1
|
Braun G, Herberth G, Krauss M, König M, Wojtysiak N, Zenclussen AC, Escher BI. Neurotoxic mixture effects of chemicals extracted from blood of pregnant women. Science 2024; 386:301-309. [PMID: 39418383 DOI: 10.1126/science.adq0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Human biomonitoring studies typically capture only a small and unknown fraction of the entire chemical universe. We combined chemical analysis with a high-throughput in vitro assay for neurotoxicity to capture complex mixtures of organic chemicals in blood. Plasma samples of 624 pregnant women from the German LiNA cohort were extracted with a nonselective extraction method for organic chemicals. 294 of >1000 target analytes were detected and quantified. Many of the detected chemicals as well as the whole extracts interfered with neurite development. Experimental testing of simulated complex mixtures of detected chemicals in the neurotoxicity assay confirmed additive mixture effects at concentrations less than individual chemicals' effect thresholds. The use of high-throughput target screening combined with bioassays has the potential to improve human biomonitoring and provide a new approach to including mixture effects in epidemiological studies.
Collapse
Affiliation(s)
- Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Niklas Wojtysiak
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
- Environmental Pediatric Immunology, Medical Faculty, Leipzig University, Leipzig 04103, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Leipzig 04103, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Leipzig 04103, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen 72074, Germany
| |
Collapse
|
2
|
Tachachartvanich P, Sangsuwan R, Navasumrit P, Ruchirawat M. Assessment of immunomodulatory effects of five commonly used parabens on human THP-1 derived macrophages: Implications for ecological and human health impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173823. [PMID: 38851341 DOI: 10.1016/j.scitotenv.2024.173823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Parabens are widely used as broad-spectrum anti-microbials and preservatives in food, cosmetics, pharmaceuticals, and personal care products. Studies suggest that the utilization of parabens has substantially increased over the past years, particularly during the global pandemic of coronavirus disease 2019 (COVID-19). Although parabens are generally recognized as safe by the U.S. FDA, some concerns have been raised regarding the potential health effects of parabens associated with immunotoxicity. Herein, we comprehensively investigated several key characteristics of immunotoxicants of five commonly used parabens (methyl-, ethyl-, propyl-, butyl-, and benzyl parabens) in human THP-1 derived macrophages, which are effector cells serving as a first line of host defense against pathogens and tumor immunosurveillance. The results indicate parabens, at concentrations found in humans and biota, significantly dampened macrophage chemotaxis and secretion of major pro-inflammatory cytokines (TNF-α and IL-6) and anti-inflammatory cytokine (IL-10), corroborating the mRNA expression profile. Furthermore, some parabens were found to markedly alter macrophage adhesion and cell surface expression of costimulatory molecules, CD80+ and CD86+, and significantly increase macrophage phagocytosis. Collectively, these findings heighten awareness of potential immunotoxicity posed by paraben exposure at biologically relevant concentrations, providing implications for human health and ecological risks associated with immune dysfunctions.
Collapse
Affiliation(s)
- Phum Tachachartvanich
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Rapeepat Sangsuwan
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| |
Collapse
|
3
|
Ramos TDS, Gonçalves KB, Marciano LPDA, Rosa MA, Martins I. A sustainable and innovative method to determine parabens in body creams for exposure and risk assessment. Regul Toxicol Pharmacol 2024; 151:105667. [PMID: 38925470 DOI: 10.1016/j.yrtph.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) are among the most widely used preservatives in cosmetics, drugs, and foods. These compounds have been associated with toxic effects due to the overuse of products with parabens in their formulation. The toxicity of parabens may be correlated to endocrine disruption, owing to their ability to mimic the actions of estradiol. In this paper, a simple, sustainable, robust, and innovative dispersive liquid-liquid microextraction (DLLME) technique was developed and employed to extract these xenobiotics from body cream samples, aiming to calculate the margin of safety (MoS) to assess the risk of exposure. The validated method presented suitable linearity (r > 0.99), lower limits of detection (ranging from 0.01 to 0.04 % w/w), and satisfactory precision and accuracy (ranging from 4.33 to 10.47, and from -14.25 to 13.85, respectively). Seven of the ten analysed samples presented paraben contents within the acceptable concentration according to European legislation. The MoS value obtained for PrP (37.58) suggested its reduced safety, indicating that PrP may significantly contribute to systemic exposure resulting from the use of personal care products.
