1
|
Martins RO, Cardoso AT, Borsatto JV, Lanças FM. Advances in green carbon-based biosorbents: From conventional to miniaturized sample preparation strategies. Talanta 2025; 283:127171. [PMID: 39515052 DOI: 10.1016/j.talanta.2024.127171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Developing novel sorbent phases has advanced solid-based sample preparation techniques, improving analytical performance in complex matrices. Carbon-based sorbents, known for their high surface area, thermal and mechanical stability, and modifiability due to abundant organic functional groups, have emerged as exceptional materials in this field. Due to their versatile characteristics, carbon-based materials have been extensively investigated as promising materials for anchoring and functionalization with biopolymers, resulting in innovative hybrid materials, so-called carbon-based biosorbents. These biosorbents offer numerous advantages, including enhanced physicochemical properties and biodegradability, which help reduce the environmental impact of their synthesis, particularly when compared to conventional synthetic sorbent production methods that lack adherence to environmentally sustainable protocols. Among the various biopolymers used for modification, chitosan, starch, cyclodextrin, cellulose, and agarose have been identified as promising candidates for integration with carbon-based materials. In light of the ongoing advancements in developing novel carbon-based biosorbent materials, this review aims to highlight their synthesis using these biopolymers and examine their application in conventional and miniaturized sample preparation techniques across diverse matrices.
Collapse
Affiliation(s)
- Rafael Oliveira Martins
- Universidade de São Paulo, Instituto de Química de São Carlos, 13566-590, São Carlos, SP, Brazil
| | | | - João Victor Borsatto
- Universidade de São Paulo, Instituto de Química de São Carlos, 13566-590, São Carlos, SP, Brazil
| | - Fernando Mauro Lanças
- Universidade de São Paulo, Instituto de Química de São Carlos, 13566-590, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Imbrogno A, Lin HY, Gopalakrishnan A, Minofar B, Schäfer AI. Functionalized composite nanofiber membranes for selective steroid hormone micropollutants uptake from water: Role of cyclodextrin type. WATER RESEARCH 2024; 267:122543. [PMID: 39378729 DOI: 10.1016/j.watres.2024.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Cyclodextrins (CD) entrapped in nanofiber composite membranes are potential selective adsorbing materials to remove steroid hormone (SHs) micropollutants from water. This study aims to elucidate the role of CD macrocyclic host type on the SHs inclusion complexation and uptake in filtration. Three CD types (α, β, and γ) are cross-linked with epichlorohydrin to form polymers (αCDP, βCDP and γCDP) and entrapped into a nanofiber composite membrane by electrospinning. TGA analysis confirmed the CD entrapment into the nanofiber without loss of CD molecules during filtration. The CD type plays a dominant role in controlling the removal of different SHs. A similar removal (range 33 to 50 %) was observed with αCDP, irrespective of the SH type. In contrast, removal and uptake dependent on SH type were observed for β and γCDP, with the highest removal of 74 % for progesterone, followed by estradiol (46 %) and estrone (27 %) and the lowest removal of 3 % for testosterone. Molecular dynamic (MD) simulation revealed a stronger and more stable complex formed with βCDP, as demonstrated by: i) the closer spatial distribution of SH molecules from the βCDP cavity and, ii) the quantum chemistry calculations of the lower de-solvation energy (+6.0 kcal/mol), which facilitates the release of water molecules from interacting interface of CD molecule and hormone. Regarding γCDP, the highest de-solvation energy (+8.3 kcal/mol) poses an energetic barrier, which hinders the formation of the inclusion complex. In the case of αCDP, a higher interaction energy (-8.9 kcal/mol) compared to βCDP (-4.9 kcal/mol) was obtained, despite the broader spatial distribution observed from the MD simulation attributed to a dominant hydrogen bonding interaction with the OH primary groups on the external surface cavity. The findings highlight the relevance of the CD type in designing selective adsorbing membranes for steroid hormone micropollutant uptake. Experimental results and MD simulation suggest that βCD is the most suitable CD type for steroid hormone uptake, due to a more stable and stronger inclusion complexation than α and γCD.
Collapse
Affiliation(s)
- Alessandra Imbrogno
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Han Ya Lin
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Akhil Gopalakrishnan
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Babak Minofar
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, Lodz 90-236, Poland
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| |
Collapse
|
3
|
Han D, Han Z, Liu L, Xin S, Yu Z. Improved Kaempferol Solubility via Heptakis-O-(2-hydroxypropyl)-β-cyclodextrin Complexation: A Combined Spectroscopic and Theoretical Study. Int J Mol Sci 2024; 25:12492. [PMID: 39684208 DOI: 10.3390/ijms252312492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Four cyclodextrins (CDs) including heptakis-O-(2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), heptakis-O-(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), β-cyclodextrin (β-CD), and γ-cyclodextrin (γ-CD) were evaluated for their ability to enhance the aqueous solubility of kaempferol (Kae). Phase solubility studies indicated that these four CDs can form 1:1 type complexes with Kae and that HP-β-CD demonstrated the most significant solubilizing effect on Kae. Among the CDs tested, HP-β-CD demonstrated the most significant solubilizing effect on Kae. With an HP-β-CD concentration of 5.00 × 10-3 mol·L-1, the concentration of Kae reached 4.56 × 10-5 mol·L-1, which is 12.7 times greater than its solubility in water. Characterization of the HP-β-CD/Kae complex was performed using empirical methods. Molecular docking indicated that the A and C rings of Kae fit into the hydrophobic cavity of HP-β-CD, while the B ring remained at the rim. Six hydrogen bonds were found between HP-β-CD and the -OH groups of Kae. The negative complexation energy (ΔE) suggests the complex formation was exergonic. A 30-ns molecular dynamics simulation revealed no significant structural changes, with average root-mean-square deviation RMSD values of 2.230 Å for HP-β-CD and 0.786 Å for Kae, indicating high stability of the complex.
Collapse
Affiliation(s)
- Dongxu Han
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Zhongbao Han
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Liyan Liu
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Shigang Xin
- Experimental Teaching Center, Shenyang Normal University, Shenyang 110034, China
| | - Zhan Yu
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
4
|
Mesoppirr LS, Suter EK, Omwoyo WN, Oyaro NM, Nelana SM. Preparation and characterization of β-cyclodextrin capped magnetic nanoparticles anchored on cellulosic matrix for removal of cr(VI) from mimicked wastewater: Adsorption and kinetic studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024:1-16. [PMID: 39511857 DOI: 10.1080/10934529.2024.2424084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Hexavalent Chromium (Cr(VI)) is essential in many industrial processes. However, it finds its way into water bodies, posing health problems, including lung cancer and the inhibition of DNA and RNA in biological systems. Several chemical and traditional water purification methods have been developed in the past, but most are expensive, tedious and ineffective. This study aimed to prepare and characterize a low-cost hybrid adsorbent, β-Cyclodextrin capped magnetic nanoparticles anchored on a cellulosic matrix (CNC-Fe3O4NP-CD). The characterization techniques confirmed the integration of CNCs, Fe3O4NP and CD into the prepared CNC-Fe3O4NP-CD nanocomposite adsorbent. The adsorbent was employed in batch adsorption experiments by varying adsorption parameters, including solution pH, adsorbent dosage, initial Cr(VI) concentration, and contact time. From the findings, the nanocomposite adsorbent achieved a maximum Cr(VI) removal efficiency of 97.45%, while the pseudo-second-order kinetic model best fitted the experimental data with high linear regression coefficients (R2 > 0.98). The Elovich model indicated that the adsorption process was driven by chemisorption on heterogeneous surface sites, with initial sorption rates surpassing desorption rates. These findings established that CNC-Fe3O4NP-CD presents high efficiency for Cr(VI) removal under acidic pH, offering the potential for optimization and application in real-world wastewater treatment.
Collapse
Affiliation(s)
- Lynda S Mesoppirr
- Department of Mathematics and Physical Science, Maasai Mara University, Narok, Kenya
| | - Evans K Suter
- Department of Mathematics and Physical Science, Maasai Mara University, Narok, Kenya
- Biotechnology and Chemistry Department, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Wesley N Omwoyo
- Department of Mathematics and Physical Science, Maasai Mara University, Narok, Kenya
- Biotechnology and Chemistry Department, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Nathan M Oyaro
- Department of Mathematics and Physical Science, Maasai Mara University, Narok, Kenya
| | - Simphiwe M Nelana
- Biotechnology and Chemistry Department, Vaal University of Technology, Vanderbijlpark, South Africa
| |
Collapse
|
5
|
Jemli S, da Silva Bruckmann F, Amara FB, Bejar S, Pinto D, Silva LFO, Ahmad N, Mohandoss S, Dotto GL. A novel potato peels waste β-cyclodextrin biocomposite for the efficient uptake of diuron and glyphosate herbicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58021-58032. [PMID: 39305408 DOI: 10.1007/s11356-024-35046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
A novel biocomposite (FPPW-β-CD) was prepared by a simple and sustainable method involving fine potato peel waste, β-cyclodextrin (β-CD), and green citric acid through the crosslinking reaction. The polymer was characterized using SEM, FTIR, XRD, TGA, and DSC analyses. The adsorbent performance was evaluated about the glyphosate and diuron adsorption from the aqueous solution. Pesticide removal was investigated regarding the influence of solution pH, temperature, and initial concentration of contaminants. Also, it highlights the main interactions involved in the adsorption phenomenon based on the pH effect and characteristics of adsorbent and adsorbate molecules. The maximum adsorption capacity values according to the Sips model were higher than 2000 µg g-1. The pseudo-second-order and general-order models described the kinetic data well. Thermodynamic parameters indicated that pesticide removal was spontaneous and favorable. The magnitude of enthalpy variation values (27.37 kJ mol-1 and - 100.79 kJ mol-1) revealed that the glyphosate and diuron adsorption occurred through the physisorption and chemisorption, respectively. The novel biocomposite is a promising green adsorbent for the uptake of micropollutant pesticides in aqueous solutions at concentrations of µg L-1.
