1
|
Chen YW, Ho TPT, Liu KT, Jian MY, Katoch A, Cheng YH. Exploring the characteristics and source-attributed health risks associated with polycyclic aromatic hydrocarbons and metal elements in atmospheric PM 2.5 during warm and cold periods in the northern metropolitan area of Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124703. [PMID: 39128606 DOI: 10.1016/j.envpol.2024.124703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and metal elements are commonly considered hazardous air pollutants due to their toxic, mutagenic, and carcinogenic properties. However, few studies have simultaneously examined their potential sources and health effects. This study aimed to quantify the PAHs and metal elements in atmospheric PM2.5, investigating their characteristics and potential sources to assess associated health risks in the northern metropolitan area of Taiwan. The measurements indicated that the mean concentrations of total PAHs and metal elements in PM2.5 were 0.97 ± 0.52 ng m-3 and 590 ± 200 ng m-3, respectively. Utilizing the positive matrix factorization profiles, the PAH pollution was classified into two sources: industrial emissions, traffic emissions, and coal combustion (69%) were the predominant sources of PAHs, with petroleum volatilization and biomass burning (31%) making a lesser contribution. Similarly, we traced metal elements to three potential sources: natural sources (48%), a combined source of industrial emissions, coal combustion, and traffic exhaust (32%), and a blend of non-exhaust emissions from traffic and waste incineration sources (20%). Results from the potential source contribution function model suggested that the emissions of PAHs and metals could be influenced by the eastern regions of China, although local sources, including waste incinerators, traffic, shipping, and harbor activities, were identified as the primary contributors. Source-attributed excess cancer risk revealed that industry, traffic, and coal combustion had the highest cancer risk posed by PAHs in the cold period (1.0 × 10-5), while the greatest cancer risk among metal elements was linked to non-exhaust emissions from traffic and waste incineration emissions (2.0 × 10-5). This research underscores the importance of considering source contributions to health risk and emission reduction when addressing PM2.5 pollution. These findings have direct implications for policymakers, providing them with valuable insights to develop strategies that protect public health from the detrimental effects of PAH and metal element exposure.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Thi Phuong Thao Ho
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Kuan-Ting Liu
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Meng-Ying Jian
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Ankita Katoch
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Yu-Hsiang Cheng
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, 613016, Taiwan.
| |
Collapse
|
2
|
Dang H, Zhang P, Zheng J, Chen S, Wei W, Wang X. Long-term inhalation exposure: A model for phthalate accumulation in the respiratory tract. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117207. [PMID: 39426105 DOI: 10.1016/j.ecoenv.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Inhalation is a major pathway for phthalates (PAEs), an endocrine disruptor, to enter the human body. The actual internal exposure amount that participates in metabolism cannot be estimated by calculating total inhalation intake. OBJECTIVE To estimate the accumulation in each region of the respiratory tract after long-term exposure to PAEs in different populations. METHODS A mass transfer model was developed to simulate the long-term accumulation of PAEs in respiratory tract through inhalation. The model considered (1) mass transfer of PAEs in three phases across seven regions, (2) the effect of temperature differences on the mass transfer process. Based on this model, we simulated adult exposure to PAEs in a laboratory, identified key model parameters, and further simulated various scenarios for children, adults, and elders. RESULTS PAEs are not completely cleared from the respiratory tract after 16 hours, following 8 hours of daily exposure. Under regular laboratory environment, accumulation after 30 days is 3.8 times higher than that after the first day. The distribution of PAEs between the gas and mucus phases has a greater impact on the results than between the gas and particle phases. Children are at the highest risk to Diethyl phthalate (DEP) exposure compared with adults and elders. Nearly 80 % of DEP is exhaled, with 14 % accumulating in the alveolar region after an hour. CONCLUSION This model links indoor air PAEs to human internal exposure, showing that most PAEs are exhaled, while the remainder accumulates in the respiratory tract and may participate in human metabolism.
Collapse
Affiliation(s)
- Haoyu Dang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Pengfei Zhang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Jiachen Zheng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Shengwen Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Wenjuan Wei
- Scientific and Technical Center for Building (CSTB), Health and Comfort Department, 84 Avenue Jean Jaurès, Marne la Vallée Cedex 2, Champs sur Marne 77447, France.
