1
|
Hubai K, Kováts N. Interaction Between Heavy Metals Posed Chemical Stress and Essential Oil Production of Medicinal Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2938. [PMID: 39458885 PMCID: PMC11511259 DOI: 10.3390/plants13202938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Plants exposed to abiotic stressors show diverse physiological, biochemical, and molecular responses. Biosynthesis of plant secondary metabolites-including essential oils-is a vital plant defense mechanism. As these bioactive compounds are widely used in the pharmaceutical, cosmetic and food industries, it is essential to understand how their production is affected in various environments. While interaction between specific abiotic stressors such as salt stress has been widely studied, relatively less information is available on how essential oil production is affected by toxic contaminants. Present review intends to give an insight into the possible interaction between chemical stress and essential oil production, with special regard to soil and air pollution. Available studies clearly demonstrate that heavy metal induced stress does affect quantity and quality of EOs produced, however, pattern seems ambiguous as nature of effect depends on the plant taxon and on the EO. Considering mechanisms, genetic studies clearly prove that exposure to heavy metals influences the expression of genes being responsible for EO synthesis.
Collapse
Affiliation(s)
| | - Nora Kováts
- Centre for Natural Sciences, Affiliation University of Pannonia, P.O. Box 158, 8200 Veszprém, Hungary;
| |
Collapse
|
2
|
Nafchi MA, Kachoie MA, Ghodrati L. Co-application of titanium dioxide and hydroxyapatite nanoparticles modulated chromium and salinity stress via modifying physio-biochemical attributes in Solidago canadensis L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50464-50477. [PMID: 39093394 DOI: 10.1007/s11356-024-34454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Climate change and human activity have led to an increase in salinity levels and the toxicity of chromium (Cr). One promising approach to modifying these stressors in plants is to use effective nanoparticles (NPs). While titanium dioxide nanoparticles (TiO2 NPs) and hydroxyapatite (HAP NPs) have been demonstrated to increase plant tolerance to abiotic stress by enhancing antioxidant capacity, lipid peroxidation, and secondary metabolites, it is unknown how these two compounds can work together in situations when salt and Cr toxicity are present. The objective of the current study was to determine the effects of foliar-applied TiO2 NPs (15 mg L-1) and HAP NPs (250 mg L-1) separately and in combination on growth, chlorophyll (Chl), water content, lipid peroxidation, antioxidant capacity, phenolic content, and essential oils (EOs) of Solidago canadensis L. under salinity (100 mM NaCl) and Cr toxicity (100 mg kg-1 soil). Salinity was more deleterious than Cr by decreasing plant weight, Chl a + b, relative water content (RWC), EO yield, and increasing malondialdehyde (MDA), electrolyte leakage (EL), superoxide dismutase (SOD) activity, and catalase (CAT) activity. The co-application of TiO2 and HAP NPs proved to be more successful. This was evidenced by the increased shoot weight (36%), root weight (29%), Chl a + b (23%), RWC (15%), total phenolic content (TPC, 34%), total flavonoid content (TFC, 28%), and EO yield (56%), but decreased MDA (21%), EL (11%), SOD (22%) and CAT activity (38%) in salt-exposed plants. The study demonstrated the effective strategy of co-applying these NPs to modify abiotic stress by enhancing phenolic compounds and EO yield as key results.
Collapse
Affiliation(s)
| | - Mehrdad Ataie Kachoie
- Medicinal Plants Research and Processing Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Leila Ghodrati
- Medicinal Plants Research and Processing Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
3
|
Liao H, Wen J, Nie H, Ling C, Zhang L, Xu F, Dong X. Study on the inhibitory activity and mechanism of Mentha haplocalyx essential oil nanoemulsion against Fusarium oxysporum growth. Sci Rep 2024; 14:16064. [PMID: 38992117 PMCID: PMC11239933 DOI: 10.1038/s41598-024-67054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Mentha haplocalyx essential oil (MEO) has demonstrated inhibitory effects on Fusarium oxysporum. Despite its environmentally friendly properties as a natural product, the limited water solubility of MEO restricts its practical application in the field. The use of nanoemulsion can improve bioavailability and provide an eco-friendly approach to prevent and control Panax notoginseng root rot. In this study, Tween 80 and anhydrous ethanol (at a mass ratio of 3) were selected as carriers, and the ultrasonic method was utilized to produce a nanoemulsion of MEO (MNEO) with an average particle size of 26.07 nm. Compared to MTEO (MEO dissolved in an aqueous solution of 2% DMSO and 0.1% Tween 80), MNEO exhibited superior inhibition against F. oxysporum in terms of spore germination and hyphal growth. Transcriptomics and metabolomics results revealed that after MNEO treatment, the expression levels of certain genes related to glycolysis/gluconeogenesis, starch and sucrose metabolism were significantly suppressed along with the accumulation of metabolites, leading to energy metabolism disorder and growth stagnation in F. oxysporum. In contrast, the inhibitory effect from MTEO treatment was less pronounced. Furthermore, MNEO also demonstrated inhibition on meiosis, ribosome function, and ribosome biogenesis in F. oxysporum growth process. These findings suggest that MNEO possesses enhanced stability and antifungal activity, which effectively hinders F. oxysporum through inducing energy metabolism disorder, meiotic stagnation, as well as ribosome dysfunction, thus indicating its potential for development as a green pesticide for prevention and control P. notoginseng root rot caused by F.oxyosporum.
