1
|
Yu HY, Gupta S, Zhou Z. Removal of metals and assimilable organic carbon by activated carbon and reverse osmosis point-of-use water filtration systems. CHEMOSPHERE 2024; 365:143251. [PMID: 39233301 DOI: 10.1016/j.chemosphere.2024.143251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Activated carbon (AC) systems and reverse osmosis (RO) systems are commonly used point-of-use (POU) water filtration systems for removing trace-level contaminants in tap water to protect human health. However, limited research has been done to evaluate their effectiveness in removing heavy metals like manganese (Mn) and uranium (U), or to assess the potential for undesired microbial growth within POU systems, which can reduce their treatment efficiency. This study aimed to systematically evaluate the removal of metals and assimilable organic carbon (AOC) in POU systems. AC systems were operated to 200% of their designed treatment capacities and RO systems were run for three weeks. The results showed that AC systems were generally ineffective at removing metals from drinking water, while RO systems effectively removed them. Both Mn and U were poorly removed by AC systems. Calcium (Ca) and magnesium (Mg) were poorly removed by AC systems, with efficiencies of less than 1%. Iron (Fe) removal by AC systems varied between 61% and 84%. Copper (Fe), likely due to its low influent concentration (<30 μg L-1), was effectively removed by AC systems with efficiencies over 95%. In contrast, RO systems consistently removed all metals effectively. Mn and U removal in RO systems exceeded 95%, while Ca, Mn, Fe, and Cu were all removed with efficiencies greater than 98%. AOC was effectively removed from all AC and RO systems, but with high variability in removal efficiency, which is likely attributed to the heterogeneity of biofilm and microbial growth within the POU systems. The new knowledge generated from this study can improve our understanding of chemical contaminant removal in POU systems and inform the development of better strategies for designing and operating POU systems to remove chemical contaminants in drinking water and mitigate their associated health risks.
Collapse
Affiliation(s)
- Hsin-Yin Yu
- Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Shreya Gupta
- Civil and Construction Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhi Zhou
- Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Civil and Construction Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Aghdam MM, Kavanagh M, Crowley Q. Utilization of radiometric data for mapping primary and secondary sources of gamma radiation and radon/thoron release potentials in Ireland. Front Public Health 2024; 12:1443332. [PMID: 39386953 PMCID: PMC11463190 DOI: 10.3389/fpubh.2024.1443332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Background This paper presents a novel approach to predict and map radon and thoron levels. We developed separate radon and thoron prediction maps for Ireland and introduced a system for producing high-resolution 3D radiation maps which may be used for planning purposes in residential areas, recycling and demolishing waste depots, and quarries of building and construction material. Additionally, we highlight the critical need to monitor thoron alongside radon in indoor surveys, as thoron's shorter half-life and higher energy levels may pose a greater health risk. Methods We utilized Tellus radiometric survey data and indoor radon measurement records to investigate the spatial correlation between elevated indoor radon activity and anomalies in radioelement concentrations. We also estimated the degree of thoron interference in indoor radon surveys conducted in Ireland using CR-39 detectors. Field and laboratory surveys were performed to produce high-resolution radiation maps for four Irish quarries and estimate the radon and thoron potential of these quarries. Results Our initial findings suggest that thoron may be the primary health issue in some parts of Ireland, surpassing radon. For example, our map shows that the expected thoron potential in county Donegal is significantly higher than that for radon. Our radon and thoron exhalation tests on building material samples from four random quarries confirm this. We also estimate that over 20% of the elevated indoor radon activity recorded by the EPA using CR-39 detectors may be attributed to thoron-related sources. Conclusion This study contributes to a better understanding of the prevalence and impact of radon and thoron in Ireland, helping to determine the main radiological health issue related to indoor air quality in the country. Thoron's impact on indoor air quality and health has been understudied in Ireland, necessitating more comprehensive studies and monitoring programs to accurately assess the prevalence and impact of both radon and thoron.