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
3
|
Chen YW, Liu KT, Thi Phuong Thao H, Jian MY, Cheng YH. Insight into the diurnal variations and potential sources of ambient PM 2.5-bound polycyclic aromatic hydrocarbons during spring in Northern Taiwan. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134977. [PMID: 38905976 DOI: 10.1016/j.jhazmat.2024.134977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
In recent decades, polycyclic aromatic hydrocarbons (PAHs), the primary organic pollutants associated with particulate matter (PM), have attracted significant attention due to their carcinogenic and mutagenic potential. However, past studies have lacked exploration into the diurnal variation characteristics of PAHs, primarily due to limited analytical technical capabilities. This study utilized a thermal-desorption device coupled with gas chromatography/mass spectrometry (TD-GC/MS) to identify the levels of PAHs in PM2.5 during short periods (3-hr) and aimed to investigate the diurnal variations, possible sources, and potential health risks associated with PM2.5-bound PAHs in northern Taiwan. The mean concentration of total PAHs in PM2.5 was 1.22 ± 0.69 ng m-3 during the sampling period, with high molecular weight PAHs dominating. Source apportionment by the positive matrix factorization (PMF) model indicated that industrial emissions and traffic emissions (57.7 %) were the predominant sources of PAHs, with petroleum volatilization and coal/biomass combustion (42.3 %) making a lesser contribution. Diurnal variations of industrial and traffic emissions showed higher concentrations during traffic rush hours, while petroleum volatilization and coal/biomass combustion displayed higher concentrations at noon. Results from the potential source contribution function (PSCF) and the concentration weighted trajectory (CWT) model suggested that industrial emissions and traffic emissions mostly originated from local sources and were concentrated in the vicinity of the sampling site and the coastal area of western Taiwan. Source-attributed excess cancer risk (ECR) showed that industrial and traffic emissions had the highest cancer risks during morning traffic peak hours (1.69 ×10-5), while petroleum volatilization and coal/biomass combustion reached the maximum at noon (4.75 ×10-6). As a result, efforts to reduce PAH emissions from industrial and vehicle exhaust sources, especially during morning traffic hours, can help mitigate their adverse impact on human health.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan
| | - Kuan-Ting Liu
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan
| | - Ho Thi Phuong Thao
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan
| | - Meng-Ying Jian
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan
| | - Yu-Hsiang Cheng
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi 613016, Taiwan.
| |
Collapse
|
4
|
Liu Q, Liu J, Zhang Y, Chen H, Liu X, Liu M. Associations between atmospheric PM 2.5 exposure and carcinogenic health risks: Surveillance data from the year of lowest recorded levels in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124176. [PMID: 38768675 DOI: 10.1016/j.envpol.2024.124176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Scant research has pinpointed the year of minimum PM2.5 concentration through extensive, uninterrupted monitoring, nor has it thoroughly assessed carcinogenic risks associated with analyzing numerous components during this nadir in Beijing. This study endeavored to delineate the atmospheric PM2.5 pollution in Beijing from 2015 to 2022 and to undertake comprehensive evaluation of carcinogenic risks associated with the composition of atmospheric PM2.5 during the year exhibiting the lowest concentration. PM2.5 concentrations were monitored gradually in 9 districts of Beijing for 7 consecutive days per month from 2015 to 2022, and 32 kinds of PM2.5 components collected in the lowest PM2.5 concentration year were analyzed. This comprehensive dataset served as the basis for carcinogenic risk assessment using Monte Carlo simulation. And we applied the Positive Matrix Factorization (PMF) method to identity the sources of atmospheric PM2.5. Furthermore, we integrated this source appointment model with risk assessment model to discern the origins of these risks. The findings revealed that the annual average PM2.5 concentration in 2022 stood at 43.1 μg/m3, marking the lowest level recorded. The mean carcinogenic risks of atmospheric PM2.5 exposure calculated at 6.30E-6 (empirical 95% CI 1.09E-6 to 2.25E-5) in 2022. The PMF model suggested that secondary sources (35.4%), coal combustion (25.6%), resuspended dust (15.1%), biomass combustion (14.1%), vehicle emissions (7.1%), industrial emissions (2.0%) and others (0.7%) were the main sources of atmospheric PM2.5 in Beijing. The mixed model revealed that coal combustion (2.41E-6), vehicle emissions (1.90E-6) and industrial emissions (1.32E-6) were the main sources of carcinogenic risks with caution. Despite a continual decrease in atmospheric PM2.5 concentration in recent years, the lowest concentration levels still pose non-negligible carcinogenic risks. Notably, the carcinogenic risks associated with metals and metalloids exceeded that of PAHs. And the distribution of risk sources did not align proportionally with the distribution of PM2.5 mass concentration.
