1
|
Gonçalves YC, da Silva BH, de Godoy CR, Rantin FT, Kalinin AL, Monteiro DA. Subchronic exposure to nonylphenol ethoxylate (NPE) induces cardiotoxicity and oxidative stress in American bullfrog tadpoles: a mechanistic approach. ECOTOXICOLOGY (LONDON, ENGLAND) 2024:10.1007/s10646-024-02822-3. [PMID: 39470893 DOI: 10.1007/s10646-024-02822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
Tropical regions, particularly those with high levels of endemism such as South America, harbor a diverse array of amphibian species. However, these regions often lack specific regulations governing the release of emerging contaminants, including the surfactant nonylphenol ethoxylate (NPE), into water bodies, which can have devastating consequences for these sensitive ecosystems. This study evaluated the sublethal effects of 16-day subchronic exposure to NPE at an environmentally relevant concentration of 30 µg/L on American bullfrog (Lithobates catesbeianus) tadpoles using multiple endpoints, including biometric parameters, antioxidant responses, oxidative stress biomarkers, heart rate, and myocardial contractility. Our results revealed that exposure to NPE elicited a range of harmful effects on tadpoles, including significant reductions in hepatic and ventricular mass, disruptions in antioxidant defenses leading to oxidative stress-mediated damage in cardiac, hepatic, and muscular tissues, and changes in heart function such as negative inotropism and lusitropism, and tachycardia. These sublethal effects could have significant ecological impacts, affecting not only immediate survival but also compromising overall fitness through the reallocation of energy reserves.
Collapse
Affiliation(s)
- Yan Costa Gonçalves
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
- Joint Graduate Program in Physiological Sciences - Federal University of São Carlos (UFSCar)/São Paulo State University (UNESP), São Carlos, São Paulo, Brazil
| | - Bruno Hofstatter da Silva
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Camila Reis de Godoy
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Francisco Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Ana Lúcia Kalinin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Diana Amaral Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil.
| |
Collapse
|
2
|
Lombardero LR, Truchet DM, Medici SK, Mendieta JR, Pérez DJ, Menone ML. Assessment of the Potential Phytotoxicity of Chlorpyrifos in the Wetland Macrophyte Bidens laevis (L.). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:45. [PMID: 39362965 DOI: 10.1007/s00128-024-03957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Chlorpyrifos (CPF) has been used worldwide, but its possible negative effects on macrophytes have been scarcely studied. The main goal of the present work was to assess the potential phytotoxic effects of CPF on different stages (seed and seedling) of the wetland macrophyte Bidens laevis. During the germination of seeds, stimulation of radicle growth at low concentrations of CPF (10 µg/L) and inhibition of its elongation at 80 µg/L CPF were observed. In seedlings, concentrations ≤ 160 µg/L CPF did not exhibit adverse effects on growth after 7 days of exposure, despite the decrease of photosynthetic pigments and carotenoids observed at 40 µg/L CPF compared to the control. Environmentally relevant concentrations of CPF altered neither oxidative stress biomarkers nor pigment contents in seedlings exposed for 48 h, suggesting CPF would be non-toxic to B. laevis in natural scenarios.
Collapse
Affiliation(s)
- Lucas R Lombardero
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Daniela M Truchet
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Sandra K Medici
- Fares Taie Instituto de Análisis Magallanes, 3019, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Julieta R Mendieta
- Instituto de Investigaciones Biológicas (IIB, CONICET), Universidad Nacional de Mar del Plata, Dean Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
- Comisión de Investigaciones Científica (CIC-BA), Calle 526 entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Débora J Pérez
- Instituto de Innovación Para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Consejo Nacional de Investigaciones Científicas y Técnicas, INTA Balcarce, Ruta Nacional 226 Km 73,5, Balcarce, Buenos Aires, 7620, Argentina
| | - Mirta L Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina.
| |
Collapse
|
3
|
Louhichi G, El Khouni A, Ghrabi A, Khouni I. Phytotoxicity assessment of treated vegetable oily wastewater via environmentally coagulation/flocculation and membrane filtration technologies using lettuce (Lactuca sativa) seeds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57204-57228. [PMID: 38175507 DOI: 10.1007/s11356-023-31594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
The present investigation highlights the necessity of monitoring some basic physico-chemical water quality indicators and their phytotoxic effect using ecotoxicological bioassays such as "seed germination tests." The phytotoxicity of raw and treated vegetable oil refinery wastewater (VORW) using different treatment processes was assessed through some physiological responses (relative seed germination (RSG), seedling elongation, and germination index (GI)) using Lactuca sativa cultivar. Biotest results of different raw water samples revealed a noticeable correlation between the organic matter content and water phytotoxicity. In fact, VORW showed a very low RSG (17 ± 0.7 to -47 ± 0.58%) and high phytotoxic effects (GI < 50%). The use of coagulation/flocculation (CF) allowed a satisfactory phytotoxicity removal where RSG obtained ranged from 83 ± 1.58 to 90 ± 1.2%. However, the effluent still presents high to moderate phytotoxicity since GI remained below 80% which indicates the presence of toxic elements remaining after CF treatment. When VORW were treated using membrane processes, their phytotoxicity was gradually decreased with the decrease in the membrane pore size. The use of microfiltration membranes (MF), with pore size of 5 µm, 1.2 µm, 0.45 µm, and 0.22 µm, showed RSG values ranged from 37 ± 1.15 to 77 ± 1.68% and GI of less than 80% indicating a moderate to high phytotoxicity. However, the use of ultrafiltration (UF) membranes with molecular weight cut-off (MWCO) of 100 kDa, 30 kDa, and 10 kDa made it possible to achieve an RSG of 100% and an IG exceeding 80% showing that the VORW-treated using UF does not exhibit any phytotoxicity effect. Hence, UF appears to be the most efficient and environmentally friendly technology that could be used for safely treated VORW irrigation purposes compared to CF and MF processes.
Collapse
Affiliation(s)
- Ghofrane Louhichi
- Laboratoire Eaux Usées Et Environnement, Centre de Recherches Et Des Technologies Des Eaux (CERTE), BP 273-8020, Soliman, Tunisia
| | - Amine El Khouni
- Laboratoire de Production Oléicole Intégrée, Institut de L'Olivier, Cité Mahrajène, BP 208, 1082, Tunis, Tunisia
| | - Ahmed Ghrabi
- Laboratoire Eaux Usées Et Environnement, Centre de Recherches Et Des Technologies Des Eaux (CERTE), BP 273-8020, Soliman, Tunisia
| | - Imen Khouni
- Laboratoire Eaux Usées Et Environnement, Centre de Recherches Et Des Technologies Des Eaux (CERTE), BP 273-8020, Soliman, Tunisia.
| |
Collapse
|
4
|
Vijayan S, Liu R, George S, Bhaskaran S. Polyethylene terephthalate nanoparticles induce oxidative damage in Chlorella vulgaris. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108987. [PMID: 39089045 DOI: 10.1016/j.plaphy.2024.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Polyethylene Terephthalate (PET) is a type of plastic largely used for packing food and beverages. Unfortunately, it includes a major portion of the plastic distributed through aquatic systems wherever systematic collection and recycling are lacking. Although PET is known to be non-toxic, it is not obvious whether the nanoparticles (NPs) formed due to their degradation have any direct/indirect effect on aquatic organisms. In order to study the effects on aquatic environment, fresh water algae Chlorella vulgaris was subjected to incremental concentrations of the NPs. We observed a concentration and duration of exposure dependent decrease in algal growth rate along with reduced total chlorophyll content. Scanning electron microscopy revealed deformities in cell shape and the uptake of Propidium Iodide suggested membrane damage in response to NP exposure. Intracellular Reactive Oxygen Species level was also found significantly higher, evidenced by Dichlorodihydrofluorescein diacetate staining. Activity of antioxidant enzymes Superoxide dismutase (SOD), Peroxidase (POD) and Catalase (CAT) were significantly higher in the NP exposed groups suggesting the cellular response to regain homeostasis. Further, expression levels of the genes psaB, psbC, and rbcL associated with photosynthesis increased above two fold with respect to the control inferring the possibility of damage to photosynthesis and the initial molecular responses to circumvent the situation. In short, our studies provide evidence for oxidative stress mediated cellular damages in Chlorella vulgaris exposed to NPs of PET.
