1
|
Gou Z, Lu J, Zang L, Zhang Q, Hou Y, Zhao W, Zou X, Cui J. Efficient removal of Cr(VI) from contaminated kaolin and anolyte by electrokinetic remediation with foamed iron anode electrode and acetic acid electrolyte. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:373. [PMID: 39167340 DOI: 10.1007/s10653-024-02153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Combined electrokinetic remediation employing reducing agents represents an extensively utilized approach for the remediation of hexavalent chromium (Cr(VI))-contaminated soil. In this investigation, electrokinetic remediation of artificially contaminated kaolin was conducted utilizing a separate circulation system for the anolyte, with a 0.5M solution of acetic acid (HAc) as the electrolyte and foamed iron serving as the anode. The experimental outcomes demonstrated that employing HAc as the electrolyte enhances the electromigration of Cr(VI) and establishes an acidic milieu conducive to the reduction of Cr(VI) by foamed iron, thereby facilitating the rapid reduction of Cr(VI) accumulated in the anolyte through electrokinetic remediation. In the self-prepared contaminated kaolin, the initial concentration of Cr(VI) was 820.26 mg/L. Following the remediation process under optimal experimental conditions, the concentration was significantly reduced to 11.6 mg/L, achieving a removal efficiency of Cr(VI) in the soil of 98.59%. In the optimal experimental setup, the Cr(VI) concentration in the anolyte was reduced to 0.05 mg/L, which is below the EPA's Safe Drinking Water Act standard for Cr(VI) content of 0.1 mg/L. The removal mechanism of Cr(VI) from the electrolyte primarily involves reduction, precipitation, and co-precipitation, with the foamed iron playing a predominant role. HAc and foamed iron exhibit a synergistic effect. The findings of this study substantiate that the integration of foamed iron with HAc is efficacious for the electrokinetic remediation of soil contaminated with Cr(VI).
Collapse
Affiliation(s)
- Zhiyi Gou
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, 130026, China
| | - Jilong Lu
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, 130026, China.
| | - Libin Zang
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, 130026, China.
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang, 065000, Hebei, China.
| | - Qinghao Zhang
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, 130026, China
| | - Yaru Hou
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, 130026, China
| | - Wei Zhao
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, 130026, China
| | - Xiaoxiao Zou
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, 130026, China
| | - Jiaxuan Cui
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, 130026, China
| |
Collapse
|
2
|
Tang Y, Chen X, Hou L, He J, Sha A, Zou L, Peng L, Li Q. Effects of uranium mining on the rhizospheric bacterial communities of three local plants on the Qinghai-Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34335-1. [PMID: 39044055 DOI: 10.1007/s11356-024-34335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
In this study, we used 16S high-throughput sequencing to investigate the effects of uranium mining on the rhizospheric bacterial communities and functions of three local plant species, namely, Artemisia frigida, Acorus tatarionwii Schott., and Salix oritrepha Schneid. The results showed that uranium mining significantly reduced the diversity of rhizospheric bacteria in the three local plant species, including the Shannon index and Simpson index (P < 0.05). Interestingly, we found that Sphingomonas and Pseudotrichobacter were enriched in the rhizosphere soil of the three local plants from uranium mining areas, indicating their important ecological role. The three plants were enriched in various dominant rhizospheric bacterial populations in the uranium mining area, including Vicinamidobacteriaceae, Nocardioides, and Gaiella, which may be related to the unique microecological environment of the plant rhizosphere. The rhizospheric bacterial community of A. tatarionwii plants from tailings and open-pit mines also showed a certain degree of differentiation, indicating that uranium mining is the main factor driving the differentiation of plant rhizosphere soil communities on the plateau. Functional prediction revealed that rhizospheric bacteria from different plants have developed different functions to cope with stress caused by uranium mining activities, including enhancing the translational antagonist Rof, the translation initiation factor 2B subunit, etc. This study explores for the first time the impact of plateau uranium mining activities on the rhizosphere microecology of local plants, promoting the establishment of effective soil microecological health monitoring indicators, and providing a reference for further soil pollution remediation in plateau uranium mining areas.
Collapse
Affiliation(s)
- Yuanmou Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liming Hou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
3
|
Liu Z, Wang J, Dong S, Wang L, Li L, Cao Z, Zhang Y, Cheng L, Yang J. Ultrasonic controllable synthesis of sulfur-functionalized metal-organic frameworks (S-MOFs) and their application in piezo-photocatalytic rapid reduction of hexavalent chromium (Cr). ULTRASONICS SONOCHEMISTRY 2024; 107:106912. [PMID: 38762940 PMCID: PMC11130732 DOI: 10.1016/j.ultsonch.2024.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The United Nations' Sustainable Development Goals (SDGs) are significant in guiding modern scientific research. In recent years, scholars have paid much attention to MOFs materials as green materials. However, piezo catalysis of MOFs materials has not been widely studied. Piezoelectric materials can convert mechanical energy into electrical energy, while MOFs are effective photocatalysts for removing pollutants. Therefore, it is crucial to design MOFs with piezoelectric properties and photosensitivity. In this study, sulfur-functionalized metal-organic frameworks (S-MOFs) were prepared using organic sulfur-functionalized ligand (H2TDC) ultrasonic synthesis to enhance their piezoelectric properties and visible light absorption. The study demonstrated that the S-MOFs significantly enhanced the reduction of a 10 mg/L solution of hexavalent chromium to 99.4 % within 10 min, using only 15 mg of catalyst. The orbital energy level differences of the elements were analyzed using piezo response force microscopy (PFM) and X-ray photoelectron spectroscopy (XPS). The results showed that MOFs functionalized with sulfur atom ligands have a built-in electric field that facilitates charge separation and migration. This study presents a new approach to enhance the piezoelectric properties of MOFs, which broadens their potential applications in piezo catalysis and piezo-photocatalysis. Additionally, it provides a sustainable method for reducing hexavalent chromium, contributing to the achievement of sustainable development goals, specifically SDG-6, SDG-7, SDG-9, and SDG-12.