Collapse
Affiliation(s)
- Qichen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Institute for Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yong Zhang
- Institute for Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Huajie Chen
- Institute for Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Xiaofeng Liu
- Institute for Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
5
|
Zhao K, Wang K, Qian S, Wang S, Li F. Occurrence, removal, and risk assessment of polycyclic aromatic hydrocarbons and their derivatives in typical wastewater treatment plants. ENVIRONMENTAL RESEARCH 2024; 252:118989. [PMID: 38677406 DOI: 10.1016/j.envres.2024.118989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Wastewater treatment plants (WWTPs) have a certain removal capacity for polycyclic aromatic hydrocarbons (PAHs) and their derivatives, but some of them are discharged with effluent into the environment, which can affect the environment. Therefore, to understand the presence, sources, and potential risks of PAHs and their derivatives in WWTPs. Sixteen PAHs, three chlorinated polycyclic aromatic hydrocarbons (ClPAHs), three oxidized polycyclic aromatic hydrocarbons (OPAHs), and three methylated polycyclic aromatic hydrocarbons (MPAHs) were detected in the influent and effluent water of three WWTPs in China. The average concentrations of their influent ∑PAHs, ∑ClPAHs, ∑OPAHs, and ∑MPAHs ranged from 2682.50 to 2774.53 ng/L, 553.26-906.28 ng/L, 415.40-731.56 ng/L, and 534.04-969.83 ng/L, respectively, and the effluent concentrations ranged from 823.28 to 993.37 ng/L, 269.43-489.94 ng/L, 285.93-463.55 ng/L, and 376.25-512.34 ng/L, respectively. The growth of heat transport and industrial energy consumption in the region has a significant impact on the level of PAHs in WWTPs. According to the calculated removal efficiencies of PAHs and their derivatives in the three WWTPs (A, B, and C), the removal rates of PAHs and their derivatives were 69-72%, 62-71%, and 68-73%, respectively, and for the substituted polycyclic aromatic hydrocarbons (SPAHs), the removal rates were 41-49%, 31-40%, and 33-39%, respectively; moreover, the removal rates of PAHs were greater than those of SPAHs in the WWTPs. The results obtained via the ratio method indicated that the main sources of PAHs in the influent of WWTPs were the combustion of coal and biomass, and petroleum contamination was the secondary source. In risk evaluation, there were 5 compounds for which the risk quotient was considered high ecological risk. During chronic disease evaluation, there were 11 compounds with a risk quotient considered to indicate high risk. PAHs and SPAHs with high relative molecular masses in the effluent of WWTPs pose more serious environmental hazards than their PAHs counterparts.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, China.
| | - Kaixuan Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, China
| | - Shifeng Qian
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, China
| | - Su Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Liu X, Wang X, Xue Q, Tian Y, Feng Y. Inhalation bioaccessibility and risk assessment for PM-bound organic components: Co-effects of component physicochemical properties, PM properties, and sources. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132291. [PMID: 37591173 DOI: 10.1016/j.jhazmat.2023.132291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Inhalation bioaccessibility and deposition in respiratory tracts of organic components in atmospheric particulate matter (PM) are key factors for accurately estimating health risks and understanding human exposures. This study evaluated the in-vitro inhalation bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives, phthalic acid esters (PAEs), polychlorinated biphenyls (PCBs), and organophosphate flame retardants (OPFRs) in size-resolved PM from a Chinese megacity. The bioaccessibility ranged from 0.2% to 77.8% in the heating period (HP), and from 0.7% to 94.2% in the non-heating period (NHP). Result suggests that less hydrophobic organics might be more bioaccessible. Bioaccessibility of medium logKow organics in sizes > 0.65 µm was significantly inhibited by high carbon fractions, indicating the co-effects. Then, this is the first study to explore effects of sources on inhalation bioaccessibility of organics. Coal and biomass combustion in HP and traffic emission in NHP negatively correlated with bioaccessibility. Secondary particles also negatively correlated with bioaccessibility of medium logKow organics. Incremental lifetime cancer risk (ILCR) and non-cancer risk (HQ) for all measured components in PM10 were estimated after considering the bioaccessibility and deposition efficiencies and the HQ and ILCR were within the acceptable range. BaP and DEHP were strong contributors to HQ and ILCR, respectively.