Collapse
Affiliation(s)
- Thalita da Silva Ramos
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| | - Karina Borba Gonçalves
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| | - Luiz Paulo de Aguiar Marciano
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| | - Mariana Azevedo Rosa
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| | - Isarita Martins
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|
4
|
Liao K, Zhao Y, Qu J, Yu W, Hu S, Fang S, Zhao M, Jin H. Association of serum bisphenols, parabens, and triclosan concentrations with Sjögren Syndrome in the Hangzhou, China population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170031. [PMID: 38220002 DOI: 10.1016/j.scitotenv.2024.170031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) has been linked to various immune deficiency disorders, including autoimmune diseases like Sjögren Syndrome (SjS). However, the detrimental effects of exposure to EDCs, including bisphenols, parabens, and triclosan (TCS), on SjS have been inadequately documented. Thus, we conducted a cross-sectional study that included both healthy individuals (controls) and patients with SjS (cases). We assessed serum concentrations of bisphenol A (BPA), bisphenol S (BPS), methyl parabens (MeP), ethyl parabens (EtP), and TCS. The relationship between the five EDCs levels and the risk of SjS was also explored. Additionally, we conducted an in-depth analysis of the collective influence of these EDCs mixtures on SjS, employing a weighted quantile sum regression model. Out of the five EDCs analyzed, EtP displayed the highest mean concentration (2.80 ng/mL), followed by BPA (2.66 ng/mL) and MeP (1.99 ng/mL), with TCS registering the lowest level (0.36 ng/mL). Notably, BPS exposure was significantly positively associated with the risk of being diagnosed with SjS (with an odds ratio [OR] of 1.17, p = 0.042). No statistically significant associations with SjS were observed for BPA, MeP, EtP, and TCS (p > 0.05). And we did not observe any significant effects of the EDCs mixture on SjS. To the best of our knowledge, this study is the first to suggest that BPS may potentially increase the risk of SjS. Although no significant effects were observed between other EDCs and SjS risk, we cannot disregard the potential harm of EDCs due to their non-monotonic dose response.
Collapse
Affiliation(s)
- Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Yun Zhao
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Shetuan Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Shuhong Fang
- College Resources & Environment, Chengdu University Information Technology, Chengdu 610225, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
5
|
Mao W, Jin H, Guo R, Chen P, Zhong S, Wu X. Distribution of parabens and 4-HB in human blood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169874. [PMID: 38185174 DOI: 10.1016/j.scitotenv.2024.169874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Human blood has been commonly and routinely analyzed to determine internal human exposure to parabens. However, data on the occurrence of parabens and their common metabolite, p-hydroxybenzoic acid (4-HB), in different human blood matrixes is still limited. In this study, 139 pairs of serum and whole blood samples were collected from Chinese adults, and then analyzed them for 5 parabens and 4-HB. Methylparaben (MeP) and propylparaben (PrP) were consistently the predominant parabens in human serum (mean 2.3 and 2.1 ng/mL, respectively) and whole blood (1.9 and 1.3 ng/mL, respectively). Mean concentrations of 4-HB in human serum and whole blood were 7.7 and 12 ng/mL, respectively. Concentrations of parabens, except benzylparaben (BzP), and 4-HB in human serum were significantly (p < 0.01) correlated with that in whole blood. Distribution pattern of parabens and 4-HB in human blood was evaluated, for the first time, based on their partitioning between human serum and whole blood (Kp). Mean Kp values of parabens, except BzP, increased with the alkyl chain length from 0.83 to 1.6. BzP (mean 1.4) had a comparable mean Kp value to PrP (mean 1.4). Among target analytes, 4-HB had the lowest mean Kp value (0.75). These data are important to select appropriate blood matrixes for conducting human exposure assessment and epidemiological studies on parabens.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Ping Chen
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Songyang Zhong
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Xilin Wu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China.
| |
Collapse
|
6
|
Ko Y, Kim EH, Kim D, Choi S, Gil J, Park HJ, Shin Y, Kim W, Bae ON. Butylparaben promotes phosphatidylserine exposure and procoagulant activity of human red blood cells via increase of intracellular calcium levels. Food Chem Toxicol 2023; 181:114084. [PMID: 37816477 DOI: 10.1016/j.fct.2023.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023]
Abstract
Parabens are widely used as preservatives, added to products commonly used by humans, and to which individuals are exposed orally or dermally. Once absorbed into the body, parabens move into the bloodstream and travel through the systemic circulation. We investigated the potential impact of parabens on the enhanced generation of thrombin by red blood cells (RBCs), which are the principal cellular components of blood. We tested the effects of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), butylparaben (BuP), and p-hydroxybenzoic acid on freshly isolated human RBCs. BuP and simultaneous exposure to BuP and PrP significantly increased phosphatidylserine (PS) externalization to the outer membranes of RBCs. PS externalization by BuP was found to be mediated by increasing intracellular Ca2+ levels in RBCs. The morphological changes in BuP-treated RBCs were observed under an electron microscope. The BuP-exposed RBCs showed increased thrombin generation and adhesion to endothelial cells. Additionally, the externalization of PS exposure and thrombin generation in BuP-treated RBCs were more susceptible to high shear stress, which mimics blood turbulence under pathological conditions. Collectively, we observed that BuP induced morphological and functional changes in RBCs, especially under high shear stress, suggesting that BuP may contribute to the thrombotic risk via procoagulant activity in RBCs.