Collapse
Affiliation(s)
- Mirsina M. Aghdam
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- R&D Department, Geochron Ltd., Dublin, Ireland
| | - Mark Kavanagh
- Trinity Center for the Environment, Trinity College Dublin, Dublin, Ireland
| | - Quentin Crowley
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- R&D Department, Geochron Ltd., Dublin, Ireland
| |
Collapse
|
3
|
Olivares DMM, Santana CS, Neris JB, Luzardo FHM, Fausto AMF, Mol AW, Velasco FG. Assessment of potential human health, radiological and ecological risks around mining areas in northeastern Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:342. [PMID: 39073664 DOI: 10.1007/s10653-024-02121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Mining is responsible for the release of metallic pollutants and radioactive materials into the environment, which have the potential to disrupt ecosystems and pose significant risks to human health. Significant mining activity is concentrated in the municipality of Caetité (northeastern Brazil), where Latin America's only active uranium mine and significant iron ore deposits are located. Although previous studies have shown that the regional soil and water resources are highly contaminated by various toxic elements and that exposure to these elements is known to have adverse effects on human health, the health risks in this mining region have never been assessed. The aim of this unprecedented comprehensive investigation was to assess the health, radiological and ecological risks in this mining region, which is home to nearly 100,000 people. To achieve our goal, soil and water samples were collected in the vicinity of the mines and in the main settlements in the region. Fifteen metallic toxic elements were determined using Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Optical Emission Spectrometry. The HERisk code, which follows the main methodological guidelines for risk assessment, was used to quantify human health, radiological and ecological indices. The average values of the total risk and cancer risk indices indicated that region falls into the moderate risk category (1.0 ≤ HItot < 4.0). However, 63% of the sites had high risk values, with Fe, Co and As being the metals contributing most to total and cancer risk, respectively. Near the mining areas, the potential ecological risk can be considered extreme (PERI ≥ 600). The values of the calculated radiological indices correspond to typical values in natural uranium areas. However, in the communities near the mine, the dose values are slightly above the permissible limit (1 mSv y-1), so they must be continuously monitored, and risk mitigation measures must be taken.
Collapse
Affiliation(s)
| | | | - Jordan B Neris
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Francisco H M Luzardo
- Higher Institute of Technologies and Applied Sciences (InSTEC), University of Havana, La Habana, Cuba
| | - Agnes M F Fausto
- Center for Research in Radiation Sciences and Technologies (CPqCTR), State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Anderson W Mol
- Center for Research in Radiation Sciences and Technologies (CPqCTR), State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Fermin G Velasco
- Center for Research in Radiation Sciences and Technologies (CPqCTR), State University of Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
4
|
Khan SM, Pearson DD, Eldridge EL, Morais TA, Ahanonu MIC, Ryan MC, Taron JM, Goodarzi AA. Rural communities experience higher radon exposure versus urban areas, potentially due to drilled groundwater well annuli acting as unintended radon gas migration conduits. Sci Rep 2024; 14:3640. [PMID: 38409201 PMCID: PMC10897331 DOI: 10.1038/s41598-024-53458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
Repetitive, long-term inhalation of radioactive radon gas is one of the leading causes of lung cancer, with exposure differences being a function of geographic location, built environment, personal demographics, activity patterns, and decision-making. Here, we examine radon exposure disparities across the urban-to-rural landscape, based on 42,051 Canadian residential properties in 2034 distinct communities. People living in rural, lower population density communities experience as much as 31.2% greater average residential radon levels relative to urban equivalents, equating to an additional 26.7 Bq/m3 excess in geometric mean indoor air radon, and an additional 1 mSv/year in excess alpha radiation exposure dose rate to the lungs for occupants. Pairwise and multivariate analyses indicate that community-based radon exposure disparities are, in part, explained by increased prevalence of larger floorplan bungalows in rural areas, but that a majority of the effect is attributed to proximity to, but not water use from, drilled groundwater wells. We propose that unintended radon gas migration in the annulus of drilled groundwater wells provides radon migration pathways from the deeper subsurface into near-surface materials. Our findings highlight a previously under-appreciated determinant of radon-induced lung cancer risk, and support a need for targeted radon testing and reduction in rural communities.