Collapse
Affiliation(s)
- Zhiwei Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Jingjing Wang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Shanghai Dong
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Liying Wang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China.
| | - Lu Li
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Zhenzhu Cao
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Yongfeng Zhang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Lin Cheng
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Jucai Yang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| |
Collapse
|
4
|
Satpathy S, Panigrahi LL, Samal P, Sahoo KK, Arakha M. Biogenic synthesis of selenium nanoparticles from Nyctanthes arbor-tristis L. and evaluation of their antimicrobial, antioxidant and photocatalytic efficacy. Heliyon 2024; 10:e32499. [PMID: 39183842 PMCID: PMC11341326 DOI: 10.1016/j.heliyon.2024.e32499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 08/27/2024] Open
Abstract
Biogenic synthesis of nanoparticles has been established as an environmentally benign and sustainable approach. This study emphasizes biosynthesis of selenium nanoparticles (SeNPs) utilizing leaf extract of Nyctanthes arbor-tritis L., well known for its abundant bioactive compounds. Various analytical techniques were employed for characterization of synthesized SeNPs. X-ray diffraction (XRD) spectroscopy confirmed the crystalline structure and revealed the average crystalline size of SeNPs to be 44.57 nm. Additionally, UV-Vis spectroscopy confirmed successful synthesis of SeNPs by validating the surface plasmon resonance (SPR) properties of SeNPs. FTIR analysis data revealed different bonds and their corresponding functional groups responsible for the synthesis and stability of synthesized SeNPs. DLS and zeta analysis revealed that 116.5 nm sized SeNPs were stable in nature. Furthermore, field emission scanning electron microscopy (FE-SEM) validated the spherical morphology of SeNPs with a size range of 60-80 nm. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) determined the concentration of SeNPs in the obtained colloidal solution. Antioxidant activity of synthesized SeNPs was evaluated employing DPPH and H2O2 assay, revealed that the synthesized SeNPs were effective antioxidant agent. Additionally, antimicrobial potential was evaluated against a panel of Gram-positive and Gram-negative bacteria and found to be effective at higher concentration of SeNPs. SeNPs also exhibited strong anti-biofilm activity while evaluated against various biofilm producing bacteria like Escherichia coli , Staphylococcus epidermidis and Klebsiella pneumonia. The cytotoxicity of the bio-synthesized SeNPs was evaluated against HEK 293 cell line, exhibited minimal toxicity even at concentration 100 μg/mL with 65% viable cells. SeNPs has also been evaluated for dye degradation which has indicated excellent photocatalytic activity of synthesized SeNPs. The experimental data obtained altogether demonstrated that synthesized SeNPs exhibited significant antimicrobial and anti-biofilm activity against various pathogens, and also showed significant antioxidant and photocatalytic efficiency.
Collapse
Affiliation(s)
- Siddharth Satpathy
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Lipsa Leena Panigrahi
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Pallavi Samal
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Kirti Kanta Sahoo
- School of Civil Engineering, Kalinga Institute of Industrial Technology Univ., Bhubaneswar, Odisha, 751024, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
5
|
Liang D, Liu C, Yang M. The association between the urinary chromium and blood pressure: a population-based study. BMC Cardiovasc Disord 2024; 24:248. [PMID: 38730326 PMCID: PMC11088134 DOI: 10.1186/s12872-024-03918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND AND AIM The impact of trace elements and heavy metals on human health has attracted widespread attention. However, the correlation between urinary chromium concentrations and blood pressure remains unclear and inadequately reported, and the aim of this study was to investigate the relationship between urinary chromium concentrations and blood pressure in adults in the United States (US). METHODS We utilized data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 for this study. Multivariate logistic regression and multivariate linear regression were used to explore the association of urinary chromium concentrations with hypertension and blood pressure. Additionally, we also performed subgroup analysis and restricted cubic splines (RCS). RESULTS A total of 2958 participants were enrolled in this study. The overall mean systolic blood pressure and diastolic blood pressure were 123.98 ± 0.60, 72.66 ± 0.57 mmHg, respectively. The prevalence of hypertension was found in 41.31% of the whole participants. In the fully adjusted model, we did not observe a correlation between urinary chromium concentrations and the risk of hypertension and systolic blood pressure. However, we found a negative association between urinary chromium concentrations and diastolic blood pressure. In subgroup analysis, we observed a positive association between urinary chromium and the risk of hypertension among participants older than 60 years of age and those who were Non-Hispanic Black. The interaction term highlighted the influence of age and race on this positive association. We also found a negative association of urinary chromium with diastolic blood pressure in male, participants who were current smokers, overweight, and other races, as well as those without alcohol use and anti-hypertensive drug use. However, the interaction term only revealed the influence of alcohol consumption on the negative association. CONCLUSION Our study suggested that urinary chromium concentrations may show a negative association with diastolic blood pressure and this association was significantly dependent on alcohol consumption. Besides, a positive association between urinary chromium and the risk of hypertension was also found among participants older than 60 years of age and those who were Non-Hispanic Black.