Collapse
Affiliation(s)
- Yeonju Ko
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eun-Hye Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Donghyun Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Sungbin Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Junkyung Gil
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Han Jin Park
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Yusun Shin
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Wondong Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
7
|
Mao W, Qu J, Zhong S, Wu X, Mao K, Liao K, Jin H. Associations between urinary parabens and lung cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66186-66194. [PMID: 37097579 DOI: 10.1007/s11356-023-26953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
Parabens are a family of endocrine-disrupting chemicals. Environmental estrogens may play a vital role in the development of lung cancer. To date, the association between parabens and lung cancer is unknown. Based on the 189 cases and 198 controls recruited between 2018 and 2021 in Quzhou, China, we measured 5 urinary parabens concentrations and examined the association between urinary concentrations of parabens and lung cancer risk. Cases showed significantly higher median concentrations of methyl-paraben (MeP) (2.1 versus 1.8 ng/mL), ethyl-paraben (0.98 versus 0.66 ng/mL), propyl-paraben (PrP) (2.2 versus 1.4 ng/mL), and butyl-paraben (0.33 versus 0.16 ng/mL) than controls. The detection rates of benzyl-paraben were only 8 and 6% in the control and case groups, respectively. Therefore, the compound was not considered in the further analysis. The significant correlation between urinary concentrations of PrP and the risk of lung cancer (odds ratio (OR)adjusted = 2.22, 95% confidence interval (CI): 1.76, 2.75; Ptrend < 0.001) was identified in the adjusted model. In the stratification analysis, we found that urinary concentrations of MeP were significantly associated with lung cancer risk (OR = 1.16, 95% CI: 1.01, 1.27 for the highest quartile group). Besides, comparing the second, third, and fourth quartile groups with the lowest group of PrP, we also observed urinary PrP concentrations associated with lung cancer risk, with the adjusted OR of 1.52 (95% CI: 1.29, 1.65, Ptrend = 0.007), 1.39 (95% CI: 1.15, 1.60, Ptrend = 0.010), and 1.85 (95% CI: 1.53, 2.30, Ptrend = 0.001), respectively. MeP and PrP exposure, reflected in urinary concentrations of parabens, may be positively associated with the risk of lung cancer in adults.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| | - Songyang Zhong
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China
| | - Xilin Wu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China
| | - Kaili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China.
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| |
Collapse
|
8
|
Peinado FM, Iribarne-Durán LM, Artacho-Cordón F. Human Exposure to Bisphenols, Parabens, and Benzophenones, and Its Relationship with the Inflammatory Response: A Systematic Review. Int J Mol Sci 2023; 24:ijms24087325. [PMID: 37108488 PMCID: PMC10139086 DOI: 10.3390/ijms24087325] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Bisphenols, parabens (PBs), and benzophenones (BPs) are widely used environmental chemicals that have been linked to several adverse health effects due to their endocrine disrupting properties. However, the cellular pathways through which these chemicals lead to adverse outcomes in humans are still unclear, suggesting some evidence that inflammation might play a key role. Thus, the aim of this study was to summarize the current evidence on the relationship between human exposure to these chemicals and levels of inflammatory biomarkers. A systematic review of peer-reviewed original research studies published up to February 2023 was conducted using the MEDLINE, Web of Science, and Scopus databases. A total of 20 articles met the inclusion/exclusion criteria. Most of the reviewed studies reported significant associations between any of the selected chemicals (mainly bisphenol A) and some pro-inflammatory biomarkers (including C-reactive protein and interleukin 6, among others). Taken together, this systematic review has identified consistent positive associations between human exposure to some chemicals and levels of pro-inflammatory biomarkers, with very few studies exploring the associations between PBs and/or BPs and inflammation. Therefore, a larger number of studies are required to get a better understanding on the mechanisms of action underlying bisphenols, PBs, and BPs and the critical role that inflammation could play.
Collapse
Affiliation(s)
| | | | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
| |
Collapse
|