Collapse
Affiliation(s)
- Siji Vijayan
- Department of Botany, Fatima Mata National College, Kollam, Kerala, India, 691001
| | - Ruby Liu
- Department of Food Science and Agricultural Chemistry, MacDonald Campus, McGill University, 21111 Lakeshore Ste Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, MacDonald Campus, McGill University, 21111 Lakeshore Ste Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Sinilal Bhaskaran
- Department of Botany, Fatima Mata National College, Kollam, Kerala, India, 691001.
| |
Collapse
|
5
|
Li X, Hua Z, Zhang J, Jin J, Wang D. Concentration-dependent cellular responses of coontail (Ceratophyllum demersum) during the substitutions to perfluorooctanoic acid by its two alternatives. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135837. [PMID: 39288520 DOI: 10.1016/j.jhazmat.2024.135837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
The substitutions of alternatives to legacy per- and polyfluoroalkyl substances (PFASs) may lead to unknown and variational joint toxicity on ecosystems. To comprehensively understand the effects of substitutions on aquatic ecosystems, the single and joint effects of perfluorooctanoic acid (PFOA) and its alternatives (perfluorobutanoic acid, PFBA; 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3,heptafluoropropoxy)propanoic acid, GenX) with various concentrations and compositions on a primary producer, coontail (Ceratophyllum demersum), were investigated at cellular level. Results showed that the substitutions of PFBA/GenX could alleviate the inhibition of PFOA on plant length, hydrogen peroxide accumulation, and chlorophyll b, due to the shifts of reactive oxygen species and their less toxicity to antioxidants. Significant up-regulations of superoxide dismutase, glutathione, and carotenoid implied their primary roles in defensing against PFASs (p < 0.05). Catalase/peroxidase was significantly up-regulated in PFBA/GenX substitutions (p < 0.05) to help alleviate stress. PFBA substitutions reduced 23.9 % of PFOA in organelle and GenX reduced the subcellular concentrations of PFOA by 1.8-17.4 %. Redundancy analysis suggested that PFOA, PFBA, and GenX in cell wall and organelle, as well as GenX in soluble fractions, were responsible for the cellular responses. These findings were helpful to understand the integrated effects on aquatic ecosystems during the substitutions to legacy PFASs by alternatives.
Collapse
Affiliation(s)
- Xiaoqing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China.
| | - Jianyun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Junliang Jin
- Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Dawei Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
6
|
Chen Y, Yang J, Zhao X, Sun Z, Li G, Hussain S, Li X, Zhang L, Wang Z, Gong H, Hou H. Effects of SpGSH1 and SpPCS1 overexpression or co-overexpression on cadmium accumulation in yeast and Spirodela polyrhiza. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109097. [PMID: 39244885 DOI: 10.1016/j.plaphy.2024.109097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Cadmium (Cd) is one of the most toxic elements to all organisms. Glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway is considered an extremely important mechanism in Cd detoxification in plants. However, few studies have focused on the roles of glutamate-cysteine ligase (GSH1) and phytochelatin synthase (PCS1) in Cd accumulation and detoxification in plants. In this study, SpGSH1 and SpPCS1 were identified and cloned from Spirodela polyrhiza and analyzed their functions in yeast and S. polyrhiza via single- or dual-gene (SpGP1) overexpression. The findings of this study showed that SpGSH1, SpPCS1, and SpGP1 could dramatically rescue the growth of the yeast mutant Δycf1. In S. polyrhiza, SpGSH1 was located in the cytoplasm and could promote Mn and Ca accumulation. SpPCS1 was located in the cytoplasm and nucleus, mainly expressed in meristem regions, and promoted Cd, Fe, Mn, and Ca accumulation. SpGSH1 and SpPCS1 co-overexpression increased the Cd, Mn, and Ca contents. Based on the growth data of S. polyrhiza, it was recommended that biomass as the preferable indicator for assessing plant tolerance to Cd stress compared to frond number in duckweeds. Collectively, this study for the first time systematically elaborated the function of SpGSH1 and SpPCS1 for Cd detoxification in S. polyrhiza.
Collapse
Affiliation(s)
- Yan Chen
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Analysis and Testing Center, College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641112, Sichuan, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Zuoliang Sun
- Shandong Provincial University Laboratory for Protected Horticulture, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Sajid Hussain
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 310006, Hangzhou, China; Soil and Water Testing Laboratory Marketing Division, Pakarab, Khanewal Road, Multan, 36000, Pakistan
| | - Xiaozhe Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Liyuan Zhang
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Analysis and Testing Center, College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641112, Sichuan, China
| | - Zhenye Wang
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Analysis and Testing Center, College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641112, Sichuan, China
| | - Huihua Gong
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Analysis and Testing Center, College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641112, Sichuan, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
7
|
Bottega S, Fontanini D, Ruffini Castiglione M, Spanò C. The impact of polystyrene nanoplastics on plants in the scenario of increasing temperatures: The case of Azolla filiculoides Lam. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108946. [PMID: 39032448 DOI: 10.1016/j.plaphy.2024.108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
There are great concerns for the accumulation in the environment of small dimension plastics, such as micro- and nanoplastics. Due to their small size, which facilitates their uptake by organisms, nanoplastics are of particular concern. The toxic effects of nanoplastics on plants are already reported in the literature, however nothing is known, to date, about the possible effects of climate change, in particular of increasing temperatures, on their toxicity for plants. To address this issue, plants of the water fern Azolla filiculoides were grown at optimal (25 °C) or high (35 °C) temperature, with or without polystyrene nanoplastics, and the effects of these stressors were assessed using a multidisciplinary approach. Green fluorescent polystyrene nanoplastics were used to track their possible uptake by A. filiculoides. The development and physiology of our model plant was adversely affected by both nanoplastics and high temperatures. Overall, histological, morphological, and photosynthetic parameters worsened under co-treatment, in accordance with the increased uptake of nanoplastics under higher temperature, as observed by fluorescence images. Based on our findings, the concern regarding the potential for increased toxicity of pollutants, specifically nanoplastics, at high temperatures is well-founded and warrants attention as a potential negative consequence of climate change. Additionally, there is cause for concern regarding the increase in nanoplastic uptake at high temperatures, particularly if this phenomenon extends to food and feed crops, which could lead to greater entry into the food chain.
Collapse
Affiliation(s)
- Stefania Bottega
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy
| | - Debora Fontanini
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy.
| | - Carmelina Spanò
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| |
Collapse
|
8
|
Mohamed Noor MH, Ngadi N. Ecotoxicological risk assessment on coagulation-flocculation in water/wastewater treatment: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52631-52657. [PMID: 39177740 DOI: 10.1007/s11356-024-34700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
It is undeniable that removal efficiency is the main factor in coagulation-flocculation (C-F) process for wastewater treatment. However, as far as environmental safety is concerned, the ecotoxicological aspect of the C-F process needs to be examined further. In this study, a systematic review was performed based on publications related to the toxicity research in C-F technology for wastewater treatment. Through a series of screening steps, available toxicity studies were categorized into four themes, namely acute toxicity, phytotoxicity, cytotoxicity, and genotoxicity, which comprised 48 articles. A compilation of the methodologies executed for each theme was also outlined. The findings show that conventional metallic coagulants (e.g., alum, iron chloride, and iron sulfate) were less toxic when tested on test species such as Daphnia magna (water flea), Lattuca sativa (lettuce), and animal cells compared to synthetic polymers. Natural coagulants such as chitosan or Moringa oleifera were less toxic compared to metallic coagulants; however, inconsistent results were observed. Moreover, an advanced C-F (electrocoagulation) as well as integration between C-F and Fenton, adsorption, and photocatalytic does not significantly change the toxicological profile of the system. It was found that diverse coagulants and flocculants, species sensitivity, complexity in toxicity testing, and dynamic environmental conditions were some key challenges faced in this field. Finally, it was expected that advances in technology, interdisciplinary collaboration, and a growing awareness of environmental sustainability will drive efforts to develop more effective and eco-friendly coagulants and flocculants, improve toxicity testing methodologies, and enhance the overall efficiency and safety of water and wastewater treatment processes.
Collapse
Affiliation(s)
- Mohamed Hizam Mohamed Noor
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
9
|
Deng S, Chen C, Wang Y, Liu S, Zhao J, Cao B, Jiang D, Jiang Z, Zhang Y. Advances in understanding and mitigating Atrazine's environmental and health impact: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121530. [PMID: 38905799 DOI: 10.1016/j.jenvman.2024.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Atrazine is a widely used herbicide in agriculture, and it has garnered significant attention because of its potential risks to the environment and human health. The extensive utilization of atrazine, alongside its persistence in water and soil, underscores the critical need to develop safe and efficient removal strategies. This comprehensive review aims to spotlight atrazine's potential impact on ecosystems and public health, particularly its enduring presence in soil, water, and plants. As a known toxic endocrine disruptor, atrazine poses environmental and health risks. The review navigates through innovative removal techniques across soil and water environments, elucidating microbial degradation, phytoremediation, and advanced methodologies such as electrokinetic-assisted phytoremediation (EKPR) and photocatalysis. The review notably emphasizes the complex process of atrazine degradation and ongoing scientific efforts to address this, recognizing its potential risks to both the environment and human health.