Collapse
Affiliation(s)
- Dan Liang
- Department of Endocrine, The First People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Mei Yang
- Department of Endocrine, The First People's Hospital of Chongqing Liangjiang New Area, Chongqing, China.
| |
Collapse
|
6
|
Qiu L, Sha A, Li N, Ran Y, Xiang P, Zhou L, Zhang T, Wu Q, Zou L, Chen Z, Li Q, Zhao C. The characteristics of fungal responses to uranium mining activities and analysis of their tolerance to uranium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116362. [PMID: 38657459 DOI: 10.1016/j.ecoenv.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The influence of uranium (U) mining on the fungal diversity (FD) and communities (FC) structure was investigated in this work. Our results revealed that soil FC richness and FD indicators obviously decreased due to U, such as Chao1, observed OTUs and Shannon index (P<0.05). Moreover, the abundances of Mortierella, Gibberella, and Tetracladium were notably reduced in soil samples owing to U mining activities (P<0.05). In contrast, the abundances of Cadophora, Pseudogymnoascus, Mucor, and Sporormiella increased in all soil samples after U mining (P<0.05). Furthermore, U mining not only dramatically influenced the Plant_Pathogen guild and Saprotroph and Pathotroph modes (P<0.05), but also induced the differentiation of soil FC and the enrichment of the Animal_Pathogen-Soil_Saprotroph and Endophyte guilds and Symbiotroph and Pathotroph Saprotroph trophic modes. In addition, various fungal populations and guilds were enriched to deal with the external stresses caused by U mining in different U mining areas and soil depths (P<0.05). Finally, nine U-tolerant fungi were isolated and identified with a minimum inhibitory concentration range of 400-600 mg/L, and their adsorption efficiency for U ranged from 11.6% to 37.9%. This study provides insights into the impact of U mining on soil fungal stability and the response of fungi to U mining activities, as well as aids in the screening of fungal strains that can be used to promote remediation of U mining sites on plateaus.
Collapse
Affiliation(s)
- Lu Qiu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanqiong Ran
- Sichuan Ecological and Environmental Monitoring Center, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lin Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhaoqiong Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Tang Y, Zuo F, Li C, Zhang Q, Gao W, Cheng J. Combined effects of biochar and biodegradable mulch film on chromium bioavailability and the agronomic characteristics of tobacco. Sci Rep 2024; 14:6867. [PMID: 38514728 PMCID: PMC10957920 DOI: 10.1038/s41598-024-56973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Biochar (BC) and biodegradable mulch film (BMF) are both commonly used means of production in agriculture. In recent years, most studies have focused on the effects of BC or BMF on soil heavy metal pollution, while they have neglected the combined effects. In this study, a pot experiment was conducted to examine the impacts of BMF, BC, and combined BMF and BC (CMB) on the mobility of chromium (Cr) and the agronomic characteristics of flue-cured tobacco. Compared with the control, BMF, BC, and CMB significantly reduced the concentrations of diethylenetriamine pentaacetic acid (DTPA) extractable Cr in soils by 29.07-29.75%, 45.35-48.54%, and 34.21-37.92%, respectively. In comparison to the application of BMF and BC alone, co-application reduced the availability of Cr in soil via increasing the adsorption of soil Cr and soil enzyme activity, which resulted in the decrease of Cr content and bioconcentration factor and in plants. Moreover, the combined application increased the plant height, stem diameter, leaf area, total root area, root tip number, and root activity of tobacco, which leaded to increase in leaf and root biomass by 11.40-67.01% and 23.91-50.74%, respectively. Therefore, the application of CMB can reduce the heavy metal residues in tobacco leaves and improve tobacco yield and quality.
Collapse
Affiliation(s)
- Yuan Tang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Fumin Zuo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Changhong Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Qinghai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Weichang Gao
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, China.
| | - Jianzhong Cheng
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China.
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou, China.
| |
Collapse
|
8
|
Sun H, Jin J, Sun Y, Zuo F, Feng R, Wang F. Preparation of microbial agent immobilized composites for Cr(VI) removal from wastewater. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 38429873 DOI: 10.1080/09593330.2024.2323030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
Because of its extreme toxicity and health risks, hexavalent chromium [Cr(VI)] has been identified as a major environmental contaminant. Bioreduction is considered as one of effective techniques for cleaning up Cr(VI)-contaminated sites, but the remediation efficiency needs to be enhanced. Here, a novel immobilized microbial agent was produced by immobilizing Bacillus cereus ZY-2009 with sodium alginate (SA) using polyvinyl alcohol (PVA) and activated carbon (AC). To evaluate the decrease of Cr(VI) by immobilized bacterial agents, batch tests were conducted with varying immobilization conditions, immobilization carriers, and dosages of medication. The removal of Cr(VI) by the agent prepared by the composite immobilization method was better than that by the adsorption and encapsulation methods. The optimal preparation conditions were the fraction of magnetic PVA was 5.00%, the fraction of SA was 4.00%, the fraction of CaCl2 was 4.00%, and the calcification time was 12 h. The experimental results indicated that PVA/SA/AC agents accelerated the reduction rate of Cr(VI). The removal rate of Cr(VI) by immobilized cells (90.5%) under ideal conditions was substantially higher than that of free cells (11.0%). This novel agent had a large specific surface area and a rich pore structure, accounting for its high reduction rate. The results suggest that the PVA/SA/AC immobilized Bacillus cereus ZY-2009 agent has great potential to remove Cr(VI) from wastewater treatment systems.
