating that the strain had significant influence on mercury removal. Based on the results of Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), the investigation revealed that the primary function of LTC105 was to encourage the volatilization of mercury. The LTC105 strain also showed strong tolerance to heavy metals such as Mn2+, Zn2+, and Pb2+. According to the results of the soil incubation test, the total mercury removal rate of the LTC105 inoculation increased by 16.34% when the initial mercury concentration of the soil was 100 mg·L-1 and by 62.28% when the initial mercury concentration of the soil was 50 mg·kg-1. These findings indicate that LTC105 has certain bioremediation ability for Hg-contaminated soil and is a suitable candidate strain for microbial remediation of heavy metal-contaminated soil in mining areas.
Collapse
Affiliation(s)
- Ao-Bo Tan
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Hui Wang
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Jiang-Tao Ji
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Han-Yue Yao
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Hong-Yan Tang
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| |
Collapse
|
4
|
Visentin C, Braun AB, Reginatto C, Cecchin I, Vanzetto GV, Thomé A. Are contaminated soil and groundwater remediation with nanoscale zero-valent iron sustainable? An analysis of case studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124167. [PMID: 38754689 DOI: 10.1016/j.envpol.2024.124167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Nanoscale zero valent iron (nZVI) is globally the main nanomaterial used in contaminated site remediation. This study aims to evaluate the sustainability of using nZVI in the nanoremediation of contaminated sites and to determine the factors that affect the sustainability of the use of nZVI in remediation. Five case studies of nZVI use on a pilot scale were selected. Life cycle analysis tools were used to evaluate environmental, economic, social impacts, and sustainability. The functional unit of the life cycle analyses was 1.00 m3 of remediated soil and groundwater. Case study of Brazil was the least sustainable, while case study of United States was the most sustainable. Only the modification of the functional unit results in variations in the sustainability index. Different factors influence the sustainability of nZVI in remediation, the main factor being the amount of nZVI used in the processes. Finally, this work contributes significantly to the state-of-the-art sustainable use of nZVI in remediation. This is a pioneering study in the detailed and comprehensive assessment of the sustainability of the use of nZVI in remediation. Through the analysis of case studies, it is possible to determine the main factors that influence the sustainability of the nZVI remediation life cycle.
Collapse
Affiliation(s)
- Caroline Visentin
- Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900, Passo Fundo, RS, Brazil.
| | - Adeli Beatriz Braun
- Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900, Passo Fundo, RS, Brazil.
| | - Cleomar Reginatto
- Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900, Passo Fundo, RS, Brazil.
| | - Iziquiel Cecchin
- Environmental Engineering Undergraduate Course, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900, Passo Fundo, RS, Brazil.
| | - Guilherme Victor Vanzetto
- Agronomy Course, Educational Development Institute, Avenue Rui Barbosa, 103 - Petropolis, Zip Code 99050-120, Passo Fundo, RS, Brazil.
| | - Antônio Thomé
- Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900, Passo Fundo, RS, Brazil.
| |
Collapse
|
5
|
Souza LRR, Cicolani RS, de Freitas BES, Floriano GL, de Oliveira ML, de Oliveira Filho AGS, da Veiga MAMS, Demets GJF. Polyurethane sponges bearing cucurbituril adsorb Cr(III) and Pb(II) ions from contaminated water samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29749-29762. [PMID: 38592625 DOI: 10.1007/s11356-024-33184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Water contamination with toxic metals causes harmful effects on the environment and to human health. Although cucurbiturils have carboxyl groups in their portal that can interact with metal ions, there is a lack of studies about their use as metal adsorbent. This scenario has motivated conduction of the present study, which addresses the use of cucurbit[6]uril (CB[6]) and cucurbit[8]uril (CB[8]) for adsorbing Pb and Cr from water samples, in free forms and immobilized in poly(urethane) sponges. The adsorption kinetics revealed that CB[8] leads to faster adsorption compared to CB[6], with equilibrium achieved in 8 h for CB[8] and 48 h for CB[6] for both metals, and achieved up to 80% of decrease in metal concentration. The Langmuir isotherm model provided a better description of adsorption for Cr and Pb in CB[6] and Pb in CB[8] with a maximum concentration adsorbed of 32.47 mg g-1 for Pb in CB[6], while the Dubinin-Radushkevich model was more suitable for Cr adsorption in CB[8]. Sponges containing CB[6] and CB[8] have proven to be efficient for Pb and Cr remediation in tannery effluent samples, reducing Cr and Pb concentration by 42 and 33%, respectively. The results indicate that CB[6] and CB[8], whether used in their pure form or integrated into sponges, exhibit promising potential for efficiently adsorbing metals in aqueous contaminated environments.
