1
|
Stefaniak K, Kiedrzyński M, Korzeniewska E, Kiedrzyńska E, Harnisz M. Preliminary insights on carbapenem resistance in Enterobacteriaceae in high-income and low-/middle-income countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177593. [PMID: 39551200 DOI: 10.1016/j.scitotenv.2024.177593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The emergence of carbapenem-resistant Enterobacteriaceae in the hospital sector as well as in the natural environment is a problem that affects both high-income countries (HICs) and low-/middle-income countries (LMICs). The observed differences in the prevalence of carbapenem-resistant strains between HICs and LMICs can be attributed mainly to antibiotic consumption in healthcare facilities and the quantity of treated wastewater. Hospital wastewater is a major hotspot for the spread of carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem resistance genes (CRGs) between the hospital sector and the environment. In this review article, attempts were made to describe and compare antibiotic consumption in hospitals, antimicrobial concentrations in both hospital and municipal wastewater, and the prevalence of CRE and CRGs in patients and in hospital and municipal wastewater in HICs and LMICs. A review of the literature has shown that carbapenems are more widely used in LMICs, but Saudi Arabia, an HIC, is a country with the highest carbapenem consumption in the world. The results of research conducted in both groups of countries indicate that Klebsiella sp./K. pneumoniae is the most common CRE in samples isolated from patients. Escherichia coli was the dominant pathogen in hospital and municipal wastewater in HICs, whereas Enterobacter spp. were most prevalent in LMICs. An analysis of the prevalence of CRGs demonstrated that the same genes are present in both groups of countries (blaKPC, blaKPC-2, blaVIM, blaVIM-1,2, blaNDM, blaIMP, blaIMP-8, blaOXA-48,181, blaNDM-1,5, blaGES, blaGES-5,6, blaIMI-1). The fact that the same CRGs are most prevalent in countries with different levels of economic development could suggest that these genes have a high potential to persist in the natural environment. These findings underscore the need for enhanced monitoring, effective control techniques, and a better understanding of carbapenem resistance pathways to mitigate public health hazards, notwithstanding the constraints of data analysis.
Collapse
Affiliation(s)
- Kornelia Stefaniak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Marcin Kiedrzyński
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 1/3, 90-237 Lodz, Poland.
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Edyta Kiedrzyńska
- European Regional Center for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland; UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland.
| |
Collapse
|
2
|
Raju NP, Ansari A, Patil G, Sheeraz MS, Kukade S, Kumar S, Kapley A, Qureshi A. Antibiotic Resistance Dissemination and Mapping in the Environment Through Surveillance of Wastewater. J Basic Microbiol 2024:e2400330. [PMID: 39676299 DOI: 10.1002/jobm.202400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024]
Abstract
Antibiotic resistance is one of the major health threat for humans, animals, and the environment, according to the World Health Organization (WHO) and the Global Antibiotic-Resistance Surveillance System (GLASS). In the last several years, wastewater/sewage has been identified as potential hotspots for the dissemination of antibiotic resistance and transfer of resistance genes. However, systematic approaches for mapping the antibiotic resistance situation in sewage are limited and underdeveloped. The present review has highlighted all possible perspectives by which the dynamics of ARBs/ARGs in the environment may be tracked, quantified and assessed spatio-temporally through surveillance of wastewater. Moreover, application of advanced methods like wastewater metagenomics for determining the community distribution of resistance at large has appeared to be promising. In addition, monitoring wastewater for antibiotic pollution at various levels, may serve as an early warning system and enable policymakers to take timely measures and build infrastructure to mitigate health crises. Thus, by understanding the alarming presence of antibiotic resistance in wastewater, effective action plans may be developed to address this global health challenge and its associated environmental risks.
Collapse
Affiliation(s)
- Neenu P Raju
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Aamir Ansari
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Gandhali Patil
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Mohammed Shahique Sheeraz
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Sushrut Kukade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Shailendra Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| |
Collapse
|
3
|
Zhou X, Li Q, Shi Z, Lu W, Shu C, Zhu J, Wu Y. Assessing the prevalence of human enteric viruses in hospital wastewater to evaluate the effectiveness of wastewater treatment systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117488. [PMID: 39644571 DOI: 10.1016/j.ecoenv.2024.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
In this experiment, we employed Real-time PCR(RT-PCR) and metagenomic Next-Generation Sequencing (mNGS) techniques to detect the presence of Norovirus, Rotavirus Group A, Adenovirus Group F, and Astrovirus in untreated sewage from three major hospitals. A comparison with clinical lab test outcomes revealed Norovirus as having the highest infection rate, followed by Adenovirus Group F and Rotavirus Group A. Despite not testing for Astrovirus in clinical labs, its sewage detection rate was surpassed only by Norovirus, suggesting a potentially high clinical infection rate. Further analysis of these viruses in treated sewage revealed that chlorination failed to eliminate the virus, maintaining viral concentrations in the treated sewage between 10^2 and 10^3 copies/ml. Even though nucleic acid testing methods fail to detect viral actions, the possible danger they present to public safety should not be ignored. During this experiment, viral nucleic acid was extracted directly from the samples without prior concentration. This method, unlike conventional virus detection post-concentration, bypasses concerns such as recovery efficiency, offering a clearer representation of virus concentrations in water samples and facilitating easier operation.
Collapse
Affiliation(s)
- Xuebing Zhou
- Department of Clinical Laboratory, No.906 Hospital of People's Liberation Army, Ningbo, China
| | - Qingcao Li
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China.
| | - Zhanying Shi
- Department of Clinical Laboratory, No.906 Hospital of People's Liberation Army, Ningbo, China
| | - Wenbo Lu
- Department of Clinical Laboratory, Ningbo Women and Children's Hospital, Ningbo, China
| | - Chunhui Shu
- Department of Laboratory Medicine, Ningbo Mingzhou Hospital, Ningbo, China
| | - Junyao Zhu
- Department of Clinical Laboratory, No.906 Hospital of People's Liberation Army, Ningbo, China
| | - Yong Wu
- Department of Clinical Laboratory, No.906 Hospital of People's Liberation Army, Ningbo, China
| |
Collapse
|
4
|
de Farias BO, Saggioro EM, Montenegro KS, Magaldi M, Santos HSO, Gonçalves-Brito AS, Pimenta RL, Ferreira RG, Spisso BF, Pereira MU, Bianco K, Clementino MM. Metagenomic insights into plasmid-mediated antimicrobial resistance in poultry slaughterhouse wastewater: antibiotics occurrence and genetic markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60880-60894. [PMID: 39395082 DOI: 10.1007/s11356-024-35287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Slaughterhouse wastewater represents important convergence and concentration points for antimicrobial residues, bacteria, and antibiotic resistance genes (ARG), which can promote antimicrobial resistance propagation in different environmental compartments. This study reports the assessment of the metaplasmidome-associated resistome in poultry slaughterhouse wastewater treated by biological processes, employing metagenomic sequencing. Antimicrobial residues from a wastewater treatment plant (WWTP) that treats poultry slaughterhouse influents and effluents were investigated through high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Residues from the macrolide, sulfonamide, and fluoroquinolone classes were detected, the latter two persisting after the wastewater treatment. The genetic markers 16S rRNA rrs (bacterial community) and uidA (Escherichia coli) were investigated by RT-qPCR and the sul1 and int1 genes by qPCR. After treatment, the 16S rRNA rrs, uidA, sul1, and int1 markers exhibited reductions of 0.67, 1.07, 1.28, and 0.79 genes copies, respectively, with no statistical significance (p > 0.05). The plasmidome-focused metagenomics sequences (MiSeq platform (Illumina®)) revealed more than 100 ARG in the WWTP influent, which can potentially confer resistance to 14 pharmacological classes relevant in the human and veterinary clinical contexts, in which the qnr gene (resistance to fluoroquinolones) was the most prevalent. Only 7.8% of ARG were reduced after wastewater treatment, and the remaining 92.2% were associated with an increase in the prevalence of ARG linked to multidrug efflux pumps, substrate-specific for certain classes of antibiotics, or broad resistance to multiple medications. These data demonstrate that wastewater from poultry slaughterhouses plays a crucial role as an ARG reservoir and in the spread of AMR into the environment.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
| | - Kaylanne S Montenegro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Hugo Sérgio Oliveira Santos
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa Silva Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ramon Loureiro Pimenta
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Km 07, Zona Rural, BR-465, Seropédica, RJ, Brazil
| | - Rosana Gomes Ferreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Bernardete Ferraz Spisso
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mararlene Ulberg Pereira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Maysa Mandetta Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Yao S, Yu J, Zhang T, Xie J, Yan C, Ni X, Guo B, Cui C. Comprehensive analysis of distribution characteristics and horizontal gene transfer elements of bla NDM-1-carrying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173907. [PMID: 38906294 DOI: 10.1016/j.scitotenv.2024.173907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
The worldwide dissemination of New Delhi metallo-β-lactamase-1 (NDM-1), which mediates resistance to almost all clinical β-lactam antibiotics, is a major public health problem. The global distribution, species, sources, and potential transfer risk of blaNDM-1-carrying bacteria are unclear. Results of a comprehensive analysis of literature in 2010-2022 showed that a total of 6002 blaNDM-1 carrying bacteria were widely distributed around 62 countries with a high trend in the coastal areas. Opportunistic pathogens or pathogens like Klebsiella sp., Escherichia sp., Acinetobacter sp. and Pseudomonas sp. were the four main species indicating the potential microbial risk. Source analysis showed that 86.45 % of target bacteria were isolated from the source of hospital (e.g., Hospital patients and wastewater) and little from surface water (5.07 %) and farms (3.98 %). A plasmid-encoded blaNDM-1Acinetobacter sp. with the resistance mechanisms of antibiotic efflux pump, antibiotic target change and antibiotic degradation was isolated from the wastewater of a typical tertiary hospital. Insertion sequences (IS3 and IS30) located in the adjacent 5 kbp of blaNDM-1-bleMBL gene cluster indicating the transposon-mediated horizontal gene transfer risk. These results showed that the worldwide spread of blaNDM-1-carrying bacteria and its potential horizontal gene transfer risk deserve good control.
Collapse
Affiliation(s)
- Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqin Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianhao Xie
- Children's Hospital of Fudan University, Shanghai 200233, China
| | - Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Ni
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingbing Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai environmental protection key laboratory on environmental standard and risk management of chemical pollutants, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Lu Z, Liu G, Xie H, Zhai Y, Li X. Advances and solutions in biological treatment for antibiotic wastewater with resistance genes: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122115. [PMID: 39121628 DOI: 10.1016/j.jenvman.2024.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Biological treatment represents a fundamental component of wastewater treatment plants (WWTPs). The transmission of antibiotic resistance bacteria (ARB) and resistance genes (ARGs) occurred through the continuous migration and transformation, attributed to the residual presence of antibiotics in WWTPs effluent, posing a significant threat to the entire ecosystem. It is necessary to propose novel biological strategies to address the challenge of refractory contaminants, such as antibiotics, ARGs and ARB. This review summarizes the occurrence of antibiotics in wastewater, categorized by high and low concentrations. Additionally, current biological treatments used in WWTPs, such as aerobic activated sludge, anaerobic digestion, sequencing batch reactor (SBR), constructed wetland, membrane-related bioreactors and biological aerated filter (BAF) are introduced. In particular, because microorganisms are the key to those biological treatments, the effect of high and low concentration of antibiotics on microorganisms are thoroughly discussed. Finally, solutions involving functional bacteria, partial nitrification (PN)-Anammox and lysozyme embedding are suggested from the perspective of the entire biological treatment process. Overall, this review provides valuable insights for the simultaneous removal of antibiotics and ARGs in antibiotics wastewater.