Collapse
Affiliation(s)
- Haihan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Jianyong Jin
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Fang Zuo
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Ruiqing Feng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| |
Collapse
|
9
|
Li Q, Xiong Z, Xiang P, Zhou L, Zhang T, Wu Q, Zhao C. Effects of uranium mining on soil bacterial communities and functions in the Qinghai-Tibet plateau. CHEMOSPHERE 2024; 347:140715. [PMID: 37979803 DOI: 10.1016/j.chemosphere.2023.140715] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The microecological effects of plateau uranium mining are still unknown. In this study, we used 16S rRNA high-throughput sequencing to analyze the impact of plateau uranium mining on the microbial diversity and community structure of tailings soil, tunnel soil, and soil at different depths in an open pit. The results showed that uranium mining significantly reduced soil microbial community richness and diversity indicators, including Chao1, Pielou evenness, and Shannon index (P < 0.05). Uranium mining activities significantly reduced the abundance of RB41, Vicinamidactaceae, and Nitrospira (P < 0.05). Interestingly, the abundance of Thiobacillus, Sphingomonas, and Sulfuriferula significantly increased in the soil samples from various environments and depths during uranium mining (P < 0.05). Beta diversity analysis found that uranium mining resulted in the differentiation of soil microbial communities. Functional enrichment analysis found that uranium mining resulted in the functional enrichment of DNA binding response regulator, DNA helicase, methyl-accepting chemotaxis protein, and Helicase conserved C-terminal domain, whereas cell wall synthesis, nonspecific serine/threonine protein kinase, RNA polymerase sigma-70 factor, and ATP binding cassette transporter were significantly affected by uranium mining (P < 0.05). In addition, we also found that different uranium mining environments and soil depths enriched diverse microbial populations and functions to cope with the environmental pressures that were elicited by uranium mining, including Gaiella, Gemmatimonas, Lysobacter, Pseudomonas, signal transformation histidine kinase, DNA-directed DNA polymerase, and iron complex outer membrane receptor protein functions (P < 0.05). The results have enhanced our understanding of the impact of uranium mining on plateau soil microecological stability and the mechanism of microbial response to uranium mining activities for the first time and aided us in screening microbial strains that can promote the environmental remediation of uranium mining in plateaus.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lin Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Yu Q, Zheng Y, Zhang P, Zeng L, Han R, Shi Y, Li D. Genetic programming-based predictive model for the Cr removal effect of in-situ electrokinetic remediation in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132430. [PMID: 37659239 DOI: 10.1016/j.jhazmat.2023.132430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Soil electrokinetic remediation is an emerging and efficient in-situ remediation technology for reducing environmental risks. Promoting the dissolution and migration of Cr in soil under the electric field is crucial to decrease soil toxicity and ecological influences. However, it is difficult to establish strong relationships between soil treatment and impact factors and to quantify their contributions. Machine learning can help establish pollutant migration models, but it is challenging to derive predictive formulas to improve remediation efficiency, describe the predictive model construction process, and reflect the importance of the predictors for better regulation. Therefore, this paper established a predictive model for the electrokinetic remediation of Cr-contaminated soil using genetic programming (GP) after determining the characteristic parameters which influenced the remediation effect, described the model's adaptive optimization process through the algorithm's function, and identified the sensitivity factors affecting the Cr removal effect. Results showed that the Cr(VI) and total Cr concentrations predicted by GP were in satisfactory agreement with the experimental values, 92% of the training data and 90% of the validation data achieved errors within 1%, and could fully reflect the target ions' content variation in different soil layers. By substituting the above prediction formulas into Sobol sensitivity analysis, it was determined that conductivity, pH, current, and moisture content dramatically affected the Cr content variation in distinguished regions. For overall contaminated area, the system current and soil pH were the most sensitive factors for Cr(VI) and total Cr contents. Remediation efforts throughout the contaminated area should focus on the role of current versus soil pH. GP and sensitivity analysis can provide decision support and operational guidance for in-situ soil electrokinetic treatment by establishing a remediation effect prediction model, expediting the development and innovation of electrokinetic technology.
Collapse
Affiliation(s)
- Qiu Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
| | - Yi Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
| | - Pengpeng Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
| | - Linghao Zeng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
| | - Renhui Han
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
| | - Yaoming Shi
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
| | - Dongwei Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
11
|
Wang JC, Zhao JR, Huang QX, Yang LJ, Yu G, Xu YF, Liu LH. Effect of iron-loaded sludge biochar amendments on phytoremediation potential of Cr-contaminated soils by Leersia hexandra swartz. CHEMOSPHERE 2023; 337:139355. [PMID: 37385485 DOI: 10.1016/j.chemosphere.2023.139355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
In this study, the effect of iron-loaded sludge biochar (ISBC) with different amendment dosages (mass ratio of biochar to soil equal to 0, 0.01, 0.025 and 0.05) on the phytoremediation potential of Leersia hexandra swartz (L. hexandra) to Cr-contaminated soil was investigated. With increasing ISBC dosage from 0 to 0.05, plant height, aerial tissue biomass and root biomass increased from 15.70 cm, 0.152 g pot-1 and 0.058 g pot-1 to 24.33 cm, 0.304 g pot-1 and 0.125 g pot-1, respectively. Simultaneously, the Cr contents in aerial tissues and roots increased from 1039.68 mg kg-1 to 2427.87 mg kg-1 to 1526.57 mg kg-1 and 3242.62 mg kg-1, respectively. Thus, the corresponding bioenrichment factor (BCF), bioaccumulation factor (BAF), total phytoextraction (TPE) and translocation factor (TF) values were also increased from 10.52, 6.20, 0.158 mg pot-1 (aerial tissue)/0.140 mg pot-1 (roots) and 0.428 to 15.15, 9.42, 0.464 mg pot-1 (aerial tissue)/0.405 mg pot-1 (roots) and 0.471, respectively. The significant positive effect of ISBC amendment was primarily attributed to the following three aspects: 1) the root resistance index (RRI), tolerance index (TI) and growth toxicity index (GTI) of L. hexandra to Cr were increased from 100%, 100% and 0%-216.88%, 155.02% and 42.18%, respectively; 2) the bio-available Cr content in the soil was decreased from 1.89 mg L-1 to 1.48 mg L-1, while the corresponding TU (toxicity units) value was declined from 0.303 to 0.217; 3) the activities of urease, sucrase and alkaline phosphatase in soil were increased from 0.186 mg g-1, 1.40 mg g-1 and 0.156 mg g-1 to 0.242 mg g-1, 1.86 mg g-1 and 0.287 mg g-1, respectively. In summary, ISBC amendment was able to significantly improve the phytoremediation of Cr-contaminated soils by L. hexandra.