Collapse
Affiliation(s)
- Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Road of Soukra Km 3.5, 3000, Sfax, Tunisia
| | - Franciele da Silva Bruckmann
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Fakhreddine Ben Amara
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Road of Soukra Km 3.5, 3000, Sfax, Tunisia
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Road of Soukra Km 3.5, 3000, Sfax, Tunisia
| | - Diana Pinto
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | | | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Guilherme Luiz Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
6
|
Lin ZW, Wang J, Dyakiv Y, Helbling DE, Dichtel WR. Structural Features of Styrene-Functionalized Cyclodextrin Polymers That Promote the Adsorption of Perfluoroalkyl Acids in Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28409-28422. [PMID: 38768313 DOI: 10.1021/acsami.4c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cross-linked β-cyclodextrin (β-CD) polymers are promising adsorbents for the removal of per- and polyfluoroalkyl substances (PFAS) from contaminated water sources, including contaminated groundwater, drinking water, and wastewater. We previously reported porous, styrene-functionalized β-cyclodextrin (StyDex) polymers derived from radical polymerization with vinyl comonomers. Because of the versatility of these polymerizations, StyDex polymer compositions are tunable, which facilitates efforts to establish structure-adsorption relationships and to discover improved materials. Here, we evaluate the material properties and PFAS adsorption of 20 StyDex derivatives with varied comonomer structure and loading, regiochemistry of styrene placement on the CD monomer, and CD size. A StyDex polymer containing N,N'-dimethylbutyl ammonium ions exhibited the most effective PFAS adsorption in batch experiments. Furthermore, a StyDex polymer containing β-CD exhibited size-selective host-guest interactions with perfluoroalkyl acids (PFAAs) and neutral contaminants in aqueous electrolyte when compared to similar polymers containing either α-CD or γ-CD. Polymers based on β-CD monomers with an average of seven styrene groups randomly positioned over the 21 available hydroxyl groups performed similarly to those based on a β-CD monomer functionalized regiospecifically at each of the seven 6' positions. The former β-CD monomer is prepared in a single step from unmodified β-CD, so the ability to use it without compromising performance demonstrates promise for developing economically competitive adsorbents. These results offered important insights into structure-adsorption properties of StyDex polymers and will inform the design of improved StyDex formulations.
Collapse
Affiliation(s)
- Zhi-Wei Lin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jieyuan Wang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yaryna Dyakiv
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Mayorga-Burrezo P, Mayorga-Martinez CC, Kuchař M, Pumera M. Methamphetamine Removal from Aquatic Environments by Magnetic Microrobots with Cyclodextrin Chiral Recognition Elements. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306943. [PMID: 38239086 DOI: 10.1002/smll.202306943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/07/2024] [Indexed: 06/27/2024]
Abstract
The growing consumption of drugs of abuse together with the inefficiency of the current wastewater treatment plants toward their presence has resulted in an emergent class of pollutants. Thus, the development of alternative approaches to remediate this environmental threat is urgently needed. Microrobots, combining autonomous motion with great tunability for the development of specific tasks, have turned into promising candidates to take on the challenge. Here, hybrid urchin-like hematite (α-Fe2O3) microparticles carrying magnetite (Fe3O4) nanoparticles and surface functionalization with organic β-cyclodextrin (CD) molecules are prepared with the aim of on-the-fly encapsulation of illicit drugs into the linked CD cavities of moving microrobots. The resulting mag-CD microrobots are tested against methamphetamine (MA), proving their ability for the removal of this psychoactive substance. A dramatically enhanced capture of MA from water with active magnetically powered microrobots when compared with static passive CD-modified particles is demonstrated. This work shows the advantages of enhanced mass transfer provided by the externally controlled magnetic navigation in microrobots that together with the versatility of their design is an efficient strategy to clean polluted waters.
Collapse
Affiliation(s)
- Paula Mayorga-Burrezo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-616 00, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, Klecany, 250 67, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-616 00, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University Prague, Ke Karlovu 2, Prague, 128 08, Czech Republic
- Advanced Nanorobots & Multiscale Robotics Lab, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17 listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| |
Collapse
|
8
|
Liu C, Crini G, Wilson LD, Balasubramanian P, Li F. Removal of contaminants present in water and wastewater by cyclodextrin-based adsorbents: A bibliometric review from 1993 to 2022. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123815. [PMID: 38508365 DOI: 10.1016/j.envpol.2024.123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide from enzymatic starch breakdown, plays a crucial role in pharmaceuticals, food, agriculture, textiles, biotechnology, chemicals, and environmental applications, including water and wastewater treatment. In this study, a statistical analysis was performed using VOSviewer and Citespace to scrutinize 2038 articles published from 1993 to 2022. The investigation unveiled a notable upsurge in pertinent articles and citation counts, with China and USA contributing the highest publication volumes. The prevailing research focus predominantly revolves around the application of CD-based materials used as adsorbents to remove conventional contaminants such as dyes and metals. The CD chemistry allows the construction of materials with various architectures, including cross-linked, grafted, hybrid or supported systems. The main adsorbents are cross-linked CD polymers, including nanosponges, fibres and hybrid composites. Additionally, research efforts are actually concentrated on the synthesis of CD-based membranes, CD@graphene oxide, and CD@TiO2. These materials are proposed as adsorbents to remove emerging pollutants. By employing bibliometric analysis, this study delivers a comprehensive retrospective review and synthesis of research concerning CD-based adsorbents for the removal of contaminants from wastewater, thereby offering valuable insights for future large-scale application of CD-based adsorption materials.
Collapse
Affiliation(s)
- Chong Liu
- Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - Grégorio Crini
- Chrono-environment, University of Franche-Comté, 25000 Besançon, France
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Room 165 Thorvaldson Bldg., Saskatoon, SK S7N 5C9, Canada
| | | | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, China.
| |
Collapse
|
9
|
Esteso MA, Romero CM. Cyclodextrins: Properties and Applications. Int J Mol Sci 2024; 25:4547. [PMID: 38674132 PMCID: PMC11050477 DOI: 10.3390/ijms25084547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides that contain at least six d-(+)-glucopyranose units linked by α-(1, 4) glucosidic bonds [...].
Collapse
Affiliation(s)
- Miguel A. Esteso
- Faculty of Health Sciences, Universidad Católica de Ávila, Calle los Canteros s/n, 05005 Ávila, Spain
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Carmen M. Romero
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia
| |
Collapse
|
10
|
Hernández Cegarra AT, Gómez-Morte T, Pellicer JA, Vela N, Rodríguez-López MI, Núñez-Delicado E, Gabaldón JA. A Comprehensive Strategy for Stepwise Design of a Lab PROTOTYPE for the Removal of Emerging Contaminants in Water Using Cyclodextrin Polymers as Adsorbent Material. Int J Mol Sci 2024; 25:2829. [PMID: 38474076 DOI: 10.3390/ijms25052829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The significant environmental issue of water pollution caused by emerging contaminants underscores the imperative for developing novel cleanup methods that are efficient, economically viable, and that are intended to operate at high capacity and under continuous flows at the industrial scale. This study shows the results of the operational design to build a prototype for the retention at lab scale of pollutant residues in water by using as adsorbent material, insoluble polymers prepared by β-cyclodextrin and epichlorohydrin as a cross-linking agent. Laboratory in-batch tests were run to find out the adsorbent performances against furosemide and hydrochlorothiazide as pollutant models. The initial evaluation concerning the dosage of adsorbent, pH levels, agitation, and concentration of pharmaceutical pollutants enabled us to identify the optimal conditions for conducting the subsequent experiments. The adsorption kinetic and the mechanisms involved were evaluated revealing that the experimental data perfectly fit the pseudo second-order model, with the adsorption process being mainly governed by chemisorption. With KF constant values of 0.044 (L/g) and 0.029 (L/g) for furosemide and hydrochlorothiazide, respectively, and the determination coefficient (R2) being higher than 0.9 for both compounds, Freundlich yielded the most favorable outcomes, suggesting that the adsorption process occurs on heterogeneous surfaces involving both chemisorption and physisorption processes. The maximum monolayer adsorption capacity (qmax) obtained by the Langmuir isotherm revealed a saturation of the β-CDs-EPI polymer surface 1.45 times higher for furosemide (qmax = 1.282 mg/g) than hydrochlorothiazide (qmax = 0.844 mg/g). Based on these results, the sizing design and building of a lab-scale model were carried out, which in turn will be used later to evaluate its performance working in continuous flow in a real scenario.
Collapse
Affiliation(s)
- Antonio Tomás Hernández Cegarra
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, E-30107 Guadalupe, Spain
| | - Teresa Gómez-Morte
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, E-30107 Guadalupe, Spain
| | - José Antonio Pellicer
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, E-30107 Guadalupe, Spain
| | - Nuria Vela
- Applied Technology Group to Environmental Health, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, E-30107 Guadalupe, Spain
| | - María Isabel Rodríguez-López
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, E-30107 Guadalupe, Spain
| | - Estrella Núñez-Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, E-30107 Guadalupe, Spain
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, E-30107 Guadalupe, Spain
| |
Collapse
|
11
|
Rabadiya K, Pardhi D, Thaker K, Patoliya J, Rajput K, Joshi R. A review on recent upgradation and strategies to enhance cyclodextrin glucanotransferase properties for its applications. Int J Biol Macromol 2024; 259:129315. [PMID: 38211906 DOI: 10.1016/j.ijbiomac.2024.129315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Cyclodextrin glycosyltransferase (CGTase) is a significant extracellular enzyme with diverse functions. CGTase is widely used in production of cyclic α-(1,4)-linked oligosaccharides (cyclodextrins) from starch via transglycosylation reaction. Recent discoveries of novel CGTases from different microorganisms have expanded its applications but natural CGTase have lower yield, leading to heterologous expression for increased production to meet various needs. Moreover, significant advancements in directed evolution approach have been explored to alter the molecular structure of CGTase to enhance its performance. This review comprehensively summarizes the strategies employed in heterologous expression to boost CGTase production and secretion in various host. It also outlines molecular engineering approaches aimed to improving CGTase properties, including product and substrate specificity, catalytic efficiency, and thermal stability. Additionally, a considerable stability against changes in temperature and organic solvents can be obtained by immobilization.