Collapse
Affiliation(s)
- Hongxin Liao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Jinrui Wen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Hongyan Nie
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Cuiqiong Ling
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Liyan Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Furong Xu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Xian Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China.
| |
Collapse
|
4
|
Koohi A, Rahdari P, Babakhani B, Asadi M. Foliar-applied melatonin and titanium nanoparticles modulate cadmium (Cd) toxicity through minimizing Cd accumulation and optimizing physiological and biochemical properties in sage (Salvia officinalis L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45370-45382. [PMID: 38965106 DOI: 10.1007/s11356-024-34126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Notwithstanding the fact that melatonin (MT) and titanium nanoparticles (Ti NPs) alone have been widely used recently to modulate cadmium (Cd) stress in plants, there is a gap in the comparative impacts of these materials on lowering Cd toxicity in sage plants. The objective of this study was to determine how foliar application of MT and Ti NPs affected the growth, Cd accumulation, photosynthesis, water content, lipid peroxidation, and essential oil (EO) quality and quantity of sage plants in Cd-contaminated soils. A factorial experiment was conducted using MT at 100 and 200 μM and Ti NPs at 50 and 100 mg L-1 topically, together with Cd toxicity at 10 and 20 mg Cd kg-1 soil. The results showed that Cd toxicity decreased plant growth and enhanced lipid peroxidation. The Cd stress at 20 mg kg-1 soil resulted in increases in Cd root (693%), Cd shoot (429%), electrolyte leakage (EL, 29%), malondialdehyde (MDA, 72%), shoot weight (31%), root weight (27%), chlorophyll (Chl) a + b (26%), relative water content (RWC, 23%), and EO yield (30%). The application of MT and Ti NPs controlled drought stress by reducing MDA and EL, enhancing plant weight, Chl, RWC, and EO production, and minimizing Cd accumulation in plant tissues. The predominant compounds in the EO were α-thujone, 1,8-cineole, β-thujone, camphor, and α-humulene. MT and Ti NPs caused α-thujone to rise, whereas Cd stress caused it to fall. Based on heat map analysis, MDA was the trait that was most sensitive to treatments. In summary, the research emphasizes the possibility of MT and Ti NPs, particularly MT at 200 μM, to mitigate Cd toxicity in sage plants and enhance their biochemical reactions.
Collapse
Affiliation(s)
- Atefeh Koohi
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran
| | - Parvaneh Rahdari
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran.