Collapse
Affiliation(s)
- Ziyi Lu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Gaige Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hongwei Xie
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yining Zhai
- School of Civil Engineering, Heilongjiang University, Harbin 150080, China
| | - Xiangkun Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
7
|
Dong C, Liu Z, Zhu L, Zhang B, Chi T, Yu Z, Zhou M, Sun L, Zhao Y, Zhu L, Hu B. Dynamic migration and risk of cephalosporin antibiotic resistance genes: Move from pharmaceutical plants through wastewater treatment plants to coastal tidal flats sediments. WATER RESEARCH 2024; 261:121983. [PMID: 38924951 DOI: 10.1016/j.watres.2024.121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The migration and dissemination of antibiotics and their corresponding antibiotic resistance genes (ARGs) from pharmaceutical plants through wastewater treatment to the environment introduce exogenous ARGs, increasing the risk of antibiotic resistance. Cephalosporin antibiotics (Ceps) are among the most widely used antibiotics with the largest market scale today, and the issue of resistance is becoming increasingly severe. In this study, a cephalosporin pharmaceutical plant was selected and metagenomic analysis was employed to investigate the dissemination patterns of cephalosporin antibiotics (Ceps) and their ARGs (CepARGs) from the pharmaceutical plant through the wastewater treatment plant to tidal flats sediments. The findings revealed a significant reduction in the total concentration of Ceps by 90.32 % from the pharmaceutical plant's Pioneer Bio Reactor (PBR) to the effluent of the wastewater treatment plant, and a notable surge of 172.13 % in the relative abundance of CepARGs. It was observed that CepARGs originating from the PBR could migrate along the dissemination chain, contributing to 60 % of the CepARGs composition in tidal flats sediments. Microorganisms play a crucial role in the migration of CepARGs, with efflux-mediated CepARGs, as an intrinsic resistance mechanism, exhibiting a higher prospensity for migration due to their presence in multiple hosts. While Class I risk CepARGs are present at the pharmaceutical and wastewater plant stages, Class I ina-CepARGs are completely removed during wastewater treatment and do not migrate to the environment. This study reveals the dynamic migration characteristics and potential risk changes regarding Ceps and CepARGs in real dissemination chains, providing new theoretical evidence for the mitigation, control, and risk prevention of CepARGs.
Collapse
Affiliation(s)
- Chifei Dong
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zishu Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou 310007, China
| | - Taolve Chi
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhendi Yu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingtao Sun
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiang Zhao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lizhong Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Polianciuc SI, Ciorîță A, Soran ML, Lung I, Kiss B, Ștefan MG, Leucuța DC, Gurzău AE, Carpa R, Colobațiu LM, Loghin F. Antibiotic Residues and Resistance in Three Wastewater Treatment Plants in Romania. Antibiotics (Basel) 2024; 13:780. [PMID: 39200080 PMCID: PMC11350919 DOI: 10.3390/antibiotics13080780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
This study evaluates antibiotic residues and bacterial loads in influent and effluent samples from three wastewater treatment plants (WWTPs) in Romania, across four seasons from 2021 to 2022. Analytical methods included solid-phase extraction and high-performance liquid chromatography (HPLC) to quantify antibiotic concentrations, while microbiological assays estimated bacterial loads and assessed antibiotic resistance patterns. Statistical analyses explored the impact of environmental factors such as temperature and rainfall on antibiotic levels. The results showed significant seasonal variations, with higher antibiotic concentrations in warmer seasons. Antibiotic removal efficiency varied among WWTPs, with some antibiotics being effectively removed and others persisting in the effluent, posing high environmental risks and potential for antibiotic resistance development. Bacterial loads were higher in spring and summer, correlating with increased temperatures. Eight bacterial strains were isolated, with higher resistance during warmer seasons, particularly to amoxicillin and clarithromycin.
Collapse
Affiliation(s)
- Svetlana Iuliana Polianciuc
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandra Ciorîță
- Electon Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 400006 Cluj-Napoca, Romania
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Maria Loredana Soran
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Ildiko Lung
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Béla Kiss
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Maria Georgia Ștefan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Daniel Corneliu Leucuța
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Anca Elena Gurzău
- Department of Public Health, Faculty of Political, Administrative and Communication Sciences, Babeș-Bolyai University, 400095 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 400015 Cluj Napoca, Romania
| | - Liora Mihaela Colobațiu
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Sonkar V, Venu V, Nishil B, Thatikonda S. Review on antibiotic pollution dynamics: insights to occurrence, environmental behaviour, ecotoxicity, and management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51164-51196. [PMID: 39155346 DOI: 10.1007/s11356-024-34567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
Antibiotic contamination poses a significant global concern due to its far-reaching impact on public health and the environment. This comprehensive review delves into the prevalence of various antibiotic classes in environmental pollution and their interactions with natural ecosystems. Fluoroquinolones, macrolides, tetracyclines, and sulphonamides have emerged as prevalent contaminants in environmental matrices worldwide. The concentrations of these antibiotics vary across diverse environments, influenced by production practices, consumer behaviours, and socio-economic factors. Low- and low-middle-income countries face unique challenges in managing antibiotic contamination, with dominant mechanisms like hydrolysis, sorption, and biodegradation leading to the formation of toxic byproducts. Ecotoxicity reports reveal the detrimental effects of these byproducts on aquatic and terrestrial ecosystems, further emphasizing the gravity of the issue. Notably, monitoring the antibiotic parent compound alone may be inadequate for framing effective control and management strategies for antibiotic pollution. This review underscores the imperative of a comprehensive, multi-sectoral approach to address environmental antibiotic contamination and combat antimicrobial resistance. It also advocates for the development and implementation of tailored national action plans that consider specific environmental conditions and factors. Thus, an approach is crucial for safeguarding both public health and the delicate balance of our natural ecosystems.
Collapse
Affiliation(s)
- Vikas Sonkar
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Vishnudatha Venu
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Benita Nishil
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
10
|
Khanal S, K C S, Joshi TP, Han Z, Wang C, Maharjan J, Tuladhar R, Joshi DR. Extended-spectrum β-lactamase-producing bacteria and their resistance determinants in different wastewaters and rivers in Nepal. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134660. [PMID: 38795483 DOI: 10.1016/j.jhazmat.2024.134660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Wastewaters serve as significant reservoirs of antibiotic resistant bacteria. Despite the evidence of antimicrobial resistance in wastewaters and river water in Kathmandu, direct linkage between them is not discussed yet. This study investigated the prevalence of extended-spectrum β-lactamase (ESBL)-producing bacteria and associated resistance genes in wastewaters and river water. Out of 246 bacteria from wastewaters, 57.72% were ESBL producers and 77.64% of them were multidrug resistant (MDR). ESBL producing E. coli was dominant in municipal and hospital wastewaters (HWW) as well as in river water while K. pneumoniae was common in pharmaceutical wastewater. The blaSHV and blaTEM genes were prevalent and commonly co-occurred with aac(6')-Ib-cr in K. pneumoniae isolated pharmaceutical wastewater. blaCTX-M carrying E. coli from hospital co-harbored aac(6')-Ib-cr while that from municipal influent and river water co-harbored qnrS. Whole genome sequencing data revealed the presence of diverse ARGs in bacterial isolates against multiple antibiotics. In average, an E. coli and a K. pneumoniae isolate contained 55.75 ± 0.96 and 40.2 ± 5.36 ARGs, respectively. Multi-locus sequence typing showed the presence of globally high-risk clones with wider host range such as E. coli ST10, and K. pneumoniae ST15 and ST307 in HWW and river indicating frequent dissemination of antimicrobial resistance in wastewater of Kathmandu. Whole genome sequence data aligned with phenotypic antibiograms and resistance genes detected by PCR in selected isolates. The presence of significant plasmid replicons (IncF, IncY) and mobile genetic elements (IS903, IS26) indicate high frequency of spreading antibiotic resistance. These findings indicate burden and dissemination of antimicrobial resistance in the environment and highlight the need for effective strategies to mitigate the antibiotic resistance.
Collapse
Affiliation(s)
- Santosh Khanal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur, Nepal; Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Sudeep K C
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur, Nepal
| | - Tista Prasai Joshi
- Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur, Nepal
| | - Ziming Han
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunzhen Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jyoti Maharjan
- Molecular Biotechnology, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| |
Collapse
|
11
|
Satta M, Passarini F, Cespi D, Ciacci L. Advantages and drawbacks of life cycle assessment application to the pharmaceuticals: a short critical literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33964-w. [PMID: 38898347 DOI: 10.1007/s11356-024-33964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Pharmaceuticals are among the most challenging products to assess by life cycle assessment (LCA). The main drawback highlighted by LCA practitioners is the lack of inventory data, both regarding the synthesis of active pharmaceutical ingredient (API) precursors (upstream) and the details concerning the downstream phases (use and end of life). A short critical review of pharma-LCAs found in the literature is here proposed, with discussion of several tools and models used to predict the environmental impacts derived from the life cycle of pharmaceuticals, emphasizing current strengths and weaknesses, and exploring the possibilities for improvements. The case of antibiotics is selected as a representative class of pharmaceuticals, due to their massive use worldwide and the growing related issue of antimicrobial resistance enrichment, which is generally not included in most of LCAs. Also, we comment on drafting product category rules (PCRs) in the relevant field to develop standard methodologies and enhance the comparability of the studies, ultimately advocating collaboration with companies and improving inventory data quality and availability for the whole value chain of products.
Collapse
Affiliation(s)
- Marco Satta
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40136, Bologna, Italy
| | - Fabrizio Passarini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40136, Bologna, Italy
- Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, Via Angherà 22, 47922, Rimini, Italy
| | - Daniele Cespi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40136, Bologna, Italy.
- Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, Via Angherà 22, 47922, Rimini, Italy.
| | - Luca Ciacci
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40136, Bologna, Italy
- Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, Via Angherà 22, 47922, Rimini, Italy
| |
Collapse
|
12
|
Kang Y, Wang J, Li Z. Enhancing pollutants removal in hospital wastewater: Comparative analysis of PAC coagulation vs. bio-contact oxidation, highlighting the impact of outdated treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134340. [PMID: 38640670 DOI: 10.1016/j.jhazmat.2024.134340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
While the effectiveness of Poly-Aluminum Chloride (PAC) coagulation for pollutant removal has been documented across various wastewater scenarios, its specific application in hospital wastewater (HWW) treatment to remove conventional pollutants and hazardous genetic pollutants has not been studied. The research compared three hospital wastewater treatment plants (HWTPs) to address a knowledge gap, including the PAC coagulation-sodium hypochlorite disinfection process (PAC-HWTP), the biological contact oxidation-precipitation-sodium hypochlorite process (BCO-HWTP), and a system using outdated equipment with PAC coagulation (ODE-PAC-HWTP). Effluent compliance with national discharge standards is assessed, with BCO-HWTP meeting standards for direct or indirect discharge into natural aquatic environments. ODE-PAC-HWTP exceeds pretreatment standards for COD and BOD5 concentrations. PAC-HWTP effluent largely adheres to national pretreatment standards, enabling release into municipal sewers for further treatment. Metagenomic analysis reveals that PAC-HWTP exhibits higher removal efficiencies for antibiotic resistance genes, metal resistance genes, mobile genetic elements, and pathogens compared to BCO-HWTP and ODE-PAC-HWTP, achieving average removal rates of 45.13%, 57.54%, 80.61%, and 72.17%, respectively. These results suggests that when discharging treated HWW into municipal sewers for further processing, the use of PAC coagulation process is more feasible and cost-effective compared to BCO technologies. The analysis emphasizes the urgent need to upgrade outdated equipment HWTPs.
Collapse
Affiliation(s)
- Yutong Kang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China.
| |
Collapse
|
13
|
Ye M, Jiang Y, Qian L, Qiu F, Liu Z, Wang Z, Hu C. Enhanced removal of ciprofloxacin and associated antibiotic-resistant genes from wastewater using a biological aeration filters in combination with Fe 3O 4-modified zeolite. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2839-2850. [PMID: 38822618 DOI: 10.2166/wst.2024.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Antibiotics release into the water environment through sewage discharge is a significant environmental concern. In the present study, we investigated the removal of ciprofloxacin (CIP) in simulated sewage by biological aeration filter (BAF) equipped with Fe3O4-modified zeolite (Fe3O4@ZF). Fe3O4@ZF were prepared with impregnation method, and the Fe3O4 particles were successfully deposited on the surface of ZF in an amorphous form according to the results of XPS and XRD analysis. The modification also increased the specific surface area (from 16.22 m²/g to 22 m²/g) and pore volume (from 0.0047 cm³/g to 0.0063 cm³/g), improving the adsorption efficiency of antibiotics. Fe3O4 modified ZF improved the treatment performance significantly, and the removal efficiency of CIP in BAF-Fe3O4@ZF was 79%±2.4%. At 10ml/L CIP, the BAF-Fe3O4@ZF reduced the relative abundances of antibiotics resistance genes (ARGs) int, mexA, qnrB and qnrS in the effluent by 57.16%, 39.59%, 60.22%, and 20.25%, respectively, which effectively mitigate the dissemination risk of ARGs. The modification of ZF increased CIP-degrading bacteria abundance, such as Rhizobium and Deinococcus-Thermus, and doubled bacterial ATP activity, promoting CIP degradation. This study offers a viable, efficient method to enhance antibiotic treatment and prevent leakage via sewage discharge.