Collapse
Affiliation(s)
- Khushbu Rabadiya
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Dimple Pardhi
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Khushali Thaker
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Jaimini Patoliya
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Kiransinh Rajput
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Rushikesh Joshi
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
12
|
Lin ZW, Shapiro EF, Barajas-Rodriguez FJ, Gaisin A, Ateia M, Currie J, Helbling DE, Gwinn R, Packman AI, Dichtel WR. Trace Organic Contaminant Removal from Municipal Wastewater by Styrenic β-Cyclodextrin Polymers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19624-19636. [PMID: 37934073 DOI: 10.1021/acs.est.3c04233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Trace organic contaminants (TrOCs) present major removal challenges for wastewater treatment. TrOCs, such as perfluoroalkyl and polyfluoroalkyl substances (PFAS), are associated with chronic toxicity at ng L-1 exposure levels and should be removed from wastewater to enable safe reuse and release of treated effluents. Established adsorbents, such as granular activated carbon (GAC), exhibit variable TrOC removal and fouling by wastewater constituents. These shortcomings motivate the development of selective novel adsorbents that also maintain robust performance in wastewater. Cross-linked β-cyclodextrin (β-CD) polymers are promising adsorbents with demonstrated TrOC removal efficacy. Here, we report a simplified and potentially scalable synthesis of a porous polymer composed of styrene-linked β-CD and cationic ammonium groups. Batch adsorption experiments demonstrate that the polymer is a selective adsorbent exhibiting complete removal for six out of 13 contaminants with less adsorption inhibition than GAC in wastewater. The polymer also exhibits faster adsorption kinetics than GAC and ion exchange (IX) resin, higher adsorption affinity for PFAS than GAC, and is regenerable by solvent wash. Rapid small-scale column tests show that the polymer exhibits later breakthrough times compared to GAC and IX resin. These results demonstrate the potential for β-CD polymers to remediate TrOCs from complex water matrices.
Collapse
Affiliation(s)
- Zhi-Wei Lin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emma F Shapiro
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Arsen Gaisin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | | | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rosa Gwinn
- AECOM, Dallas, Texas 75240, United States
| | - Aaron I Packman
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Pantaleone S, Gho CI, Ferrero R, Brunella V, Corno M. Exploration of the Conformational Scenario for α-, β-, and γ-Cyclodextrins in Dry and Wet Conditions, from Monomers to Crystal Structures: A Quantum-Mechanical Study. Int J Mol Sci 2023; 24:16826. [PMID: 38069149 PMCID: PMC10706634 DOI: 10.3390/ijms242316826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Cyclodextrins (CDs) constitute a class of cyclic oligosaccharides that are well recognized and largely applied in the drug delivery field, thanks to their biocompatibility, low cost, and the possibility to be derivatized in order to tune and optimize the complexation/release of the specific drug. The conformational flexibility of these systems is one of their key properties and requires a cost-effective methodology to be studied by combining the accuracy of results with the possibility of exploring a large set of conformations. In the present paper, we have explored the conformational potential energy surface of the monomers and dimers of α-, β-, and γ-cyclodextrins (i.e., 6, 7, and 8 monomeric units, respectively) by means of fast but accurate semiempirical methods, which are then refined by state-of-the-art DFT functionals. Moreover, the crystal structure is considered for a more suitable comparison with the IR spectrum experimentally recorded. Calculations are carried out in the gas phase and in water environments, applying both implicit and explicit treatments. We show that the conformation of the studied molecules changes from the gas phase to the water, even if treated implicitly, thus modifying their complexation capability.
Collapse
Affiliation(s)
| | | | | | | | - Marta Corno
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy; (S.P.); (C.I.G.); (R.F.); (V.B.)
| |
Collapse
|
14
|
Tunioli F, Marforio TD, Favaretto L, Mantovani S, Pintus A, Bianchi A, Kovtun A, Agnes M, Palermo V, Calvaresi M, Navacchia ML, Melucci M. Chemical Tailoring of β-Cyclodextrin-Graphene Oxide for Enhanced Per- and Polyfluoroalkyl Substances (PFAS) Adsorption from Drinking Water. Chemistry 2023; 29:e202301854. [PMID: 37548167 DOI: 10.1002/chem.202301854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
We report on the synthesis of β-cyclodextrin (βCD) modified graphene oxide (GO) nanosheets, having different sized alkyl linkers (GO-Cn -βCD) and their exploitation as sorbent of per- and polyfluoroalkyl substances (PFAS) from drinking water. βCD were functionalized with a pending amino group, and the resulting precursors grafted to GO nanosheets by epoxide ring opening reaction. Loading of βCD units in the range 12 %-36 % was estimated by combined XPS and elemental analysis. Adsorption tests on perfluorobutanoic acid (PFBA), a particularly persistent PFAS selected as case study, revealed a strong influence of the alkyl linker length on the adsorption efficiency, with the hexyl linker derivative GO-C6 -βCD outperforming both pristine GO and granular activated carbon (GAC), the standard sorbent benchmark. Molecular dynamic simulations ascribed this evidence to the favorable orientation of the βCD unit on the surface of GO which enables a strong contaminant molecules retention.
Collapse
Affiliation(s)
- Francesca Tunioli
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Tainah D Marforio
- Department of Chemistry "G. Ciamician" Alma Mater Studiorum -, University of Bologna, Via Selmi 2, 40126, Bologna, BO, Italy
| | - Laura Favaretto
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Sebastiano Mantovani
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Angela Pintus
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Antonio Bianchi
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Alessandro Kovtun
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Marco Agnes
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Vincenzo Palermo
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
- Department of Industrial and Materials Science, Chalmers University of Technology, 41258, Göteborg, Sweden
| | - Matteo Calvaresi
- Department of Chemistry "G. Ciamician" Alma Mater Studiorum -, University of Bologna, Via Selmi 2, 40126, Bologna, BO, Italy
| | - Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Manuela Melucci
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| |
Collapse
|
15
|
Cecone C, Iudici M, Ginepro M, Zanetti M, Trotta F, Bracco P. Dextrin-Based Adsorbents Synthesized via a Sustainable Approach for the Removal of Salicylic Acid from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2805. [PMID: 37887955 PMCID: PMC10609289 DOI: 10.3390/nano13202805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Pharmaceuticals such as salicylic acid are commonly detected in wastewater and surface waters, increasing concern for possible harmful effects on humans and the environment. Their difficult removal via conventional treatments raised the need for improved strategies, among which the development of bioderived adsorbents gained interest because of their sustainability and circularity. In this work, biobased cross-linked adsorbents, synthesized via a sustainable approach from starch derivatives, namely beta-cyclodextrins and maltodextrins, were at first characterized via FTIR-ATR, TGA, SEM, and elemental analysis, showing hydrophilic granular morphologies endowed with specific interaction sites and thermal stabilities higher than 300 °C. Subsequently, adsorption tests were carried out, aiming to assess the capabilities of such polymers on the removal of salicylic acid, as a case study, from water. Batch tests showed rapid kinetics of adsorption with a removal of salicylic acid higher than 90% and a maximum adsorption capacity of 17 mg/g. Accordingly, continuous fixed bed adsorption tests confirmed the good interaction between the polymers and salicylic acid, while the recycling of the adsorbents was successfully performed up to four cycles of use.
Collapse
Affiliation(s)
- Claudio Cecone
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy (M.G.); (M.Z.); (P.B.)
| | - Mario Iudici
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy (M.G.); (M.Z.); (P.B.)
| | - Marco Ginepro
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy (M.G.); (M.Z.); (P.B.)
| | - Marco Zanetti
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy (M.G.); (M.Z.); (P.B.)
- INSTM Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
- ICxT Interdepartmental Centre, University of Turin, Via Lungo Dora Siena 100, 10153 Turin, Italy
| | - Francesco Trotta
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy (M.G.); (M.Z.); (P.B.)
| | - Pierangiola Bracco
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy (M.G.); (M.Z.); (P.B.)
| |
Collapse
|
16
|
Glöckler D, Harir M, Schmitt-Kopplin P, Elsner M, Bakkour R. Discriminative Behavior of Cyclodextrin Polymers against Dissolved Organic Matter: Role of Cavity Size and Sorbate Properties. Anal Chem 2023; 95:14582-14591. [PMID: 37721868 DOI: 10.1021/acs.analchem.3c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Cyclodextrin polymers (CDPs) are promising next-generation adsorbents in water purification technologies. The selectivity of the polymer derivate cross-linked with tetrafluoroterephthalonitrile (TFN-CDP) for nonionic and cationic micropollutants (MPs) over dissolved organic matter (DOM) renders the adsorbent also attractive for many analytical applications. The molecular drivers of the observed selectivity are, nonetheless, not yet fully understood. To provide new insights into the sorption mechanism, we (i) synthesized TFN-CDPs with different cavity sizes (α-, β-, γ-CDP); (ii) assessed their extraction efficiencies for selected nonionic MPs in competition with different DOM size fractions (<1, 1-3, 3-10, >10 kDa) to test for size-selectivity; and (iii) performed nontargeted, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry analysis on CDP-extracted DOM compounds (<1 kDa) to probe for molecular sorbate properties governing their selective sorption. First, no evidence of size-selectivity was obtained through either the different CD cavity sizes (i) or the two independent approaches (ii) and (iii). Second, we found a dominant impact of sorbate oxygenation and polarity on the extraction of DOM and MPs, respectively, with relatively oxygen-poor/nonpolar molecules favorably retained on all α-, β-, and γ-CDP. Third, our data indicates exclusion of an anionic matrix, such as carboxylic acids, but preferential sorption of cationic nitrogen-bearing DOM, pointing at repulsive and attractive forces with the negatively charged cross-linker as a likely reason. Therefore, we ascribe TFN-CDP's selectivity to nonpolar and electrostatic interactions between MPs/DOM and the polymer building blocks. These molecular insights can further aid in the optimization of efficient and selective sorbent design for environmental and analytical applications.