Collapse
Affiliation(s)
- Xinyi Liu
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaoning Wang
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qianqian Xue
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yingze Tian
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| | - Yinchang Feng
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| |
Collapse
|
7
|
Zeng Y, Ma HM, Zhang QY, Tao L, Wang T, Wan C, Chen SJ, Mai BX. Complex polycyclic aromatic compound mixtures in PM 2.5 in a Chinese megacity: Spatio-temporal variations, toxicity, and source apportionment. ENVIRONMENT INTERNATIONAL 2023; 179:108159. [PMID: 37607426 DOI: 10.1016/j.envint.2023.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Polycyclic aromatic compounds (PACs) are important toxic organic components in fine particulate matter (PM2.5), whereas the links between PM2.5 toxicity and associated PACs in ambient air are poorly understood. This study investigated the spatial-temporal variations of PACs in PM2.5 collected from 11 sampling sites across a Chinese megacity and characterized the reactive oxygen species (ROS) generation and cytotoxicity induced by organic extracts of PM2.5 based on cellular assays. The extra trees regression model based on machine learning and ridge regression were used to identify the key toxicants among complex PAC mixtures. The total concentrations of these PACs varied from 2.12 to 71.7 ng/m3 across the study city, and polycyclic aromatic hydrocarbons (PAHs) are the main PACs. The spatial variations of the toxicological indicators generally resembled those of the PAC concentrations, and the PM2.5 related to waste treatment facilities exhibited the strongest toxic potencies. The ROS generation was highly correlated with high molecular weight PAHs (MW302 PAHs), followed by PAHs with MW<302 amu and oxygenated PAHs, but not with nitrated PAHs and the plastics additives. The cell mortality showed weak correlations with these organic constituents. The associations between the biological endpoints and these PM2.5-bound contaminants were further confirmed by exposure to authentic chemicals. Four primary sources of PACs were identified, among which coal and biomass combustion sources (30.2% of the total PACs) and industrial sources (31.0%) were predominant. PACs emitted from industrial sources were highly associated with ROS generation in this city. Our findings highlight the potent ROS-generating potential of MW302 PAHs and the importance of industrial sources contributing to PM2.5 toxicity in this megacity, raising public concerns and further administration.
Collapse
Affiliation(s)
- Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Hui-Min Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qian-Yu Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tao Wang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cong Wan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
8
|
Li Q, Zeng Y, Fan Y, Fu S, Guan Y, Sun Y, Chen S. PM-bound polycyclic aromatic compounds (PACs) in two large-scale petrochemical bases in South China: Spatial variations, sources, and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60994-61004. [PMID: 37042915 DOI: 10.1007/s11356-023-26477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/12/2023] [Indexed: 05/10/2023]
Abstract
Polycyclic aromatic compounds (PACs) are potential pollutants emitted from the petrochemical industry, whereas their occurrence and sources in petrochemical regions are still poorly known. The present study revealed the spatial variations, compositional profiles, sources and contributions, and health risks of PM-bound PACs in two large-scale petrochemical bases (GDPB and HNPB) in South China. The concentrations of parent polycyclic aromatic hydrocarbons (PAHs) were 7.14 ± 3.16 ng/m3 for ∑18PAHs and 0.608 ± 0.294 ng/m3 for the PAHs with molecular weight of 302 amu (MW302 PAHs) in the GDPB base and 2.55 ± 1.26 ng/m3 and 0.189 ± 0.088 ng/m3 in the HNPB base. Oxygenated PAHs (OPAHs) showed comparable concentrations to the parent PAHs in both the bases and nitrated PAHs (NPAHs) had the lowest mean levels (260 pg/m3 and 59.4 pg/m3 in the two regions). Coronene, 2,8-dinitrodibenzothiophene, and dibenzo[a,e]fluoranthene showed remarkably higher contributions to the PAC and can be PAC markers of the petrochemical industry source. Five sources of PACs were identified respectively in both petrochemical bases by the positive matrix factorization (PMF) model. The vehicle (and ship) traffic exhaust was the primary source of PACs (contributed 33% to the ∑PACs), and the sources related to the coking of coal and heavy petroleum and refinery exhaust were identified in both bases, with contributions of 10-20%. PACs in GDPB also contributed from secondary atmospheric reactions (17.3%) and the usage of sulfur-containing fuels (20.9%), while the aromatics industry made a significant contribution (20.1%) to the PACs in the HNPB region. The cumulative incremental lifetime cancer risks (ILCRs) induced by inhalation of PM-bound PACs in both petrochemical bases were low (10-8-10-6). For the sources related to the petrochemical industry, coking activities and the aromatic industry were the significant contributors to the ∑ILCRs in GDPB and HNPB, respectively. This research has implications for further source-targeted control and health risk reduction of PACs in petrochemical regions.