Collapse
Affiliation(s)
- Shijie Deng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cairu Chen
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuhang Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shanqi Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiaying Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Duo Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
10
|
Zeng Y, Molnárová M, Motola M. Metallic nanoparticles and photosynthesis organisms: Comprehensive review from the ecological perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120858. [PMID: 38614005 DOI: 10.1016/j.jenvman.2024.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
This review presents a comprehensive analysis of the ecological implications of metallic nanoparticles (MNPs) on photosynthetic organisms, particularly plants and algae. We delve into the toxicological impacts of various MNPs, including gold, silver, copper-based, zinc oxide, and titanium dioxide nanoparticles, elucidating their effects on the growth and health of these organisms. The article also summarizes the toxicity mechanisms of these nanoparticles in plants and algae from previous research, providing insight into the cellular and molecular interactions that underpin these effects. Furthermore, it discusses the reciprocal interactions between different types of MNPs, their combined effects with other metal contaminants, and compares the toxicity between MNPs with their counterpart. This review highlights the urgent need for a deeper understanding of the environmental impact, considering their escalating use and the potential risks they pose to ecological systems, especially in the context of photosynthetic organisms that are vital to ecosystem health and stability.
Collapse
Affiliation(s)
- Yilan Zeng
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic; Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic.
| | - Marianna Molnárová
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic.
| |
Collapse
|
11
|
Lombardero LR, Pérez DJ, Medici SK, Mendieta JR, Iturburu FG, Menone ML. Usefulness of oxidative stress biomarkers in native species for the biomonitoring of pesticide pollution in a shallow lake of the Austral Pampas, Argentina. CHEMOSPHERE 2024; 353:141578. [PMID: 38430938 DOI: 10.1016/j.chemosphere.2024.141578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Pesticide contamination and its adverse effects on native freshwater species continue to be a worldwide major concern, mainly in developing countries. Passive biomonitoring of pesticide pollution in shallow lakes may be achieved by the simultaneous use of fish and wetland plants. Thus, the present study aimed to evaluate the occurrence of current-use pesticides in the surface water of a shallow lake of the Austral Pampas region (Buenos Aires Province, Argentina) surrounded by intensive agricultural activities and its relationship with a battery of biomarkers, including oxidative stress and genotoxicity, in two native species, the fish Oligosarcus jenynsii and the macrophyte Bidens laevis. A total of 26 pesticide residues were analyzed, and the main ones detected were glyphosate and its metabolite aminomethylphosphonic acid (AMPA), chlorpyrifos, and imidacloprid. In O. jenynsii, hydrogen peroxide (H2O2) content in the liver increased with chlorpyrifos occurrence, while malondialdehyde (MDA) levels in the brain and liver increased with the presence of both chlorpyrifos and glyphosate. In B. laevis, H2O2 and MDA levels in leaves and roots increased with AMPA occurrence. Also, leaf H2O2 contents and root MDA levels increased with chlorpyrifos concentration. In contrast, catalase and peroxidase activities in roots decreased with AMPA and chlorpyrifos occurrence. In both species, mainly H2O2 and MDA levels demonstrated their sensitivity to be used as biomarkers in the biomonitoring of current-use pesticide pollution in shallow lakes. Their use may provide information to plan strategies for environmental conservation by government institutions or decision-makers, and to assess the biota health status.
Collapse
Affiliation(s)
- Lucas Rodrigo Lombardero
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Débora Jesabel Pérez
- Instituto de Innovación Para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Consejo Nacional de Investigaciones Científicas y Técnicas, INTA Balcarce, Ruta Nacional 226 Km 73,5, 7620, Balcarce, Buenos Aires, Argentina
| | - Sandra Karina Medici
- Fares Taie Instituto de Análisis Magallanes 3019, 7600, Mar del Plata, Buenos Aires Argentina
| | - Julieta Renée Mendieta
- Instituto de Investigaciones Biológicas (IIB, CONICET), Universidad Nacional de Mar del Plata, Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina; Comisión de Investigaciones Científica (CIC-BA), Calle 526 entre 10 y 11, 1900, La Plata, Buenos Aires, Argentina
| | - Fernando Gastón Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Mirta Luján Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Yang J, Zhao X, Wang X, Xia M, Ba S, Lim BL, Hou H. Biomonitoring of heavy metals and their phytoremediation by duckweeds: Advances and prospects. ENVIRONMENTAL RESEARCH 2024; 245:118015. [PMID: 38141920 DOI: 10.1016/j.envres.2023.118015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Heavy metals (HMs) contamination of water bodies severely threatens human and ecosystem health. There is growing interest in the use of duckweeds for HMs biomonitoring and phytoremediation due to their fast growth, low cultivation costs, and excellent HM uptake efficiency. In this review, we summarize the current state of knowledge on duckweeds and their suitability for HM biomonitoring and phytoremediation. Duckweeds have been used for phytotoxicity assays since the 1930s. Some toxicity tests based on duckweeds have been listed in international guidelines. Duckweeds have also been recognized for their ability to facilitate HM phytoremediation in aquatic environments. Large-scale screening of duckweed germplasm optimized for HM biomonitoring and phytoremediation is still essential. We further discuss the morphological, physiological, and molecular effects of HMs on duckweeds. However, the existing data are clearly insufficient, especially in regard to dissection of the transcriptome, metabolome, proteome responses and molecular mechanisms of duckweeds under HM stresses. We also evaluate the influence of environmental factors, exogenous substances, duckweed community composition, and HM interactions on their HM sensitivity and HM accumulation, which need to be considered in practical application scenarios. Finally, we identify challenges and propose approaches for improving the effectiveness of duckweeds for bioremediation from the aspects of selection of duckweed strain, cultivation optimization, engineered duckweeds. We foresee great promise for duckweeds as phytoremediation agents, providing environmentally safe and economically efficient means for HM removal. However, the primary limiting issue is that so few researchers have recognized the outstanding advantages of duckweeds. We hope that this review can pique the interest and attention of more researchers.
Collapse
Affiliation(s)
- Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xiaoyu Wang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Manli Xia
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Sang Ba
- Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa, 850000, China; Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, 850000, China.
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China; HKU Shenzhen Institute of Research and Innovation, Shenzhen, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
13
|
Pérez-Pereira A, Carrola JS, Tiritan ME, Ribeiro C. Enantioselectivity in ecotoxicity of pharmaceuticals, illicit drugs, and industrial persistent pollutants in aquatic and terrestrial environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169573. [PMID: 38151122 DOI: 10.1016/j.scitotenv.2023.169573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
At present, there is a serious concern about the alarming number of recalcitrant contaminants that can negatively affect biodiversity threatening the ecological status of marine, estuarine, freshwater, and terrestrial ecosystems (e.g., agricultural soils and forests). Contaminants of emerging concern (CEC) such as pharmaceuticals (PHAR), illicit drugs (ID), industrial persistent pollutants, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and chiral ionic solvents are globally spread and potentially toxic to non-target organisms. More than half of these contaminants are chiral and have been measured at different enantiomeric proportions in diverse ecosystems. Enantiomers can exhibit different toxicodynamics and toxicokinetics, and thus, can cause different toxic effects. Therefore, the enantiomeric distribution in occurrence cannot be neglected as the toxicity and other adverse biological effects are expected to be enantioselective. Hence, this review aims to reinforce the recognition of the stereochemistry in environmental risk assessment (ERA) of chiral CEC and gather up-to-date information about the current knowledge regarding the enantioselectivity in ecotoxicity of PHAR, ID, persistent pollutants (PCBs and PBDEs) and chiral ionic solvents present in freshwater and agricultural soil ecosystems. We performed an online literature search to obtain state-of-the-art research about enantioselective studies available for assessing the impact of these classes of CEC. Ecotoxicity assays have been carried out using organisms belonging to different trophic levels such as microorganisms, plants, invertebrates, and vertebrates, and considering ecologically relevant aquatic and terrestrial species or models organisms recommended by regulatory entities. A battery of ecotoxicity assays was also reported encompassing standard acute toxicity to sub-chronic and chronic assays and different endpoints as biomarkers of toxicity (e.g., biochemical, morphological alterations, reproduction, behavior, etc.). Nevertheless, we call attention to the lack of knowledge about the potential enantioselective toxicity of many PHAR, ID, and several classes of industrial compounds. Additionally, several questions regarding key species, selection of most appropriate toxicological assays and ERA of chiral CEC are addressed and critically discussed.