Collapse
Affiliation(s)
- Minzhi Ye
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiping Jiang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Fuzhou Environmental Monitoring Center Station in Fujian Province, Fujian 350002, China
| | - Laying Qian
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Feng Qiu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhiquan Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China E-mail:
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
14
|
Li J, Yu L, Liu M, Xie Y, Yu Y. Aeration-driven piezoelectric activation of peroxymonosulfate achieves effective mitigation of antibiotic resistance dissemination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123687. [PMID: 38458515 DOI: 10.1016/j.envpol.2024.123687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
The antibiotic resistance dissemination in water has become a globally concerned issue, and the wastewater discharge, especially medical wastewater, is considered as one of the most important sources for antibiotic resistance genes (ARGs). However, the effectiveness of current disinfection techniques in the ARGs reduction still remains controversial. In this study, a novel aeration-driven piezoelectric peroxymonosulfate (PMS) activation system using oxygen-vacancy engineered BaTiO3 (BTO) was developed to effectively eliminate antibiotic resistant bacteria (ARB) and ARGs from water. The ARB can be completely inactivated and ∼3.0 logs of ARGs can be removed by the PMS/BTO/aeration system within 1 h, and the spent BTO nanoparticles can be facilely reused after simple rinsing. The aeration can not only provide the driving force for the piezocatalytic process but also more dissolved oxygen in water that played an important role in the generation of free radicals. The radical quenching experiments and electron spin-resonance (ESR) confirmed that all the free radicals, including singlet oxygen (1O2), hydroxyl radical (OH•), sulfate radical (SO4•-) and superoxide radical (•O2-), contributed to the ARGs reduction and 1O2 radicals were identified as the dominant active species. This work provides a high-efficiency and energy saving approach for the mitigation of ARGs from water as the universal use of aeration in water treatment processes and the good reusability of BTO nanoparticles.
Collapse
Affiliation(s)
- Jingwen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Ling Yu
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Mengxiao Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Yiqiao Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Yang Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
15
|
Żandarek J, Żmudzki P, Obradović D, Lazović S, Bogojević A, Koszła O, Sołek P, Maciąg M, Płazińska A, Starek M, Dąbrowska M. Analysis of pharmacokinetic profile and ecotoxicological character of cefepime and its photodegradation products. CHEMOSPHERE 2024; 353:141529. [PMID: 38428534 DOI: 10.1016/j.chemosphere.2024.141529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
An important problem is the impact of photodegradation on product toxicity in biological tests, which may be complex and context-dependent. Previous studies have described the pharmacology of cefepime, but the toxicological effects of its photodegradation products remain largely unknown. Therefore, photodegradation studies were undertaken in conditions similar to those occurring in biological systems insilico, in vitro, in vivo and ecotoxicological experiments. The structures of four cefepime photodegradation products were determined by UPLC-MS/MS method. The calculated in silico ADMET profile indicates that carcinogenic potential is expected for compounds CP-1, cefepime, CP-2 and CP-3. The Cell Line Cytomotovity Predictor 2.0 tool was used to predict the cytotoxic effects of cefepime and related compounds in non-transformed and cancer cell lines. The results indicate that possible actions include: non-small cell lung cancer, breast adenocarcinoma, prostate cancer and papillary renal cell carcinoma. OPERA models were used to predict absorption, distribution, metabolism and excretion (ADME) endpoints, and potential bioactivity of CP-2, cefepime and CP-4. The results obtained in silico show that after 96h of exposure, cefepime, CP-1, CP-2, and CP-3 are moderately toxic in the zebrafish model, while CP-4 is highly toxic. On the contrary, cefepime is more toxic to T. platyurus (highly toxic) compared to the zebrafish model, similar to products CP-4, CP-3 and CP-2. In vitro cytotoxicity studies were performed by MTT assay and in vivo acute embryo toxicity studies using Danio rerio embryos and larvae. In vitro showed an increase in the cytotoxicity of products with the longest exposure period i.e. for 8 h. Additionally, at a concentration of 200 μg/mL, statistically significant changes in metabolic activity were observed depending on the irradiation time. In vivo studies conducted with Zebrafish showed that both cefepime and its photodegradation products have only low toxicity. Assessment of potential ecotoxicity included Microbiotests on invertebrates (Thamnotoxkit F and Daphtoxkit F), and luminescence inhibition tests (LumiMara). The observed toxicity of the tested solutions towards both Thamnocephalus platyurus and Daphnia magna indicates that the parent substance (unexposed) has lower toxicity, which increases during irradiation. The acute toxicity (Lumi Mara) of nonirradiated cefepime solution is low for all tested strains (<10%), but mixtures of cefepime and its photoproducts showed growth inhibition against all tested strains (except #6, Photobacterium phoreum). Generally, it can be concluded that after UV-Vis irradiation, the mixture of cefepime phototransformation products shows a significant increase in toxicity.
Collapse
Affiliation(s)
- Joanna Żandarek
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St, 31-530, Kraków, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Medical College, Jagiellonian University, 9 Medyczna, 30-688 Kraków, Poland
| | - Darija Obradović
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Saša Lazović
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Aleksandar Bogojević
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Oliwia Koszła
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland
| | - Przemysław Sołek
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland; Department of Biochemistry and Toxicology, University of Life Sciences, 13 Akademicka St, 20-950 Lublin, Poland
| | - Monika Maciąg
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland; Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland
| | - Anita Płazińska
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland
| | - Małgorzata Starek
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Monika Dąbrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland.
| |
Collapse
|
16
|
Stanton IC, Tipper HJ, Chau K, Klümper U, Subirats J, Murray AK. Does Environmental Exposure to Pharmaceutical and Personal Care Product Residues Result in the Selection of Antimicrobial-Resistant Microorganisms, and is this Important in Terms of Human Health Outcomes? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:623-636. [PMID: 36416260 DOI: 10.1002/etc.5498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The environment plays a critical role in the development, dissemination, and transmission of antimicrobial resistance (AMR). Pharmaceuticals and personal care products (PPCPs) enter the environment through direct application to the environment and through anthropogenic pollution. Although there is a growing body of evidence defining minimal selective concentrations (MSCs) of antibiotics and the role antibiotics play in horizontal gene transfer (HGT), there is limited evidence on the role of non-antibiotic PPCPs. Existing data show associations with the development of resistance or effects on bacterial growth rather than calculating selective endpoints. Research has focused on laboratory-based systems rather than in situ experiments, although PPCP concentrations found throughout wastewater, natural water, and soil environments are often within the range of laboratory-derived MSCs and at concentrations shown to promote HGT. Increased selection and HGT of AMR by PPCPs will result in an increase in total AMR abundance in the environment, increasing the risk of exposure and potential transmission of environmental AMR to humans. There is some evidence to suggest that humans can acquire resistance from environmental settings, with water environments being the most frequently studied. However, because this is currently limited, we recommend that more evidence be gathered to understand the risk the environment plays in regard to human health. In addition, we recommend that future research efforts focus on MSC-based experiments for non-antibiotic PPCPS, particularly in situ, and investigate the effect of PPCP mixtures on AMR. Environ Toxicol Chem 2024;43:623-636. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Kevin Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universitӓt Dresden, Dresden, Germany
| | - Jessica Subirats
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain
| | - Aimee K Murray
- College of Medicine and Health, University of Exeter, Cornwall, UK
| |
Collapse
|
17
|
C SK, Khanal S, Joshi TP, Khadka D, Tuladhar R, Joshi DR. Antibiotic resistance determinants among carbapenemase producing bacteria isolated from wastewaters of Kathmandu, Nepal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123155. [PMID: 38114055 DOI: 10.1016/j.envpol.2023.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
The emergence of carbapenem resistant bacteria (CRB) possesses a remarkable threat to the health of humans. CRB and carbapenem resistance genes (CRGs) have frequently been reported in clinical isolates from hospitals, however, their occurrence and distribution in wastewaters from various sources and river water have not been emphasized in Nepal. So, this study aimed to detect carbapenem resistant bacterial isolates and their resistance determinants in river water and different types of wastewaters. River water and both untreated and treated wastewater samples from hospitals, pharmaceutical industries, and municipal sewage were collected in summer and winter seasons. From 68 grab wastewater samples, CRB were detected only in 16 samples, which included eight hospital wastewater, and four each from untreated municipal sewage and river water. A total of 25 CRB isolates were detected with dominance of E. coli (44.0%) and K. pneumoniae (24.0%). The majority of the isolates harbored blaNDM-1 (76.0%), followed by blaOXA (36.0%) and blaKPC (20.0%) genes. Hospital wastewater majorly contributed to the presence of blaNDM-1, blaKPC, and blaOXA along with intI1 genes compared to river water and untreated municipal sewage, especially during the winter season. However, CRB were not detected in treated effluents of hospitals and municipal sewage, and both influents and effluents from pharmaceutical industries. The combined presence of each blaNDM-1 & blaOXA and blaKPC & blaOXA occurred in 16.0% of the bacterial isolates. The increased minimum inhibitory concentration (MIC) of meropenem was significantly associated with the presence of CRGs. The results of this study highlight the significance of carbapenem resistance in bacteria isolated from wastewater and river water, and underscore the necessity for efficient monitoring and control strategies to prevent the dispersion of carbapenem resistance in the environment and its potential consequences on human health.
Collapse
Affiliation(s)
- Sudeep K C
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Santosh Khanal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal; Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Tista Prasai Joshi
- Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Deegendra Khadka
- Molecular Biotechnology, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal.
| |
Collapse
|
18
|
Zhang M, Xu Y, Wang J, Hu J, Qi S, Jiang Z, Yang S. Impact of biochar on the antibiotic resistome and associated microbial functions in rhizosphere and bulk soil in water-saving and flooding irrigated paddy fields. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123026. [PMID: 38012968 DOI: 10.1016/j.envpol.2023.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
The addition of biochar in paddies under the condition of water-saving irrigation can simultaneously achieve soil improvement and water conservation, but little is known about the role of these two regulations in mediating the fate of antibiotic resistome in paddy soils. Here, metagenomic analysis was conducted to investigate the effects and intrinsic mechanisms of biochar application and irrigation patterns on propagation of antibiotic resistance genes (ARGs) in paddy soils. The addition of biochar in paddy soil resulted in a reduction of approximately 1.32%-8.01% in the total absolute abundance of ARGs and 0.60%-22.09% in the numbers of ARG subtype. Compared with flooding irrigation, the numbers of detected ARG subtype were reduced by 1.60%-22.90%, but the total absolute abundance of ARGs increased by 0.06%-5.79% in water-saving irrigation paddy soils. Moreover, the combined treatments of flooding irrigation and biochar could significantly reduce the abundance of ARGs in paddy soils. The incremental antibiotic resistance in soil induced by water-saving irrigation was likewise mitigated by the addition of biochar. Correlation analyses indicated that, the differences in soil physicochemical properties under biochar addition or irrigation treatments contributed to the corresponding changes in the abundance of ARGs. Moreover, the variations of microbial community diversity, multidrug efflux abundance and transport system-related genes in paddy soil were also important for mediating the corresponding differences in the abundance of ARGs under the conditions of biochar addition or irrigation treatments. The findings of this study demonstrated the effectiveness of biochar application in mitigating antibiotic resistance in paddy soils. However, it also highlighted a potential concern relating to the elevated antibiotic resistance associated with water-saving irrigation in paddy fields. Consequently, these results contribute to a deeper comprehension of the environmental risks posed by ARGs in paddy soils.