Collapse
Affiliation(s)
| | - Renato Salviato Cicolani
- Departamento de Química, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | | | - Giovana Lavezo Floriano
- Departamento de Química, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Maycon Lucas de Oliveira
- Departamento de Química, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | | | | | | |
Collapse
|
6
|
Rahman S, Rahman IMM, Hasegawa H. Management of arsenic-contaminated excavated soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118943. [PMID: 37748284 DOI: 10.1016/j.jenvman.2023.118943] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Ongoing global sustainable development and underground space utilization projects have inadvertently exposed many excavated soils naturally contaminated with geogenic arsenic (As). Recent investigations have revealed that As in certain excavated soils, especially those originating from deep construction projects, has exceeded regulatory limits, threatening the environment and human health. While numerous remediation techniques exist for treating As-contaminated soil, the unique characteristics of geogenic As contamination in excavated soil require specific measures when leachable As content surpasses established regulatory limits. Consequently, several standard leaching tests have been developed globally to assess As leaching from contaminated soil. However, a comprehensive comparative analysis of these methods and their implementation in contaminated excavated soils remains lacking. Furthermore, the suitability and efficacy of most conventional and advanced techniques for remediating As-contaminated excavated soils remained unexplored. Therefore, this study critically reviews relevant literature and summarize recent research findings concerning the management and mitigation of geogenic As in naturally contaminated excavated soil. The objective of this study was to outline present status of excavated soil globally, the extent and mode of As enrichment, management and mitigation approaches for As-contaminated soil, global excavated soil recycling strategies, and relevant soil contamination countermeasure laws. Additionally, the study provides a concise overview and comparison of standard As leaching tests developed across different countries. Furthermore, this review assessed the suitability of prominent and widely accepted As remediation techniques based on their applicability, acceptability, cost-effectiveness, duration, and overall treatment efficiency. This comprehensive review contributes to a more profound comprehension of the challenges linked to geogenic As contamination in excavated soils.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Ismail M M Rahman
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima, 960-1296, Japan.
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| |
Collapse
|
7
|
Vu KA, Mulligan CN. An Overview on the Treatment of Oil Pollutants in Soil Using Synthetic and Biological Surfactant Foam and Nanoparticles. Int J Mol Sci 2023; 24:ijms24031916. [PMID: 36768251 PMCID: PMC9915329 DOI: 10.3390/ijms24031916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Oil-contaminated soil is one of the most concerning problems due to its potential damage to human, animals, and the environment. Nanoparticles have effectively been used to degrade oil pollution in soil in the lab and in the field for a long time. In recent years, surfactant foam and nanoparticles have shown high removal of oil pollutants from contaminated soil. This review provides an overview on the remediation of oil pollutants in soil using nanoparticles, surfactant foams, and nanoparticle-stabilized surfactant foams. In particular, the fate and transport of oil compounds in the soil, the interaction of nanoparticles and surfactant foam, the removal mechanisms of nanoparticles and various surfactant foams, the effect of some factors (e.g., soil characteristics and amount, nanoparticle properties, surfactant concentration) on remediation efficiency, and some advantages and disadvantages of these methods are evaluated. Different nanoparticles and surfactant foam can be effectively utilized for treating oil compounds in contaminated soil. The treatment efficiency is dependent on many factors. Thus, optimizing these factors in each scenario is required to achieve a high remediation rate while not causing negative effects on humans, animals, and the environment. In the future, more research on the soil types, operating cost, posttreatment process, and recycling and reuse of surfactants and nanoparticles need to be conducted.