Collapse
Affiliation(s)
- A Pérez-Pereira
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; University of Trás-os-Montes and Alto Douro (UTAD), Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Vila Real, Portugal
| | - J S Carrola
- University of Trás-os-Montes and Alto Douro (UTAD), Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Vila Real, Portugal; Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal
| | - M E Tiritan
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.
| | - C Ribeiro
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal.
| |
Collapse
|
14
|
Lee JW, Shim I, Park K. Proposing Effective Ecotoxicity Test Species for Chemical Safety Assessment in East Asia: A Review. TOXICS 2023; 12:30. [PMID: 38250986 PMCID: PMC10819827 DOI: 10.3390/toxics12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
East Asia leads the global chemical industry, but environmental chemical risk in these countries is an emerging concern. Despite this, only a few native species that are representative of East Asian environments are listed as test species in international guidelines compared with those native to Europe and America. This review suggests that Zacco platypus, Misgurnus anguillicaudatus, Hydrilla verticillata, Neocaridina denticulata spp., and Scenedesmus obliquus, all resident to East Asia, are promising test species for ecotoxicity tests. The utility of these five species in environmental risk assessment (ERA) varies depending on their individual traits and the state of ecotoxicity research, indicating a need for different applications of each species according to ERA objectives. Furthermore, the traits of these five species can complement each other when assessing chemical effects under diverse exposure scenarios, suggesting they can form a versatile battery for ERA. This review also analyzes recent trends in ecotoxicity studies and proposes emerging research issues, such as the application of alternative test methods, comparative studies using model species, the identification of specific markers for test species, and performance of toxicity tests under environmentally relevant conditions. The information provided on the utility of the five species and alternative issues in toxicity tests could assist in selecting test species suited to study objectives for more effective ERA.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Research of Environmental Health, National Institute of Environmental Research, Incheon 404-708, Republic of Korea; (I.S.); (K.P.)
| | | | | |
Collapse
|
15
|
Liang J, Xiong S, He C, Song Z, Yang S, Ma D, Yan W, Wang H, Tahir R, Han M. The organism fate of inland freshwater system under micro-/nano-plastic pollution: A review of past decade. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106774. [PMID: 38000134 DOI: 10.1016/j.aquatox.2023.106774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Micro- and nano-plastics (MPs/NPs) are characterized by their small size and extensive surface area, making them global environmental pollutants with adverse effects on organisms at various levels, including organs, cells, and molecules. Freshwater organisms, such as microalgae, emerging plants, zooplankton, benthic species, and fish, experience varying impacts from MPs/NPs, which are prevalent in both terrestrial and aquatic inland environments. MPs/NPs significantly impact plant physiological processes, including photosynthesis, antioxidant response, energy metabolism, and nitrogen removal. Extended exposure and ingestion to MPs/NPs might cause metabolic and behavioral deviations in zooplankton, posing an extinction risk. Upon exposure to MPs/NPs, both benthic organisms and fish display behavioral and metabolic disturbances, due to oxidative stress, neural toxicity, intestinal damage, and metabolic changes. Results from laboratory and field investigations have confirmed that MPs/NPs can be transported across multiple trophic levels. Moreover, MPs/NPs-induced alterations in zooplankton populations can impede energy transfer, leading to food scarcity for filter-feeding fish, larvae of benthic organism and fish, thus jeopardizing aquatic ecosystems. Furthermore, MPs/NPs can harm the nervous systems of aquatic organisms, influencing their feeding patterns, circadian rhythms, and mobility. Such behavioral alterations might also introduce unforeseen ecological risks. This comprehensive review aims to explore the consequences of MPs/NPs on freshwater organisms and their interconnected food webs. The investigation encompasses various aspects, including behavioral changes, alterations in physiology, impacts on metabolism, transgenerational effects, and the disruption of energy transfer within the ecosystem. This review elucidated the physiological and biochemical toxicity of MPs/NPs on freshwater organisms, and the ensuing risks to inland aquatic ecosystems.
Collapse
Affiliation(s)
- Ji Liang
- Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China; School of Humanities, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Sen Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China
| | - Chunlin He
- Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China; College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhaobin Song
- College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Daiqiang Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wenchu Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China
| | - Hong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Department of Zoology, The Islamia University of Bahawalpur Pakistan, Punjab 63100, Pakistan
| | - Mingming Han
- Centre for marine and coastal studies, University Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
16
|
Pan T, Chen X, Kong C, Gao D, Liu W, Liao H, Junaid M, Wang J. Single and combined toxicity of polystyrene nanoplastics and PCB-52 to the aquatic duckweed Spirodela polyrhiza. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166482. [PMID: 37619732 DOI: 10.1016/j.scitotenv.2023.166482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
As nanoplastics and persistent organic pollutants are broadly distributed in aquatic ecosystems and pose a potential threat to ecosystem, most pertinent studies have focused on aquatic animals, while studies on freshwater plants have been rarely reported. Therefore, we analyzed the single and combined toxicological impacts of various concentrations of 80 nm polystyrene nanoplastics (PS-NPs) including 0.5, 5, 10, and 20 mg/L and polychlorinated biphenyl-52 (PCB-52, 2,2',5,5'- tetrachlorobiphenyl) at 0.1 mg/L on the aquatic plant Spirodela polyrhiza (S. polyrhiza) after a 10-day hydroponic experiment. Laser confocal scanning microscopy (LCSM) showed the accumulation of PS-NPs mainly in the root surface and the lower epidermis of leaves, and the enrichment of PS-NPs was aggravated by the presence of PCB-52. PS-NPs at 10 mg/L and 20 mg/L alone or in combination with PCB-52 notably inhibited the growth of S. polyrhiza, reduced the synthesis of chlorophylls a and b, and increased the activities of superoxide dismutase (SOD) and peroxidase (POD) as well as malondialdehyde (MDA) levels, and induced osmotic imbalance (soluble protein and soluble sugar contents) (p < 0.05). However, a single treatment with low levels of PS-NPs had positive effects on the growth (0.5 mg/L) and photosynthetic systems (0.5, 5 mg/L) of S. polyrhiza, while co-exposure exacerbated the damaging impacts of PS-NPs on the antioxidant defense system of S. polyrhiza, which was more pronounced in the roots. Furthermore, correlation analysis revealed that plant growth parameters were positively correlated with chlorophyll a and b content and negatively correlated with soluble sugars, antioxidant enzymes, lipid peroxidation, and carotenoid content (p < 0.05). These results provide data to improve the understanding of the single and combined ecotoxicological effects of nanoplastics and polychlorinated biphenyls (PCBs) in aquatic plants and their application in phytoremediation measures.
Collapse
Affiliation(s)
- Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wanjing Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
17
|
Zhang Z, Yu H, Tao M, Lv T, Li D, Yu D, Liu C. Shifting enzyme activity and microbial composition in sediment coregulate the structure of an aquatic plant community under polyethylene microplastic exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166497. [PMID: 37611699 DOI: 10.1016/j.scitotenv.2023.166497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
It has been shown that microplastics (MPs) interfere with critical biological processes (including development, growth and fitness); however, there is no information about the impact of MPs on plant productivity and community structure in freshwater ecosystems. Here, we investigated the effects of two sizes (MIC: 20-300 μm, MAC: 2-3 mm) and three concentrations (0.03 %, 0.3 %, and 0.6 %) of low-density polyethylene MPs on submerged plant communities. The results showed that plant responses to MPs were species specific, which can affect plant community structure. For canopy-forming species (Hydrilla verticillata), total biomass increased by 4 %-46 % and relative abundance increased by 23 %-34 % under MP exposure, while rosette-forming species (Vallisneria natans) decreased by 44 %-67 % in total biomass and relative abundance decreased by 54 %-71 %. Myriophyllum spicatum growth was largely unaffected by MPs. Community diversity was negatively correlated with MAC treatments, and the community root to shoot ratio decreased by 40 %, while community productivity increased by 41 % at a 0.6 % MAC concentration. Although MPs did not change the microbial community composition, alpha diversity was reduced at the 0.6 % concentration. It is worth noting that 0.6 % is a higher concentration than most field sediment investigations. During the experiment, the activity of functional enzymes related to carbon and nitrogen increased under most MP treatments. Structural equation modelling showed that MIC changed the community structure mainly by driving sediment enzyme activity, while MAC changed the community structure mainly by driving plant growth. The results implied that MPs may affect sediment enzymatic activities, microbial alpha diversity and aquatic plant growth, potentially altering the diversity and stability of aquatic ecosystems.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Tao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Tian Lv
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Dexiang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| |
Collapse
|
18
|
Ciccia T, Pandard P, Ciffroy P, Urien N, Lafay L, Bado-Nilles A. Sub-lethal toxicity of five disinfection by-products on microalgae determined by flow cytometry - Lines of evidence for adverse outcome pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115582. [PMID: 37862747 DOI: 10.1016/j.ecoenv.2023.115582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Standardised tests are often used to determine the ecotoxicity of chemicals and focus mainly on one or a few generic endpoints (e.g. mortality, growth), but information on the sub-cellular processes leading to these effects remain usually partial or missing. Flow cytometry (FCM) can be a practical tool to study the physiological responses of individual cells (such as microalgae) exposed to a stress via the use of fluorochromes and their morphology and natural autofluorescence. This work aimed to assess the effects of five chlorine-based disinfection by-products (DBPs) taken individually on growth and sub-cellular endpoints of the green microalgae Raphidocelis subcapitata. These five DBPs, characteristic of a chlorinated effluent, are the following monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), bromochloroacetic acid (BCAA) and 1,1-dichloropropan-2-one (1,1-DCP). Results showed that 1,1-DCP had the strongest effect on growth inhibition (EC50 = 1.8 mg.L-1), followed by MCAA, TCAA, BCAA and DCAA (EC50 of 10.1, 15.7, 27.3 and 64.5 mg.L-1 respectively). Neutral lipid content, reactive oxygen species (ROS) formation, red autofluorescence, green autofluorescence, size and intracellular complexity were significantly affected by the exposure to the five DBPs. Only mitochondrial membrane potential did not show any variation. Important cellular damages (>10%) were observed for only two of the chemicals (BCAA and 1,1-DCP) and were probably due to ROS formation. The most sensitive and informative sub-lethal parameter studied was metabolic activity (esterase activity), for which three types of response were observed. Combining all this information, an adverse outcome pathways framework was proposed to explain the effect of the targeted chemicals on R. subcapitata. Based on these results, both FCM sub-cellular analysis and conventional endpoint of algal toxicity were found to be complementary approaches.