Collapse
Affiliation(s)
- David Glöckler
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Martin Elsner
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Rani Bakkour
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
17
|
Hong YL, Sun J, Fang XQ, Liu QW, Wang C, Liu CM. β-Cyclodextrin network crosslinked by novel phosphonium-based tetrakiscarboxylic acid derived from PH 3 tail gas: Synthesis and application for rapid removal of organic dyes from wastewater. Carbohydr Polym 2023; 316:121059. [PMID: 37321742 DOI: 10.1016/j.carbpol.2023.121059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Organic dyes, such as methyl orange (MO), Congo red (CR), crystal violet (CV) and methylene blue (MB), are common organic pollutants existing in wastewater. Therefore, the exploration of bio-based adsorbents for the efficient removal of organic dyes from wastewater has gained many attentions. Here, we report a PCl3-free synthetic method for the synthesis of phosphonium-containing polymers, in which the prepared tetrakis(2-carboxyethyl) phosphonium chloride-crosslinked β-cyclodextrin (TCPC-β-CD) polymers were applied to the removal of dyes from water. The effects of contact time, pH (1-11), and dye concentration were investigated. The selected dye molecules could be captured by the host-gest inclusion of β-CD cavities, and the phosphonium and carboxyl groups in the polymer structure would respectively facilitate the removal of cationic dyes (MB and CV) and anionic dyes (MO and CR) via electrostatic interactions. In a mono-component system, over 99 % of MB could be removed from water within the first 10 min. Based on the Langmuir model, the calculated maximum adsorption capacities of MO, CR, MB, and CV were 180.43, 426.34, 306.57, and 470.11 mg/g (or 0.55, 0.61, 0.96 and 1.15 mmol/g), respectively. Additionally, TCPC-β-CD was easily regenerated using 1 % HCl in ethanol, and the regenerative adsorbent still showed high removal capacities for MO, CR, and MB even after seven treatment cycles.
Collapse
Affiliation(s)
- Yu-Lin Hong
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, The Innovation and Talent Recruitment Base of New Energy Chemistry and Device, Center for Experimental Chemistry, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jian Sun
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, The Innovation and Talent Recruitment Base of New Energy Chemistry and Device, Center for Experimental Chemistry, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiu-Qin Fang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, The Innovation and Talent Recruitment Base of New Energy Chemistry and Device, Center for Experimental Chemistry, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing-Wen Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, The Innovation and Talent Recruitment Base of New Energy Chemistry and Device, Center for Experimental Chemistry, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chang Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, The Innovation and Talent Recruitment Base of New Energy Chemistry and Device, Center for Experimental Chemistry, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cheng-Mei Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, The Innovation and Talent Recruitment Base of New Energy Chemistry and Device, Center for Experimental Chemistry, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
18
|
Gajdoš S, Zuzáková J, Pacholská T, Kužel V, Karpíšek I, Karmann C, Šturmová R, Bindzar J, Smrčková Š, Sýkorová Z, Srb M, Šmejkalová P, Kok D, Kouba V. Synergistic removal of pharmaceuticals and antibiotic resistance from ultrafiltered WWTP effluent: Free-floating ARGs exceptionally susceptible to degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117861. [PMID: 37116413 DOI: 10.1016/j.jenvman.2023.117861] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/10/2023] [Accepted: 04/01/2023] [Indexed: 05/12/2023]
Abstract
To protect the environment and human health, antibiotic resistance genes (ARGs) and persistent pharmaceuticals need to be removed from WWTP effluent prior to its reuse. However, an efficient process for removing free-floating extracellular DNA (exDNA) in combination with a wide range of pharmaceuticals is yet to be reported for real process conditions. As a possible solution, we treated real ultrafiltered WWTP effluent with UV/H2O2 and combined GAC and zeolite sorption. In terms of exDNA, sequencing and high-throughput quantitative PCR (HT-qPCR) showed that exDNA is a potent carrier of numerous ARGs in ultrafiltered WWTP effluent (123 ARGs), including multi-drug efflux pump mexF that became the dominant exARG in GAC effluent over time. Due to the exposure to degradation agents, exDNA was reduced more efficiently than intracellular DNA, and overall levels of ARGs were substantially lowered. Moreover, GAC sorption was particularly effective in the removal of almost all the 85 detected pharmaceutical residues, with fresh GAC demonstrating an efficiency of up to 100%. However, zeolite (Si/Al 0.8) addition was needed to enhance the removal of persistent pollutants such as gabapentin and diclofenac to 57% and up to 100%, respectively. Our combined approach eminently decreases the hazardous effects of pharmaceuticals and antibiotic resistance in the ultrafiltered WWTP effluent, producing effluent suitable for multiple reuse options according to the latest legislation. In addition, we provided similarly promising but less extensive data for surface water and treated greywater.
Collapse
Affiliation(s)
- Stanislav Gajdoš
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Jana Zuzáková
- PVK, a.s., Ke Kablu 971, 102 00 Praha 10, Czech Republic.
| | - Tamara Pacholská
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Vojtěch Kužel
- PVK, a.s., Ke Kablu 971, 102 00 Praha 10, Czech Republic.
| | - Ivan Karpíšek
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Christina Karmann
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Rebecca Šturmová
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Jan Bindzar
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Štěpánka Smrčková
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | | | - Martin Srb
- PVK, a.s., Ke Kablu 971, 102 00 Praha 10, Czech Republic.
| | - Pavla Šmejkalová
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Dana Kok
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Vojtěch Kouba
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| |
Collapse
|
19
|
Saffarionpour S, Diosady LL. Preparation and characterization of an iron-β-cyclodextrin inclusion complex: factors influencing the host-guest interaction. Food Funct 2023. [PMID: 37161593 DOI: 10.1039/d3fo00090g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cyclodextrins have received attention recently due to their superior binding with countless hydrophobic molecules. The host-guest interaction between the cyclodextrin cavity and the hydrophobic component not only facilitates the formation of a strong inclusion complex (IC), but also improves its stability against thermal degradation. The functionality of cyclodextrins for the delivery of hydrophilic components is less explored in comparison. This study discusses the application of β-cyclodextrin (βCD) for the delivery of highly bioavailable and hydrophilic iron, ferric sodium EDTA, which exhibits great functionality in the presence of polyphenols and phytates with potential application in food fortification. The formation of IC was dependent on the cyclodextrin amount and alcoholic co-solvent and was influenced by the stirring duration. For ferric sodium EDTA, the highest inclusion rate (IR) of ∼77% was obtained after 72 hours of mixing in 25.4% (v/v) alcohol at a ratio of iron : βCD of 1 : 6. A higher IR (∼96%) was obtained after 6 hours of stirring with less soluble ferrous ammonium phosphate in comparison. The melting temperature (Tm) of the ferrous ammonium phosphate complex increased from ∼172 to ∼294 °C. The high IR and enhanced thermal resistance of the complex make βCDs potential carriers for ferrous ammonium phosphate delivery and fortification of foods processed at high temperatures.
Collapse
Affiliation(s)
- Shima Saffarionpour
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, Toronto, Ontario, Canada.
| | - Levente L Diosady
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Ozelcaglayan ED, Parker WJ. β-Cyclodextrin functionalized adsorbents for removal of organic micropollutants from water. CHEMOSPHERE 2023; 320:137964. [PMID: 36736473 DOI: 10.1016/j.chemosphere.2023.137964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The presence of organic micropollutants in water is an ongoing concern due to the potential risks to living organisms. β-Cyclodextrin-based adsorbents have been developed to remove organic micropollutants from water as they are deemed to be efficient, selective and reusable. This literature review establishes the current state of the knowledge on the application of β-Cyclodextrin adsorbents for the removal of organic micropollutants from water and determines knowledge gaps and recommendations for future studies. An inventory of organic micropollutants that have been studied was developed and it revealed that bisphenol-A has been the most commonly studied. Adsorbent configurations were reviewed and modifications to the adsorbent structures that have provided enhanced adsorption properties were identified. The size and shape of the organic micropollutants was found to affect the adsorption behavior. The surface charge of β-Cyclodextrin adsorbents influence adsorption when repulsive forces are present and the extent of repulsion can depend on the pH of the solution. Common competitors such as natural organic matter and inorganic ions do not significantly impact the adsorption of organic micropollutants however relatively small fulvic acids may compete for the β-Cyclodextrin cavity depending on the adsorbent type. Desorption of organic micropollutants from these adsorbents has been accomplished with alcohols and most adsorbents have been recovered and reused in adsorption/desorption cycles. The need for enhanced recovery processes that maintain water quality and adsorbent integrity was identified. The use of quantitative structure-activity relationships and molecular computational tools could potentially guide future environmental applications of β-Cyclodextrin adsorbents.