Collapse
Affiliation(s)
- Kien A. Vu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Catherine N. Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
- Correspondence:
| |
Collapse
|
8
|
Bandyopadhyay S, Maiti SK. Steering restoration of coal mining degraded ecosystem to achieve sustainable development goal-13 (climate action): United Nations decade of ecosystem restoration (2021-2030). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88383-88409. [PMID: 36327066 PMCID: PMC9630816 DOI: 10.1007/s11356-022-23699-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 10/13/2022] [Indexed: 05/30/2023]
Abstract
For millennium, mining sector is a source not only of mineral extraction for industrialization, economic expansion, and urban sprawling, but also of socio-environmental concern. It, therefore, has been the central attention of the business and public policy sustainable development scheme for several years. Thus, gradually, mining industries are getting involved with the concerns such as carbon emissions mitigation and carbon accounting to govern a rhetorical shift towards "sustainable mining". However, there is scarce knowledge about how the emergence of a "green and self-sustaining" forestry reclamation strategy coupled with potential carbon sequestration capacity in degraded mining areas will be an impeccable option for achieving sustainable development goal-13 (SDG-13: climate action) and ecosystem services during United Nation decade of ecosystem restoration. This paper reviews the extent to which reforestation and sustainable land management practices that employed to enhance ecosystem carbon pool and atmospheric CO2 sequestration capacity to offset CO2 emission and SOC (soil organic carbon) losses, as consequences of coal mining, to partially mitigate global climate crisis. Moreover, future research is required on mining innovation concepts and its challenges for designing an SDG impact framework, so that it not only synergies amongst SDGs, but also trade-offs between each individual "politically legitimized post-2015 development agenda" (i.e. UNSDGs) could be depicted in a systematic way. In a developing country like India, it is also an utmost need to assess the environmental impact and economic performance of such technological innovation and its possible synergistic effect.
Collapse
Affiliation(s)
- Sneha Bandyopadhyay
- Ecological Restoration Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Subodh Kumar Maiti
- Ecological Restoration Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| |
Collapse
|
9
|
Azhar U, Ahmad H, Shafqat H, Babar M, Shahzad Munir HM, Sagir M, Arif M, Hassan A, Rachmadona N, Rajendran S, Mubashir M, Khoo KS. Remediation techniques for elimination of heavy metal pollutants from soil: A review. ENVIRONMENTAL RESEARCH 2022; 214:113918. [PMID: 35926577 DOI: 10.1016/j.envres.2022.113918] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 05/27/2023]
Abstract
Contaminated soil containing toxic metals and metalloids is found everywhere globally. As a consequence of adsorption and precipitation reactions, metals are comparatively immobile in subsurface systems. Hence remediation techniques in such contaminated sites have targeted the solid phase sources of metals such as sludges, debris, contaminated soils, or wastes. Over the last three decades, the accumulation of these toxic substances inside the soil has increased dramatically, putting the ecosystem and human health at risk. Pollution of heavy metal have posed severe impacts on human, and it affects the environment in different ways, resulting in industrial anger in many countries. Various procedures, including chemical, biological, physical, and integrated approaches, have been adopted to get rid of this type of pollution. Expenditure, timekeeping, planning challenges, and state-of-the-art gadget involvement are some drawbacks that need to be properly handled. Recently in situ metal immobilization, plant restoration, and biological methods have changed the dynamics and are considered the best solution for removing metals from soil. This review paper critically evaluates and analyzes the numerous approaches for preparing heavy metal-free soil by adopting different soil remediation methods.
Collapse
Affiliation(s)
- Umair Azhar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Huma Ahmad
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hafsa Shafqat
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Babar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hafiz Muhammad Shahzad Munir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Sagir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Arif
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Afaq Hassan
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Nova Rachmadona
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, West Java, Indonesia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda. General Velasquez, 1775, Arica, Chile
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Sun J, Zhao M, Cai B, Song X, Tang R, Huang X, Huang H, Huang J, Fan Z. Risk assessment and driving factors of trace metal(loid)s in soils of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119772. [PMID: 35843449 DOI: 10.1016/j.envpol.2022.119772] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 05/16/2023]
Abstract
Recently, with the rapid development of China's economy, the pollution of trace metal(loid)s (TMs) in soils has become increasingly severe and attracted widespread attention. Based on 1,402 published papers from 2000 to 2021, this study aimed to analyze the pollution intensity, ecological risk and driving factors for eight TMs (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in Chinese soils. Results showed that the average concentrations of eight TMs in Chinese soils all exceeded background values, and the pollution of Cd and Hg was the most serious. Based on Principal component analysis of pollution intensity and ecological risk, the priority control TMs were identified for the heavily polluted provinces. The results of Geo-detector model suggested that Urban development factors contributed most to the TM accumulation in Chinese soils. Further, spatial analysis using bivariate Moran's I indicated that industrial activities contributed most to soil TM accumulation in the middle and lower reaches of the Yangtze River, while soil TM pollution in the southwest and northwest provinces was mainly caused by mining and metal smelting. This study investigated the relationship between soil TM pollution and anthropogenic activities, thus providing a scientific basis for controlling soil TM pollution at a large-scale level.