Collapse
Affiliation(s)
- Théo Ciccia
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai de Watier, 78401 Chatou Cedex 01, France.
| | - Pascal Pandard
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Philippe Ciffroy
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai de Watier, 78401 Chatou Cedex 01, France
| | - Nastassia Urien
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai de Watier, 78401 Chatou Cedex 01, France
| | - Léo Lafay
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai de Watier, 78401 Chatou Cedex 01, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| |
Collapse
|
19
|
Gómez-Martínez D, Bengtson J, Nilsson AK, Clarke AK, Nilsson RH, Kristiansson E, Corcoll N. Phenotypic and transcriptomic acclimation of the green microalga Raphidocelis subcapitata to high environmental levels of the herbicide diflufenican. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162604. [PMID: 36878298 DOI: 10.1016/j.scitotenv.2023.162604] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Herbicide pollution poses a worldwide threat to plants and freshwater ecosystems. However, the understanding of how organisms develop tolerance to these chemicals and the associated trade-off expenses are largely unknown. This study aims to investigate the physiological and transcriptional mechanisms underlying the acclimation of the green microalgal model species Raphidocelis subcapitata (Selenastraceae) towards the herbicide diflufenican, and the fitness costs associated with tolerance development. Algae were exposed for 12 weeks (corresponding to 100 generations) to diflufenican at the two environmental concentrations 10 and 310 ng/L. The monitoring of growth, pigment composition, and photosynthetic performance throughout the experiment revealed an initial dose-dependent stress phase (week 1) with an EC50 of 397 ng/L, followed by a time-dependent recovery phase during weeks 2 to 4. After week 4, R. subcapitata was acclimated to diflufenican exposure with a similar growth rate, content of carotenoids, and photosynthetic performance as the unexposed control algae. This acclimation state of the algae was explored in terms of tolerance acquisition, changes in the fatty acids composition, diflufenican removal rate, cell size, and changes in mRNA gene expression profile, revealing potential fitness costs associated with acclimation, such as up-regulation of genes related to cell division, structure, morphology, and reduction of cell size. Overall, this study demonstrates that R. subcapitata can quickly acclimate to environmental but toxic levels of diflufenican; however, the acclimation is associated with trade-off expenses that result in smaller cell size.
Collapse
Affiliation(s)
- Daniela Gómez-Martínez
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Johanna Bengtson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anders K Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Adrian K Clarke
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Rolf Henrik Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
20
|
Fernandez M, Gómez RJ, González PS, Barroso CN, Paisio CE. Sequential application of activated sludge and phytoremediation with aquatic macrophytes on tannery effluents: in search of a complete treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27718-3. [PMID: 37204583 DOI: 10.1007/s11356-023-27718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Tannery effluents with a high organic matter load (indicated by their COD level) have to be treated before they are discharged, so as to minimize their negative impact on the environment. Using field mesocosm systems, this study evaluated the feasibility of treating such effluents through bioaugmentation with activated sludge, followed by phytoremediation with aquatic macrophytes (Lemnoideae subfamily). Regardless of its quality, the activated sludge was able to remove approximately 77% of the COD from effluents with a low initial organic load (up to 1500 mg/L). The macrophytes then enhanced removal (up to 86%), so the final COD values were permissible under the current legislation for effluent discharge. When the initial organic load in the undiluted effluents was higher (around 3000 mg/L), the COD values obtained after consecutive bioaugmentation and phytoremediation were close to the legally allowed limits (583 mg/L), which highlights the potential of phytoremediation as a tertiary treatment. This treatment also brought total coliform counts down to legally acceptable values, without plant biomass decreasing over time. Moreover, the plant biomass remained viable and capable of high COD removal efficiency (around 75%) throughout two additional reuse cycles. These findings indicate that the efficiency of the biological treatments assayed here depends largely on the initial organic load in the tannery effluents. In any case, the sequential application of activated sludge and aquatic macrophytes proved to be a successful alternative for remediation.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina
| | - Roxana J Gómez
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina
| | - Cintia N Barroso
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina
| | - Cintia E Paisio
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina.
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
21
|
Scofield BD, Fields SF, Chess DW. Aquatic macrophytes show distinct spatial trends in contaminant metal and nutrient concentrations in Coeur d'Alene Lake, USA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66610-66624. [PMID: 37097578 DOI: 10.1007/s11356-023-27211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023]
Abstract
Coeur d'Alene Lake (the Lake) has received significant contamination from legacy mining. Aquatic macrophytes provide important ecosystem services, such as food or habitat, but also have the ability to accumulate contaminants. We examined contaminants (arsenic, cadmium, copper, lead, and zinc) and other analytes (e.g., iron, phosphorus, and total Kjeldahl nitrogen (TKN)) in macrophytes from the Lake. Macrophytes were collected in the Lake from the uncontaminated southern end to the outlet of the Coeur d'Alene River (main contaminant source) located northward and mid lake. Most analytes showed significant north to south trends (Kendall's tau p ≤ 0.015). Concentrations of cadmium (18.2 ± 12.1), copper (13.0 ± 6.6), lead (195 ± 193), and zinc (1128 ± 523) were highest in macrophytes near the Coeur d'Alene River outlet (mean ± standard deviation in mg/kg dry biomass). Conversely, aluminum, iron, phosphorus, and TKN were highest in macrophytes from the south, potentially related to the Lake's trophic gradient. Generalized additive modelling confirmed latitudinal trends, but revealed that longitude and depth were also important predictors of analyte concentration (40-95% deviance explained for contaminants). We used sediment and soil screening benchmarks to calculate toxicity quotients. Quotients were used to assess potential toxicity to macrophyte associated biota and delineate where macrophyte concentrations exceeded local background concentrations. Exceedances (toxicity quotient > one) of background levels by macrophyte concentrations were highest for zinc (86%), followed by cadmium (84%), lead (23%), and arsenic (5%).
Collapse
Affiliation(s)
- Ben D Scofield
- Coeur d'Alene Tribe, Water Resources Program, P.O. Box 408 / 850 A St, Plummer, ID, 83851, USA.
| | - Scott F Fields
- Coeur d'Alene Tribe, Water Resources Program, P.O. Box 408 / 850 A St, Plummer, ID, 83851, USA
| | - Dale W Chess
- Coeur d'Alene Tribe, Water Resources Program, P.O. Box 408 / 850 A St, Plummer, ID, 83851, USA
| |
Collapse
|
22
|
Bodnar IS, Cheban EV. Joint effects of gamma radiation and zinc on duckweed Lemna minor L. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106438. [PMID: 36889126 DOI: 10.1016/j.aquatox.2023.106438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
When assessing the consequences of combined chemical and radiation pollution on bodies of water, it is important to take into account the interaction of different factors, especially the possible synergistic increase in the toxic effect on growth, biochemical and physiological processes of living organisms. In this work, we studied the combined effect of γ-radiation and zinc on freshwater duckweed Lemna minor L. Irradiated plants (doses were 18, 42, and 63 Gy) were placed on a medium with an excess of zinc (3.15, 6.3, 12.6 μmol/L) for 7 days. Our results showed that the accumulation of zinc in tissues increased in irradiated plants when compared to non-irradiated plants. The interaction of factors in assessing their effect on the growth rate of plants was most often additive, but there was also a synergistic increase in the toxic effect at a zinc concentration of 12.6 μmol/L and irradiation at doses of 42 and 63 Gy. When comparing the combined and separate effects of gamma radiation and zinc, it was found that a reduction in the area of fronds (leaf-like plates) was caused exclusively due to the effects of radiation. Zinc and γ-radiation contributed to the enhancement of membrane lipid peroxidation. Irradiation stimulated the production of chlorophylls a and b, as well as carotenoids.