Collapse
Affiliation(s)
- Selim M Khan
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dustin D Pearson
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Evangeline L Eldridge
- Department of Earth, Energy and Environment, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Tiago A Morais
- Department of Earth, Energy and Environment, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Marvit I C Ahanonu
- School of Architecture, Planning, and Landscape, University of Calgary, Calgary, AB, Canada
| | - M Cathryn Ryan
- Department of Earth, Energy and Environment, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Joshua M Taron
- School of Architecture, Planning, and Landscape, University of Calgary, Calgary, AB, Canada.
| | - Aaron A Goodarzi
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Liu Y, Yuan W, Lin W, Yu S, Zhou L, Zeng Q, Wang J, Tao L, Dai Q, Liu J. Efficacy and mechanisms of δ-MnO 2 modified biochar with enhanced porous structure for uranium(VI) separation from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122262. [PMID: 37506804 DOI: 10.1016/j.envpol.2023.122262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Even though uranium (U) is considered to be an essential strategic resource with vital significance to nuclear power development and climate change mitigation, U exposure to human and ecological environment has received growing concerns due to its both highly chemically toxic and radioactively hazardous property. In this study, a composite (M-BC) based on Ficus macrocarpa (banyan tree) aerial roots biochar (BC) modified by δ-MnO2 was designed to separate U(VI) from synthetic wastewater. The results showed that the separation capacity of M-BC was 61.53 mg/g under the solid - liquid ratio of 1 g/L, which was significantly higher than that of BC (12.39 mg/g). The separation behavior of U(VI) both by BC and M-BC fitted well with Freundlich isothermal models, indicating multilayer adsorption occurring on heterogeneous surfaces. The reaction process was consistent with the pseudo-second-order kinetic model and the main rate-limiting step was particle diffusion process. It is worthy to note that the removal of U(VI) by M-BC was maintained at 94.56% even after five cycles, indicating excellent reusability and promising application potential. Multiple characterization techniques (e.g. Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET) and X-ray Photoelectron Spectroscopy (XPS)) uncovered that U(VI) complexation with oxygen-containing functional groups (e.g. O-CO and Mn-O) and cation exchange with protonated ≡MnOH were the dominant mechanisms for U(VI) removal. Application in real uranium wastewater treatment showed that 96% removal of U was achieved by M-BC and more than 92% of co-existing (potentially) toxic metals such as Tl, Co, Pb, Cu and Zn were simultaneously removed. The work verified a feasible candidate of banyan tree aerial roots biowaste based δ-MnO2-modified porous BC composites for efficient separation of U(VI) from uranium wastewater, which are beneficial to help address the dilemma between sustainability of nuclear power and subsequent hazard elimination.
Collapse
Affiliation(s)
- Yanyi Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenhuan Yuan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenli Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shan Yu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lei Zhou
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Luoheng Tao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qunwei Dai
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Sychugov GV, Azizova TV, Zhuntova GV, Grigoryeva ES, Loffredo CA, Hamada N, Kazachkov EL. Immunohistochemical Analysis of Lung Adenocarcinoma in Russian Mayak Nuclear Workers. Cancer Invest 2023; 41:686-698. [PMID: 37291892 DOI: 10.1080/07357907.2023.2218489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Specimens of lung adenocarcinoma (AdCa) from Russian nuclear workers (n = 54) exposed to alpha particles and gamma rays and from individuals non-exposed to radiation (n = 21) were examined using immunohistochemistry. Estimated significant associations with alpha dose were negative for Ki-67 and collagen IV in AdCa. Associations with gamma-ray dose were negative for tissue inhibitor of matrix metalloproteinase 2 and caspase 3 and positive for matrix metalloproteinase 2 and leukemia inhibiting factor in AdCa. The findings provide some evidence supporting alterations in apoptosis, cell proliferation and extracellular matrix in lung tissues affected by chronic radiation exposure that can contribute to radiogenic cancerogenesis.