Collapse
Affiliation(s)
- Ezgi Demircan Ozelcaglayan
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Ontario, Canada.
| | - Wayne J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Ontario, Canada
| |
Collapse
|
21
|
Influence of β-Cyclodextrin Methylation on Host-Guest Complex Stability: A Theoretical Study of Intra- and Intermolecular Interactions as Well as Host Dimer Formation. Molecules 2023; 28:molecules28062625. [PMID: 36985598 PMCID: PMC10054123 DOI: 10.3390/molecules28062625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Understanding the non-covalent interactions in host-guest complexes is crucial to their stability, design and applications. Here, we use density functional theory to compare the ability of β-cyclodextrin (β-CD) and heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) to encapsulate the model guest phenol. For both macrocycles, we quantify the intramolecular interactions before and after the formation of the complex, as well as the intermolecular host-guest and host-host dimer interactions. These are individually classified as van der Waals interactions or hydrogen bonds, respectively. The results show a stronger intramolecular binding energy of β-CD, with the absolute difference being −5.53 kcal/mol relative to DM-β-CD. Consequently, the intermolecular interactions of both cyclodextrins with phenol are affected, such that the free binding energy calculated for the DM-β-CD/phenol complex (−5.23 kcal/mol) is ≈50% more negative than for the complex with β-CD (−2.62 kcal/mol). The latter is in excellent agreement with the experimental data (−2.69 kcal/mol), which validates the level of theory (B97-3c) used. Taken together, the methylation of β-CD increases the stability of the host-guest complex with the here studied guest phenol through stronger van der Waals interactions and hydrogen bonds. We attribute this to the disruption of the hydrogen bond network in the primary face of β-CD upon methylation, which influences the flexibility of the host toward the guest as well as the strength of the intermolecular interactions. Our work provides fundamental insights into the impact of different non-covalent interactions on host-guest stability, and we suggest that this theoretical framework can be adapted to other host-guest complexes to evaluate and quantify their non-covalent interactions.
Collapse
|
22
|
Liu B, Wang S, Wang H, Wang Y, Xiao Y, Cheng Y. Quaternary Ammonium Groups Modified Magnetic Cyclodextrin Polymers for Highly Efficient Dye Removal and Sterilization in Water Purification. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010167. [PMID: 36615361 PMCID: PMC9822413 DOI: 10.3390/molecules28010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Water recovery is a significant proposition for human survival and sustainable development, and we never stop searching for more efficient, easy-operating, low-cost and environmentally friendly methods to decontaminate water bodies. Herein, we combined the advantages of β-cyclodextrin (β-CD), magnetite nanoparticles (MNs), and two kinds of quaternary ammonium salts to synthesize two porous quaternary ammonium groups capped magnetic β-CD polymers (QMCDP1 and QMCDP2) to remove organic pollutants and eradicate pathogenic microorganisms effectively through a single implementation. In this setting, β-CD polymer (CDP) was utilized as the porous substrate material, while MNs endowed the materials with excellent magnetism enhancing recyclability in practical application scenarios, and the grafting of quaternary ammonium groups was beneficial for the adsorption of anionic dyes and sterilization. Both QMCDPs outperformed uncapped MCDPs in their adsorption ability of anionic pollutants, using methyl blue (MB) and orange G (OG) as model dyes. Additionally, QMCDP2, which was modified with longer alkyl chains than QMCDP1, exhibits superior bactericidal efficacy with a 99.47% removal rate for Staphylococcus aureus. Accordingly, this study provides some insights into designing a well-performed and easily recyclable adsorbent for simultaneous sterilization and adsorption of organic contaminants in wastewater.
Collapse
Affiliation(s)
- Bingjie Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shuoxuan Wang
- School of Science, Tianjin University, Tianjin 300350, China
| | - He Wang
- School of Science, Tianjin University, Tianjin 300350, China
| | - Yong Wang
- School of Science, Tianjin University, Tianjin 300350, China
- Correspondence: (Y.W.); (Y.X.); (Y.C.)
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Correspondence: (Y.W.); (Y.X.); (Y.C.)
| | - Yue Cheng
- School of Science, Tianjin University, Tianjin 300350, China
- Correspondence: (Y.W.); (Y.X.); (Y.C.)
| |
Collapse
|
23
|
Wacławek S, Krawczyk K, Silvestri D, Padil VV, Řezanka M, Černík M, Jaroniec M. Cyclodextrin-based strategies for removal of persistent organic pollutants. Adv Colloid Interface Sci 2022; 310:102807. [DOI: 10.1016/j.cis.2022.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
|
24
|
Removal of an Azo Dye from Wastewater through the Use of Two Technologies: Magnetic Cyclodextrin Polymers and Pulsed Light. Int J Mol Sci 2022; 23:ijms23158406. [PMID: 35955538 PMCID: PMC9369244 DOI: 10.3390/ijms23158406] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
Water pollution by dyes is a huge environmental problem; there is a necessity to produce new decolorization methods that are effective, cost-attractive, and acceptable in industrial use. Magnetic cyclodextrin polymers offer the advantage of easy separation from the dye solution. In this work, the β-CD-EPI-magnetic (β-cyclodextrin-epichlorohydrin) polymer was synthesized, characterized, and tested for removal of the azo dye Direct Red 83:1 from water, and the fraction of non-adsorbed dye was degraded by an advanced oxidation process. The polymer was characterized in terms of the particle size distribution and surface morphology (FE-SEM), elemental analysis (EA), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), infrared spectrophotometry (IR), and X-ray powder diffraction (XRD). The reported results hint that 0.5 g and pH 5.0 were the best conditions to carry out both kinetic and isotherm models. A 30 min contact time was needed to reach equilibrium with a qmax of 32.0 mg/g. The results indicated that the pseudo-second-order and intraparticle diffusion models were involved in the assembly of Direct Red 83:1 onto the magnetic adsorbent. Regarding the isotherms discussed, the Freundlich model correctly reproduced the experimental data so that adsorption was confirmed to take place onto heterogeneous surfaces. The calculation of the thermodynamic parameters further demonstrates the spontaneous character of the adsorption phenomena (ΔG° = −27,556.9 J/mol) and endothermic phenomena (ΔH° = 8757.1 J/mol) at 25 °C. Furthermore, a good reusability of the polymer was evidenced after six cycles of regeneration, with a negligible decline in the adsorption extent (10%) regarding its initial capacity. Finally, the residual dye in solution after treatment with magnetic adsorbents was degraded by using an advanced oxidation process (AOP) with pulsed light and hydrogen peroxide (343 mg/L); >90% of the dye was degraded after receiving a fluence of 118 J/cm2; the discoloration followed a pseudo first-order kinetics where the degradation rate was 0.0196 cm2/J. The newly synthesized β-CD-EPI-magnetic polymer exhibited good adsorption properties and separability from water which, when complemented with a pulsed light-AOP, may offer a good alternative to remove dyes such as Direct Red 83:1 from water. It allows for the reuse of both the polymer and the dye in the dyeing process.
Collapse
|
25
|
Synthesis, Attributes and Defect Control of Defect-Engineered Materials as Superior Adsorbents for Aqueous Species: A Review. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Martwong E, Sukhawipat N, Junthip J. Adsorption of Cationic Pollutants from Water by Cotton Rope Coated with Cyclodextrin Polymers. Polymers (Basel) 2022; 14:polym14122312. [PMID: 35745888 PMCID: PMC9228999 DOI: 10.3390/polym14122312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The contamination from perilous organic compounds (pesticide and dyes) in water generates a significant problem for the environment and humans. A modified textile was prepared by a coating of anionic cyclodextrin polymer, obtained from the cross-linking between citric acid and β-cyclodextrin in the presence of poly (vinyl alcohol), on the cotton cord for cationic pollutant removal from an aqueous solution. Its physicochemical properties were also characterized by gravimetry, titration, stereomicroscopy, SEM, TGA, 13C NMR, and ATR-FTIR. The CC2 system exhibited 79.2% coating yield, 1.12 mmol/g COOH groups, 91.3% paraquat (PQ) removal, 97.0% methylene blue (MB) removal, and 98.3% crystal violet (CV) removal for 25 mg/L of initial concentration. The kinetics was fitted to the pseudo-second-order model using 6 h of contact time. The isotherm was suitable for the Langmuir isotherm with a maximum adsorption of 26.9 mg/g (PQ), 23.7 mg/g (MB), and 30.3 mg/g (CV). After 120 h of contact time in water and 5% v/v of HCI in ethanol, the weight loss was 7.5% and 5.6%, respectively. Finally, the recyclability performance reached 84.8% (PQ), 95.2% (MB), and 96.9% (CV) after five reuses.
Collapse
Affiliation(s)
- Ekkachai Martwong
- Division of Science (Chemistry), Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya 13000, Thailand;
| | - Nathapong Sukhawipat
- Division of Polymer Engineering Technology, Department of Mechanical Engineering Technology, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
- Correspondence: ; Tel.: +66-(0)4-400-9009 (ext. 1110)
| |
Collapse
|
27
|
Cotton Cord Coated with Cyclodextrin Polymers for Paraquat Removal from Water. Polymers (Basel) 2022; 14:polym14112199. [PMID: 35683872 PMCID: PMC9182761 DOI: 10.3390/polym14112199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
The contamination of hazardous agrochemical substances in water caused essential trouble for humans and the environment. The functional textile was used as an effective adsorbent for paraquat removal from an aqueous solution. The coating of anionic cyclodextrin polymer, issued from the cross-linking between 1,2,3,4-butanetetracarboxylic acid and β−cyclodextrin in the presence of poly (vinyl alcohol), on the cotton cord, was firstly investigated. Their physicochemical characteristics were also characterized by gravimetry, acid–base titration, ATR-FTIR, 13C NMR, TGA, and stereo-microscopy. The BDP5 system revealed 107.3% coating yield, 1.13 mmol/g COOH groups, and 95.1% paraquat removal for 25 mg/L of initial concentration. The pseudo-second-order model was appropriate for kinetics using 6 h of contact time. Langmuir isotherm was suitable with the maximum adsorption of 30.3 mg/g for paraquat adsorption. The weight loss was 10.7% and 7.8%, respectively, for water and 5% v/v of HCI in ethanol after 120 h of contact time. Finally, the reusability efficiency stayed at 88.9% after five regeneration.