| | - Babak Babakhani
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran
| | - Mahmoud Asadi
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran
| |
Collapse
|
5
|
Emamverdian A, Khalofah A, Pehlivan N, Li Y, Chen M, Liu G. Iron nanoparticles in combination with other conventional Fe sources remediate mercury toxicity-affected plants and soils by nutrient accumulation in bamboo species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116431. [PMID: 38718730 DOI: 10.1016/j.ecoenv.2024.116431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
The issue of mercury (Hg) toxicity has recently been identified as a significant environmental concern, with the potential to impede plant growth in forested and agricultural areas. Conversely, recent reports have indicated that Fe, may play a role in alleviating HM toxicity in plants. Therefore, this study's objective is to examine the potential of iron nanoparticles (Fe NPs) and various sources of Fe, particularly iron sulfate (Fe SO4 or Fe S) and iron-ethylene diamine tetra acetic acid (Fe - EDTA or Fe C), either individually or in combination, to mitigate the toxic effects of Hg on Pleioblastus pygmaeus. Involved mechanisms in the reduction of Hg toxicity in one-year bamboo species by Fe NPs, and by various Fe sources were introduced by a controlled greenhouse experiment. While 80 mg/L Hg significantly reduced plant growth and biomass (shoot dry weight (36%), root dry weight (31%), and shoot length (31%) and plant tolerance (34%) in comparison with control treatments, 60 mg/L Fe NPs and conventional sources of Fe increased proline accumulation (32%), antioxidant metabolism (21%), polyamines (114%), photosynthetic pigments (59%), as well as root dry weight (25%), and shoot dry weight (22%), and shoot length (22%). Fe NPs, Fe S, and Fe C in plant systems substantially enhanced tolerance to Hg toxicity (23%). This improvement was attributed to increased leaf-relative water content (39%), enhanced nutrient availability (50%), improved antioxidant capacity (34%), and reduced Hg translocation (6%) and accumulation (31%) in plant organs. Applying Fe NPs alone or in conjunction with a mixture of Fe C and Fe S can most efficiently improve bamboo plants' tolerance to Hg toxicity. The highest efficiency in increasing biochemical and physiological indexes under Hg, was related to the treatments of Fe NPs as well as Fe NPs + FeS + FeC. Thus, Fe NPs and other Fe sources might be effective options to remove toxicity from plants and soil. The future perspective may help establish mechanisms to regulate environmental toxicity and human health progressions.
Collapse
Affiliation(s)
- Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Necla Pehlivan
- Department of Biology, Recep Tayyip Erdogan University, Rize 53100, Turkiye
| | - Yang Li
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Moxian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Guohua Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Zaghdoud C, Yahia Y, Nagaz K, Martinez-Ballesta MDC. Foliar spraying of zinc oxide nanoparticles improves water transport and nitrogen metabolism in tomato (Solanum lycopersicum L.) seedlings mitigating the negative impacts of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37428-37443. [PMID: 38777976 DOI: 10.1007/s11356-024-33738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The use of bio-nanotechnology in agriculture-such as the biological applications of metal oxide nanoparticles (NPs)-greatly improves crop yield and quality under different abiotic stress factors including soil metal contamination. Here, we explore the effectiveness of zinc oxide (ZnO)-NPs (0, 50 mg/L) foliar spraying to ameliorate the detrimental effects of cadmium (Cd) on the water transport and nitrogen metabolism in tomato (Solanum lycopersicum Mill. cv. Chibli F1) plants grown on a Cd-supplied (CdCl2; 0, 10, 40 μM) Hoagland nutrient solution. The results depicted that the individually studied factors (ZnO-NPs and Cd) had a significant impact on all the physiological parameters analyzed. Independently to the Cd concentration, ZnO-NPs-sprayed plants showed significantly higher dry weight (DW) in both leaves and roots compared to the non-sprayed ones, which was in consonance with higher and lower levels of Zn2+ and Cd2+ ions, respectively, in these organs. Interestingly, ZnO-NPs spraying improved water status in all Cd-treated plants as evidenced by the increase in root hydraulic conductance (L0), apoplastic water pathway percentage, and leaf and root relative water content (RWC), compared to the non-sprayed plants. This improved water balance was associated with a significant accumulation of osmoprotectant osmolytes, such as proline and soluble sugars in the plant organs, reducing electrolyte leakage (EL), and osmotic potential (ψπ). Also, ZnO-NPs spraying significantly improved NO3- and NH4+ assimilation in the leaf and root tissues of all Cd-treated plants, leading to a reduction in NH4+ toxicity. Our findings point out new insights into how ZnO-NPs affect water transport and nitrogen metabolism in Cd-stressed plants and support their use to improve crop resilience against Cd-contaminated soils.
Collapse
Affiliation(s)
- Chokri Zaghdoud
- Dry Land Farming and Oasis Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, 4119, Medenine, Tunisia.