Collapse
Affiliation(s)
- Gleb V Sychugov
- South Ural State Medical University, Ministry of Health, Chelyabinsk, Russia
| | - Tamara V Azizova
- Southern Urals Biophysics Institute, Russian Federal Medical Biological Agency, Ozyorsk, Russia
| | - Galina V Zhuntova
- Southern Urals Biophysics Institute, Russian Federal Medical Biological Agency, Ozyorsk, Russia
| | - Evgeniya S Grigoryeva
- Southern Urals Biophysics Institute, Russian Federal Medical Biological Agency, Ozyorsk, Russia
| | - Christopher A Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Evgeniy L Kazachkov
- South Ural State Medical University, Ministry of Health, Chelyabinsk, Russia
| |
Collapse
|
7
|
Millward GE, Blake WH. Distribution and storage of uranium, and its decay products, in floodplain sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121356. [PMID: 36858097 DOI: 10.1016/j.envpol.2023.121356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Industrialised rivers contain legacy contaminants stored in their sediments and floodplain soils which may inhibit attainment of environmental quality criteria. The River Fal catchment, SW England, is impacted by inputs from uranium mining and clay production and serves as an exemplar for understanding the consequences of medium-term process dynamics in contaminated basins. Radionuclides were determined, by gamma spectroscopy, in six cores from the river floodplain with the aim of quantifying the activities of 238U, and its decay products, and the bomb fallout radionuclides137Cs and 241Am. Activity concentrations of 238U implied inputs from mining, accentuated by flood events and historic industrial accidents, whereas 210Pb activities included a significant input of unsupported 210Pb linked to processed mine spoil. The radionuclide inventories did not decrease systematically downstream revealing evidence of attenuation of particulate radionuclides within the river floodplain sediment column. Storage of legacy contaminants in fluvial systems, at levels in excess of contemporary environmental quality guidelines, emphasises the challenges posed by changing climatic conditions. This scenario raises significant consequences for the management of uranium-contaminated, fertile riverine floodplains within Europe.
Collapse
Affiliation(s)
- Geoffrey E Millward
- Marine Institute, Marine Building, Plymouth University, Drake Circus, Plymouth, PL4 8AA, United Kingdom.
| | - William H Blake
- School of Geography, Earth and Environmental Sciences, Portland Square, Plymouth University, Drake Circus, Plymouth, PL4 8AA, United Kingdom.
| |
Collapse
|
8
|
Cholowsky NL, Chen MJ, Selouani G, Pett SC, Pearson DD, Danforth JM, Fenton S, Rydz E, Diteljan MJ, Peters CE, Goodarzi AA. Consequences of changing Canadian activity patterns since the COVID-19 pandemic include increased residential radon gas exposure for younger people. Sci Rep 2023; 13:5735. [PMID: 37029226 PMCID: PMC10081328 DOI: 10.1038/s41598-023-32416-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
The COVID-19 pandemic has produced widespread behaviour changes that shifted how people split their time between different environments, altering health risks. Here, we report an update of North American activity patterns before and after pandemic onset, and implications to radioactive radon gas exposure, a leading cause of lung cancer. We surveyed 4009 Canadian households home to people of varied age, gender, employment, community, and income. Whilst overall time spent indoors remained unchanged, time in primary residence increased from 66.4 to 77% of life (+ 1062 h/y) after pandemic onset, increasing annual radiation doses from residential radon by 19.2% (0.97 mSv/y). Disproportionately greater changes were experienced by younger people in newer urban or suburban properties with more occupants, and/or those employed in managerial, administrative, or professional roles excluding medicine. Microinfluencer-based public health messaging stimulated health-seeking behaviour amongst highly impacted, younger groups by > 50%. This work supports re-evaluating environmental health risks modified by still-changing activity patterns.
Collapse
Affiliation(s)
- Natasha L Cholowsky
- Robson DNA Science Centre, Department of Biochemistry and Molecular Biology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Myra J Chen
- Robson DNA Science Centre, Department of Biochemistry and Molecular Biology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ghozllane Selouani
- Robson DNA Science Centre, Department of Biochemistry and Molecular Biology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sophie C Pett
- Robson DNA Science Centre, Department of Biochemistry and Molecular Biology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dustin D Pearson
- Robson DNA Science Centre, Department of Biochemistry and Molecular Biology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - John M Danforth
- Robson DNA Science Centre, Department of Biochemistry and Molecular Biology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shelby Fenton
- Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ela Rydz
- Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Cheryl E Peters
- Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- British Columbia Centre for Disease Control, British Columbia Cancer, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Department of Biochemistry and Molecular Biology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Banerjee S, Kundu A, Dhak P. Bioremediation of uranium from waste effluents using novel biosorbents: a review. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08304-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Espenbetova M, Kuzmina N, Zubkov A, Akhmetova V, Zamanbekova Z, Krykpaeva A, Zhumanbayeva Z, Amrenova K, Smailova Z, Glushkova N. Epitopes specificity of antibodies to thyroid peroxidase in patients with Graves’ disease, Hashimoto’s thyroiditis and overlap-syndrome. J Clin Transl Endocrinol 2022; 27:100293. [PMID: 35386421 PMCID: PMC8978093 DOI: 10.1016/j.jcte.2022.100293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Further research that may shed light on specificity of MAbs in various TAIDs is strongly needed. Heterogeneity of epitopes recognized by anti-TPO in patients with HT, GD and overlap-syndrome may help to clarify specificity of MAbs in various TAIDs. Various MAbs in HT, GD and overlap-syndrome is different and this might be influenced by concentration of TPO in blood serum.