Collapse
Affiliation(s)
- Mairan Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Hohai University, Nanjing, 210098, China
| | - Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Hohai University, Nanjing, 210098, China
| | - Jie Wang
- Development Center for Science and Technology of Rural Water Resources of Jiangsu Province, Nanjing, 210029, China
| | - Jiazhen Hu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Hohai University, Nanjing, 210098, China
| | - Suting Qi
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Hohai University, Nanjing, 210098, China
| | - Zewei Jiang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Hohai University, Nanjing, 210098, China
| | - Shihong Yang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
19
|
Wang X, Li Y, Qin J, Pan P, Shao T, Long X, Jiang D. Degradation of Ciprofloxacin in Water by Magnetic-Graphene-Oxide-Activated Peroxymonosulfate. TOXICS 2023; 11:1016. [PMID: 38133416 PMCID: PMC10747872 DOI: 10.3390/toxics11121016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Antibiotics are extensively applied in the pharmaceutical industry, while posing a tremendous hazard to the ecosystem and human health. In this study, the degradation performance of ciprofloxacin (CIP), one of the typical contaminants of antibiotics, in an oxidation system of peroxymonosulfate (PMS) activated by magnetic graphene oxide (MGO) was investigated. The effects of the MGO dosage, PMS concentration and pH on the degradation of CIP were evaluated, and under the optimal treatment conditions, the CIP degradation rate was up to 96.5% with a TOC removal rate of 63.4%. A kinetic model of pseudo-secondary adsorption indicated that it involves an adsorption process with progressively intensified chemical reactions. Furthermore, the MGO exhibited excellent recyclability and stability, maintaining strong catalytic activity after three regenerative cycles, with a CIP removal rate of 87.0%. EPR and LC-MS experiments suggested that •OH and SO4-• generated in the MGO/PMS system served as the main reactants contributing to the decomposition of the CIP, whereby the CIP molecule was effectively destroyed to produce other organic intermediates. Results of this study indicate that organic pollutants in the aqueous environment can be effectively removed in the MGO/PMS system, in which MGO has excellent catalytic activity and stabilization for being recycled to avoid secondary pollution, with definite research value and application prospects in the field of water treatment.
Collapse
Affiliation(s)
- Xiaoping Wang
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Yulan Li
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Jiayuan Qin
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Ping Pan
- Chongqing Ecological Environment Monitoring Center, No. 252, Qishan Road, Ranjiaba, Yubei District, Chongqing 401147, China;
| | - Tianqing Shao
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Xue Long
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Debin Jiang
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| |
Collapse
|
20
|
Azzam AB, Tokhy YA, Dars FME, Younes AA. Heterogeneous porous biochar-supported nano NiFe 2O 4 for efficient removal of hazardous antibiotic from pharmaceutical wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119473-119490. [PMID: 37926801 DOI: 10.1007/s11356-023-30587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Due to the dual issues of antibiotic resistance and bioaccumulation toxicity, antibiotics are ubiquitously present in aquatic environments, and this is causing serious concern. Herein, novel nickel ferrite (NiFe2O4) nanoparticles were successfully loaded onto activated biochar (BC) derived from banana peel (BP) to obtain magnetic nanocomposite (BC-NiFe2O4) as an effective biosorbent for the ciprofloxacin antibiotic (CIP) elimination from pharmaceutical effluent. A facile co-precipitation approach was utilized to construct the heterogeneous BC-NiFe2O4. The synthesized materials were systematically characterized using techniques such as XRD, FE-SEM, EDX, HR-TEM, BET, FTIR, and XPS. In addition, the magnetic measurements indicated the ferromagnetic behavior of the BC-NiFe2O4 sample. The influencing factors (i.e., pH, contact time, initial concentration, dose of adsorbent, ions interference, and solution temperature) of the adsorption process were also well studied. The adsorption capacity of the BC-NiFe2O4 heterostructure was 68.79 mg g-1 compared to the BC sample (35.71 mg g-1), confirming that the loading of magnetically NiFe2O4 nanoparticles onto the surface of porous biochar enhanced its stability and adsorption performance for CIP removal, wherein the metal-antibiotic complex has a significant effect for the removal of CIP. Moreover, the Langmuir adsorption isotherm and the pseudo-second-order model displayed a good fit for the experimental data. The values of △H° and △G° revealed that the adsorption process was endothermic and spontaneous. The coordination affinities, π-π stacking, and H-bonding interactions play a more critical role in the adsorption mechanism that confirmed by FTIR and XPS analysis. To study the stability of BC-NiFe2O4 nanocomposites, desorption and recycling studies were investigated. The results revealed that after three cycles, no significant loss in removal efficiency was detected, reflecting the stability and reusability of the prepared BC-NiFe2O4 nanocomposite.
Collapse
Affiliation(s)
- Ahmed B Azzam
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt.
| | - Yousif A Tokhy
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Farida M El Dars
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Ahmed A Younes
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| |
Collapse
|
21
|
Bombaywala S, Dafale NA. Mapping the spread and mobility of antibiotic resistance in wastewater due to COVID-19 surge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121734-121747. [PMID: 37955733 DOI: 10.1007/s11356-023-30932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Large amounts of antibiotics have been discharged into wastewater during the COVID-19 pandemic due to overuse and misuse of antibiotics to treat patients. Wastewater-based surveillance can be used as an early warning for antibiotic resistance (AR) emergence. The present study analyzed municipal wastewater corresponding to the major pandemic waves (WW1, WW2, and WW3) in India along with hospital wastewater (Ho) taken as a benchmark for AR. Commonly prescribed antibiotics during a pandemic, azithromycin and cefixime residues, were found in the range of 2.1-2.6 μg/L in Ho and WW2. Total residual antibiotic concentration was less in WW2; however, the total antibiotic resistance gene (ARG) count was 1065.6 ppm compared to 85.2 ppm in Ho. Metagenome and RT-qPCR analysis indicated a positive correlation between antibiotics and non-corresponding ARGs (blaOXA, aadA, cat, aph3, and ere), where 7.2-7.5% was carried by plasmid in the bacterial community of WW1 and WW2. Moreover, as the abundance of the dfrA and int1 genes varied most among municipal wastewater, they can be suggested as AR markers for the pandemic. The common pathogens Streptococcus, Escherichia, Shigella, and Aeromonas were putative ARG hosts in metagenome-assembled genomes. The ARG profile and antibiotic levels varied between municipal wastewaters but were fairly similar for WW2 and Ho, suggesting the impact of the pandemic in shaping the resistome pattern. The study provides insights into the resistome dynamic, AR markers, and host-ARG association in wastewater during the COVID-19 surge. Continued surveillance and identification of intervention points for AR beyond the pandemic are essential to curbing the environmental spread of ARGs in the near future.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
22
|
Kelly SA, O'Connell NH, Thompson TP, Dillon L, Wu J, Creevey C, Kiely P, Slevin B, Powell J, Gilmore BF, Dunne CP. Large-scale characterization of hospital wastewater system microbiomes and clinical isolates from infected patients: profiling of multi-drug-resistant microbial species. J Hosp Infect 2023; 141:152-166. [PMID: 37696473 DOI: 10.1016/j.jhin.2023.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Hospital-acquired infections (HAIs) and infectious agents exhibiting antimicrobial resistance (AMR) are challenges globally. Environmental patient-facing wastewater apparatus including handwashing sinks, showers and toilets are increasingly identified as sources of infectious agents and AMR genes. AIM To provide large-scale metagenomics analysis of wastewater systems in a large teaching hospital in the Republic of Ireland experiencing multi-drug-resistant HAI outbreaks. METHODS Wastewater pipe sections (N=20) were removed immediately prior to refurbishment of a medical ward where HAIs had been endemic. These comprised toilet U-bends, and sink and shower drains. Following DNA extraction, each pipe section underwent metagenomic analysis. FINDINGS Diverse taxonomic and resistome profiles were observed, with members of phyla Proteobacteria and Actinobacteria dominating (38.23 ± 5.68% and 15.78 ± 3.53%, respectively). Genomes of five clinical isolates were analysed. These AMR bacterial isolates were from patients >48 h post-admission to the ward. Genomic analysis determined that the isolates bore a high number of antimicrobial resistance genes (ARGs). CONCLUSION Comparison of resistome profiles of isolates and wastewater metagenomes revealed high degrees of similarity, with many identical ARGs shared, suggesting probable acquisition post-admission. The highest numbers of ARGs observed were those encoding resistance to clinically significant and commonly used antibiotic classes. Average nucleotide identity analysis confirmed the presence of highly similar or identical genomes in clinical isolates and wastewater pipes. These unique large-scale analyses reinforce the need for regular cleaning and decontamination of patient-facing hospital wastewater pipes and effective infection control policies to prevent transmission of nosocomial infection and emergence of AMR within potential wastewater reservoirs.
Collapse
Affiliation(s)
- S A Kelly
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - N H O'Connell
- Department of Clinical Microbiology, University Hospital Limerick, Limerick, Ireland; School of Medicine and Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick, Limerick, Ireland
| | - T P Thompson
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - L Dillon
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - J Wu
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - C Creevey
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - P Kiely
- School of Medicine and Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick, Limerick, Ireland
| | - B Slevin
- Department of Infection Prevention and Control, University Hospital Limerick, Limerick, Ireland
| | - J Powell
- Department of Clinical Microbiology, University Hospital Limerick, Limerick, Ireland; School of Medicine and Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick, Limerick, Ireland
| | - B F Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - C P Dunne
- School of Medicine and Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick, Limerick, Ireland.
| |
Collapse
|
23
|
Johar AA, Salih MA, Abdelrahman HA, Al Mana H, Hadi HA, Eltai NO. Wastewater-based epidemiology for tracking bacterial diversity and antibiotic resistance in COVID-19 isolation hospitals in Qatar. J Hosp Infect 2023; 141:209-220. [PMID: 37634602 DOI: 10.1016/j.jhin.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Hospitals are hotspots for antimicrobial resistance genes (ARGs), and play a significant role in their emergence and spread. Large numbers of ARGs will be ejected from hospitals via wastewater systems. Wastewater-based epidemiology has been consolidated as a tool to provide real-time information, and represents a promising approach to understanding the prevalence of bacteria and ARGs at community level. AIMS To determine bacterial diversity and identify ARG profiles in hospital wastewater pathogens obtained from coronavirus disease 2019 (COVID-19) isolation hospitals compared with non-COVID-19 facilities during the pandemic. METHODS Wastewater samples were obtained from four hospitals: three assigned to patients with COVID-19 patients and one assigned to non-COVID-19 patients. A microbial DNA quantitative polymerase chain reaction was used to determine bacterial diversity and ARGs. FINDINGS The assay recorded 27 different bacterial species in the samples, belonging to the following phyla: Firmicutes (44.4%), Proteobacteria (33.3%), Actinobacteria (11%), Bacteroidetes (7.4%) and Verrucomicrobiota (3.7%). In addition, 61 ARGs were detected in total. The highest number of ARGs was observed for the Hazem Mebaireek General Hospital (HMGH) COVID-19 patient site (88.5%), and the lowest number of ARGs was found for the HMGH non-patient site (24.1%). CONCLUSION The emergence of contaminants in sewage water, such as ARGs and high pathogen levels, poses a potential risk to public health and the aquatic ecosystem.
Collapse
Affiliation(s)
- A A Johar
- Research and Development Department, Barzan Holdings, Doha, Qatar
| | - M A Salih
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | | | - H Al Mana
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | - H A Hadi
- Communicable Diseases Centre, Infectious Disease Division, Hamad Medical Corporation, Doha, Qatar
| | - N O Eltai
- Biomedical Research Centre, Qatar University, Doha, Qatar.
| |
Collapse
|
24
|
Rolbiecki D, Paukszto Ł, Krawczyk K, Korzeniewska E, Sawicki J, Harnisz M. Chlorine disinfection modifies the microbiome, resistome and mobilome of hospital wastewater - A nanopore long-read metagenomic approach. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132298. [PMID: 37595469 DOI: 10.1016/j.jhazmat.2023.132298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
The aim of the present study was to analyze changes in the microbiome, resistome, and mobilome of hospital wastewater (HWW) induced by disinfection with chlorine compounds. Changes in bacterial communities and specific antibiotic resistance genes (ARGs) in HWW were determined with the use of a nanopore long-read metagenomic approach. The main hosts of ARGs in HWW were identified, and the mobility of resistance mechanisms was analyzed. Special attention was paid to the prevalence of critical-priority pathogens in the HWW microbiome, which pose the greatest threat to human health. The results of this study indicate that chlorine disinfection of HWW can induce significant changes in the structure of the total bacterial population and antibiotic resistant bacteria (ARB) communities, and that it can modify the resistome and mobilome of HWW. Disinfection favored the selection of ARGs, decreased their prevalence in HWW, while increasing their diversity. The mobility of the HWW resistome increased after disinfection. Disinfection led to the emergence of new drug resistance mechanisms in previously sensitive bacterial taxa. In conclusion, this study demonstrated that HWW disinfected with low (sublethal) concentrations of free chlorine significantly contributes to the mobility and transfer of drug resistance mechanisms (including critical mechanisms) between bacteria (including pathogens).