Collapse
|
28
|
Jopa S, Wójcik J, Ejchart A, Nowakowski M. NMR studies of inclusion complexes: naphthalene and natural cyclodextrins. Phys Chem Chem Phys 2022; 24:13690-13697. [PMID: 35611965 DOI: 10.1039/d2cp01152b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inclusion complexes of naphthalene (NP) with cyclodextrins (CD) have been investigated so far using non-NMR techniques resulting in inconsistent data. Here, the first application of high-field NMR spectroscopy in combination with a precise analysis of the results has allowed us to determine accurately the stoichiometry of complexes and their association constants. Titration measurements have been performed by 1H NMR spectroscopy in D2O at a magnetic field B0 of 18.8 T. NP and αCD form a 1 : 2 complex in which a single NP molecule is closed in a capsule made up of two αCD macrocycles. NP and βCD build coexisting 2 : 1 and 2 : 2 complexes with large binding constants. Larger γCD host molecules form essentially similar complexes with NP as the βCD but corresponding binding constants are smaller.
Collapse
Affiliation(s)
- Sylwia Jopa
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Jacek Wójcik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Andrzej Ejchart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Michał Nowakowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
29
|
Beta-cyclodextrin adsorbents to remove water pollutants—a commentary. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Agnes M, Pancani E, Malanga M, Fenyvesi E, Manet I. Implementation of Water-Soluble Cyclodextrin-Based Polymers in Biomedical Applications: How Far are we? Macromol Biosci 2022; 22:e2200090. [PMID: 35452159 DOI: 10.1002/mabi.202200090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Cyclodextrin-based polymers can be prepared starting from the naturally occurring monomers following green and low-cost procedures. They can be selectively derivatized pre- or post-polymerization allowing to fine-tune functionalities of ad hoc customized polymers. Preparation nowadays has reached the 100 g scale thanks also to the interest of industries in these extremely versatile compounds. During the last 15 years these macromolecules have been the object of intense investigations in view of possible biomedical applications as the ultimate goal and large amounts of scientific data are now available. Compared to their monomeric models, already used in the formulation of various therapeutic agents, they display superior behavior in terms of their solubility in water and solubilizing power towards drugs incompatible with biological fluids. Moreover, they allow the combination of more than one type of therapeutic agent in the polymeric system. In this review we provide a complete state-of-the-art on the knowledge and potentialities of water-soluble cyclodextrin-based polymers as therapeutic agents as well as carrier systems for different types of therapeutics to implement combination therapy. Finally, we give a perspective on their assets for innovation in disease treatment as well as their limits that still need to be addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marco Agnes
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna, 40129, Italy
| | - Elisabetta Pancani
- Advanced Accelerator Applications, A Novartis Company, via Ribes 5, Ivrea, 10010, Italy
| | - Milo Malanga
- CycloLab, Cyclodextrin R&D Ltd., Budapest, H1097, Hungary
| | - Eva Fenyvesi
- CycloLab, Cyclodextrin R&D Ltd., Budapest, H1097, Hungary
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna, 40129, Italy
| |
Collapse
|
31
|
Zou L, Zhang Z, Feng J, Ding W, Li Y, Liang D, Xie T, Li F, Li Y, Chen J, Yang X, Tang L, Ding W. Case ReportPaclitaxel-loaded TPGS 2k/Gelatin-grafted Cyclodextrin/Hyaluronic acid-grafted Cyclodextrin nanoparticles for oral bioavailability and targeting enhancement. J Pharm Sci 2022; 111:1776-1784. [PMID: 35341722 DOI: 10.1016/j.xphs.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 01/20/2023]
Abstract
The clinical applications of paclitaxel (PTX), a natural compound with broad-spectrum antitumor effects, have been markedly limited owing to its poor oral bioavailability and lack of targeting ability. Recently, several drug carriers, such as TPGS2k, gelatin (Gel), cyclodextrin (CD), and hyaluronic acid (HA), have been identified as promising enhancers of drug efficacy. Therefore, Gel-grafted CD (GEL-CD) and HA-grafted CD (HA-CD) were synthesized via grafting, and PTX-loaded TPGS2k/GEL-CD/HA-CD nanoparticles (TGHC-PTX-NPs) were successfully prepared using the ultrasonic crushing method. The mean particles size, polydispersity index, and Zeta potential of TGHC-PTX-NPs were 253.57 ± 2.64 nm, 0.13 ± 0.03, and 0.087 ± 0.005 mV, respectively. TGHC-PTX-NPs with an encapsulation efficiency of 61.77 ± 0.47% and a loading capacity of 6.86 ± 0.32% appeared round and uniformly dispersed based on transmission electron microscopy. In vitro release data revealed that TGHC-PTX-NPs had good sustained-release properties. Further, TGHC-PTX-NPs had increased the targeted uptake by HeLa cells as HA can specifically bind to the CD44 receptor at the cell surface, and its intestinal absorption is related to caveolin-mediated endocytosis. The pharmacokinetic results indicated that TGHC-PTX-NPs significantly enhanced the absorption of PTX in vivo compared to the PTX suspension, with a relative bioavailability of 227.21%. Such findings indicate the potential of TGHC-PTX-NPs for numerous clinical applications.
Collapse
Affiliation(s)
- Linghui Zou
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhongbin Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; South China Branch of National Engineering Research Center for Manufacturing Technology of Traditional Chinese Medicine Solid Preparation, Nanning, China
| | - Wenyou Ding
- Basic Courses Department of Wuhan Donghu University
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University
| | - Dan Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Tanfang Xie
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Fang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuyang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinqing Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xu Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Ling Tang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wenya Ding
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; College of Veterinary Medicine, Northeast Agricultural University; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
32
|
Kraus H, Hansen N. An atomistic view on the uptake of aromatic compounds by cyclodextrin immobilized on mesoporous silica. ADSORPTION 2022. [DOI: 10.1007/s10450-022-00356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe effect of immobilized $$\upbeta$$
β
-cyclodextrin (bCD) molecules inside a mesoporous silica support on the uptake of benzene and p-nitrophenol from aqueous solution was investigated using all-atom molecular dynamics (MD) simulations. The calculated adsorption isotherms are discussed with respect to the free energies of binding for a 1:1 complex of bCD and the aromatic guest molecule. The adsorption capacity of the bCD-containing material significantly exceeds the amount corresponding to a 1:1 binding scenario, in agreement with experimental observations. Beside the formation of 1:2 and, to a lesser extent, 1:3 host:guest complexes, also host–host interactions on the surface as well as more unspecific host–guest interactions govern the adsorption process. The demonstrated feasibility of classical all-atom MD simulations to calculate liquid phase adsorption isotherms paves the way to a molecular interpretation of experimental data that are too complex to be described by empirical models.
Collapse
|
33
|
Fenyvesi É, Sohajda T. Cyclodextrin-enabled green environmental biotechnologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20085-20097. [PMID: 35064478 DOI: 10.1007/s11356-021-18176-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Most of the organic compounds contaminating the environment can form inclusion complexes with cyclodextrins resulting in enhanced solubility (a benefit in soil remediation) or just the opposite: reduced mobility by sorption (a benefit in wastewater treatment). Combining biotechnologies with cyclodextrin, a renewable and biodegradable material, green environmental technologies of high efficiency were developed. For instance, the cyclodextrin-enabled soil washing/flushing technologies combined with bioremediation have been demonstrated in full-scale field experiments. The efficiency of tertiary wastewater treatment by sorption of non-biodegradable xenobiotics, such as residual pharmaceutics, was proved. The biofilm formation in fouling processes can be prevented or reduced either by applying cyclodextrin-based coatings or by manipulation of quorum sensing (bacterial communication) via capturing signal molecules.
Collapse
Affiliation(s)
- Éva Fenyvesi
- CycloLab Cyclodextrin R&D Laboratory Ltd, Budapest, Hungary.
| | - Tamás Sohajda
- CycloLab Cyclodextrin R&D Laboratory Ltd, Budapest, Hungary
| |
Collapse
|
34
|
Liu Y, Sameen DE, Ahmed S, Wang Y, Lu R, Dai J, Li S, Qin W. Recent advances in cyclodextrin-based films for food packaging. Food Chem 2022; 370:131026. [PMID: 34509938 DOI: 10.1016/j.foodchem.2021.131026] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022]
Abstract
Cyclodextrins are garnering increasing attention because they offer several benefits. For instance, cyclodextrins can form several complexes and supramolecular structures not only for food packaging but also for applications in other fields of science. In this review, we discussed the physical and chemical properties of cyclodextrins and the mechanism of their inclusion complex formation. The use of cyclodextrins in various types of food packaging is elaborated upon. We also explain the effects of cyclodextrins on the packaging of fruits, vegetables, meat, fish, and processed foods. Furthermore, some feasible suggestions for future applications are provided. In addition to the positive attributes of cyclodextrins, there are some limitations and drawbacks, which are discussed briefly in this review. In summary, this review can serve as a guide for researchers exploring cyclodextrins for the development of various packaging films.