Collapse
Affiliation(s)
- Qiqi Li
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China.
| | - Yun Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Siqi Fu
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yufeng Guan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yuxin Sun
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Shejun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
9
|
Zhang L, Fang B, Wang H, Zeng H, Wang N, Wang M, Wang X, Hao Y, Wang Q, Yang W. The role of systemic inflammation and oxidative stress in the association of particulate air pollution metal content and early cardiovascular damage: A panel study in healthy college students. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121345. [PMID: 36841422 DOI: 10.1016/j.envpol.2023.121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Exposure to fine particulate matter (PM2.5) has been associated with adverse cardiovascular outcomes. However, the effects of toxic metals in PM2.5 on cardiovascular health remain unknown. To investigate the early cardiovascular effects of specific PM2.5 metal constituents at the personal level, we conducted a panel study on 45 healthy college students in Caofeidian, China. Personal exposure concentrations and cardiovascular effect markers were monitored simultaneously within one year in four study periods. Four linear mixed-effects models were used to analyze the relationship between personal exposure to PM2.5 and 15 metal fractions (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, and Pb) with soluble CD36 (sCD36), C-reactive protein (CRP), and oxidized low-density lipoprotein (OX-LDL) levels, heart rate, and blood pressure. The concentrations of most individual metals (Mn, Cu, Zn, As, Se, Mo, Cd, Sb and Pb) were the highest in winter. Meanwhile, there were significant differences in inflammatory (sCD36 and CRP) and oxidative stress (OX-LDL) markers in the serum of participants over the four seasons. In particular, the estimated effects of personal metal exposure (such as V, As, Se, Cd, and Pb) on sCD36 and pulse pressure (PP) levels were consistently significant across the four LME models. A significant mediating role of sCD36 was also found in the relationship between personal exposure to Zn and Cr and changes in PP levels. Our findings provide clues and potential mechanisms regarding the cardiovascular effects of specific toxic constituents of PM2.5 in healthy young adults.
Collapse
Affiliation(s)
- Lei Zhang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Bo Fang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Affiliated Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, Henan, China
| | - Haotian Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Hao Zeng
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Nan Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - ManMan Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Xuesheng Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yulan Hao
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| | - Wenqi Yang
- Affiliated Hospital, North China University of Science and Technology, Tangshan, 063000, China
| |
Collapse
|
10
|
Bai X, Wei J, Ren Y, Gao R, Chai F, Li H, Xu F, Kong Y. Pollution characteristics and health risk assessment of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons during heating season in Beijing. J Environ Sci (China) 2023; 123:169-182. [PMID: 36521982 DOI: 10.1016/j.jes.2022.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (NPAHs) attract continuous attention due to their outstanding carcinogenicity and mutagenicity. In order to investigate the diurnal variations, sources, formation mechanism, and health risk assessment of them in heating season, particulate matter (PM) were collected in Beijing urban area from December 26, 2017 to January 17, 2018. PAHs and NPAHs in PM were quantitatively analyzed via gas chromatography-mass spectrometry (GC-MS) . Average daily concentrations of PAHs and NPAHs were (78 ± 54) ng/m3 and (783 ± 684) pg/m3, respectively. The concentrations of them were significantly higher at nighttime than at daytime, and NPAHs concentrations were 1-2 orders of magnitude lower than PAHs concentrations. In the heating season, the dominant species of PAHs include benzo[b]fluoranthene, fluoranthene, pyrene, and chrysene, while 9-nitroanthracene, 2+3-nitrofluoranthene, and 2-nitropyrene were dominant species for NPAHs. NPAHs were found to have a single peak during heating and to be primarily distributed in the 0.4-0.7 µm particle size. Primary emissions such as biomass burning, coal combustion, and traffic emissions were the major sources of PAHs. NPAHs were produced by the primary source of vehicle emissions and the secondary reaction triggered by OH radicals, as well as biomass burning during daytime. According to the health risk assessment, the total carcinogenic risk was higher in adults than in children. While upon oral ingestion, the carcinogenic risk in children was higher than that of adults, but the risk of adults was higher than children through skin contact and respiratory inhalation.