Collapse
Affiliation(s)
- Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Katarzyna Krawczyk
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Poland
| | - Jakub Sawicki
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Poland.
| |
Collapse
|
25
|
Oliveira MG, Spaolonzi MP, Duarte EDV, Costa HPS, da Silva MGC, Vieira MGA. Adsorption kinetics of ciprofloxacin and ofloxacin by green-modified carbon nanotubes. ENVIRONMENTAL RESEARCH 2023; 233:116503. [PMID: 37356533 DOI: 10.1016/j.envres.2023.116503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/10/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
This paper investigated the uptake of CIP and OFL in single and multicomponent adsorptive systems using modified carbon nanotubes (CNTs) as adsorbent material. The characterization analyses of the pre- and post-process material by XPS, TG/DTG, FT-IR, SEM/EDS, and XRD helped in the elucidation of the mechanisms, indicating greater involvement of n-n and π -π interactions. In the kinetic studies, the simple systems with CIP and OFL were similar, both showed equilibrium time around 20/30 min and increased adsorptive capacity with increasing initial drug concentration. In the multicomponent system, different fractions of CIP and OFL were tested and the time to reach equilibrium also varied between 20 and 30 min. In general, the adsorption capacity of CIP is slightly lower than that of OFL under the conditions tested. The selectivity analysis of the system showed that the selectivity's of the two drugs are identical in equimolar fractions. The mathematical modeling of the kinetic data indicated that in monocomponent systems, the model of pseudo-second order (PSO) adequately described both CIP and OFL kinetics. Furthermore, with the implementation of Artificial Neural Networks (ANN), it was possible to obtain a more assertive prediction of the behavior of single and binary systems.
Collapse
Affiliation(s)
- Mariana G Oliveira
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Marcela P Spaolonzi
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Emanuele D V Duarte
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Heloisa P S Costa
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Meuris G C da Silva
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Melissa G A Vieira
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil.
| |
Collapse
|
26
|
Manik RK, Mahmud Z, Mishu ID, Hossen MS, Howlader ZH, Nabi AHMN. Multidrug Resistance Profiles and Resistance Mechanisms to β-Lactams and Fluoroquinolones in Bacterial Isolates from Hospital Wastewater in Bangladesh. Curr Issues Mol Biol 2023; 45:6485-6502. [PMID: 37623228 PMCID: PMC10453463 DOI: 10.3390/cimb45080409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Multidrug resistance (MDR) is one of the deadliest public health concerns of the 21st century, rendering many powerful antibiotics ineffective. The current study provides important insights into the prevalence and mechanisms of antibiotic resistance in hospital wastewater isolates. In this study, we determined the MDR profile of 68 bacterial isolates collected from five different hospitals in Dhaka, Bangladesh. Of them, 48 bacterial isolates were identified as Enterobacteriaceae. Additionally, we investigated the prevalence and distribution of five beta-lactam resistance genes, as well as quinolone resistance mechanisms among the isolates. The results of this study showed that 87% of the wastewater isolates were resistant to at least three different antibiotic classes, as revealed using the disc diffusion method. Resistance to β-lactams was the most common, with 88.24% of the isolates being resistant, closely followed by macrolides (80.88% resistant). Polymyxin was found to be the most effective against wastewater isolates, with 29.41% resistant isolates. The most common β-lactam resistance genes found in wastewater isolates were blaTEM (76.09%), blaCTX-M1 (71.74%), and blaNDM (67.39%). Two missense mutations in the quinolone resistance-determining region (QRDR) of gyrA (S83L and D87N) and one in both parC (S80I) and parE (S458A) were identified in all isolates, and one in parE (I529L), which had not previously been identified in Bangladesh. These findings suggest that hospital wastewater acts as an important reservoir of antibiotic-resistant bacteria wherein resistance mechanisms to β-lactams and fluoroquinolones are obvious. Our data also emphasize the need for establishing a nationwide surveillance system for antibiotic resistance monitoring to ensure that hospitals sanitize their wastewater before disposal, and regulation to ensure hospital wastewater is kept away from community settings.
Collapse
Affiliation(s)
- Rasel Khan Manik
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Md Sourav Hossen
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Zakir Hossain Howlader
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. H. M. Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
27
|
Kashyap A, Nishil B, Thatikonda S. Experimental and numerical elucidation of the fate and transport of antibiotics in aquatic environment: A review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:942. [PMID: 37436551 DOI: 10.1007/s10661-023-11482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
This review highlights various experimental and mathematical modeling strategies to investigate the fate and transport of antibiotics that elucidate antimicrobial selective pressure in aquatic environments. Globally, the residual antibiotic concentrations in effluents from bulk drug manufacturing industries were 30- and 1500-fold greater than values reported in municipal and hospital effluents, respectively. The antibiotic concentration from different effluents enters the waterbodies that usually get diluted as they go downstream and undergo various abiotic and biotic reactive processes. In aquatic systems, photolysis is the predominant process for antibiotic reduction in the water matrix, while hydrolysis and sorption are frequently reported in the sediment compartment. The rate of antibiotic reduction varies widely with influencing factors such as the chemical properties of the antibiotics and hydrodynamic conditions of river streams. Among all, tetracycline was found to more unstable (log Kow = - 0.62 to - 1.12) that can readily undergo photolysis and hydrolysis; whereas macrolides were more stable (log Kow = 3.06 to 4.02) that are prone to biodegradation. The processes like photolysis, hydrolysis, and biodegradation followed first-order reaction kinetics while the sorption followed a second-order kinetics for most antibiotic classes with reaction rates occurring in the decreasing order of Fluoroquinolones and Sulphonamides. The reports from various experiments on abiotic and biotic processes serve as input parameters for an integrated mathematical modeling to predict the fate of the antibiotics in the aquatic environment. Various mathematical models viz. Fugacity level IV, RSEMM, OTIS, GREAT-ER, SWAT, QWASI, and STREAM-EU are discussed for their potential capabilities. However, these models do not account for microscale interactions of the antibiotics and microbial community under real-field conditions. Also, the seasonal variations for contaminant concentrations that exert selective pressure for antimicrobial resistance has not been accounted. Addressing these aspects collectively is the key to exploring the emergence of antimicrobial resistance. Therefore, a comprehensive model involving antimicrobial resistance parameters like fitness cost, bacterial population dynamics, conjugation transfer efficiency, etc. is required to predict the fate of antibiotics.
Collapse
Affiliation(s)
- Arun Kashyap
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Benita Nishil
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
28
|
Wang H, Min C, Xia F, Xia Y, Tang M, Li J, Hu Y, Zou M. Metagenomic analysis reveals the short-term influences on conjugation of bla NDM-1 and microbiome in hospital wastewater by silver nanoparticles at environmental-related concentration. ENVIRONMENTAL RESEARCH 2023; 228:115866. [PMID: 37037312 DOI: 10.1016/j.envres.2023.115866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
Hospital wastewater contains large amounts of antibiotic-resistant bacteria and serves as an important reservoir for horizontal gene transfer (HGT). However, the response of the microbiome in hospital wastewater to silver remains unclear. In this study, the short-term impacts of silver on the microbiome in hospital wastewater were investigated by metagenome next-generation sequencing. The influence of silver on the conjugation of plasmid carrying blaNDM-1 was further examined. Our results showed that in hospital wastewater, high abundances of antibiotic resistance genes (ARGs) were detected. The distribution tendencies of certain ARG types on chromosomes or plasmids were different. Clinically important ARGs were identified in phage-like contigs, indicating potential transmission via transduction. Pseudomonadales, Enterobacterales, and Bacteroidales were the major ARG hosts. Mobile genetic elements were mainly detected in plasmids and associated with various types of ARGs. The binning approach identified 29 bins that were assigned to three phyla. Various ARGs and virulence factors were identified in 14 and 11 bins, respectively. MetaCHIP identified 49 HGT events. The transferred genes were annotated as ARGs, mobile genetic elements, and functional genes, and they mainly originated from donors belonging to Bacteroides and Pseudomonadales. In addition, 20 nm AgNPs reduced microbial diversity and enhanced the relative abundance of Acinetobacter. The changes induced by 20 nm AgNPs included increases in the abundances of ARGs and genes involved lipid metabolism pathway. Conjugation experiments showed that Ag+ and 20 nm AgNPs caused 2.38-, 3.31-, 4.72-, and 4.57-fold and 1.46-, 1.61-, 3.86-, and 2.16-fold increases in conjugation frequencies of plasmid with blaNDM-1 at 0.1, 1, 10, and 100 μg/L, respectively. Our findings provide insight into the response of the microbiome in hospital wastewater to silver, emphasize the adaptation capability of Acinetobacter inhabiting hospitals against adverse environments, and highlight the promotion of silver for antibiotic resistance.
Collapse
Affiliation(s)
- Haichen Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Changhang Min
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Fengjun Xia
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yubing Xia
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Mengli Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yongmei Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Mingxiang Zou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
29
|
Liu Y, Wu B, Cui X, Ren Q, Ren T, Zhou Y. Distribution and dynamics of antibiotic resistance genes in a three-dimensional multifunctional biofilm during greywater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121533. [PMID: 36997145 DOI: 10.1016/j.envpol.2023.121533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Antibiotic resistance genes (ARGs) have been identified as serious threats to public health. Despite the widespread in various systems, dynamics of ARGs in three-dimensional multifunctional biofilm (3D-MFB) treating greywater are largely undefined. This work tracked the distributions and dynamics of eight target genes (intI1, korB, sul1, sul2, tetM, ermB, blaCTX-M and qnrS) in a 3D-MFB during greywater treatment. Results showed that hydraulic retention times at 9.0 h achieved the highest linear alkylbenzene sulfonate (LAS) and total nitrogen removal rates at 99.4% and 79.6%, respectively. ARGs presented significant liquid-solid distribution feature, but non-significant with biofilm position. Intracellular ARGs (predominant by intI1, korB, sul1 and sul2) at bottom biofilm were 210- to 4.2 × 104- fold higher than that in cell-free liquid. Extracellular polymeric substances (EPS)-attached LAS showed linear relationship with most of ARGs (R2 > 0.90, P < 0.05). Sphingobacteriales, Chlamydiales, Microthrixaceae, SB-1, Cryomorphaceae, Chitinophagaceae, Leadbetterella and Niabella were tightly bound up with target ARGs. Key is that EPS-attached LAS considerably determines the occurrence of ARGs, and microbial taxa play an important role in the dissemination of ARGs in the 3D-MFB.