Background Antibodies against thyroid peroxidase (anti-TPO) serve as clinical markers of thyroid autoimmune diseases (TAIDs). By trying to elucidate the causes of heterogeneity in autoantibody levels among patients with different TAIDs it becomes possible to clarify the pathophysiology of GD and HT. Objective To investigate the heterogeneity of epitopes recognized by anti-TPO in patients with Hashimoto’s thyroiditis (HT), Graves’ disease (GD) and overlap-syndrome. Methods We carried out a cross-sectional study on 398 patients with GD, HT and overlap syndrome and analyzed the specificity of epitopes and binding constants of TPO with monoclonal antibodies (MAbs). Ten MAbs to TPO were used, of which five were reactive with native TPO and the rest were reactive with denaturated TPO. Results The autoantibodies in blood serum of HT patients inhibited the binding of MAb63 more significantly than those in serum of GD patients: 59.62 % versus 54.02 %, respectively (p = 0.001). The anti-TPOs in serum of GD patients inhibited the binding of MAb77 more significantly than those in serum of HT patients: 54.36 % versus 51.13 %, respectively (p = 0.047). The binding of MAb45 was more inhibited in serum of patients with anti-TPO concentration over 1000 IU/ml (58.36 %). The blood serum of patients with overlap-syndrome showed less significant inhibition of MAb63 binding than that of patients with no overlap-syndrome: 52.47 % versus 58.81 %, respectively (p = 0.043). Conclusion Mapping the epitopes to TPO with the help of MAbs may improve the differential diagnosis between different thyroid autoimmunities.
Collapse
|
11
|
Ass’ad NA, Shore X, Myers O, Camacho AR, Jacquez Q, Pollard C, Cook LS, Leng S, Page K, Sood A, Zychowski KE. VCAM-1 Is Upregulated in Uranium Miners Compared to Other Miners. Life (Basel) 2021; 11:1223. [PMID: 34833099 PMCID: PMC8621685 DOI: 10.3390/life11111223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/01/2022] Open
Abstract
The United States has a rich history of mining including uranium (U)-mining, coal mining, and other metal mining. Cardiovascular diseases (CVD) are largely understudied in miners and recent literature suggests that when compared to non-U miners, U-miners are more likely to report CVD. However, the molecular basis for this phenomenon is currently unknown. In this pilot study, a New Mexico (NM)-based occupational cohort of current and former miners (n = 44) were recruited via a mobile screening clinic for miners. Serum- and endothelial-based endpoints were used to assess circulating inflammatory potential relevant to CVD. Non-U miners reported significantly fewer pack years of smoking than U-miners. Circulating biomarkers of interest revealed that U-miners had significantly greater serum amyloid A (SAA), soluble intercellular adhesion molecule 1 (ICAM-1, ng/mL), soluble vascular cell adhesion molecule 1 (VCAM-1, ng/mL), and VCAM-1 mRNA expression, as determined by the serum cumulative inflammatory potential (SCIP) assay, an endothelial-based assay. Even after adjusting for various covariates, including age, multivariable analysis determined that U-miners had significantly upregulated VCAM-1 mRNA. In conclusion, VCAM-1 may be an important biomarker and possible contributor of CVD in U-miners. Further research to explore this mechanism may be warranted.
Collapse
Affiliation(s)
- Nour A. Ass’ad
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (N.A.A.); (L.S.C.); (S.L.); (K.P.); (A.S.)
| | - Xin Shore
- Department of Family and Community Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (X.S.); (O.M.)
| | - Orrin Myers
- Department of Family and Community Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (X.S.); (O.M.)
| | - Alexandra R. Camacho
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA; (A.R.C.); (Q.J.)
| | - Quiteria Jacquez
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA; (A.R.C.); (Q.J.)
| | - Charles Pollard
- Miners’ Colfax Medical Center, 203 Hospital Drive, Raton, NM 87740, USA;
| | - Linda S. Cook
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (N.A.A.); (L.S.C.); (S.L.); (K.P.); (A.S.)