Collapse
Affiliation(s)
- Jin-Chao Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Ji-Rong Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; School of Civil and Hydraulic Engineering, Xichang University, Xichang, 615000, China
| | - Qing-Xia Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Li-Jiao Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Yu-Feng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Li-Heng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
12
|
Bhatta D, Adhikari A, Kang SM, Kwon EH, Jan R, Kim KM, Lee IJ. Hormones and the antioxidant transduction pathway and gene expression, mediated by Serratia marcescens DB1, lessen the lethality of heavy metals (As, Ni, and Cr) in Oryza sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115377. [PMID: 37597286 DOI: 10.1016/j.ecoenv.2023.115377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Microorganisms have recently gained recognition as efficient biological tool for reducing heavy metal toxicity in crops. In this experiment, we isolated a potent heavy metal (As, Ni, and Cr) resistant rhizobacterium Serratia marcescens DB1 and detected its plant growth promoting traits such as phosphate solubilization, gibberellin synthesis, organic acid production and amino acid regulation. Based on these findings, DB1 was further investigated for application in a rice var. Hwayeongbyeo subjected to 1 mM As, 4 mM Ni, and 4 mM Cr stress. The rice plants treated with Cr and Ni appeared healthy but were lethal, indicating unfitness for consumption due to toxic metal deposition, whereas the plants treated with > 1 mM As instantaneously died. Our results showed that DB1 inoculation significantly decreased metal accumulation in the rice shoots. Particularly, Cr uptake dropped by 16.55% and 22.12% in (Cr + DB1) and (Cr + As + Ni + DB1), respectively, As dropped by 48.90% and 35.82% in (As + DB1) and (Cr + As + Ni + DB1), respectively, and Ni dropped by 7.95% and 19.56% in (Ni + DB1) and (Cr + As + Ni + DB1), respectively. These findings were further validated by gene expression analysis results, which showed that DB1 inoculation significantly decreased the expression of OsPCS1 (a phytochelatin synthase gene), OsMTP1 (a metal transporting gene), and OsMTP5 (a gene for the expulsion of excess metal). Moreover, DB1 inoculation considerably enhanced the morphological growth of rice through modulation of endogenous phytohormones (abscisic acid, salicylic acid, and jasmonic acid) and uptake of essential elements such as K and P. These findings indicate that DB1 is an effective biofertilizer that can mitigate heavy metal toxicity in rice crops.
Collapse
Affiliation(s)
- Dibya Bhatta
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
13
|
Xiang P, Zhang Y, Zhang T, Wu Q, Zhao C, Li Q. A novel bacterial combination for efficient degradation of polystyrene microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131856. [PMID: 37331064 DOI: 10.1016/j.jhazmat.2023.131856] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
This study aimed to investigate the combined decomposition of polystyrene (PS) microplastics using three bacterial cultures: Stenotrophomonas maltophilia, Bacillus velezensis, and Acinetobacter radioresistens. The ability of all three strains to grow on medium containing PS (Mn 90,000 Da, Mw 241,200 Da) microplastics as the sole carbon source was examined. After 60 days of A. radioresistens treatment, the maximum weight loss of the PS microplastics was found to be 16.7 ± 0.6% (half-life 251.1 d). After 60 days of treatment with S. maltophilia and B. velezensis, the maximum weight loss of PS microplastics was 43.5 ± 0.8% (half-life 74.9 d). After 60 days of treatment with S. maltophilia, B. velezensis, and A. radioresistens, the weight loss of the PS microplastics was 17.0 ± 0.2% (half-life 224.2 d). The S. maltophilia and B. velezensis treatment showed a more significant degradation effect after 60 days. This result was attributed to interspecific assistance and interspecific competition. Biodegradation of PS microplastics was confirmed using scanning electron microscopy, water contact angle, high-temperature gel chromatography, Fourier transform infrared spectroscopy and thermogravimetric analysis. This study is the first to explore the degradation ability of different bacterial combinations on PS microplastics, providing a reference for future research on the biodegradation technology of mixed bacteria.
Collapse
Affiliation(s)
- Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China; School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Zhu Z, Zeng X, Shi X, Ma J, Liu X, Li Q. Transcription and Metabolic Profiling Analysis of Three Discolorations in a Day of Hibiscus mutabilis. BIOLOGY 2023; 12:1115. [PMID: 37626999 PMCID: PMC10452391 DOI: 10.3390/biology12081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
In this study, we used combined transcriptomics and metabolomics to analyze the H. mutabilis cultivar's genetic and physiological mechanisms during three flower color transition periods (from white to pink, then from pink to red) within the span of one day. As a result, 186 genes were found to be significantly increased with the deepening of the H. mutabilis flower color; these genes were mainly involved in the expression of peroxidase 30, zinc finger protein, phosphate transporter PHO1, etc. In contrast, 298 genes were significantly downregulated with the deepening of H. mutabilis flower color, including those involved in the expression of probable O-methyltransferase 3, copper binding protein 9, and heat stress transcription factor A-6b. Some genes showed differential expression strategies as the flower color gradually darkened. We further detected 19 metabolites that gradually increased with the deepening of the H. mutabilis flower color, including L-isoleucine, palmitic acid, L-methionine, and (+)-7-isonitrobenzene. The content of the metabolite hexadecanedioate decreased with the deepening of the H. mutabilis flower color. Combined transcriptomics and metabolomics revealed that the metabolic pathways, including those related to anthocyanin biosynthesis, cysteine and methionine metabolism, and sulfur metabolism, appear to be closely related to H. mutabilis flower color transition. This study served as the first report on the genetic and physiological mechanisms of short-term H. mutabilis flower color transition and will promote the molecular breeding of ornamental cultivars of H. mutabilis.