Collapse
Affiliation(s)
- Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingqing Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
30
|
Khan M, Li L, Haak L, Payen SH, Carine M, Adhikari K, Uppal T, Hartley PD, Vasquez-Gross H, Petereit J, Verma SC, Pagilla K. Significance of wastewater surveillance in detecting the prevalence of SARS-CoV-2 variants and other respiratory viruses in the community - A multi-site evaluation. One Health 2023; 16:100536. [PMID: 37041760 PMCID: PMC10074727 DOI: 10.1016/j.onehlt.2023.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral genome in wastewater has proven to be useful for tracking the trends of virus prevalence within the community. The surveillance also provides precise and early detection of any new and circulating variants, which aids in response to viral outbreaks. Site-specific monitoring of SARS-CoV-2 variants provides valuable information on the prevalence of new or emerging variants in the community. We sequenced the genomic RNA of viruses present in the wastewater samples and analyzed for the prevalence of SARS-CoV-2 variants as well as other respiratory viruses for a period of one year to account for seasonal variations. The samples were collected from the Reno-Sparks metropolitan area on a weekly basis between November 2021 to November 2022. Samples were analyzed to detect the levels of SARS-CoV-2 genomic copies and variants identification. This study confirmed that wastewater monitoring of SARS-CoV-2 variants can be used for community surveillance and early detection of circulating variants and supports wastewater-based epidemiology (WBE) as a complement to clinical respiratory virus testing as a healthcare response effort. Our study showed the persistence of the SARS-CoV-2 virus throughout the year compared to a seasonal presence of other respiratory viruses, implicating SARS-CoV-2's broad genetic diversity and strength to persist and infect susceptible hosts. Through secondary analysis, we further identified antimicrobial resistance (AMR) genes in the same wastewater samples and found WBE to be a feasible tool for community AMR detection and monitoring.
Collapse
Affiliation(s)
- Majid Khan
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, MS258, Reno, NV 89557, USA
| | - Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, MS258, Reno, NV 89557, USA
| | - Shannon Harger Payen
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Madeline Carine
- Department of Civil and Environmental Engineering, University of Nevada, MS258, Reno, NV 89557, USA
| | - Kabita Adhikari
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Paul D. Hartley
- Nevada Genomics Center, University of Nevada, Reno, NV 89557, USA
| | - Hans Vasquez-Gross
- Nevada Bioinformatics Center (RRID:SCR_017802), University of Nevada, Reno, NV 89557, USA
| | - Juli Petereit
- Nevada Bioinformatics Center (RRID:SCR_017802), University of Nevada, Reno, NV 89557, USA
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Krishna Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, MS258, Reno, NV 89557, USA
| |
Collapse
|
31
|
Ni Y, Yue W, Liu F, Bi W, Sun Z, Wu Y. Efficient electrochemical oxidation of cephalosporin antibiotics by a highly active cerium doped PbO2 anode: Parameters optimization, kinetics and degradation pathways. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
32
|
Azuma T, Katagiri M, Sasaki N, Kuroda M, Watanabe M. Performance of a Pilot-Scale Continuous Flow Ozone-Based Hospital Wastewater Treatment System. Antibiotics (Basel) 2023; 12:antibiotics12050932. [PMID: 37237835 DOI: 10.3390/antibiotics12050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial resistance (AMR) is becoming a global concern. Recently, research has emerged to evaluate the human and environmental health implications of wastewater from medical facilities and to identify acceptable wastewater treatment methods. In this study, a disinfection wastewater treatment system using an ozone-based continuous flow system was installed in a general hospital located in Japan. The effectiveness of antimicrobial-resistant bacteria (ARB) and antimicrobials in mitigating the environmental impact of hospital wastewater was evaluated. Metagenomic analysis was conducted to characterize the microorganisms in the wastewater before and after treatment. The results demonstrated that ozone treatment enables effective inactivation of general gut bacteria, including Bacteroides, Prevotella, Escherichia coli, Klebsiella, DNA molecules, and ARGs, as well as antimicrobials. Azithromycin and doxycycline removal rates were >99% immediately after treatment, and levofloxacin and vancomycin removal rates remained between 90% and 97% for approximately one month. Clarithromycin was more readily removed than the other antimicrobials (81-91%), and no clear removal trend was observed for ampicillin. Our findings provide a better understanding of the environmental management of hospital wastewater and enhance the effectiveness of disinfection wastewater treatment systems at medical facilities for mitigating the discharge of pollutants into aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan
| | - Miwa Katagiri
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan
| | - Naobumi Sasaki
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Manabu Watanabe
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan
| |
Collapse
|
33
|
Tuvo B, Scarpaci M, Bracaloni S, Esposito E, Costa AL, Ioppolo M, Casini B. Microplastics and Antibiotic Resistance: The Magnitude of the Problem and the Emerging Role of Hospital Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105868. [PMID: 37239594 DOI: 10.3390/ijerph20105868] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
The role of microplastics (MPs) in the spread of antibiotic resistance genes (ARGs) is increasingly attracting global research attention due to their unique ecological and environmental effects. The ubiquitous use of plastics and their release into the environment by anthropic/industrial activities are the main sources for MP contamination, especially of water bodies. Because of their physical and chemical characteristics, MPs represent an ideal substrate for microbial colonization and formation of biofilm, where horizontal gene transfer is facilitated. In addition, the widespread and often injudicious use of antibiotics in various human activities leads to their release into the environment, mainly through wastewater. For these reasons, wastewater treatment plants, in particular hospital plants, are considered hotspots for the selection of ARGs and their diffusion in the environment. As a result, the interaction of MPs with drug-resistant bacteria and ARGs make them vectors for the transport and spread of ARGs and harmful microorganisms. Microplastic-associated antimicrobial resistance is an emerging threat to the environment and consequently for human health. More studies are required to better understand the interaction of these pollutants with the environment as well as to identify effective management systems to reduce the related risk.
Collapse
Affiliation(s)
- Benedetta Tuvo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Michela Scarpaci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Sara Bracaloni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Enrica Esposito
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Anna Laura Costa
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Martina Ioppolo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Beatrice Casini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
34
|
Jiang Q, Li H, Wan K, Ye C, Yu X. Quantification and antibiotic resistance risk assessment of chlorination-residual viable/VBNC Escherichia coli and Enterococcus in on-site hospital wastewater treatment system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162139. [PMID: 36773911 DOI: 10.1016/j.scitotenv.2023.162139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
On-site hospital wastewater treatment system widely applying chlorination has been regarded as an important barrier to curb the dissemination of antibiotic resistance. Chlorination-residual viable and viable but non-culturable (VBNC) bacteria probably lead to overestimate the effect of disinfection, while their antibiotic resistance risks imported from hospital effluents to municipal pipe network may be ignored. In this study, we quantified viable/VBNC Escherichia coli and Enterococcus in chlorination of an on-site hospital wastewater treatment system and assessed their antibiotic resistance risks. The numbers of viable/VBNC Escherichia coli and Enterococcus in raw wastewater were detected as high as 5.76-6.34/5.76-6.33 and 5.44-5.76/5.44-5.75 log10(cells/mL). Meanwhile, high proportions of antibiotic-resistant Escherichia coli and Enterococcus to culturable Escherichia coli and Enterococcus were observed, especially carrying ampicillin resistance (22.25-41.70 % and 28.09-54.05 %). Chlorination could remove 0.44-1.88-/0.43-1.88- and 0.29-1.29-/0.28-1.28-log of viable/VBNC and complete culturable Escherichia coli and Enterococcus, but cause antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) to be released outside cells, and possibly further enhance the antibiotic resistance of viable bacteria. Low detections of antibiotics suggested that the occurrence of antibiotic-resistant bacteria (ARB) may not be accompanied by the corresponding antibiotics. Different sampling months had some impacts on above results, while the results were basically stable at different sampling times of hospital daily working period. The high release rates (11.26-13.02 and 11.59-12.98 log10(cells/h)) and cumulative amounts (15.41-16.12 and 15.75-16.14 log10(cells)) of chlorination-residual viable/VBNC Escherichia coli and Enterococcus indirectly assessed the potential risks of bacterial antibiotic resistance entering municipal pipe network. Additionally, the contributions from the corresponding antibiotic ceftazidime, ciprofloxacin, and vancomycin with the cumulative amounts of 2.57-4.85, 5.73-7.50, and 5.21-7.14 kg should also be taken seriously. Residual chlorine could serve as an important signal indicator for the risk assessment.
Collapse
Affiliation(s)
- Qi Jiang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Haoran Li
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Kun Wan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
35
|
Moustafa MT. Preparation and characterization of low-cost adsorbents for the efficient removal of malachite green using response surface modeling and reusability studies. Sci Rep 2023; 13:4493. [PMID: 36934177 PMCID: PMC10024755 DOI: 10.1038/s41598-023-31391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/10/2023] [Indexed: 03/20/2023] Open
Abstract
Malachite green used in textile and dyeing industries is a common persistent pollutant in wastewater and the environment causing major hazards to human health and aquatic organisms. In this study, the response surface methodology was applied to optimize the adsorptive removal of malachite green using nano-bentonite, MgO-impregnated clay, and Mucor sp. composites. The nano materials and Mucor sp. composite were characterized by FTIR, SEM and X-ray diffractometry. According to the obtained results, nano-bentonite exhibits a maximum MG adsorption efficiency of 98.6% at 35 °C, pH 7.0, 60 min contact time, 1.0 g/L adsorbent dosage, and 50 mg/L initial MG concentration. On the other hand, the maximum efficiency for MG adsorption on MgO-impregnated clay of 97.04% is observed at pH 9.0, 60 min contact time, 0.7 g/L adsorbent dosage, and 50 mg/L initial MG concentration. The Malachite green (MG) adsorption isotherm on MgO-impregnated clay corresponded with the Freundlich isotherm, with a correlation coefficient (R2) of 0.982. However, the Langmuir adsorption isotherm was a superior fit for nano-bentonite (R2 = 0.992). The adsorption activities of nano-bentonite and MgO-impregnated clay were fitted into a pseudo-second-order kinetic model with R2 of 0.996 and 0.995, respectively. Additionally, despite being recycled numerous times, the adsorbent maintained its high structural stability and removal effectiveness for nano-bentonite (94.5-86%) and MgO-impregnated clay (92-83%).
Collapse
Affiliation(s)
- Mohammed Taha Moustafa
- Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Shubra El Kheima 1, Al Qalyubia Governorate, 6210001, Egypt.
| |
Collapse
|
36
|
Wang W, Weng Y, Luo T, Wang Q, Yang G, Jin Y. Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. TOXICS 2023; 11:185. [PMID: 36851059 PMCID: PMC9965714 DOI: 10.3390/toxics11020185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.
Collapse
Affiliation(s)
- Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
37
|
Talat A, Blake KS, Dantas G, Khan AU. Metagenomic Insight into Microbiome and Antibiotic Resistance Genes of High Clinical Concern in Urban and Rural Hospital Wastewater of Northern India Origin: a Major Reservoir of Antimicrobial Resistance. Microbiol Spectr 2023; 11:e0410222. [PMID: 36786639 PMCID: PMC10100738 DOI: 10.1128/spectrum.04102-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
India is one of the largest consumers and producers of antibiotics and a hot spot for the emergence and proliferation of antimicrobial resistance genes (ARGs). Indian hospital wastewater (HWW) accumulates ARGs from source hospitals and often merges with urban wastewater, with the potential for environmental and human contamination. Despite its putative clinical importance, there is a lack of high-resolution resistome profiling of Indian hospital wastewater, with most studies either relying on conventional PCR-biased techniques or being limited to one city. In this study, we comprehensively analyzed antibiotic resistomes of wastewater from six Indian hospitals distributed in rural and urban areas of northern India through shotgun metagenomics. Our study revealed the predominance of ARGs against aminoglycoside, macrolide, carbapenem, trimethoprim, and sulfonamide antibiotics in all the samples through both read-based analysis and assembly-based analysis. We detected the mobile colistin resistance gene mcr-5.1 for the first time in Indian hospital sewage. blaNDM-1 was present in 4 out of 6 samples and was carried by Pseudomonas aeruginosa in HWW-2, Klebsiella pneumoniae in HWW-4 and HWW-6, and Acinetobacter baumanii in HWW-5. Most ARGs were plasmid-mediated and hosted by Proteobacteria. We identified virulence factors and transposable elements flanking the ARGs, highlighting the role of horizontal gene transmission of ARGs. IMPORTANCE There is a paucity of research on detailed antibiotic resistome and microbiome diversity of Indian hospital wastewater. This study reports the predominance of clinically concerning ARGs such as the beta-lactamases blaNDM and blaOXA and the colistin resistance gene mcr and their association with the microbiome in six different Indian hospital wastewaters of both urban and rural origin. The abundance of plasmid-mediated ARGs and virulence factors calls for urgent AMR crisis management. The lack of proper wastewater management strategies meeting international standards and open drainage systems further complicates the problem of containing the ARGs at these hospitals. This metagenomic study presents the current AMR profile propagating in hospital settings in India and can be used as a reference for future surveillance and risk management of ARGs in Indian hospitals.