Collapse
Affiliation(s)
- Yaowen Liu
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China; CaliforniaNano Systems Institute, University of California, Los Angeles, CA 90095, USA.
| | - Dur E Sameen
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Saeed Ahmed
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yue Wang
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Rui Lu
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianwu Dai
- Collegeof Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
35
|
Martwong E, Chuetor S, Junthip J. Adsorption of Cationic Contaminants by Cyclodextrin Nanosponges Cross-Linked with 1,2,3,4-Butanetetracarboxylic Acid and Poly(vinyl alcohol). Polymers (Basel) 2022; 14:342. [PMID: 35054747 PMCID: PMC8778113 DOI: 10.3390/polym14020342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Cationic organic pollutants (dyes and pesticides) are mainly hydrosoluble and easily contaminate water and create a serious problem for biotic and abiotic species. The elimination of these dangerous contaminants from water was accomplished by adsorption using cyclodextrin nanosponges. These nanosponges were elaborated by the cross-linking between 1,2,3,4-butanetetracarboxylic acid and β-cyclodextrin in the presence of poly(vinyl alcohol). Their physicochemical characteristics were characterized by gravimetry, acid-base titration, TGA, 13C NMR, ATR-FTIR, Raman, X-ray diffraction, and Stereomicroscopy. The BP5 nanosponges displayed 68.4% yield, 3.31 mmol/g COOH groups, 0.16 mmol/g β-CD content, 54.2% swelling, 97.0% PQ removal, 96.7% SO removal, and 98.3% MG removal for 25 mg/L of initial concentration. The pseudo-second-order model was suitable for kinetics using 180 min of contact time. Langmuir isotherm was suitable for isotherm with the maximum adsorption of 120.5, 92.6, and 64.9 mg/g for paraquat (PQ), safranin (SO), and malachite green (MG) adsorption, respectively. Finally, the reusability performance after five regeneration times reached 94.1%, 91.6%, and 94.6% for PQ, SO, and MG adsorption, respectively.
Collapse
Affiliation(s)
- Ekkachai Martwong
- Division of Science (Chemistry), Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya 13000, Thailand;
| | - Santi Chuetor
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
36
|
Crini G, Bradu C, Fourmentin M, Cosentino C, Ribeiro ARL, Morin-Crini N. Sorption of 4-n-nonylphenol, 4-n-octylphenol, and 4-tert-octyphenol on cyclodextrin polymers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:171-181. [PMID: 34014475 DOI: 10.1007/s11356-021-14435-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Alkylphenols are industrial pollutants commonly present in wastewater. They are difficult to eliminate by conventional treatment processes, ending up in the sludge of wastewater treatment plants. In this study, we propose to use cross-linked cyclodextrin-based polymers (ECP) as sorbents to treat three alkylphenols, namely, one nonylphenol (4-n-NP) and two octylphenols (4-n-OP and 4-tert-OP), present in aqueous solution by a batch method. The experiments were carried out with five cyclodextrin polymers (α-ECP, β-ECP, γ-ECP, α,β,γ-ECP, and HP-β-ECP). Sorption results showed that all polymers, with the exception of α-ECP, had high sorption capacities between 60 and 100% of the alkylphenols in the concentration range studied (between 25 and 100 μg/L). In all cases, HP-β-ECP has shown the highest removals, regardless of the structure of the molecule. The order obtained was HP-β-ECP >> β-ECP ~ α,β,γ-ECP >> γ-ECP > α-ECP. The 4-tert-OP compound was the best adsorbed, regardless the material and the solution studied. Sorption results also indicated that (i) the sorption efficiency decreased with the increasing of alkylphenol concentration; (ii) sodium chloride had a strong negative effect on the sorption process; and (iii) the performance remained unchanged after five sorption-regeneration cycles. The main sorption mechanism of alkylphenols occurring in ECP was the inclusion within the cyclodextrin cavities. The obtained results proved that cyclodextrin polymers could serve as efficient sorbents for the removal of alkylphenols from real effluents.
Collapse
Affiliation(s)
- Grégorio Crini
- Chrono-environnement, Université Bourgogne Franche-Comté, UMR 6249, 16 route de Gray, 25000, Besançon, France
| | - Corina Bradu
- Chrono-environnement, Université Bourgogne Franche-Comté, UMR 6249, 16 route de Gray, 25000, Besançon, France
- PROTMED Centre, 050663, Bucharest, Romania
| | - Marc Fourmentin
- Laboratoire de Physico-Chimie de l'Atmosphère MREI2, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Cesare Cosentino
- Chrono-environnement, Université Bourgogne Franche-Comté, UMR 6249, 16 route de Gray, 25000, Besançon, France
- Istituto di Chimica e Biochimica G. Ronzoni, 81 via G. Colombo, 20133, Milan, Italy
| | - Ana Rita Lado Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Nadia Morin-Crini
- Chrono-environnement, Université Bourgogne Franche-Comté, UMR 6249, 16 route de Gray, 25000, Besançon, France.
| |
Collapse
|
37
|
He Y, Chen L, He R, Zhong K, Tang L. Research Progress of Fluorescence Probes Constructed by Cyclodextrin Derivatives and Inclusion Complexes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Sun X, Chen M, Lei J, Liu X, Ke X, Liu W, Wang J, Gao X, Liu X, Zhang Y. How β-cyclodextrin- loaded mesoporous SiO 2 nanospheres ensure efficient adsorption of rifampicin. Front Chem 2022; 10:1040435. [PMID: 36583155 PMCID: PMC9794459 DOI: 10.3389/fchem.2022.1040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022] Open
Abstract
In this study, β-CD@mesoporous SiO2 nanospheres (β-CD@mSi) were prepared by loading β-cyclodextrin (β-CD) onto mesoporous silica nanospheres through an in situ synthesis. This not only solved the defect of β-CD being easily soluble in water, but also changed the physical structure of the mesoporous silica nanospheres. FTIR and XPS results showed that β-CD was successfully loaded onto mesoporous silica nanospheres (mSi), while enhancing the adsorption effect. β-CD@mSi with a monomer diameter of about 150 nm were prepared. At a temperature of 298k, the removal efficiency of a 100 mg/L solution of rifampicin can reach 90% in 4 h and the adsorption capacity was 275.42 mg g-1 at high concentration. Through the calculation and analysis of adsorption kinetics, adsorption isotherms and adsorption thermodynamics based on the experimental data, the reaction is a spontaneous endothermic reaction dominated by chemical adsorption. The electron transfer pathway, structure-activity relationship and energy between β-CD@mSi and rifampicin were investigated by quantum chemical calculations. The accuracy of the characterization test results to judge the adsorption mechanism was verified, to show the process of rifampicin removal by β-CD@mSi more clearly and convincingly. The simulation results show that π-π interaction plays a major interaction in the reaction process, followed by intermolecular hydrogen bonding and electrostatic interactions.
Collapse
Affiliation(s)
- Xun Sun
- Northeast Key Laboratory of Arable Land Conservation and Improvement, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Clean Energy and College of Energy and Environmental, Shenyang Aerospace University, Shenyang, China
| | - Mingming Chen
- Liaoning Key Laboratory of Clean Energy and College of Energy and Environmental, Shenyang Aerospace University, Shenyang, China
| | - Jiayu Lei
- Liaoning Key Laboratory of Clean Energy and College of Energy and Environmental, Shenyang Aerospace University, Shenyang, China
| | - Xinran Liu
- Liaoning Key Laboratory of Clean Energy and College of Energy and Environmental, Shenyang Aerospace University, Shenyang, China
| | - Xin Ke
- Liaoning Key Laboratory of Clean Energy and College of Energy and Environmental, Shenyang Aerospace University, Shenyang, China
| | - Wengang Liu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Jingkuan Wang
- Northeast Key Laboratory of Arable Land Conservation and Improvement, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Xiaodan Gao
- Northeast Key Laboratory of Arable Land Conservation and Improvement, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Xin Liu
- Liaoning Key Laboratory of Clean Energy and College of Energy and Environmental, Shenyang Aerospace University, Shenyang, China
| | - Yun Zhang
- Northeast Key Laboratory of Arable Land Conservation and Improvement, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Yun Zhang,
| |
Collapse
|
39
|
Why 2,6-di-methyl-β-cyclodextrin can encapsulate OH-substituted naphthalenes better than β-cyclodextrin: Binding pose, non-covalent interaction and solvent effect. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Martwong E, Chuetor S, Junthip J. Adsorption of Paraquat by Poly(Vinyl Alcohol)-Cyclodextrin Nanosponges. Polymers (Basel) 2021; 13:4110. [PMID: 34883612 PMCID: PMC8658895 DOI: 10.3390/polym13234110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
The contamination of hydrosoluble pesticides in water could generate a serious problem for biotic and abiotic components. The removal of a hazardous agrochemical (paraquat) from water was achieved by adsorption processes using poly(vinyl alcohol)-cyclodextrin nanosponges, which were prepared with various formulations via the crosslinking between citric acid and β-cyclodextrin in the presence of poly(vinyl alcohol). The physicochemical properties of nanosponges were also characterized by different techniques, such as gravimetry, thermogravimetry, microscopy (SEM and Stereo), spectroscopy (UV-visible, NMR, ATR-FTIR, and Raman), acid-base titration, BET surface area analysis, X-ray diffraction, and ion exchange capacity. The C10D-P2 nanosponges displayed 60.2% yield, 3.14 mmol/g COOH groups, 0.335 mmol/g β-CD content, 96.4% swelling, 94.5% paraquat removal, 0.1766 m2 g-1 specific surface area, and 5.2 × 10-4 cm3 g-1 pore volume. The presence of particular peaks referring to specific functional groups on spectroscopic spectra confirmed the successful polycondensation on the reticulated nanosponges. The pseudo second-order model (with R2 = 0.9998) and Langmuir isotherm (with R2 = 0.9979) was suitable for kinetics and isotherm using 180 min of contact time and a pH of 6.5. The maximum adsorption capacity was calculated at 112.2 mg/g. Finally, the recyclability of these nanosponges was 90.3% of paraquat removal after five regeneration times.