Collapse
Affiliation(s)
- Xurong Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Shandong University, Environment Research Institute, Qingdao 266237, China
| | - Jie Wei
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanqin Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rui Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fahe Chai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei Xu
- Shandong University, Environment Research Institute, Qingdao 266237, China
| | - Yuxue Kong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
11
|
Qi H, Liu Y, Li L, Zhao B. Optimization of Cancer Risk Assessment Models for PM 2.5-Bound PAHs: Application in Jingzhong, Shanxi, China. TOXICS 2022; 10:761. [PMID: 36548594 PMCID: PMC9781926 DOI: 10.3390/toxics10120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The accurate evaluation of the carcinogenic risk of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) is crucial because of the teratogenic, carcinogenic, and mutagenic effects of PAHs. The best model out of six models was selected across three highly used categories in recent years, including the USEPA-recommended inhalation risk (Model I), inhalation carcinogen unit risk (Models IIA-IID), and three exposure pathways (inhalation, dermal, and oral) (Model III). Model I was found to be superior to the other models, and its predicted risk values were in accordance with the thresholds of PM2.5 and benzo[a]pyrene in ambient-air-quality standards. Models IIA and III overestimated the risk of cancer compared to the actual cancer incidence in the local population. Model IID can replace Models IIB and IIC as these models exhibited no statistically significant differences between each other. Furthermore, the exposure parameters were optimized for Model I and significant differences were observed with respect to country and age. However, the gender difference was not statistically significant. In conclusion, Model I is recommended as the more suitable model, but in assessing cancer risk in the future, the exposure parameters must be appropriate for each country.
Collapse
Affiliation(s)
- Hongxue Qi
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| | - Ying Liu
- Department of Sciences, Northeastern University, Shenyang 110819, China
| | - Lihong Li
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| | - Bingqing Zhao
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| |
Collapse
|
12
|
Sánchez-Piñero J, Novo-Quiza N, Pernas-Castaño C, Moreda-Piñeiro J, Muniategui-Lorenzo S, López-Mahía P. Inhalation bioaccessibility of multi-class organic pollutants associated to atmospheric PM 2.5: Correlation with PM 2.5 properties and health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119577. [PMID: 35688393 DOI: 10.1016/j.envpol.2022.119577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Inhalation exposure to fine particulate matter (PM2.5) represents a global concern due to the adverse effects in human health. In the last years, scientific community has been adopted the assessment of the PM2.5-bound pollutant fraction that could be released (bioaccessible fraction) in simulated lung fluids (SLFs) to achieve a better understanding of PM risk assessment and toxicological studies. Thus, bioaccessibility of 49 organic pollutants, including 18 polycyclic aromatic hydrocarbons (PAHs), 12 phthalate esters (PAEs), 11 organophosphorus flame retardants (OPFRs), 6 synthetic musk compounds (SMCs) and 2 bisphenols in PM2.5 samples was evaluated. The proposed method consists of a physiologically based extraction test (PBET) by using artificial lysosomal fluid (ALF) to obtain bioaccessible fractions, followed by a vortex-assisted liquid-liquid microextraction (VALLME) and a final analysis by programmed temperature vaporization-gas chromatography-tandem mass spectrometry (PTV-GC-MS/MS). The highest inhalation bioaccessibility ratio was found for bisphenol A (BPA) with an average of 83%, followed by OPFRs, PAEs and PAHs (with average bioaccessibilities of 68%, 41% and 34%, respectively). Correlations between PM2.5 composition (major ions, trace metals, equivalent black carbon (eBC) and UV-absorbing particulate matter (UVPM)) and bioaccessibility ratios were also assessed. Principal Component Analysis (PCA) suggested that PAHs, PAES and OPFRs bioaccessibility ratios could be positively correlated with PM2.5 carbonaceous content. Furthermore, both inverse and positive correlations on PAHs, PAEs and OPFRs bioaccessibilites could be accounted for some major ions and metal (oid)s associated to PM2.5, whereas no correlations comprising considered PM2.5 major ions and metal (oid)s contents and BPA bioaccessibility was observed. In addition, health risk assessment of target PM2.5-associated PAHs via inhalation was assessed in the study area considering both total and bioaccessible concentrations, being averaged human health risks within the safe carcinogenic and non-carcinogenic levels.