Collapse
Affiliation(s)
- Absar Talat
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Kevin S. Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Asad U. Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
38
|
Fatimazahra S, Latifa M, Laila S, Monsif K. Review of hospital effluents: special emphasis on characterization, impact, and treatment of pollutants and antibiotic resistance. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:393. [PMID: 36780024 PMCID: PMC9923651 DOI: 10.1007/s10661-023-11002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Health care institutions generate large volumes of liquid effluents from specific activities related to healthcare, analysis, and research. Their direct discharge into the environment has various negative effects on aquatic environments and human health, due to their high organic matter charges and the presence of various emerging contaminants such as disinfectants, drugs, bacteria, viruses, and parasites. Moreover, hospital effluents, by carrying antibiotics, contribute to the development of antibiotic-resistant microorganisms in the environment. This resistance has become a global issue that manifests itself variously in different countries, causing the transmission of different infections. In this respect, an effort is provided to protect water resources by current treatment methods that imply physical-chemical processes such as adsorption and advanced oxidation processes, biological processes such as activated sludge and membrane bioreactors and other hybrid techniques. The purpose of this review is to improve the knowledge on the composition and impact of hospital wastewater on man and the environment, highlighting the different treatment techniques appropriate to this type of disposal before discharge into the environment.
Collapse
Affiliation(s)
- Sayerh Fatimazahra
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Mouhir Latifa
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Saafadi Laila
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Khazraji Monsif
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
39
|
Hamad MTMH, El-Sesy ME. Adsorptive removal of levofloxacin and antibiotic resistance genes from hospital wastewater by nano-zero-valent iron and nano-copper using kinetic studies and response surface methodology. BIORESOUR BIOPROCESS 2023; 10:1. [PMID: 38647790 PMCID: PMC10992136 DOI: 10.1186/s40643-022-00616-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 01/10/2023] Open
Abstract
In the twenty-first century, water contamination with pharmaceutical residues is becoming a global phenomenon and a threat. Antibiotic residues and antibiotic resistance genes (ARGs) are recognized as new emerging water pollutants because they can negatively affect aquatic ecosystems and human health, thereby posing a complex environmental problem. These nano-adsorbents of the next generation can remove these pollutants at low concentrations. This study focuses on the chemical synthesis of copper oxide nanoparticles (CuONPs) and nano-zero-valent iron (nZVI) used as nano-adsorbents for levofloxacin removal from water samples and antibiotic-resistant genes. The CuONPs and nZVI are initially characterized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. The levofloxacin adsorption isotherm on the CuONPS and nZVI shows the best fit with the Langmuir isotherm model, exhibiting correlation coefficients (R2) of 0.993 and 0.999, respectively. The adsorption activities of CuONPS and nZVI were fitted to a pseudo-second-order kinetic model with correlation coefficients (R2) of 0.983 and 0.994, respectively. The maximum levofloxacin removal capacity was observed at (89%), (84%), (89%), (88%) and (71.6) at pH 7 and adsorbent dose(0.06 mg/L), initial LEV concentration (1 mg/L), temperature 25 °C, and contact time 120 min for CuONPs. Removal efficiency was (91%), (90.6%), (91%), (89%), and (80%), at pH 7, adsorbent dose(0.06), initial LEV concentration (1 mg/L), temperature 35 °C, and contact time 120 min. The levofloxacin adsorption is an exothermic process for nZVI and CuONPs, according to thermodynamic analysis. A thermodynamic analysis indicated that each adsorption process is spontaneous. Several genera, including clinically pathogenic bacteria (e.g., Acinetobacter_baumannii, Helicobacter_pylori, Escherichia_coli, Pseudomonas_aeruginosa, Clostridium_beijerinckii, Escherichia/Shigella_coli, Helicobacter_cetorum, Lactobacillus_gasseri, Bacillus_cereus, Deinococcus_radiodurans, Rhodobacter_sphaeroides, Propionibacterium_acnes, and Bacteroides_vulgatus) were relatively abundant in hospital wastewater. Furthermore, 37 antibiotic resistance genes (ARGs) were quantified in hospital wastewater. The results demonstrated that 95.01% of nZVI and 91.4% of CuONPs are effective adsorbents for removing antibiotic-resistant bacteria from hospital effluent. The synthesized nZVI and CuONPs have excellent reusability and can be considered cost effective and eco-friendly adsorbents.
Collapse
Affiliation(s)
| | - Marwa E El-Sesy
- Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Cairo, Egypt
| |
Collapse
|
40
|
Wu T, Zhang Y, Wang B, Chen C, Cheng Z, Li Y, Wang B, Li J. Antibiotic resistance genes in Chishui River, a tributary of the Yangtze River, China: Occurrence, seasonal variation and its relationships with antibiotics, heavy metals and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157472. [PMID: 35870598 DOI: 10.1016/j.scitotenv.2022.157472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The large-scale use and release of antibiotics may create selective pressure on antibiotic resistance genes (ARGs), causing potential harm to human health. River ecosystems have long been considered repositories of antibiotics and ARGs. Therefore, the distribution characteristics and seasonal variation in antibiotics and ARGs in the surface water of the main stream and tributaries of the Chishui River were studied. The concentrations of antibiotics in the dry season and rainy season were 54.18-425.74 ng/L and 66.57-256.40 ng/L, respectively, gradually decreasing along the river direction. The results of antibiotics in the dry season and rainy season showed that livestock and poultry breeding were the main sources in the surface water of the Chishui River basin. Risk assessments indicated high risk levels of OFL in both seasons. In addition, analysis of ARGs and microbial community diversity showed that sul1 and sul3 were the main ARGs in the two seasons. The highest abundance of ARGs was 7.70 × 107 copies/L, and intl1 was significantly positively correlated with all resistance genes (p< 0.01), indicating that it can significantly promote the transmission of ARGs. Proteobacteria were the dominant microorganisms in surface water, with a higher average abundance in the dry season (60.64 %) than in the rainy season (39.53 %). Finally, correlation analyses were performed between ARGs and antibiotics, microbial communities and heavy metals. The results showed that there was a significant positive correlation between ARGs and most microorganisms and heavy metals (p< 0.01), indicating that occurrence and transmission in the environment are influenced by various environmental factors and cross-selection. In conclusion, the persistent residue and transmission of ARGs and their transfer to pathogens are a great threat to human health and deserve further study and attention.
Collapse
Affiliation(s)
- Tianyu Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yuntao Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Bin Wang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
41
|
Wang H, Feng Y, Lu H. Low-Level Cefepime Exposure Induces High-Level Resistance in Environmental Bacteria: Molecular Mechanism and Evolutionary Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15074-15083. [PMID: 35608924 DOI: 10.1021/acs.est.2c00793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibiotics exert selective pressures on clinically relevant antibiotic resistance. It is critical to understand how antibiotic resistance evolves in environmental microbes exposed to subinhibitory concentrations of antibiotics and whether evolutionary dynamics and emergence of resistance are predictable. In this study, Comamonas testosteroni isolated from wastewater activated sludge were subcultured in a medium containing 10 ng/mL cefepime for 40 days (∼300 generations). Stepwise mutations were accumulated, leading to an ultimate 200-fold increase in the minimum inhibitory concentration (MIC) of cefepime. Early stage mutation in DNA polymerase-encoding gene dnaE2 played an important role in antibiotic resistance evolution. Diverse resistance mechanisms were employed and validated experimentally, including increased efflux, biofilm formation, reduced antibiotic uptake, and drug inactivation. The cefepime minimal selective concentrations (MSCs) and relative fitness of susceptible, intermediate, and resistant mutants were determined. Agent-based modeling of the modified Moran process enabled simulations of resistance evolution and predictions of the emergence time and frequency of resistant mutants. The unraveled cefepime resistance mechanisms could be employed by broader bacteria, and the newly developed model is applicable to the predictions of general resistance evolution. The improved knowledge facilitates the assessment, prediction, and mitigation of antibiotic resistance progression in antibiotic-polluted environments.
Collapse
Affiliation(s)
- Hanqing Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Youjun Feng
- Departments of Microbiology & General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
42
|
Czatzkowska M, Wolak I, Harnisz M, Korzeniewska E. Impact of Anthropogenic Activities on the Dissemination of ARGs in the Environment-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912853. [PMID: 36232152 PMCID: PMC9564893 DOI: 10.3390/ijerph191912853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 05/07/2023]
Abstract
Over the past few decades, due to the excessive consumption of drugs in human and veterinary medicine, the antimicrobial resistance (AR) of microorganisms has risen considerably across the world, and this trend is predicted to intensify. Many worrying research results indicate the occurrence of pools of AR, both directly related to human activity and environmental factors. The increase of AR in the natural environment is mainly associated with the anthropogenic activity. The dissemination of AR is significantly stimulated by the operation of municipal facilities, such as wastewater treatment plants (WWTPs) or landfills, as well as biogas plants, agriculture and farming practices, including animal production and land application of manure. These activities entail a risk to public health by spreading bacteria resistant to antimicrobial products (ARB) and antibiotic resistance genes (ARGs). Furthermore, subinhibitory concentrations of antimicrobial substances additionally predispose microbial consortia and resistomes to changes in particular environments that are permeated by these micropollutants. The current state of knowledge on the fate of ARGs, their dissemination and the complexity of the AR phenomenon in relation to anthropogenic activity is inadequate. This review summarizes the state-of-the-art knowledge on AR in the environment, in particular focusing on AR spread in an anthropogenically altered environment and related environmental consequences.
Collapse
|
43
|
Yao S, Ye J, Xia J, Hu Y, Zhao X, Xie J, Lin K, Cui C. Inactivation and photoreactivation of bla NDM-1-carrying super-resistant bacteria by UV, chlorination and UV/chlorination. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129549. [PMID: 35868090 DOI: 10.1016/j.jhazmat.2022.129549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The excessive dissemination of New Delhi metallo-β-lactamase-1 (NDM-1), which mediates resistance to a majority of clinical β-lactam antibiotics, has created a major public health problem worldwide. Herein, a blaNDM-1-carrying (plasmid encoded) super-resistant bacterium, Acinetobacter sp. CS-2, was selected to reveal its mechanisms of inactivation and photoreactivation during UV, chlorination and UV/chlorination disinfection. The inactivated CS-2 underwent a certain photoreactivation after UV and chlorination. The logistic model precisely fitted the data obtained in the photoreactivation experiments by UV treatment, with the estimated kinetic parameters Sm (0.530%-12.071%) and k2 (0.0009-0.0471). The photoreactivation of Acinetobacter sp. CS-2 was observed when treated by chlorination at a dosage of 0.5 mg/L with a survival ratio of 34.04%. UV/chlorination not only resulted in the high-efficiency reduction of CS-2 but also effectively controlled its photoreactivation with a survival ratio of 0%- 0.87%. UV/chlorination showed great advantages in causing the irreversible destruction of bacterial surface structures by making the cell membranes wrinkled and incomplete compared with UV disinfection. The singlet oxygen (1O2) generated during UV/chlorination treatment played a vital role in blaNDM-1 removal. This study proposed new insights into the mechanism of inactivation and the characteristics of photoreactivation for the super-resistant bacteria by UV, chlorination and UV/chlorination.
Collapse
Affiliation(s)
- Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianfeng Ye
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jing Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuetao Zhao
- Center for Disease Control & Prevention of Xuhui, Shanghai 200237, China
| | - Jianhao Xie
- Children's Hospital of Fudan University, Shanghai 200233, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai environmental protection key laboratory on environmental standard and risk management of chemical pollutants, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
44
|
Oberoi AS, Surendra KC, Wu D, Lu H, Wong JWC, Kumar Khanal S. Anaerobic membrane bioreactors for pharmaceutical-laden wastewater treatment: A critical review. BIORESOURCE TECHNOLOGY 2022; 361:127667. [PMID: 35878778 DOI: 10.1016/j.biortech.2022.127667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticalsare a diverse group of chemical compounds widely used for prevention and treatment of infectious diseases in both humans and animals. Pharmaceuticals, either in their original or metabolite form, find way into the wastewater treatment plants (WWTPs) from different sources. Recently, anaerobic membrane bioreactors (AnMBR) has received significant research attention for the treatment of pharmaceuticals in various wastewater streams. This review critically examines the behaviour and removal of a wide array of pharmaceuticals in AnMBR with primary focus on their removal efficiencies and mechanisms, critical influencing factors, and the microbial community structures. Subsequently, the inhibitory effects of pharmaceuticals on the performance of AnMBR and membrane fouling are critically discussed. Furthermore, the imperative role of membrane biofouling layer and its components in pharmaceuticals removal is highlighted. Finally, recent advancements in AnMBR configurations for membrane fouling control and enhanced pharmaceuticals removal are systemically discussed.