- Technology Transfer Office (TTO), University of Gafsa, 2112, Gafsa, Tunisia.
| | - Yassine Yahia
- Dry Land Farming and Oasis Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, 4119, Medenine, Tunisia
| | - Kamel Nagaz
- Dry Land Farming and Oasis Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, 4119, Medenine, Tunisia
| | - Maria Del Carmen Martinez-Ballesta
- Ingeniería Agronómica, Technical University of Cartagena, Paseo Alfonso XIII 48, E-30203, Cartagena, Spain
- Recursos Fitogenéticos, Instituto de Biotecnología Vegetal, Edificio I+D+i, E-30202, Cartagena, Spain
| |
Collapse
|
7
|
Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnology 2024; 22:91. [PMID: 38443975 PMCID: PMC10913482 DOI: 10.1186/s12951-024-02371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Necla Pehlivan
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Mohammadi H, Kazemi Z, Aghaee A, Hazrati S, Golzari Dehno R, Ghorbanpour M. Unraveling the influence of TiO 2 nanoparticles on growth, physiological and phytochemical characteristics of Mentha piperita L. in cadmium-contaminated soil. Sci Rep 2023; 13:22280. [PMID: 38097718 PMCID: PMC10721648 DOI: 10.1038/s41598-023-49666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Among the metals contaminants, cadmium (Cd) is one of the most toxic elements in cultivated soils, causing loss of yield and productivity in plants. Recently, nanomaterials have been shown to mitigate the negative consequences of environmental stresses in different plants. However, little is known about foliar application of titanium dioxide nanoparticles (TiO2 NPs) to alleviate Cd stress in medicinal plants, and their dual interactions on essential oil production. The objective of this study was to investigate the effects of foliar-applied TiO2 NPs on growth, Cd uptake, chlorophyll fluorescence, photosynthetic pigments, malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, total phenols, anthocyanins, flavonoids, antioxidant enzymes (SOD, CAT and POD) activity and essential oil content of Mentha piperita L. (peppermint) under Cd stress. For this purpose, plants were grown in Cd-contaminated (0, 20, 40, and 60 mg L-1) soil, and different concentrations of TiO2 NPs (0, 75, and 150 mg L-1) were foliar sprayed at three times after full establishment until the beginning of flowering. Exposure to TiO2 NPs significantly (P < 0.01) increased shoot dry weight (37.8%) and the number of lateral branches (59.4%) and decreased Cd uptake in plant tissues as compared to the control. Application of TiO2 NPs increased the content of plastid pigments, and the ratio Fv/Fm (13.4%) as compared to the control. Additionally, TiO2 NPs reduced the stress markers, MDA and H2O2 contents and enhanced the activity of the phenylalanine ammonia-lyase (PAL) enzyme (60.5%), total phenols (56.1%), anthocyanins (42.6%), flavonoids (25.5%), and essential oil content (52.3%) in Cd-stressed peppermint compared to the control. The results also demonstrated that foliar spray of TiO2 NPs effectively improved the growth and chlorophyll fluorescence parameters and reduced Cd accumulation in peppermint, which was mainly attributed to the reduction of oxidative burst and enhancement of the enzymatic (SOD, CAT, and POD) antioxidant defense system due to the uptake of NPs. The findings provide insights into the regulatory mechanism of TiO2 NPs on peppermint plants growth, physiology and secondary metabolites production in Cd-contaminated soil.
Collapse
Affiliation(s)
- Hamid Mohammadi
- Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Zahra Kazemi
- Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Ahmad Aghaee
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | - Saeid Hazrati
- Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Rosa Golzari Dehno
- Department of Agriculture, Chalus Branch, Islamic Azad University, Chalus, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran
| |
Collapse
|
9
|
Abdi MJ, Ghanbari Jahromi M, Mortazavi SN, Kalateh Jari S, Nazarideljou MJ. Foliar-applied silicon and selenium nanoparticles modulated salinity stress through modifying yield, biochemical attribute, and fatty acid profile of Physalis alkekengi L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100513-100525. [PMID: 37632614 DOI: 10.1007/s11356-023-29450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Soil salinity is a major environmental problem owing to its negative impact on agricultural productivity and sustainability. Nanoparticles (NPs) have recently been highlighted for their ability to alleviate salinity stress. The current study aimed to alleviate salt stress by using silicon (Si) and selenium (Se) NPs on the growth and physiological attributes of Physalis alkekengi L. Plants were irrigated with saline water at 50, 100, and 200 mM NaCl, and Si NPs (200 mg L-1) and Se NPs (50 mg L-1) were sprayed on leaves three times in a pot experiment in 2022. Leaf chlorophyll (Chl) content, antioxidant capacity, and fatty acid (FA) profile of fruits were measured to find the effects of NPs and salinity in the plants. Salinity at 50 mM did not significantly differ from the control, but at 100-200 mM, salt stress had a substantial impact on the majority of traits. Compared with non-saline conditions, 200 mM NaCl led to decreases in shoot weight (40%), fruit weight (30%), Chl a (30%), Chl b (39%), anthocyanin (31%), ascorbic acid (16%), total phenolic content (TPC, 11%) but increases in total soluble solids (TSS, 79%), titration acidity (TA, 17%), and TSS/TA (52%) in plants without spraying the NPs. However, Si and Se NPs modulated salinity stress by increasing shoot and fruit weight, Chl content, anthocyanin, and TPC, and with decreasing TSS and TSS/TA. Salinity elevated polyunsaturated fatty acids (PUFAs) and lowered monounsaturated fatty acids (MUFAs). According to multivariate analysis, 50 mM and control were found to be in the same cluster, whereas 100 and 200 mM were shown to be in different clusters. Foliar application of Si and Se NPs at 200 and 50 mg L-1, respectively, can be recommended for mitigating salt stress at 100-200 mM NaCl in P. alkekengi L. Plants. Farmers can use the findings to increase the ability of Si and Se NPs to protect plants against salt.