Collapse
Affiliation(s)
- I S Bodnar
- Institute of Biology of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya st., Syktyvkar, Komi Republic, Russia.
| | - E V Cheban
- Institute of Biology of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya st., Syktyvkar, Komi Republic, Russia
| |
Collapse
|
23
|
Gallitelli L, Di Lollo G, Adduce C, Maggi MR, Trombetta B, Scalici M. Aquatic plants entrap different size of plastics in indoor flume experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:161051. [PMID: 36549519 DOI: 10.1016/j.scitotenv.2022.161051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Plastics accumulate in the environment affecting biota and ecosystems. Although rivers are vectors of land-based plastics to the sea, macroplastics and microplastics in rivers are recently studied. Most studies focused on floating plastic transport to the sea through rivers considering only abiotic hydromorphological factors. In this view, among biotic factors, vegetation has recently been found to entrap plastics. Indeed, the role of vegetation is pivotal in affecting riverine plastic transport. While marine vegetation blocking plastics has been studied, research in freshwater ecosystems is neglected. Since hydrological factors have a pivotal role in riverine plastic transport and few is known on plant entrapment, the interaction between hydrological variables and plastic entrapment by vegetation has not yet been investigated. Given that the composition, transport, and fate of "submerged" plastics in the water column are neglected, we aimed at investigating the behaviour of plants in entrapping plastics within a specific laboratory flume tank. Specifically, we assessed whether (i) aquatic plants block different plastic sizes within the water column and (ii) different factors (e.g. water level, density of plants) affect plastic entrapment. Our results showed that, according to plant density, the higher the plant density the higher the entrapment of plastics by plants - independently of plastic size. Considering the water level, macro-, meso-, and microplastics were trapped similarly. Moreover, Potamogeton crispus blocked fewer microplastics compared with Myriophyllum spicatum. Our results might have impact as plants acted as temporary plastic trappers and can be used as tools for mitigating plastic pollution. Future research might investigate if this laboratory approach can be applied in field for recollecting plastics and consequently mitigating the problem. In conclusion, good management of plants in watercourses, canals, and rivers should be ideal for enhancing river functionality and ecosystem services for human well-being (i.e. the plastic entrapment service by plants).
Collapse
Affiliation(s)
- L Gallitelli
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
| | - G Di Lollo
- Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - C Adduce
- Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - M R Maggi
- Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - B Trombetta
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - M Scalici
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| |
Collapse
|
24
|
Cui J, Cui J, Li J, Wang W, Xu B, Yang J, Li B, Chang Y, Liu X, Yao D. Improving earthworm quality and complex metal removal from water by adding aquatic plant residues to cattle manure. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130145. [PMID: 36368070 DOI: 10.1016/j.jhazmat.2022.130145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Vermicomposting is an economical and environmentally friendly process. However, related knowledge of vermicomposting aquatic plant residues (APRs), earthworm quality, and mechanisms for metal removal from water is still lacking. Nelumbo and Oenanthe javanica residues and their mixture were treated with Eisenia foetida and cattle manure for 45 days. Compared with the control comprising only cattle manure, addition of the APR mixture improved earthworm quality, mainly for low crude ash, high alkaloid compounds and different fat compositions in the Nelumbo residue and the balanced protein proportion of the APR mixture. All the vermicompost especial O. javanica residue added (VO) played efficient roles in removing metals from water initially containing 2.0 mg Cu L-1 and 8.0 mg Zn L-1. There were higher removal efficiencies (Ers) at the dosage of 4 g L-1 with a small microbial contribution. VO significantly increased Ers, which could be from the decrease of phylum Firmicutes (especial Bacteroides) abundance, stronger CH2, C = O, and CH, the addition of COOH groups, and higher organic matter and total phosphorus contents. The combination of VO and Hippuris vulgaris was optimized as an ecological and economical method for treating complex-metal polluted water. Moreover, our study widened the route for APR reuse.
Collapse
Affiliation(s)
- Jian Cui
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China.
| | - Jianwei Cui
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Jinfeng Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Wei Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - John Yang
- Department of Agriculture and Environmental Science & Cooperative Research, Lincoln University of Missouri, Jefferson City, MO 65201, USA
| | - Bei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Yajun Chang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Xiaojing Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China.
| |
Collapse
|
25
|
Ceschin S, Mariani F, Di Lernia D, Venditti I, Pelella E, Iannelli MA. Effects of Microplastic Contamination on the Aquatic Plant Lemna minuta (Least Duckweed). PLANTS (BASEL, SWITZERLAND) 2023; 12:207. [PMID: 36616336 PMCID: PMC9823687 DOI: 10.3390/plants12010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Microplastics are widely spread in aquatic environments. Although they are considered among the most alarming contaminants, toxic effects on organisms are unclear, particularly on freshwater plants. In this study, the duckweed Lemna minuta was grown on different concentrations (50, 100 mg/L) of poly(styrene-co-methyl methacrylate) microplastics (MP) and exposure times (T0, T7, T14, T28 days). The phytotoxic effects of MP were investigated by analyzing several plant morphological and biochemical parameters (frond and root size, plant growth, chlorophyll, and malondialdehyde content). Observations by scanning electron microscope revealed MP adsorption on plant surfaces. Exposition to MP adversely affected plant growth and chlorophyll content with respect to both MP concentrations and exposure times. Conversely, malondialdehyde measurements did not indicate an alteration of oxidative lipid damage in plant tissue. The presence of MP induced root elongation when compared to the control plants. The effects of MP on L. minuta plants were more evident at T28. These results contribute to a better understanding of MP's impact on aquatic plants and highlight that MP contamination manifests with chronic-type effects, which are thus detectable at longer exposure times of 7 days than those traditionally used in phytotoxicology tests on duckweeds.
Collapse
Affiliation(s)
- Simona Ceschin
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Flaminia Mariani
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Dario Di Lernia
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Iole Venditti
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Emanuele Pelella
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Maria Adelaide Iannelli
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Salaria Km 29.300, Monterotondo Scalo, 00015 Rome, Italy
| |
Collapse
|
26
|
Binda G, Zanetti G, Bellasi A, Spanu D, Boldrocchi G, Bettinetti R, Pozzi A, Nizzetto L. Physicochemical and biological ageing processes of (micro)plastics in the environment: a multi-tiered study on polyethylene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6298-6312. [PMID: 35994148 PMCID: PMC9895034 DOI: 10.1007/s11356-022-22599-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/15/2022] [Indexed: 05/04/2023]
Abstract
Pollution by plastic and microplastic impacts the environment globally. Knowledge on the ageing mechanisms of plastics in natural settings is needed to understand their environmental fate and their reactivity in the ecosystems. Accordingly, the study of ageing processes is gaining focus in the context of the environmental sciences. However, laboratory-based experimental research has typically assessed individual ageing processes, limiting environmental applicability. In this study, we propose a multi-tiered approach to study the environmental ageing of polyethylene plastic fragments focusing on the combined assessment of physical and biological processes in sequence. The ageing protocol included ultraviolet irradiation in air and in a range of water solutions, followed by a biofouling test. Changes in surface characteristics were assessed by Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle. UV radiation both in air and water caused a significant increase in the density of oxidized groups (i.e., hydroxyl and carbonyl) on the plastic surface, whereby water solution chemistry influenced the process both by modulating surface oxidation and morphology. Biofouling, too, was a strong determinant of surface alterations, regardless of the prior irradiation treatments. All biofouled samples present (i) specific infrared bands of new surface functional groups (e.g., amides and polysaccharides), (ii) a further increase in hydroxyl and carbonyl groups, (iii) the diffuse presence of algal biofilm on the plastic surface, and (iv) a significant decrease in surface hydrophobicity. This suggests that biological-driven alterations are not affected by the level of physicochemical ageing and may represent, in real settings, the main driver of alteration of both weathered and pristine plastics. This work highlights the potentially pivotal role of biofouling as the main process of plastic ageing, providing useful technical insights for future experimental works. These results also confirm that a multi-tiered laboratory approach permits a realistic simulation of plastic environmental ageing in controlled conditions.
Collapse
Affiliation(s)
- Gilberto Binda
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway.