Collapse
Affiliation(s)
- Akashdeep Singh Oberoi
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal.
| | - Di Wu
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea.
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China.
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
45
|
Shen W, Chen Y, Wang N, Wan P, Peng Z, Zhao H, Wang W, Xiong L, Zhang S, Liu R. Seasonal variability of the correlation network of antibiotics, antibiotic resistance determinants, and bacteria in a wastewater treatment plant and receiving water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115362. [PMID: 35642820 DOI: 10.1016/j.jenvman.2022.115362] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Sewage treatment plants are an essential source of antibiotics, antibiotic resistance determinants, and bacteria in environmental waters. However, it is still unclear whether they can maintain a relatively stable relationship in wastewater and environmental waters. This study analyzed the removal capacity of the above three pollutants in the sewage treatment plant in summer and their impact on environmental waters, and then examines the relationship between the three contaminants in the wastewater and environmental waters in summer and winter based on our previous study. The results found that the removal capacity of bacteria in summer was poor, the concentration of fluoroquinolone in the effluent was higher than that in influent, and the abundance of intI1, tetW, qnrB, and ermB increased after wastewater treatment. Proteobacteria and Bacteroides were the main bacteria that constitute the correlation network between bacteria, and they existed stably in summer and winter. However, fluoroquinolones occupied a significant position in the determinant network of antibiotics and antibiotic resistance in summer and winter. There are fewer correlation between antibiotics and antibiotics resistance determinants in winter. Interestingly, the relationship between bacteria, antibiotics, and antibiotic resistance determinants was a mainly positive correlation in summer and negative correlation in winter. This study analyzed the relationship between bacteria, antibiotics, and antibiotic resistance determinants that were stable in the wastewater and environmental waters and pointed out the direction for subsequent targeted seasonal control of novel pollutants in wastewater and environmental waters.
Collapse
Affiliation(s)
- Weitao Shen
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yu Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ning Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Ping Wan
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhenyan Peng
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Huajin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Wei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lilin Xiong
- Department of Environmental Hygiene, Nanjing Center for Disease Control and Prevention, Nanjing, 210042, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
46
|
The effectiveness of silver nanoparticles as a clean-up material for water polluted with bacteria DNA conveying antibiotics resistance genes: Effect of different molar concentrations and competing ions. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Loudermilk EM, Kotay SM, Barry KE, Parikh HI, Colosi LM, Mathers AJ. Tracking Klebsiella pneumoniae carbapenemase gene as an indicator of antimicrobial resistance dissemination from a hospital to surface water via a municipal wastewater treatment plant. WATER RESEARCH 2022; 213:118151. [PMID: 35167966 DOI: 10.1016/j.watres.2022.118151] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 05/10/2023]
Abstract
Antibiotic-resistant bacteria originating from hospitals are ultimately discharged to municipal wastewater treatment plants (WWTP), which may serve as important reservoirs for the spread of antibiotic resistant genes. This study traced and quantified the presence of a rare but clinically relevant antimicrobial resistance gene; Klebsiella pneumoniae carbapenamase (KPC)-and the viable organisms (KPCO) which carried this gene in hospital, non-hospital wastewater discharges, various compartments within a municipal WWTP, receiving water and sediment samples. High concentration of the gene, blaKPC harbored in viable and multispecies KPCO was detected in the hospital wastewater and in the forepart stages of the WWTP, but was not detected in the final effluent following UV disinfection. KPCO were not detected in multiple non-hospital sources of wastewater discharges tested. The treatment train used in the sampled WWTP was found to help remove and reduce KPCO load. Using whole-genome sequencing, a KPC-producing Klebsiella oxytoca strain identical to strains seen in the patients and hospital environment was isolated from the downstream receiving water on one sampling event. KPCO were also found to persist in the biosolids throughout the WWTP, but were not detected in the processed compost-products made from WWTP-biosolids. This study systematically demonstrates dissemination of KPCO from hospital point source to environment via municipal WWTP. Understanding hospitals as the origin and source of spread of some of the most clinically urgent antimicrobial-resistant organisms may help direct interventions that target rate at which antibiotic resistant bacteria evolve and spread via enhancement of wastewater treatment and mitigation of dissemination at source.
Collapse
Affiliation(s)
- Erica M Loudermilk
- Department of Engineering Systems and Environment, University of Virginia, 151 Engineer's Way, Charlottesville, VA 22903, United States
| | - Shireen M Kotay
- Division of Infectious Diseases, School of Medicine, University of Virginia, P.O. Box 800255, Charlottesville, VA 22903, United States.
| | - Katie E Barry
- Division of Infectious Diseases, School of Medicine, University of Virginia, P.O. Box 800255, Charlottesville, VA 22903, United States
| | - Hardik I Parikh
- Division of Infectious Diseases, School of Medicine, University of Virginia, P.O. Box 800255, Charlottesville, VA 22903, United States
| | - Lisa M Colosi
- Department of Engineering Systems and Environment, University of Virginia, 151 Engineer's Way, Charlottesville, VA 22903, United States
| | - Amy J Mathers
- Division of Infectious Diseases, School of Medicine, University of Virginia, P.O. Box 800255, Charlottesville, VA 22903, United States; Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
48
|
Cai M, Wang Z, Gu H, Dong H, Zhang X, Cui N, Zhou L, Chen G, Zou G. Occurrence and temporal variation of antibiotics and antibiotic resistance genes in hospital inpatient department wastewater: Impacts of daily schedule of inpatients and wastewater treatment process. CHEMOSPHERE 2022; 292:133405. [PMID: 34958787 DOI: 10.1016/j.chemosphere.2021.133405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The temporal variation of antibiotics and ARGs as well as the impact of daily schedule of inpatients on their regular occurrence in hospital wastewater (HWW) were previously obscure. In this study, the wastewater of the inpatient department pre- and posttreatment (hydraulic retention time = 8 h) was collected intraday and intraweek. The absolute concentrations of antibiotics/metabolites and ARGs in HWW were analyzed to investigate the temporal variations of their occurrence levels. Fluoroquinolones were the predominant drugs used in the inpatient department (681.30-881.66 ng/mL in the effluent) and the main contaminant in the outlet of the disinfection pond (538.29-671.47 ng/mL). Diurnal variations peaked at 19:00 for most antibiotics and ARGs, while the maximum of them occurred on weekends. Aminoglycoside resistance genes (AMRGs, 21.6-23000 copies/mL) and β-lactam resistance genes (BLGRs, 1.24-8500 copies/mL) were the dominant ARGs before and after treatment processing, respectively (p < 0.05). The significant removal rates (>50%) of most antibiotics and ARGs, as well as the integrase gene intI1 and 16S rRNA gene, were found to be subjected solely to the chloride disinfection process, suggesting the necessity of the self-contained wastewater treatment process. Meanwhile, the statistically significant correlation among antibiotics, ARGs, intI1, and 16S rRNA (p < 0.05) demonstrated that the risk of selective pressure, horizontal transfer and vertical propagation of ARGs in the effluent of the hospital was warranted. Principal component analysis (PCA) showed that the daily schedule of inpatients and wastewater treatment processes could markedly induce fluctuations in antibiotic and ARG levels in HWW, indicating that they should be considered an impact factor for environmental monitoring. This study demonstrated for the first time the temporal variations in the abundance and dissemination of antibiotics and ARGs in a semiclosed zone and provided new insight into the development of assessments of the associated ecological risk and human health.
Collapse
Affiliation(s)
- Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu, 210024, PR China.
| | - Haotian Gu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China
| | - Hui Dong
- Agro-food Standards and Testing Technology Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China
| | - Xu Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Naxin Cui
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Li Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Guifa Chen
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Guoyan Zou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China.
| |
Collapse
|
49
|
Silva V, Ribeiro J, Rocha J, Manaia CM, Silva A, Pereira JE, Maltez L, Capelo JL, Igrejas G, Poeta P. High Frequency of the EMRSA-15 Clone (ST22-MRSA-IV) in Hospital Wastewater. Microorganisms 2022; 10:147. [PMID: 35056595 PMCID: PMC8780076 DOI: 10.3390/microorganisms10010147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/07/2022] Open
Abstract
Hospital wastewaters often carry multidrug-resistant bacteria and priority pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA). Pathogens and antibiotic resistance genes present in wastewaters may reach the natural environment facilitating their spread. Thus, we aimed to isolate MRSA from wastewater of 3 hospitals located in the north of Portugal and to characterize the isolates regarding the antimicrobial resistance and genetic lineages. A total of 96 wastewater samples were collected over six months. The water was filtered, and the filtration membrane was immersed in BHI broth supplemented with 6.5% of NaCl and incubated. The inoculum was streaked in ORSAB agar plates for MRSA isolation. The isolates susceptibility testing was performed against 14 antimicrobial agents. The presence of resistance and virulence genes was accessed by PCR. Molecular typing was performed in all isolates. From the 96 samples, 28 (29.2%) were MRSA-positive. Most isolates had a multidrug-resistant profile and carried the mecA, blaZ, aac(6')-Ie-aph(2″)-Ia, aph(3')-IIIa, ermA, ermB, ermC, tetL, tetM, dfrA dfrG and catpC221 genes. Most of the isolates were ascribed to the immune evasion cluster (IEC) type B. The isolates belonged to ST22-IV, ST8-IV and ST105-II and spa-types t747, t1302, t19963, t6966, t020, t008 and tOur study shows that MRSA can be found over time in hospital wastewater. The wastewater treatment processes can reduce the MRSA load. The great majority of the isolates belonged to ST22 and spa-type t747 which suggests the fitness of these genetic lineages in hospital effluents.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (J.R.); (A.S.); (J.E.P.); (L.M.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (J.R.); (A.S.); (J.E.P.); (L.M.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Jaqueline Rocha
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (J.R.); (C.M.M.)
| | - Célia M. Manaia
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (J.R.); (C.M.M.)
| | - Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (J.R.); (A.S.); (J.E.P.); (L.M.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (J.R.); (A.S.); (J.E.P.); (L.M.)
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (J.R.); (A.S.); (J.E.P.); (L.M.)
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Luis Capelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University of Lisbon, 2825-466 Almada, Portugal;
- Proteomass Scientific Society, Costa de Caparica, 2825-466 Setubal, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (J.R.); (A.S.); (J.E.P.); (L.M.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| |
Collapse
|
50
|
Liu Y, Gao P, Wu Y, Wang X, Lu X, Liu C, Li N, Sun J, Xiao J, Jesus SG. The Formation of Antibiotic Resistance Genes in Bacterial Communities During Garlic Powder Processing. Front Nutr 2022; 8:800932. [PMID: 34977133 PMCID: PMC8717741 DOI: 10.3389/fnut.2021.800932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023] Open
Abstract
Chinese garlic powder (GP) is exported to all countries in the world, but the excess of microorganisms is a serious problem that affects export. The number of microorganisms has a serious impact on the pricing of GP. It is very important to detect and control the microorganism in GP. The purpose of this study was to investigate the contamination and drug resistance of microorganisms during the processing of GP. We used metagenomics and Illumina sequencing to study the composition and dynamic distribution of antibiotic resistance genes (ARGs), but also the microbial community in three kinds of garlic products from factory processing. The results showed that a total of 126 ARG genes were detected in all the samples, which belonged to 11 ARG species. With the processing of GP, the expression of ARGs showed a trend to increase at first and then to decrease. Network analysis was used to study the co-occurrence patterns among ARG subtypes and bacterial communities and ARGs.
Collapse
Affiliation(s)
- Yanxia Liu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Peng Gao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yuhao Wu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Xiaorui Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Simal-Gandara Jesus
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|