Collapse
Affiliation(s)
- Zhangshun Zhu
- Chengdu Botanical Garden (Chengdu Park Urban Plant Science Research Institute), Chengdu 610083, China; (Z.Z.); (X.Z.); (X.S.); (J.M.)
| | - Xinmei Zeng
- Chengdu Botanical Garden (Chengdu Park Urban Plant Science Research Institute), Chengdu 610083, China; (Z.Z.); (X.Z.); (X.S.); (J.M.)
| | - Xiaoqing Shi
- Chengdu Botanical Garden (Chengdu Park Urban Plant Science Research Institute), Chengdu 610083, China; (Z.Z.); (X.Z.); (X.S.); (J.M.)
| | - Jiao Ma
- Chengdu Botanical Garden (Chengdu Park Urban Plant Science Research Institute), Chengdu 610083, China; (Z.Z.); (X.Z.); (X.S.); (J.M.)
| | - Xiaoli Liu
- Chengdu Botanical Garden (Chengdu Park Urban Plant Science Research Institute), Chengdu 610083, China; (Z.Z.); (X.Z.); (X.S.); (J.M.)
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
15
|
Soni S, Jha AB, Dubey RS, Sharma P. Alleviation of chromium stress in plants using metal and metal oxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83180-83197. [PMID: 37358773 DOI: 10.1007/s11356-023-28161-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 06/03/2023] [Indexed: 06/27/2023]
Abstract
Chromium (Cr), one of the hazardous pollutants, exists predominantly as Cr(VI) and Cr(III) in the environment. Cr(VI) is more toxic than Cr(III) due to its high mobility and solubility. Elevated levels of Cr in agricultural soil due to various anthropogenic activities cause Cr accumulation in plants, resulting in a significant reduction in plant yield and quality due to Cr-induced physiological, biochemical and molecular alterations. It can infiltrate the food chain through crop plants and cause harmful effects in humans via biomagnification. Cr(VI) is linked to cancer in humans. Therefore, mitigation strategies are required to remediate Cr-polluted soils and limit its accumulation in plants for safe food production. Recent research on metal and metal oxide nanoparticles (NPs) has shown that they can effectively reduce Cr accumulation and phytotoxicity. The effects of these NPs are influenced by their type and dose, exposure method, plant species and experimental settings. In this review, we present an up-to-date compilation and comprehensive analysis of the existing literature regarding the process of uptake and distribution of Cr and impact and potential mechanisms of metal and metal oxide nanoparticles led mitigation of Cr-induced stress in plants. We have also discussed recent developments, existing research gaps and future research directions in the field of Cr stress mitigation by NPs in plants. Overall, this review can provide valuable insights in reducing Cr accumulation and toxicity using metal and metal oxide nanoparticles, thereby promoting safe and sustainable cultivation of food and phytostabilization of Cr-polluted soil.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| | - Ambuj Bhushan Jha
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
- School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector 29, Gandhinagar, Gujarat, 382030, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India.
| |
Collapse
|
16
|
Li HK, Xu DM, Wang JX, Xu ZL, Fu RB. The occurrence of "yellowing" phenomenon and its main driving factors after the remediation of chromium (Cr)-contaminated soils: A literature review. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131698. [PMID: 37270962 DOI: 10.1016/j.jhazmat.2023.131698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Chromium (Cr) is a highly toxic element, which is widely present in environment due to industrial activities. One of most applicable technique to clean up Cr pollution is chemical reduction. However, the Cr(VI) concentration in soil increases again after remediation, and meanwhile the yellow soil would appear, which is commonly called as "yellowing" phenomenon. To date, the reason behind the phenomenon has been disputed for decades. This study aimed to introduce the possible "yellowing" mechanism and the influencing factors based on the extensive literature review. In this work, the concept of "yellowing" phenomenon was explained, and the most potential reasons include the reoxidation of manganese (Mn) oxides and mass transfer were summarized. Based on the reported finding and results, the large area of "yellowing" is likely to be caused by the re-migration of Cr(VI), since it could not sufficiently contact with the reductant under the effects of the mass transfer. In addition, other driving factors also control the occurrence of "yellowing" phenomenon. This review provides valuable reference for the academic peers participating in the Cr-contaminated sites remediation.