Collapse
Affiliation(s)
- Joel Sánchez-Piñero
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain.
| | - Natalia Novo-Quiza
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| | - Cristina Pernas-Castaño
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| | - Purificación López-Mahía
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| |
Collapse
|
13
|
Shi F, Ju J, Zhang X, Zheng R, Xiong F, Liu J. Evaluating the inhalation bioaccessibility of traffic-impacted particulate matter-bound PAHs in a road tunnel by simulated lung fluids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155046. [PMID: 35390378 DOI: 10.1016/j.scitotenv.2022.155046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the most highly concerned pollutants bound on traffic-impacted particulate matter (TIPM). The inhaled TIPM-bound PAHs risk has attracted much attention, whereas the inhalation bioaccessibility, a method to refine the exposure risk assessment, has not yet been extensively introduced in the exposure risk assessment. Thus, in vitro assays using artificial lung fluids including artificial lysosomal fluid (ALF), Gamble's solution (GS), and modified GS (MGS) were conducted to assess the inhalation bioaccessibility of USEPA 16 PAHs in TIPM collected from an expressway tunnel, the influence factors of PAHs' inhalation bioaccessibility were explored, and the exposure risk of TIPM-bound PAHs was estimated based on inhalation bioaccessibility. Results showed that the average PAHs concentrations were 30.5 ± 12.9 ng/m3, 36.2 ± 5.19 ng/m3, and 39.9 ± 4.31 ng/m3 in the tunnel inlet PM2.5, TSP, and tunnel center PM2.5, respectively. Phe, Flt, Pyr, Nap, Chr, BbF, and BkF were found as the dominant species in TSP and PM2.5, indicating a dominant contribution of PAHs from diesel-fueled vehicular emissions. The bioaccessible fractions measured for different PAH species in tunnel PM2.5 and TSP were highly variable, which can be attributed to PAHs' physicochemical properties, size, and carbonaceous materials of TIPM. The addition of Tenax into SLF as an "adsorption sink" can greatly increase PAHs' inhalation bioaccessibility, but DPPC has a limited effect on tunnel PM-bound PAHs' bioaccessibility. The incremental lifetime carcinogenic risk (ILCR) of tunnel inlet PM2.5-bound PAHs evaluated according to their total mass concentration exceeded the threshold (1.0 × 10-6) set by the USEPA, whereas the ILCRs estimated based on the inhalation bioaccessibility were far below the threshold. Hence, it is vitally important to take into consideration of pollutant's bioaccessibility to refine health risk assessment.
Collapse
Affiliation(s)
- Fengqiong Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingxue Ju
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Public Health, Hebei University, Baoding 071002, China
| | - Xian Zhang
- College of Public Health, Hebei University, Baoding 071002, China
| | - Ronggang Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Xiong
- JiangXi Gannan Highway Survey and Design Institute, Ganzhou 341000, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
14
|
Zhou P, Kong Y, Cui X. Inhalation Bioaccessibility of Polycyclic Aromatic Hydrocarbons in PM 2.5 under Various Lung Environments: Implications for Air Pollution Control during Coronavirus Disease-19 Outbreak. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4272-4281. [PMID: 35333512 PMCID: PMC8982496 DOI: 10.1021/acs.est.1c08052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 05/25/2023]
Abstract
Global spread of coronavirus disease-19 (COVID-19) is placing an unprecedented pressure on the environment and health. In this study, a new perspective is proposed to assess the inhalation bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 for people with various lung health conditions. In vitro bioaccessibility (IVBA) was measured using modified epithelial lung fluids simulating the extracellular environment of patients with severe and mild lung inflammation. The average PAH IVBA in PM2.5 of 24.5 ± 4.52% under healthy conditions increased (p = 0.06) to 28.6 ± 3.17% and significantly (p < 0.05) to 32.3 ± 5.32% under mild and severe lung inflammation conditions. A mechanistic study showed that lung inflammation decreased the critical micelle concentrations of main pulmonary surfactants (i.e., from 67.8 (for dipalmitoyl phosphatidylcholine) and 53.3 mg/L (for bovine serum albumin) to 44.5 mg/L) and promoted the formation of micelles, which enhanced the solubilization and competitive desorption of PAHs from PM2.5 in the lung fluids. In addition, risk assessment considering different IVBA values suggested that PAH contamination levels in PM2.5, which were safe for healthy people, may not be acceptable for patients with lung inflammation. Because of the large number of COVID-19 infections, and the fact that some survivors of COVID-19 were observed to still show symptoms of interstitial lung inflammation, the finding here can provide important implications for both the scientific community and policy makers in addressing health risk and air pollution control during the COVID-19 outbreak.