- Department of Epidemiology, School of Public Health, University of Colorado-Anschutz, Arora, CO 80045, USA
| | - Shuguang Leng
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (N.A.A.); (L.S.C.); (S.L.); (K.P.); (A.S.)
| | - Kimberly Page
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (N.A.A.); (L.S.C.); (S.L.); (K.P.); (A.S.)
| | - Akshay Sood
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (N.A.A.); (L.S.C.); (S.L.); (K.P.); (A.S.)
- Miners’ Colfax Medical Center, 203 Hospital Drive, Raton, NM 87740, USA;
| | - Katherine E. Zychowski
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA; (A.R.C.); (Q.J.)
| |
Collapse
|
12
|
Meng F, Huang Q, Larson SL, Han FX. The Adsorption Characteristics of Uranium(VI) from Aqueous Solution on Leonardite and Leonardite-Derived Humic Acid: A Comparative Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12557-12567. [PMID: 34661416 DOI: 10.1021/acs.langmuir.1c01838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The humic substance is a low-cost and effective adsorbent with abundant functional groups in remediating uranium (U) (VI)-contaminated water. In this research study, leonardite together with leonardite-derived humic acid (L-HA) was used to eliminate U(VI) from water under diverse temperatures (298, 308, and 318 K). L-HA showed a higher adsorption volume for U(VI) than leonardite. U adsorption was varied with pH and increased with temperature. The adsorption kinetics of L-HA had a higher determination coefficient (R2) for pseudo-second-order (R2 > 0.993) and Elovich (R2 > 0.987) models, indicating possible chemisorption-assisted adsorption. This was further supported with the activation energies (15.9 and 13.2 kJ/mol for leonardite and L-HA, respectively). Moreover, U(VI) equilibrium adsorption on leonardite was better depicted with the Freundlich model (R2 > 0.970), suggesting heterogeneous U(VI) adsorption onto the leonardite surface. However, U(VI) adsorption onto L-HA followed the Langmuir equation (R2 > 0.971), which implied the dominant role of monolayer adsorption in controlling the adsorption process. Thermodynamic parameters, including standard entropy change (ΔS0 > 0), Gibbs free energy (ΔG0 < 0), and standard enthalpy change (ΔH0 > 0), suggested a spontaneous and endothermal adsorption process. In addition, ionic species negatively affected U(VI) adsorption by leonardite and L-HA.
Collapse
Affiliation(s)
- Fande Meng
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui 233100, China
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Qiuxiang Huang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Steven L Larson
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Rd, Vicksburg, Mississippi 39180, United States
| | - Fengxiang X Han
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
13
|
El-Garawani I, Allam HK, Shehata YA, Fadel K, El Kattan A. Genotoxicity linked to occupational exposure in uranium mine workers: Granzyme B and apoptotic changes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36793-36802. [PMID: 33710487 DOI: 10.1007/s11356-021-13323-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Uranium mining and processing are an ancient occupation, recognized as being grueling and accountable for injury and disease. Uranium (U) is a radioactive heavy metal used in many industrial applications. It increases the micronuclei frequencies as well as chromosomal aberration and sister chromatid exchange in peripheral blood lymphocytes. Granzyme B and perforin are stored inside the leukocytes in secretory granules. These proteins are released outside the cells by a cell-to-cell contact under specific conditions for inducing apoptosis. So, this study investigated the potential health hazards with prominence on the biological effects of radiation exposure. METHODS A cross-sectional analytic research was conducted on Egyptian male mining field workers. Leucocytes' genotoxicity was evaluated using DNA fragmentation assay and comet assay. Furthermore, flow cytometric analysis of Granzyme B protein was done. RESULTS A significant increase in dead cells after dual acridine orange/ethidium bromide (AO/EB) fluorescent staining in radiation-exposed groups was noticed compared to control groups. Moreover, a significant increase in the fragmented DNA was evident in exposed groups relative to the control one. Granzyme B protein levels showed a significant increase concerning control. CONCLUSION A wide variety of adverse human health risks are considered a potential risk to Egyptian uranium miners. For employers working in both mining and processing fields, the most common molecular shift highlighted was the leucocyte damage in blood samples. To preserve the health of all employees, health education and administration of effective hazard management procedures are necessary.