Collapse
Affiliation(s)
- Hao-Kai Li
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Da-Mao Xu
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jun-Xian Wang
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ze-Lin Xu
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rong-Bing Fu
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
17
|
Zhang T, Qi M, Wu Q, Xiang P, Tang D, Li Q. Recent research progress on the synthesis and biological effects of selenium nanoparticles. Front Nutr 2023; 10:1183487. [PMID: 37260518 PMCID: PMC10227571 DOI: 10.3389/fnut.2023.1183487] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
Selenium is an essential trace element for the human body, with the chemical and physical characteristics of both metals and nonmetals. Selenium has bioactivities related to the immune system, antioxidation, anti-virus, and anti-cancer. At the same time, it also plays a role in reducing and alleviating the toxicity of heavy metals. Compared with inorganic selenium, organic selenium is less toxic and has greater bioavailability. Selenium nanoparticles (SeNPs) have the advantages of high absorption rate, high biological activity, and low toxicity, and can be directly absorbed by the human body and converted to organic selenium. Selenium nanoparticles have gradually replaced the traditional selenium supplement and has broad prospects in the food and medical industries. In this paper, the chemical, physical, and biological methods for the synthesis of selenium nanoparticles are reviewed, and the microbial synthesis methods of selenium nanoparticles, the effects of selenium nanoparticles on crop growth, and the antibacterial, antioxidant, anticancer, and anti-tumor effects of selenium nanoparticles are also systematically summarized. In addition, we evaluate the application of selenium nanoparticles in selenium nutrition enhancement, providing support for the application of selenium nanoparticles in animals, plants, and humans.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Meng Qi
- Ankang R&D Center for Se-enriched Products, Ankang, Shaanxi, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang, Shaanxi, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Dejian Tang
- Ankang R&D Center for Se-enriched Products, Ankang, Shaanxi, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang, Shaanxi, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Li Q, Luo Y, Sha A, Xiao W, Xiong Z, Chen X, He J, Peng L, Zou L. Analysis of synonymous codon usage patterns in mitochondrial genomes of nine Amanita species. Front Microbiol 2023; 14:1134228. [PMID: 36970689 PMCID: PMC10030801 DOI: 10.3389/fmicb.2023.1134228] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
IntroductionCodon basis is a common and complex natural phenomenon observed in many kinds of organisms.MethodsIn the present study, we analyzed the base bias of 12 mitochondrial core protein-coding genes (PCGs) shared by nine Amanita species.ResultsThe results showed that the codons of all Amanita species tended to end in A/T, demonstrating the preference of mitochondrial codons of Amanita species for a preference for this codon. In addition, we detected the correlation between codon base composition and the codon adaptation index (CAI), codon bias index (CBI), and frequency of optimal codons (FOP) indices, indicating the influence of base composition on codon bias. The average effective number of codons (ENC) of mitochondrial core PCGs of Amanita is 30.81, which is <35, demonstrating the strong codon preference of mitochondrial core PCGs of Amanita. The neutrality plot analysis and PR2-Bias plot analysis further demonstrated that natural selection plays an important role in Amanita codon bias. In addition, we obtained 5–10 optimal codons (ΔRSCU > 0.08 and RSCU > 1) in nine Amanita species, and GCA and AUU were the most widely used optimal codons. Based on the combined mitochondrial sequence and RSCU value, we deduced the genetic relationship between different Amanita species and found large variations between them.DiscussionThis study promoted the understanding of synonymous codon usage characteristics and evolution of this important fungal group.
Collapse
|
19
|
Wu P, Xiao W, Luo Y, Xiong Z, Chen X, He J, Sha A, Gui M, Li Q. Comprehensive analysis of codon bias in 13 Ganoderma mitochondrial genomes. Front Microbiol 2023; 14:1170790. [PMID: 37213503 PMCID: PMC10192751 DOI: 10.3389/fmicb.2023.1170790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Codon usage bias is a prevalent phenomenon observed across various species and genes. However, the specific attributes of codon usage in the mitochondrial genome of Ganoderma species remain unknown. Methods In this study, we investigated the codon bias of 12 mitochondrial core protein-coding genes (PCGs) in 9 Ganoderma species, including 13 Ganoderma strains. Results The codons of all Ganoderma strains showed a preference for ending in A/T. Additionally, correlations between codon base composition and the codon adaptation index (CAI), codon bias index (CBI) and frequency of optimal codons (FOP) were identified, demonstrating the impact of base composition on codon bias. Various base bias indicators were found to vary between or within Ganoderma strains, including GC3s, the CAI, the CBI, and the FOP. The results also revealed that the mitochondrial core PCGs of Ganoderma have an average effective number of codons (ENC) lower than 35, indicating strong bias toward certain codons. Evidence from neutrality plot and PR2-bias plot analysis indicates that natural selection is a major factor affecting codon bias in Ganoderma. Additionally, 11 to 22 optimal codons (ΔRSCU>0.08 and RSCU>1) were identified in 13 Ganoderma strains, with GCA, AUC, and UUC being the most widely used optimal codons in Ganoderma. By analyzing the combined mitochondrial sequences and relative synonymous codon usage (RSCU) values, the genetic relationships between or within Ganoderma strains were determined, indicating variations between them. Nevertheless, RSCU-based analysis illustrated the intra- and interspecies relationships of certain Ganoderma species. Discussion This study deepens our insight into the synonymous codon usage characteristics, genetics, and evolution of this important fungal group.
Collapse
Affiliation(s)
- Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
- *Correspondence: Mingying Gui,
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
- Qiang Li,
| |
Collapse
|
20
|
Xu J, Li L, Wang H, Gao Z, Wang C, Sun R, Zhang Y, Xu W, Hou X, Xu R. Adsorption Characteristics of Indigenous Chromium-Resistant Aspergillus niger Strain Isolated from Red Soil for Remediation of Toxic Chromium in Red Soil Environments. TOXICS 2022; 11:31. [PMID: 36668757 PMCID: PMC9866775 DOI: 10.3390/toxics11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The microbial treatment of soil has great potential to reduce chromium pollution. Here, an indigenous chromium-resistant Aspergillus niger strain (A1) was isolated and screened from heavily chromium-contaminated red soil in Yunnan Province, China using a traditional isolation method and a selective culture experiment. The molecular identification of A1 was achieved using 18S rRNA sequencing. The tolerance of the strain to toxic chromium was evaluated through pure laboratory culture. The adsorption effect and mechanism of A1 on chromium in red soil were further studied. The study concluded that A1 exhibited strong activity with exposure to 500 mg·L-1 Cr6+. Chromium adsorption by A. niger occurred mainly through intracellular metabolism, surface complexations with EPS, and chemical reduction with -C=C-, -OXuH, NH2, and -C=0. The optimized results showed that A1 had the best Cr6+ removal effect at pH 4, 40 °C, and a 60 h culture time. Compared with the inoculating of exogenous microbial agents, after inoculating A1 into the chromium-contaminated red soil, Cr6+ content was significantly reduced, and the high-toxicity chromium state (water-soluble and exchange states) decreased, whereas the low-toxicity chromium state (precipitation and residue states) increased. The results of red soil ITS also showed that the inoculation of indigenous microorganisms can better colonize the red soil. This study proves the feasibility of the application of indigenous A. niger to address red soil chromium pollution and provides a new idea and theoretical support for red soil remediation.