Collapse
Affiliation(s)
- Pengfei Zhou
- State Key Laboratory of Pollution
Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Yi Kong
- State Key Laboratory of Pollution
Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Xinyi Cui
- State Key Laboratory of Pollution
Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
15
|
Li Z, Zhao H, Li X, Bekele TG. Characteristics and sources of environmentally persistent free radicals in PM 2.5 in Dalian, Northeast China: correlation with polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24612-24622. [PMID: 34822091 DOI: 10.1007/s11356-021-17688-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are an emerging class of environmental hazardous contaminants that extensively, stably exist in airborne particulate matter and pose harmful effects on human health. However, there was little research about the sources of EPFRs in actual atmospheric conditions. This study reported the occurrence, characteristics, and sources of EPFRs and polycyclic aromatic hydrocarbons (PAHs) in PM2.5 collected in Dalian, China. The concentrations of PM2.5-bound EPFRs ranged from 1.13 × 1013 to 8.97 × 1015 spins/m3 (mean value: 1.14 × 1015 spins/m3). Carbon-centered radicals and carbon-centered radicals with adjacent oxygen atoms were detected. The concentration of ∑PAHs ranged from 1.09 to 76.24 ng/m3, and PAHs with high molecular weight (HMW) were predominant species in PM2.5. Correlation of EPFRs with SO2, NO2, O3, and 12 kinds of PAHs indicated that both fuel (coal and biomass) combustion and photoreaction in atmosphere influenced the concentrations of EPFR. The positive matrix factorization (PMF) model results have shown that the primary sources contributed most of the EPFRs and those of secondary sources had a little proportion. Coal combustion (52.4%) was the primary contributor of EPFRs, followed by traffic emission (22.6%), industrial sources (9.6%), and secondary sources (9.2%) during the heating period, whereas industrial emission (39.2%) was the primary contributor, followed by coal combustion (38.1%), vehicular exhaust (23.5%), and secondary sources (9.6%) during the non-heating period. The finding of the present study provides an important evidence for further study on the formation mechanism of EPFRs in actual atmospheric to control the air pollution.
Collapse
Affiliation(s)
- Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China.
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| |
Collapse
|
16
|
Ren JY, Yin BW, Li X, Zhu SQ, Deng JL, Sun YT, Zhang ZA, Guo ZH, Pei HT, Zhang F, Li RQ, Chen FG, Ma YX. Sesamin attenuates PM 2.5-induced cardiovascular injury by inhibiting ferroptosis in rats. Food Funct 2021; 12:12671-12682. [PMID: 34825691 DOI: 10.1039/d1fo02913d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective: This study aimed to elucidate the pharmacological effects of sesamin (Ses) and its mechanism of action towards PM2.5-induced cardiovascular injuries. Method: Forty Sprague Dawley (SD) rats were randomly divided into five groups: a saline control group; a PM2.5 exposure group; and low-, middle-, and high-dose Ses pretreatment groups. The SD rats were pretreated with different concentrations of Ses for 21 days. Afterward, the rats were exposed to ambient PM2.5 by intratracheal instillation every other day for a total of three times. The levels of inflammatory markers, including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6), and indicators related to oxidative responses, such as total superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA), were measured in the blood and heart. The expression of ferroptosis-related proteins in heart tissues was determined via western blot and immunohistochemistry. Results: Ses pretreatment substantially ameliorated cardiovascular injuries in rats as evidenced by the decrease in the pathological score and collagen area. The decreased levels of SOD, GSH, and GSH-Px in the heart and serum were inhibited by Ses. In addition, Ses not only notably increased the activity of antioxidant enzymes but also reduced the levels of MDA, CK, LDH, CK-MB, IL-6, TNF-α, IL-1β, and IL-6. Furthermore, Ses pretreatment upregulated the expression levels of GPX4, SLC7A11, TFRC, and FPN1 and inhibited the expression levels of FTH1 and FTL. Conclusion: Ses pretreatment could ameliorate PM2.5-induced cardiovascular injuries perhaps by inhibiting ferroptosis. Therefore, Ses pretreatment may be a novel strategy for the prevention and treatment of PM2.5-induced cardiovascular injury.
Collapse
Affiliation(s)
- Jing-Yi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Bo-Wen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Xiang Li
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Si-Qi Zhu
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jin-Liang Deng
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi-Ting Sun
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhen-Ao Zhang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zi-Hao Guo
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huan-Ting Pei
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Fan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Rui-Qiang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Feng-Ge Chen
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050017, China
| | - Yu-Xia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| |
Collapse
|