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - Giorgio Zanetti
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Arianna Bellasi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Davide Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Ginevra Boldrocchi
- Department of Human and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Roberta Bettinetti
- Department of Human and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Andrea Pozzi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway
- RECETOX, Masarik University, Kamenice 753/5, 625 00, Brno, Czech Republic
| |
Collapse
|
27
|
Sultan M, Hamid N, Junaid M, Duan JJ, Pei DS. Organochlorine pesticides (OCPs) in freshwater resources of Pakistan: A review on occurrence, spatial distribution and associated human health and ecological risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114362. [PMID: 36508795 DOI: 10.1016/j.ecoenv.2022.114362] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/22/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The extensive use of organochlorine pesticides (OCPs) has resulted in the widespread contamination of different environmental matrices in Pakistan. Freshwater bodies are also prone to OCPs contamination as they receive agricultural and industrial runoff from different sources. In the present study, the data regarding OCPs' fate and distribution in freshwater resources of Pakistan was reviewed and associated risks to human and ecological health were assessed. Among all the OCPs, DDTs were more prevalent with the highest mean concentration of 2290 ng/L observed in River Ravi (Lahore and Sahiwal District). Human health risk assessment showed a higher risk to the children with high Hazard Quotient (HQ) values ranging between 4.1 × 10-9- 295 for Aldrin. The River Ravi (Lahore and Sahiwal District), the River Sutlej (Kasur & Bahawalpur District), and the River Kabul (Nowshehra District) were categorized as high-risk water bodies based on Hazard Index (HI) and Non-Cancer Risk (CRI) index values > 10. Ecological risk assessment revealed a higher risk posed to invertebrate species from DDT exposure. In summary, this review highlights the occurrence and distribution of OCPs and their associated human health and ecological risks in freshwater bodies of Pakistan and also contributes to signifying the need for proper management and regulation of banned pesticides and future research perspectives.
Collapse
Affiliation(s)
- Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naima Hamid
- Department of Environmental Science, Lahore College for Women University, 54700 Lahore, Pakistan
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Jin-Jing Duan
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
28
|
Iannelli MA, Bellini A, Venditti I, Casentini B, Battocchio C, Scalici M, Ceschin S. Differential phytotoxic effect of silver nitrate (AgNO 3) and bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) on Lemna plants (duckweeds). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106260. [PMID: 35933908 DOI: 10.1016/j.aquatox.2022.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Duckweeds are aquatic plants often used in phytotoxic studies for their small size, simple structure, rapid growth, high sensitivity to pollutants and facility of maintaining under laboratory conditions. In this paper, induced phytotoxic effects were investigated in Lemna minor and Lemna minuta after exposition to silver nitrate (AgNO3) and silver nanoparticles stabilized with sodium citrate and L-Cysteine (AgNPs-Cit-L-Cys) at different concentrations (0, 20 and 50 mg/L) and times (7 and 14 days). Lemna species responses were evaluated analyzing plant growth (mat thickness, fresh and dry biomass, relative growth rate - RGR) and physiological parameters (chlorophyll - Chl, malondialdehyde - MDA, ascorbate peroxidase - APX and catalase - CAT). Ag content was measured in the fronds of the two Lemna species by inductively coupled plasma optical emission spectrometry. AgNO3 and AgNPs-Cit-L-CYs produced phytotoxic effects on both duckweed species (plant growth and Chl reduction, MDA increase) that enhanced in response to increasing concentrations and exposure times. AgNPs-Cit-L-Cys caused much less alteration in the plants compared to AgNO3 suggesting that the presence of bifunctionalized AgNPs-Cit-L-Cys have a reduced phytotoxic effect as compared to Ag+ released in water. Based on the physiological performance, L. minuta plants showed a large growth reduction and higher levels of chlorosis and stress in respect to L. minor plants, probably due to greater Ag+ ions accumulation in the fronds. Albeit with some differences, both Lemna species were able to uptake Ag+ ions from the aqueous medium, especially over a period of 14 days, and could be considered adapt as phytoremediation agents for decontaminating silver ion-polluted water.
Collapse
Affiliation(s)
- M A Iannelli
- Institute of Agricultural Biology and Biotechnology - National Research Council (IBBA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy.
| | - A Bellini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - I Venditti
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - B Casentini
- Water Research Institute - National Research Council (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy.
| | - C Battocchio
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - M Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - S Ceschin
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| |
Collapse
|
29
|
Coppi A, Colzi I, Lastrucci L, Castellani MB, Gonnelli C. Improving plant-based genotoxicity bioassay through AFLP technique for trace metal-contaminated water: insights from Myriophyllum aquaticum (Vell.) Verdc. and Cd. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52752-52760. [PMID: 35266104 PMCID: PMC9343317 DOI: 10.1007/s11356-022-19429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In this work, we evaluated whether the species Myriophyllum aquaticum (Vell.) Verdc. can be a promising material for devising reliable eco-toxicological tests for Cd-contaminated waters. Plants of M. aquaticum were exposed to Cd, using different concentrations (1 mg L-1, 2.5 mg L-1, 5 mg L-1, and 10 mg L-1; experiment 1) and exposure times (2.5 mg L-1 for 3 days, 7 days, 14 days, and 21 days; experiment 2). Plant growth and Cd accumulation were monitored during the treatment period, and Cd genotoxicity was assessed by analyzing Cd-induced changes in the AFLP fingerprinting profiles using famEcoRI(TAC)/MseI(ATG) and hexEcoRI(ACG)/MseI(ATG) pairs of primers. Root and shoot growth was reduced already at the lowest Cd concentration used (about 20% reduction for roots and 60% for shoots at 1 mg L-1; experiment 1) and after 7 days (about 50% reduction for roots and 70% for shoots; experiment 2). The primer combinations produced 154 and 191 polymorphic loci for experiments 1 and 2, respectively. Mean genetic diversity (He) reduction among the treatment groups was observed starting from 2.5 mg L-1 (He 0.211 treated vs 0.236 control; experiment 1) and after 3 days (He 0.169 treated vs 0.261 control; experiment 2), indicating that results obtained from AFLP profiles did not match with plant growth measurements. Therefore, our results showed that M. aquaticum proved to be a suitable model system for the investigation of Cd genotoxicity through AFLP fingerprinting profile, whereas the more classic eco-toxicological tests based only on biometric parameters could not correctly estimate the risk associated with undetected Cd genotoxicity.
Collapse
Affiliation(s)
- Andrea Coppi
- Department of Biology, Università Degli Studi Di Firenze, via Micheli 1, Florence, 50121 Italy
| | - Ilaria Colzi
- Department of Biology, Università Degli Studi Di Firenze, via Micheli 1, Florence, 50121 Italy
| | - Lorenzo Lastrucci
- University Museum System, Natural History Museum, Botany, via La Pira 4, Florence, 50121 Italy
| | | | - Cristina Gonnelli
- Department of Biology, Università Degli Studi Di Firenze, via Micheli 1, Florence, 50121 Italy
| |
Collapse
|
30
|
Li XQ, Hua ZL, Zhang JY, Gu L. Ecotoxicological responses and removal of submerged macrophyte Hydrilla verticillate to multiple perfluoroalkyl acid (PFAA) pollutants in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153919. [PMID: 35189236 DOI: 10.1016/j.scitotenv.2022.153919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/31/2021] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
The ubiquitous existence of perfluoroalkyl acids (PFAAs) in aquatic environments might pose toxic potential to ecosystems. To assess the ecotoxicological responses and removal of submerged macrophyte to multiple PFAA pollutants in aquatic environments, a typical submerged macrophyte, Hydrilla verticillate, was exposed to solutions with 12 typical PFAAs in the present study. The results showed that PFAAs at concentrations higher than 10 μg/L had significantly passive effects on biomass, relative growth rates, chlorophyll contents, and chlorophyll autofluorescence. PFAAs could induce the accumulation of hydrogen peroxide and lipid peroxidation in H. verticillate. Significant upregulation of CAT was observed in treatments with more than 10 μg/L PFAAs (p < 0.05). The results also showed that 13.53-20.01% and 19.73-37.72% of PFAAs could be removed in treatments without plants and with H. verticillate, respectively. The removal rates of PFAAs were significantly correlated with perfluoroalkyl chain length in treatments with H. verticillate. The removal of PFAAs was suggested to be related to the uptake of plant tissues and biosorption of microbiota. Furthermore, the dominant microbiota and biomarkers were identified in water and biofilm. Betaproteobacteriales was the most dominant microbiota at the order level. The presence of PFAAs could significantly increase the relative abundance of Micrococcales, Verrucomicrobiales, Rhizobiales, Sphingomonadales, Roseomonas, Cyanobium_PCC_6307, and Synechococcales. Our results provide scientific basis for evaluating the ecotoxicological responses and removal of submerged macrophytes in response to multiple PFAA pollutants at environmentally relevant levels, thereby providing insights into PFAA management and removal.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| |
Collapse
|
31
|
Nikokherad H, Esmaili-Sari A, Moradi AM, Bahramifar N, Mostafavi PG. Bioaccumulation capacity of Chlorella vulgaris and Spirulina platensis exposed to silver nanoparticles and silver nitrate: Bio- and health risk assessment approach. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Hua ZL, Li XQ, Zhang JY, Gu L. Removal potential of multiple perfluoroalkyl acids (PFAAs) by submerged macrophytes in aquatic environments: Tolerance of Vallisneria natans and PFAA removal in submerged macrophyte-microbiota systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127695. [PMID: 34775308 DOI: 10.1016/j.jhazmat.2021.127695] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have emerged as a global concern in aquatic environment remediation due to their abundance, persistence, bioaccumulation, and toxicity. To comprehensively understand the removal potential of multiple PFAAs by submerged macrophytes in aquatic environments, systematic investigations into the tolerance of the typical submerged macrophyte Vallisneria natans to 12 typical PFAAs and the removal capacity to PFAAs in V. natans-microbiota systems were carried out. Results showed that although PFAAs could induce the accumulation of hydrogen peroxide and malondialdehyde, V. natans was overall resistant to multiple PFAAs with natural concentrations. Catalase is one of the main strategies of V. natans to alleviate PFAA stress. Microbiota can remove 18.10-30.84% of the PFAAs from the water column. 24.35-73.45% of PFAAs were removed from water in V. natans-microbiota systems. The uptake of plant tissues and the bioaccumulation of microbiota were proposed as the main removal processes. The removal rates were significantly correlated with the perfluorinated carbon atoms numbers (p < 0.05). PFAAs and V. natans increased the relative abundance of Betaproteobacteria, Nostocales, Microscillaceae, Sphingobacteriales, SBR1031, Chlamydiales, Phycisphaerae, Caldilineales, Rhodobacterales, and Verrucomicrobiales. The present study suggested that V. natans can be a potential species to remove multiple PFAAs in aquatic environments, and further providing insights into the PFAAs' remediation.