Collapse
Affiliation(s)
- Mohammad Javad Abdi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Sepideh Kalateh Jari
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
10
|
Song J, Yu S, Yang R, Xiao J, Liu J. Opportunities for the use of selenium nanoparticles in agriculture. NANOIMPACT 2023; 31:100478. [PMID: 37499754 DOI: 10.1016/j.impact.2023.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Due to the growing number of the world's population, there is an urgent need for high-quality food to meet global food security. Traditional fertilizers and pesticides face the problems of low utilization efficiency and possible hazards to non-target organisms. Selenium (Se) is an essential trace element for animals and humans. As a result, Se nanoparticles (SeNPs) have aroused intense interest and found opportunities in agricultural use. Herein, we summarized representative studies on the potential application of SeNPs in agriculture, including mitigating biotic and abiotic stresses in plants, promoting seed germination and plant growth, and improving Se contents and nutritional values in crops, and the underlying mechanisms were also discussed. Finally, future directions are highlighted to get a deep insight into this field.
Collapse
Affiliation(s)
- Jiangyun Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rui Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junping Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| |
Collapse
|
11
|
Bakhtiari M, Raeisi Sadati F, Raeisi Sadati SY. Foliar application of silicon, selenium, and zinc nanoparticles can modulate lead and cadmium toxicity in sage (Salvia officinalis L.) plants by optimizing growth and biochemical status. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54223-54233. [PMID: 36872405 DOI: 10.1007/s11356-023-25959-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Different techniques have been used to alleviate metal toxicity in medicinal plants; accordingly, nanoparticles (NPs) have a noticeable interest in modulating oxidative stresses. Therefore, this work aimed to compare the impacts of silicon (Si), selenium (Se), and zinc (Zn) NPs on the growth, physiological status, and essential oil (EO) of sage (Salvia officinalis L.) treated with foliar application of Si, Se, and Zn NPs upon lead (Pb) and cadmium (Cd) stresses. The results showed that Se, Si, and Zn NPs decreased Pb accumulation by 35, 43, and 40%, and Cd concentration by 29, 39, and 36% in sage leaves. Shoot plant weight showed a noticeable reduction upon Cd (41%) and Pb (35%) stress; however, NPs, particularly Si and Zn improved plant weight under metal toxicity. Metal toxicity diminished relative water content (RWC) and chlorophyll, whereas NPs significantly enhanced these variables. The noticeable raises in malondialdehyde (MDA) and electrolyte leakage (EL) were observed in plants exposed to metal toxicity; however, they were alleviated with foliar application of NPs. The EO content and EO yield of sage plants decreased by the heavy metals but increased by the NPs. Accordingly, Se, Si, and Zn NPS elevated EO yield by 36, 37, and 43%, respectively, compared with non-NPs. The primary EO constituents were 1,8-cineole (9.42-13.41%), α-thujone (27.40-38.73%), β-thujone (10.11-12.94%), and camphor (11.31-16.45%). This study suggests that NPs, particularly Si and Zn, boosted plant growth by modulating Pb and Cd toxicity, which could be advantageous for cultivating this plant in areas with heavy metal-polluted soils.
Collapse
Affiliation(s)
- Mitra Bakhtiari
- Department of Agronomy, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Fereshteh Raeisi Sadati
- Department of Landscape Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyede Yalda Raeisi Sadati
- Department of Plant Genetics and Production Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|