Collapse
Affiliation(s)
- Jiwei Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Provincial Key Laboratory of Rural Energy Engineering, Kunming 650500, China
| | - Lumeng Li
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Zhanyuan Gao
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Chuanshu Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Provincial Key Laboratory of Rural Energy Engineering, Kunming 650500, China
| | - Rong Sun
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Yong Zhang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Provincial Key Laboratory of Rural Energy Engineering, Kunming 650500, China
| | - Wumei Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Xiying Hou
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Provincial Key Laboratory of Rural Energy Engineering, Kunming 650500, China
| |
Collapse
|
21
|
Bao Z, Shi C, Tu W, Li L, Li Q. Recent developments in modification of biochar and its application in soil pollution control and ecoregulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120184. [PMID: 36113644 DOI: 10.1016/j.envpol.2022.120184] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Soil pollution has become a real threat to mankind in the 21st century. On the one hand, soil pollution has reduced the world's arable land area, resulting in the contradiction between the world's population expansion and the shortage of arable land. On the other hand, soil pollution has seriously disrupted the soil ecological balance and significantly affected the biodiversity in the soil. Soil pollutants may further affect the survival, reproduction and health of humans and other organisms through the food chain. Several studies have suggested that biochar has the potential to act as a soil conditioner and to promote crop growth, and is widely used to remove environmental pollutants. Biochar modified by physical, chemical, and biological methods will affect the treatment efficiency of soil pollution, soil quality, soil ecology and interaction with organisms, especially with microorganisms. Therefore, in this review, we summarized several main biochar modification methods and the mechanisms of the modification and introduced the effects of the application of modified biochar to soil pollutant control, soil ecological regulation and soil nutrient regulation. We also introduced some case studies for the development of modified biochars suitable for different soil conditions, which plays a guiding role in the future development and application of modified biochar. In general, this review provides a reference for the green treatment of different soil pollutants by modified biochar and provides data support for the sustainable development of agriculture.
Collapse
Affiliation(s)
- Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Chunzhen Shi
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Li Q, Wu Q, Zhang T, Xiang P, Bao Z, Tu W, Li L, Wang Q. Phosphate mining activities affect crop rhizosphere fungal communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156196. [PMID: 35623536 DOI: 10.1016/j.scitotenv.2022.156196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Phosphate mining releases heavy metals into the surrounding environment. In this study, the effects of phosphate mining on rhizosphere soil fungi in surrounding crops, including Lactuca sativa var. angustata, Glycine max (L.) Merr., and Triticum aestivum L., were assessed. Phosphate mining significantly reduced the crop rhizosphere fungal diversity (P < 0.05). The relative abundances of Fusarium and Epicoccum increased in mining rhizosphere soil compared with the baseline. Beta diversity analysis indicated that phosphate mining led to the differentiation of fungal community structure in plant rhizospheres. Guild analysis indicated that different plant rhizosphere fungi developed various guilds in response to phosphate mining stress. Nine fungi were isolated from soil samples, with solubilization index values ranging from 1.1 to 2.5. Two efficient phosphate solubilizers, Epicoccum nigrum and Fusarium verticillioides, were enriched in phosphate mining rhizosphere soil samples. The dissolution kinetics of inorganic phosphorus and alkaline phosphatase activity assay showed strong phosphorus dissolution ability of the isolated fungi. Penicillium aculeatum, Trichoderma harzianum, Chaetomium globosum, and F. verticillioides showed strong tolerance to multiple heavy metals. This study furthers our understanding of how rhizosphere fungal ecology is affected by phosphate mining and provides important resources for the remediation of phosphate mining soil pollution.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiangfeng Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Zhao C, Bao Z, Feng H, Chen L, Li Q. Nitric oxide enhances resistance of Pleurotus eryngii to cadmium stress by alleviating oxidative damage and regulating of short-chain dehydrogenase/reductase family. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53036-53049. [PMID: 35278180 DOI: 10.1007/s11356-022-19613-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The function and mechanism of nitric oxide (NO) in regulating Pleurotus eryngii biological response to cadmium (Cd) stress was evaluated by using anti-oxidation and short-chain dehydrogenase/reductase (SDR) family analysis. The fresh biomass of P. eryngii mycelia sharply decreased after treatment with 50 µM Cd; the lipid peroxidation and H2O2 accumulation in P. eryngii were found responsible for it. Proper exogenous supply of NO (150 µM SNP) alleviated the oxidative damage induced by Cd stress in P. eryngii, which reduced the accumulation of thiobarbituric acid reactive substances (TBARS) and H2O2. The activities of antioxidant enzymes (superoxide dismutase, peroxidase) were significantly increased to deal with Cd stress when treated with SNP (150 µM), and the content of proline was also closely related to NO-mediated reduction of Cd toxicity. Moreover, SDR family members were widely involved in the response to Cd stress, especially PleSCH70 gene was observed for the first time in participating in NO-mediated enhancement of Cd tolerance in P. eryngii. Taken together, this study provides new insights in understanding the tolerance mechanisms of P. eryngii to heavy metal and lays a foundation for molecular breeding of P. eryngii to improve its tolerance to environmental stress.
Collapse
Affiliation(s)
- Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, , Chengdu, 610106, Sichuan, People's Republic of China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, , Chengdu, 610106, Sichuan, People's Republic of China
| | - Lanchai Chen
- Key Laboratory of Food Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, People's Republic of China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, , Chengdu, 610106, Sichuan, People's Republic of China.
| |
Collapse
|