Collapse
Affiliation(s)
- Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| |
Collapse
|
33
|
Machine Learning Approach to Predict Quality Parameters for Bacterial Consortium-Treated Hospital Wastewater and Phytotoxicity Assessment on Radish, Cauliflower, Hot Pepper, Rice and Wheat Crops. WATER 2022. [DOI: 10.3390/w14010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Raw hospital wastewater is a source of excessive heavy metals and pharmaceutical pollutants. In water-stressed countries such as Pakistan, the practice of unsafe reuse by local farmers for crop irrigation is of major concern. In our previous work, we developed a low-cost bacterial consortium wastewater treatment method. Here, in a two-part study, we first aimed to find what physico-chemical parameters were the most important for differentiating consortium-treated and untreated wastewater for its safe reuse. This was achieved using a Kruskal–Wallis test on a suite of physico-chemical measurements to find those parameters which were differentially abundant between consortium-treated and untreated wastewater. The differentially abundant parameters were then input to a Random Forest classifier. The classifier showed that ‘turbidity’ was the most influential parameter for predicting biotreatment. In the second part of our study, we wanted to know if the consortium-treated wastewater was safe for crop irrigation. We therefore carried out a plant growth experiment using a range of popular crop plants in Pakistan (Radish, Cauliflower, Hot pepper, Rice and Wheat), which were grown using irrigation from consortium-treated and untreated hospital wastewater at a range of dilutions (turbidity levels) and performed a phytotoxicity assessment. Our results showed an increasing trend in germination indices and a decreasing one in phytotoxicity indices in plants after irrigation with consortium-treated hospital wastewater (at each dilution/turbidity measure). The comparative study of growth between plants showed the following trend: Cauliflower > Radish > Wheat > Rice > Hot pepper. Cauliflower was the most adaptive plant (PI: −0.28, −0.13, −0.16, −0.06) for the treated hospital wastewater, while hot pepper was susceptible for reuse; hence, we conclude that bacterial consortium-treated hospital wastewater is safe for reuse for the irrigation of cauliflower, radish, wheat and rice. We further conclude that turbidity is the most influential parameter for predicting bio-treatment efficiency prior to water reuse. This method, therefore, could represent a low-cost, low-tech and safe means for farmers to grow crops in water stressed areas.
Collapse
|
34
|
Sackey LNA, Mocová KA, Petrová Š, Kočí V. Toxicity of wood leachate to algae Desmodesmus subspicatus and plant Lemna minor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67150-67158. [PMID: 34247352 DOI: 10.1007/s11356-021-15319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Wood is one of the extensively used goods on the earth due to its large accessibility and usage in a wide range of human life. When woods are exposed to aquatic media, leachates are generated which may affect the quality of water and damage aquatic life into which they are discharged. This research seeks to evaluate the toxicity of linden (Tilia cordata), larch (Larix decidua) from the Czech Republic, cedrela (Cedrela odorata) and emire (Terminalia ivorensis) from Ghana wood leachates to two aquatic organisms (Desmodesmus subspicatus and Lemna minor). In algal and duckweed toxicity tests, these plants were exposed to different concentrations of wood leachate with nutrient medium creating concentration rates, 20, 30, 45, 67, and 100% v/v. High concentration of phenols and heavy metals may have contributed to toxicity. It was observed that the various wood leachates were inhibitory to the growth rate of algae and duckweed with emire exhibiting the highest toxicity with IC50 of 30.04% and 28.58% and larch the lowest toxicity with IC50 of 51.18% and 49.57% in relation to growth rate and chlorophyll respectively, hence indicating confirmed and potential toxicity of the various wood leachates to the aquatic organisms.
Collapse
Affiliation(s)
- Lyndon N A Sackey
- Department of Environmental Chemistry, University of Chemistry and Technology, Technická 5, Praha 6-Dejvice, 166 28, Prague, Czech Republic
| | - Klára A Mocová
- Department of Environmental Chemistry, University of Chemistry and Technology, Technická 5, Praha 6-Dejvice, 166 28, Prague, Czech Republic
| | - Šárka Petrová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague, Czech Republic
| | - Vladimír Kočí
- Department of Environmental Chemistry, University of Chemistry and Technology, Technická 5, Praha 6-Dejvice, 166 28, Prague, Czech Republic.
| |
Collapse
|
35
|
Lehutso RF, Wesley-Smith J, Thwala M. Aquatic Toxicity Effects and Risk Assessment of 'Form Specific' Product-Released Engineered Nanomaterials. Int J Mol Sci 2021; 22:12468. [PMID: 34830350 PMCID: PMC8621863 DOI: 10.3390/ijms222212468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The study investigated the toxicity effects of 'form specific' engineered nanomaterials (ENMs) and ions released from nano-enabled products (NEPs), namely sunscreens, sanitisers, body creams and socks on Pseudokirchneriella subcapitata, Spirodela polyrhiza, and Daphnia magna. Additionally, risk estimation emanating from the exposures was undertaken. The ENMs and the ions released from the products both contributed to the effects to varying extents, with neither being a uniform principal toxicity agent across the exposures; however, the effects were either synergistic or antagonistic. D. magna and S. polyrhiza were the most sensitive and least sensitive test organisms, respectively. The most toxic effects were from ENMs and ions released from sanitisers and sunscreens, whereas body creams and sock counterparts caused negligible effects. The internalisation of the ENMs from the sunscreens could not be established; only adsorption on the biota was evident. It was established that ENMs and ions released from products pose no imminent risk to ecosystems; instead, small to significant adverse effects are expected in the worst-case exposure scenario. The study demonstrates that while ENMs from products may not be considered to pose an imminent risk, increasing nanotechnology commercialization may increase their environmental exposure and risk potential; therefore, priority exposure cases need to be examined.
Collapse
Affiliation(s)
- Raisibe Florence Lehutso
- Water Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| | - James Wesley-Smith
- Electron Microscope Unit, Sefako Makgatho Health Sciences University, Pretoria 0001, South Africa;
| | - Melusi Thwala
- Water Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
- Centre for Environmental Management, University of the Free State, Bloemfontein 9031, South Africa
| |
Collapse
|
36
|
Madeira C, Costa PM. Proteomics in systems toxicology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:55-91. [PMID: 34340774 DOI: 10.1016/bs.apcsb.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins are the ultimate product of gene expression. As they hinge between gene transcription and phenotype, they offer a more realistic perspective of toxicopathic effects, responses and even susceptibility to insult than targeting genes and mRNAs while dodging some inter-individual variability that hinders measuring downstream endpoints like metabolites or enzyme activity. Toxicologists have long focused on proteins as biomarkers but the advent of proteomics shifted risk assessment from narrow single-endpoint analyses to whole-proteome screening, enabling deriving protein-centric adverse outcome pathways (AOPs), which are pivotal for the derivation of Systems Biology informally named Systems Toxicology. Especially if coupled pathology, the identification of molecular initiating events (MIEs) and AOPs allow predictive modeling of toxicological pathways, which now stands as the frontier for the next generation of toxicologists. Advances in mass spectrometry, bioinformatics, protein databases and top-down proteomics create new opportunities for mechanistic and effects-oriented research in all fields, from ecotoxicology to pharmacotoxicology.
Collapse
Affiliation(s)
- Carolina Madeira
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal
| | - Pedro M Costa
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|