Collapse
Affiliation(s)
- Jiaxun Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Menglu Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Boya Cai
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiaoyong Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xinmiao Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Honghui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, China
| | - Jian Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
11
|
Dutta V, Devasia J, Chauhan A, M J, L VV, Jha A, Nizam A, Lin KYA, Ghotekar S. Photocatalytic nanomaterials: Applications for remediation of toxic polycyclic aromatic hydrocarbons and green management. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
12
|
Baragaño D, Forján R, Álvarez N, Gallego JR, González A. Zero valent iron nanoparticles and organic fertilizer assisted phytoremediation in a mining soil: Arsenic and mercury accumulation and effects on the antioxidative system of Medicago sativa L. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128748. [PMID: 35405586 DOI: 10.1016/j.jhazmat.2022.128748] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Zero valent iron nanoparticles (nZVI) attract interest given their effectiveness in soil remediation. However, little attention has been given to their impacts on plants. Likewise, although fertilizers are commonly used to enhance phytoremediation, their effects on As mobilization, resulting in potential toxic effects, require further study. In this context, we examined the impact of As and Hg accumulation on the antioxidative system of Medicago sativa grown in a soil amended with organic fertilizer and/or nZVI. The experiment consisted of 60 pots. Plants were pre-grown and transferred to pots, which were withdrawn along time for monitoring purposes. As and Hg were monitored in the soil-plant system, and parameters related to oxidative stress, photosynthetic pigments, and non-protein thiol compounds (NPTs) were measured. In general, the application of nZVI immobilized As in soil and increased Hg accumulation in the plant, although it surprisingly decreased oxidative stress. Plants in nZVI-treated soil also showed an increase in NPT content in roots. In contrast, the application of the fertilizer mobilized As, thereby improving bioaccumulation factors. However, when combining fertilizer with nZVI, the As accumulation is mitigated. This observation reveals that simultaneous amendments are a promising approach for soil stabilization and the phytomanagement of As/Hg-polluted soils.
Collapse
Affiliation(s)
- D Baragaño
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain.
| | - R Forján
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain
| | - N Álvarez
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain
| | - J R Gallego
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain
| | - A González
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain
| |
Collapse
|
13
|
Sinnett D, Bray I, Baranyi G, Braubach M, Netanyanhu S. Systematic Review of the Health and Equity Impacts of Remediation and Redevelopment of Contaminated Sites. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5278. [PMID: 35564674 PMCID: PMC9100537 DOI: 10.3390/ijerph19095278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 01/13/2023]
Abstract
(1) Background: Globally there is a vast legacy of contaminated sites from past industrial, commercial and military activity, waste disposal, and mineral extraction. This review examined the extent to which the remediation of contaminated sites reduces health risks to new and existing populations. (2) Methods: Standard academic databases were searched for papers that reported on health-related outcomes in humans following remediation and redevelopment of contaminated sites. Title/abstract screening, followed by full-text screening identified sixteen papers that met the eligibility criteria. (3) Results: Most studies were set in the United States of America and reported changes in blood lead concentrations in children, following soil remediation and, in some cases, public health campaigns to reduce exposure. Two further studies examined the impacts of remediation on soil contaminated with chromium and sediments contaminated with polychlorinated biphenyls (PCBs). (4) Conclusions: Overall, the evidence suggests that remediation via removal, capping, and replacing soil, and planting vegetation is effective at reducing concentrations of lead and chromium in blood and urine in children. There is also evidence that sediment dredging can reduce PCB concentrations in umbilical cords in infants. Study designs are relatively weak and some recommendations are provided for those wishing to examine the health impacts of remediation.
Collapse
Affiliation(s)
- Danielle Sinnett
- Centre for Sustainable Planning and Environments & WHO Collaborating Centre for Healthy Urban Environments, University of the West of England, Bristol BS16 1QY, UK
| | - Isabelle Bray
- Centre for Public Health and Wellbeing & WHO Collaborating Centre for Healthy Urban Environments, University of the West of England, Bristol BS16 1QY, UK;
| | - Gergő Baranyi
- Centre for Research on Environment, Society and Health (CRESH), Institute of Geography, The University of Edinburgh, Edinburgh EH8 9XP, UK;
| | - Matthias Braubach
- European Centre for Environment and Health, World Health Organization Regional Office for Europe, Platz der Vereinten Nationen 1, 53113 Bonn, Germany; (M.B.); (S.N.)
| | - Sinaia Netanyanhu
- European Centre for Environment and Health, World Health Organization Regional Office for Europe, Platz der Vereinten Nationen 1, 53113 Bonn, Germany; (M.B.); (S.N.)