Collapse
Affiliation(s)
- Ekkachai Martwong
- Division of Science (Chemistry), Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya 13000, Thailand;
| | - Santi Chuetor
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
41
|
Finnegan TJ, Gunawardana VWL, Badjić JD. Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts. Chemistry 2021; 27:13280-13305. [PMID: 34185362 PMCID: PMC8453132 DOI: 10.1002/chem.202101532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/19/2022]
Abstract
Nerve agents are tetrahedral organophosphorus compounds (OPs) that were developed in the last century to irreversibly inhibit acetylcholinesterase (AChE) and therefore impede neurological signaling in living organisms. Exposure to OPs leads to a rapid development of symptoms from excessive salivation, nasal congestion and chest pain to convulsion and asphyxiation which if left untreated may lead to death. These potent toxins are prepared on a large scale from inexpensive staring materials, making it feasible for terrorist groups or states to use them against military and civilians. The existing antidotes provide limited protection and are difficult to apply to a large number of affected individuals. While new prophylactics are currently being developed, there is still need for therapeutics capable of both preventing and reversing the effects of OP poisoning. In this review, we describe how the science of molecular recognition can expand the pallet of tools for rapid and safe sequestration of nerve agents.
Collapse
Affiliation(s)
- Tyler J Finnegan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| | | | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| |
Collapse
|
42
|
Mongioví C, Morin-Crini N, Lacalamita D, Bradu C, Raschetti M, Placet V, Ribeiro ARL, Ivanovska A, Kostić M, Crini G. Biosorbents from Plant Fibers of Hemp and Flax for Metal Removal: Comparison of Their Biosorption Properties. Molecules 2021; 26:4199. [PMID: 34299474 PMCID: PMC8303383 DOI: 10.3390/molecules26144199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022] Open
Abstract
Lignocellulosic fibers extracted from plants are considered an interesting raw material for environmentally friendly products with multiple applications. This work investigated the feasibility of using hemp- and flax-based materials in the form of felts as biosorbents for the removal of metals present in aqueous solutions. Biosorption of Al, Cd, Co, Cu, Mn, Ni and Zn from a single solution by the two lignocellulosic-based felts was examined using a batch mode. The parameters studied were initial metal concentration, adsorbent dosage, contact time, and pH. In controlled conditions, the results showed that: (i) the flax-based felt had higher biosorption capacities with respect to the metals studied than the hemp-based felt; (ii) the highest removal efficiency was always obtained for Cu ions, and the following order of Cu > Cd > Zn > Ni > Co > Al > Mn was found for both examined biosorbents; (iii) the process was rapid and 10 min were sufficient to attain the equilibrium; (iv) the efficiency improved with the increase of the adsorbent dosage; and (v) the biosorption capacities were independent of pH between 4 and 6. Based on the obtained results, it can be considered that plant-based felts are new, efficient materials for metal removal.
Collapse
Affiliation(s)
- Chiara Mongioví
- Laboratoire Chrono-Environnement, Faculté des Sciences & Techniques, UMR 6249, Université Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; (C.M.); (N.M.-C.); (D.L.)
| | - Nadia Morin-Crini
- Laboratoire Chrono-Environnement, Faculté des Sciences & Techniques, UMR 6249, Université Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; (C.M.); (N.M.-C.); (D.L.)
| | - Dario Lacalamita
- Laboratoire Chrono-Environnement, Faculté des Sciences & Techniques, UMR 6249, Université Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; (C.M.); (N.M.-C.); (D.L.)
| | - Corina Bradu
- PROTMED Research Centre, Department of Systems Ecology and Sustainability, University of Bucharest, Spl. Independentei 91–95, 050095 Bucharest, Romania;
| | - Marina Raschetti
- FEMTO-ST, CNRS/UFC/ENSMM/UTBM, Department of Applied Mechanics, Université Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; (M.R.); (V.P.)
| | - Vincent Placet
- FEMTO-ST, CNRS/UFC/ENSMM/UTBM, Department of Applied Mechanics, Université Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; (M.R.); (V.P.)
| | - Ana Rita Lado Ribeiro
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal;
| | - Aleksandra Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Mirjana Kostić
- Department of Textile Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Grégorio Crini
- Laboratoire Chrono-Environnement, Faculté des Sciences & Techniques, UMR 6249, Université Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; (C.M.); (N.M.-C.); (D.L.)
| |
Collapse
|
43
|
Lin S, Zou C, Liang H, Peng H, Liao Y. The effective removal of nickel ions from aqueous solution onto magnetic multi-walled carbon nanotubes modified by β-cyclodextrin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126544] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Akpomie KG, Ghosh S, Gryzenhout M, Conradie J. One-pot synthesis of zinc oxide nanoparticles via chemical precipitation for bromophenol blue adsorption and the antifungal activity against filamentous fungi. Sci Rep 2021; 11:8305. [PMID: 33859316 PMCID: PMC8050082 DOI: 10.1038/s41598-021-87819-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/05/2021] [Indexed: 01/01/2023] Open
Abstract
In this research, zinc oxide nanoparticles (ZnONPs) were prepared via a facile one-pot chemical precipitation approach and applied in the adsorption of bromophenol blue (BRB) and as antifungal agents against the filamentous fungi and plant pathogens; Alternaria alternata CGJM3078, Alternaria alternata CGJM3006 and Fusarium verticilliodes CGJM3823. The ZnONPs were characterized by the UV-Vis, FTIR, XRD, TGA, BET, SEM, TEM, and EDX techniques, which showed efficient synthesis. The characteristics ZnO UV-Vis absorption band was observed at 375 nm, while the XRD showed an average ZnONPs crystalline size of 47.2 nm. The SEM and TEM images showed an irregular shaped and aggregated porous structure of 65.3 nm average-sized ZnONPs. The TGA showed 22.9% weight loss at 800 °C indicating the high thermal stability of ZnONPs, while BET analysis revealed a surface area, pore volume and pore diameter of 9.259 m2/g, 0.03745 cm3/g and 9.87 nm respectively. The Freundlich, pseudo-second-order, and intra-particle diffusion models showed R2 > 0.9494 and SSE < 0.7412, thus, exhibited the best fit to the isotherm and kinetics models. Thermodynamics revealed feasible, endothermic, random, and spontaneous adsorption of BRB onto the synthesized ZnONPs. The antifungal assay conducted depicts strong antifungal activities against all three tested fungi. Noticeably, ZnONPs (0.002-5 mg/mL) showed maximum activities with the largest zone of inhibition against A. alternata CGJM 3006 from 25.09 to 36.28 mm. This was followed by the strain F. verticilliodes CGJM 3823 (range from 23.77 to 34.77 mm) > A. alternata CGJM3078 (range from 22.73 to 30.63 mm) in comparison to Bleach 5% (positive control). Additionally a model was proposed based on the possible underlying mechanisms for the antifungal effect. This research demonstrated the potent use of ZnONPs for the adsorption of BRB and as effective antifungal agents.
Collapse
Affiliation(s)
- Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa.
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria.
| | - Soumya Ghosh
- Department of Genetics, University of the Free State, Bloemfontein, ZA9300, South Africa
| | - Marieka Gryzenhout
- Department of Genetics, University of the Free State, Bloemfontein, ZA9300, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
45
|
Sciortino F, Sanchez-Ballester NM, Mir SH, Rydzek G. Functional Elastomeric Copolymer Membranes Designed by Nanoarchitectonics Approach for Methylene Blue Removal. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01971-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Utzeri G, Verissimo L, Murtinho D, Pais AACC, Perrin FX, Ziarelli F, Iordache TV, Sarbu A, Valente AJM. Poly(β-cyclodextrin)-Activated Carbon Gel Composites for Removal of Pesticides from Water. Molecules 2021; 26:1426. [PMID: 33800794 PMCID: PMC7962014 DOI: 10.3390/molecules26051426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Pesticides are widely used in agriculture to increase and protect crop production. A substantial percentage of the active substances applied is retained in the soil or flows into water courses, constituting a very relevant environmental problem. There are several methods for the removal of pesticides from soils and water; however, their efficiency is still a challenge. An alternative to current methods relies on the use of effective adsorbents in removing pesticides which are, simultaneously, capable of releasing pesticides into the soil when needed. This reduces costs related to their application and waste treatments and, thus, overall environmental costs. In this paper, we describe the synthesis and preparation of activated carbon-containing poly(β-cyclodextrin) composites. The composites were characterized by different techniques and their ability to absorb pesticides was assessed by using two active substances: cymoxanil and imidacloprid. Composites with 5 and 10 wt% of activated carbon showed very good stability, high removal efficiencies (>75%) and pesticide sorption capacity up to ca. 50 mg g-1. The effect of additives (NaCl and urea) was also evaluated. The composites were able to release around 30% of the initial sorbed amount of pesticide without losing the capacity to keep the maximum removal efficiency in sorption/desorption cycles.
Collapse
Affiliation(s)
- Gianluca Utzeri
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (G.U.); (L.V.); (D.M.); (A.A.C.C.P.)
| | - Luis Verissimo
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (G.U.); (L.V.); (D.M.); (A.A.C.C.P.)
| | - Dina Murtinho
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (G.U.); (L.V.); (D.M.); (A.A.C.C.P.)
| | - Alberto A. C. C. Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (G.U.); (L.V.); (D.M.); (A.A.C.C.P.)
| | - F. Xavier Perrin
- Laboratoire MAPIEM, Université de Toulon, 83041 Toulon CEDEX 9, France;
| | - Fabio Ziarelli
- CNRS, Centrale Marseille, FSCM, Aix Marseille University, 13397 Marseille CEDEX 20, France;
| | - Tanta-Verona Iordache
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independenței 202, 060021 București, Romania; (T.-V.I.); (A.S.)
| | - Andrei Sarbu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independenței 202, 060021 București, Romania; (T.-V.I.); (A.S.)
| | - Artur J. M. Valente
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (G.U.); (L.V.); (D.M.); (A.A.C.C.P.)
| |
Collapse
|