Collapse
Affiliation(s)
- Islam El-Garawani
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia, 32511, Egypt
| | - Heba Khodary Allam
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt.
| | - Yasser A Shehata
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt
| | | | - Ahmed El Kattan
- Medical and Radiological Research Department, NMA, Cairo, Egypt
| |
Collapse
|
14
|
Espenbetova M, Krykpayeva A, Zamanbekova Z, Zhumanbaeva Z, Azizov B, Mukanova A, Glushkova N. Analysis of the association of BRAFV600E mutation and Ki-67 overexpression with clinical and pathological characteristics in papillary thyroid cancer. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:233-241. [PMID: 33774706 DOI: 10.1007/s00411-021-00904-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In recent years, many studies were dedicated to the search for genetic markers in thyroid malignancies, including papillary thyroid cancer. This study was designed to investigate the prevalence of BRAFV600E mutation in the PTC in the Kazakh population, to evaluate the relationship between BRAF V600E mutation status and the clinicopathological features of PTC. Besides, we aimed at assessing of the relationship between the high proliferation index and the clinicopathological features of PTC and also between the concomitant coexistence of BRAFV600E and the high proliferative index with clinicopathological features of PTC. We carried out a cross-sectional study on 123 patients with PTC of Kazakh ethnicity and analyzed their clinical, laboratory, and genetic findings. The study groups were pooled based on the presence of mutated or wild-type BRAFV600E and quantitative assessment of Ki-67 marker expression. In the course of our study, we found that the age of patients from the group of BRAF gene mutation was significantly higher than that of patients from the wild-type group (48.63 ± 14.07 years versus 40.23 ± 14.34 years) (t = - 3.257; p = 0.001). Correlation analysis between BRAF mutation, Ki-67 expression, their combination and various clinical and pathological parameters in PTC patients showed that older age was positively correlated with higher frequency of mutant BRAF gene (r = 0.284; p < 0.001), while more advanced stage of tumor was positively correlated with higher expression of Ki-67 (r = 0.307; p < 0.001). To understand the significance of detecting the BRAFV600E mutation and an increased level of Ki-67 expression in the choice of patient therapy tactics, larger studies are required with patient survival as one of the primary outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Natalya Glushkova
- Department of Epidemiology, Evidence-Based Medicine and Biostatistics, Higher School of Public Health, Kazakhstan Medical University, Utepova 19A, Almaty, 050060, Kazakhstan.
| |
Collapse
|
15
|
Zhou X, Xue B, Medina S, Burchiel SW, Liu KJ. Uranium directly interacts with the DNA repair protein poly (ADP-ribose) polymerase 1. Toxicol Appl Pharmacol 2020; 410:115360. [PMID: 33279515 DOI: 10.1016/j.taap.2020.115360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/26/2022]
Abstract
People living in southwest part of United States are exposed to uranium (U) through drinking water, air, and soil. U is radioactive, but independent of this radioactivity also has important toxicological considerations as an environmental metal. At environmentally relevant concentrations, U is both mutagenic and carcinogenic. Emerging evidence shows that U inhibits DNA repair activity, but how U interacts with DNA repair proteins is still largely unknown. Herein, we report that U directly interacts with the DNA repair protein, Protein Poly (ADP-ribose) Polymerase 1 (PARP-1) through direct binding with the zinc finger motif, resulting in zinc release from zinc finger and DNA binding activity loss of the protein. At the peptide level, instead of direct competition with zinc ion in the zinc finger motif, U does not show thermodynamic advantages over zinc. Furthermore, zinc pre-occupied PARP-1 zinc finger is insensitive to U treatment, but U bound to PARP-1 zinc finger can be partially replaced by zinc. These results provide mechanistic basis on molecular level to U inhibition of DNA repair.
Collapse
Affiliation(s)
- Xixi Zhou
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Bingye Xue
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Sebastian Medina
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA; New Mexico Highlands University, Department of Biology, Las Vegas, NM 87701, United States
| | - Scott W Burchiel
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA.
| |
Collapse
|