| |
Collapse
|
14
|
Boregowda N, Jogigowda SC, Bhavya G, Sunilkumar CR, Geetha N, Udikeri SS, Chowdappa S, Govarthanan M, Jogaiah S. Recent advances in nanoremediation: Carving sustainable solution to clean-up polluted agriculture soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118728. [PMID: 34974084 DOI: 10.1016/j.envpol.2021.118728] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Agriculture is one of the foremost significant human activities, which symbolizes the key source for food, fuel and fibers. This activity results in a lot of ecological harms particularly with the excessive usage of chemical fertilizers and pesticides. Different agricultural practices have remained industrialized to advance food production, due to the growth in the world population and to meet the food demand through the routine use of more effective fertilizers and pesticides. Soil is intensely embellished by environmental contamination and it can be stated as "universal incline." Soil pollution usually occurs from sewage wastes, accidental discharges or as byproducts of chemical residues of unrestrained production of numerous materials. Soil pollution with hazardous materials alters the physical, chemical, and biological properties, causing undesirable changes in soil fertility and ecosystem. Engineered nanomaterials offer various solutions for remediation of contaminated soils. Engineered nanomaterial-enable technologies are able to prevent the uncontrolled release of harmful materials into the environment along with capabilities to combat soil and groundwater borne pollutants. Currently, nanobiotechnology signifies a hopeful attitude to advance agronomic production and remediate polluted soils. Studies have outlined the way of nanomaterial applications to restore the eminence of the environment and assist the detection of polluted sites, along with potential remedies. This review focuses on the latest developments in agricultural nanobiotechnology and the tools developed to combat soil or land and or terrestrial pollution, as well as the benefits of using these tools to increase soil fertility and reduce potential toxicity.
Collapse
Affiliation(s)
- Nandini Boregowda
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Sanjay C Jogigowda
- Department of Oral Medicine & Radiology, JSS Dental College & Hospital, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Gurulingaiah Bhavya
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Channarayapatna Ramesh Sunilkumar
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India; Global Association of Scientific Young Minds, GASYM, Mysuru, India
| | - Nagaraja Geetha
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Shashikant Shiddappa Udikeri
- Agricultural Research Station, Dharwad Farm, University of Agricultural Sciences, Dharwad, 580005, Karnataka, India
| | - Srinivas Chowdappa
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
15
|
Oseghe EO, Idris AO, Feleni U, Mamba BB, Msagati TAM. A review on water treatment technologies for the management of oxoanions: prospects and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61979-61997. [PMID: 34561799 DOI: 10.1007/s11356-021-16302-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Oxoanions are a class of contaminants that are easily released into the aquatic systems either through natural or anthropogenic activities. Depending on their oxidation states, they are highly mobile, resulting in the contamination of underground water. Above the permissible level in groundwater, they pose as threats to mammals when the contaminated water is consumed. Some of the health challenges caused are cancer, neurological, cardiac, gastrointestinal, and skin disorders. Several treatment technologies have been adopted over the years for the management of these oxoanions present in the aquatic systems. However interesting these treatment technologies might be, they also have their limitations such as cost-effectiveness, the complexity of the process, and generation of secondary pollutants. This work focused on some of the water treatment technologies applied for the removal of oxoanions. Some of the advantages and disadvantages of these treatment technologies are also highlighted. Amongst all the treatment technologies, adsorption is the most applied method for the removal of oxoanions. However, photocatalysis has a higher prospect since it is non-selective and secondary pollutants are not generated after the treatment process. Also, photocatalysis can simultaneously reduce and oxidise oxoanions as well as organic pollutants respectively.
Collapse
Affiliation(s)
- Ekemena Oghenovoh Oseghe
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1709, South Africa.
| | - Azeez Olayiwola Idris
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1709, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1709, South Africa
| | - Bhekie Brilliance Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1709, South Africa
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1709, South Africa
| |
Collapse
|
16
|
Frachini E, S Reis Ferreira C, Kroetz BL, Urbano A, Abrão T, Santos MJ. Modeling the kinetics of potentially toxic elements desorption in sediment affected by a dam breakdown disaster in Doce River - Brazil. CHEMOSPHERE 2021; 283:131157. [PMID: 34182633 DOI: 10.1016/j.chemosphere.2021.131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/28/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
On November 5th, 2015, a mining dam spilled a huge plume of mining waste in the Doce River. Even though many studies have reported the environmental impact from the Doce River's tragedy, the transport of potentially toxic elements (PTE) by kinetic modeling to determine how long the basin takes to achieve the natural balance has not been described. Therefore, samples of sludge, sediment, and water were collected along the Doce River basin, to assess the elements' total leaching by kinetic modeling. The elements Fe, Al, Mn, Cu, Ag, Pb, Cd, and As were evaluated. An innovative mobilization factor (FS/D) indicated that Mn2+, Ag+, and Cd2+ can be mobilized about 80, 89, and 57 times more than its initial concentration. Besides, in low pH, the Al and Pb ions can be mobilized. The desorption kinetics showed a lower rate constant (k) and higher initial desorption constant (h) for Mn2+ than Cd2+ and Ag+, suggesting both high- and low-affinity interaction sites for Mn2+. The exponential decay demonstrated that metals can leach for months or years. Thus, the long-lasting release of metals from mining tailing waste in concentrations that endanger the ecosystem and human health makes clear the need for long-term monitoring.
Collapse
Affiliation(s)
- Emilli Frachini
- Chemistry Department, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | | | - Alexandre Urbano
- Physics Department, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Taufik Abrão
- Electrical Engineering Department, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Maria Josefa Santos
- Chemistry Department, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
17
|
Evaluation of the PGPR Capacity of Four Bacterial Strains and Their Mixtures, Tested on Lupinus albus var. Dorado Seedlings, for the Bioremediation of Mercury-Polluted Soils. Processes (Basel) 2021. [DOI: 10.3390/pr9081293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Soil contamination by mercury, which is one of the most toxic heavy metals due to its bioaccumulative capacity, poses a risk to the environment as well as health. The Almadén mining district in Ciudad Real, Spain is one of the most heavily-polluted sites in the world, making the soils unusable. Bioremediation, and more specifically phyto-rhizoremediation, based on the synergistic interaction established between plant and Plant Growth Promoting Rhizobacteria (PGPR), improves the plant’s ability to grow, mobilize, accumulate, and extract contaminants from the soil. The objective of this study is to evaluate the plant growth-promoting ability of four PGPR strains (and mixtures), isolated from the bulk soil and rhizosphere of naturally grown plants in the Almadén mining district, when they are inoculated in emerged seeds of Lupinus albus, var. Dorado in the presence of high concentrations of mercury. After 20 days of incubation and subsequent harvesting of the seedlings, biometric measurements were carried out at the root and aerial levels. The results obtained show that the seeds treatment with PGPR strains improves plants biometry in the presence of mercury. Specifically, strain B2 (Pseudomonas baetica) and B1 (Pseudomonas moraviensis) were those that contributed the most to plant growth, both individually and as part of mixtures (CS5 and CS3). Thus, these are postulated to be good candidates for further in situ phyto-rhizoremediation tests of mercury-contaminated soils.
Collapse
|
18
|
Mazarji M, Minkina T, Sushkova S, Mandzhieva S, Bidhendi GN, Barakhov A, Bhatnagar A. Effect of nanomaterials on remediation of polycyclic aromatic hydrocarbons-contaminated soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112023. [PMID: 33540196 DOI: 10.1016/j.jenvman.2021.112023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The remediation of toxic polycyclic aromatic hydrocarbons (PAHs) in the soil is always an important topic since exposure to contaminated soil with carcinogenic, mutagenic, and teratogenic potential can result in serious health effects. With respect to the remediation of PAHs contaminated soil, nanomaterials (NMs) have recently received a great deal of attention due to the special characteristics arising from their nanoscale sizes. However, the usefulness and potency of these NMs depend on their adaption to specific site conditions and soil properties. Since there is no comprehensive review of the applications of NMs, it is of great importance to analyze, discuss, and interpret the latest progress in the application of NMs for the remediation of contaminated soils containing PAHs. This overview essentially captures the novel advances made in nano zero valent-iron (nZVI), metal oxides, carbon-based NMs, and polymer-based materials. Each characteristic of NMs that contributes to the enhancement of the process is highlighted. Moreover, operational conditions in which the best-obtained results are achieved qualitatively summarize. This review is also given special attention to the type of soil and pollutant, which are major influential factors to affect the performance of the process. Furthermore, the potential implication of NMs and PAHs on soil properties is reviewed in terms of the changes in migration behavior of pollutants, plant phytotoxicity, and soil microbial community composition. Discussion on future perspectives is presented on the use and prospects for the application of NMs in contaminated soils.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli, FI-50130, Finland
| |
Collapse
|