1
|
Lu J, Chen G, Sorokina A, Nguyen T, Wallace T, Nguyen C, Dunn C, Wang S, Ellis S, Shi G, McKelvey J, Sharov A, Liu YT, Schneck J, Weng NP. Cytomegalovirus infection reduced CD70 expression, signaling and expansion of viral specific memory CD8+ T cells in healthy human adults. IMMUNITY & AGEING 2022; 19:54. [DOI: 10.1186/s12979-022-00307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Background
Cytomegalovirus (CMV) infection leads to effector memory CD8+ T cell expansion and is associated with immune dysfunction in older adults. However, the molecular alterations of CMV-specific CD8+ T cells in CMV infected healthy young and middle-aged adults has not been fully characterized.
Results
We compared CD8+ T cells specific for a CMV epitope (pp65495-503, NLV) and an influenza A virus (IAV) epitope (M158-66, GIL) from the same young and middle-aged healthy adults with serum positive for anti-CMV IgG. Compared to the IAV-specific CD8+ T cells, CMV-specific CD8+ T cells contained more differentiated effector memory (TEM and TEMRA) cells. Isolated CMV-specific central memory (TCM) but not naïve (TN) cells had a significant reduced activation-induced expansion in vitro compared to their IAV-specific counterparts. Furthermore, we found that CD70 expression was reduced in CMV-specific CD28+CD8+ TCM and that CD70+ TCM had better expansion in vitro than did CD70- TCM. Mechanistically, we showed that CD70 directly enhanced MAPK phosphorylation and CMV-specific CD8+ TCM cells had a reduced MAPK signaling upon activation. Lastly, we showed that age did not exacerbate reduced CD70 expression in CMV- specific CD8+ TCM cells.
Conclusion
Our findings showed that CMV infection causes mild expansion of CMV-NLV-specific CD8+ T cells, reduced CD70 expression and signaling, and proliferation of CMV-NLV-specific CD8+ TCM cells in young and middle-aged healthy adults and revealed an age-independent and CMV infection-specific impact on CD8+ memory T cells.
Collapse
|
2
|
Abstract
While many viral infections are limited and eventually resolved by the host immune response or by death of the host, other viruses establish long-term relationships with the host by way of a persistent infection, that range from chronic viruses that may be eventually cleared to those that establish life-long persistent or latent infection. Viruses infecting hosts from bacteria to humans establish quiescent infections that must be reactivated to produce progeny. For mammalian viruses, most notably herpesviruses, this quiescent maintenance of viral genomes in the absence of virus replication is referred to as latency. The latent strategy allows the virus to persist quiescently within a single host until conditions indicate a need to reactivate to reach a new host or, to re-seed a reservoir within the host. Here, I review common themes in viral strategies to regulate the latent cycle and reactivate from it ranging from bacteriophage to herpesviruses with a focus on human cytomegalovirus (HCMV). Themes central to herpesvirus latency include, epigenetic repression of viral gene expression and mechanisms to regulate host signaling and survival. Critical to the success of a latent program are mechanisms by which the virus can "sense" fluctuations in host biology (within the host) or environment (outside the host) and make appropriate "decisions" to maintain latency or re-initiate the replicative program. The signals or environments that indicate the establishment of a latent state, the very nature of the latent state, as well as the signals driving reactivation have been topics of intense study from bacteriophage to human viruses, as these questions encompass the height of complexity in virus-host interactions-where the host and the virus coexist.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
3
|
Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1804. [PMID: 36416020 PMCID: PMC9787548 DOI: 10.1002/wnan.1804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Nanosafety assessment has experienced an intense era of research during the past decades driven by a vivid interest of regulators, industry, and society. Toxicological assays based on in vitro cellular models have undergone an evolution from experimentation using nanoparticulate systems on singular epithelial cell models to employing advanced complex models more realistically mimicking the respective body barriers for analyzing their capacity to alter the immune state of exposed individuals. During this phase, a number of lessons were learned. We have thus arrived at a state where the next chapters have to be opened, pursuing the following objectives: (1) to elucidate underlying mechanisms, (2) to address effects on vulnerable groups, (3) to test material mixtures, and (4) to use realistic doses on (5) sophisticated models. Moreover, data reproducibility has become a significant demand. In this context, we studied the emerging concept of adverse outcome pathways (AOPs) from the perspective of immune activation and modulation resulting in pro-inflammatory versus tolerogenic responses. When considering the interaction of nanomaterials with biological systems, protein corona formation represents the relevant molecular initiating event (e.g., by potential alterations of nanomaterial-adsorbed proteins). Using this as an example, we illustrate how integrated experimental-computational workflows combining in vitro assays with in silico models aid in data enrichment and upon comprehensive ontology-annotated (meta)data upload to online repositories assure FAIRness (Findability, Accessibility, Interoperability, Reusability). Such digital twinning may, in future, assist in early-stage decision-making during therapeutic development, and hence, promote safe-by-design innovation in nanomedicine. Moreover, it may, in combination with in silico-based exposure-relevant dose-finding, serve for risk monitoring in particularly loaded areas, for example, workplaces, taking into account pre-existing health conditions. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Sabine Hofer
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Norbert Hofstätter
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Benjamin Punz
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Ingrid Hasenkopf
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Litty Johnson
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| |
Collapse
|
4
|
Rea IM, Alexander HD. Triple jeopardy in ageing: COVID-19, co-morbidities and inflamm-ageing. Ageing Res Rev 2022; 73:101494. [PMID: 34688926 PMCID: PMC8530779 DOI: 10.1016/j.arr.2021.101494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Covid-19 endangers lives, has disrupted normal life, changed the way medicine is practised and is likely to alter our world for the foreseeable future. Almost two years on since the presumptive first diagnosis of COVID-19 in China, more than two hundred and fifty million cases have been confirmed and more than five million people have died globally, with the figures rising daily. One of the most striking aspects of COVID-19 illness is the marked difference in individuals' experiences of the disease. Some, most often younger groups, are asymptomatic, whereas others become severely ill with acute respiratory distress syndrome (ARDS), pneumonia or proceed to fatal organ disease. The highest death rates are in the older and oldest age groups and in people with co-morbidities such as diabetes, heart disease and obesity. Three major questions seem important to consider. What do we understand about changes in the immune system that might contribute to the older person's risk of developing severe COVID-19? What factors contribute to the higher morbidity and mortality in older people with COVID-19? How could immunocompetence in the older and the frailest individuals and populations be supported and enhanced to give protection from serious COVID-19 illness?
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, United Kingdom; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom; Meadowlands Ambulatory Care Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom.
| | - H Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| |
Collapse
|
5
|
Ferri C, Arcangeletti MC, Caselli E, Zakrzewska K, Maccari C, Calderaro A, D'Accolti M, Soffritti I, Arvia R, Sighinolfi G, Artoni E, Giuggioli D. Insights into the knowledge of complex diseases: Environmental infectious/toxic agents as potential etiopathogenetic factors of systemic sclerosis. J Autoimmun 2021; 124:102727. [PMID: 34601207 DOI: 10.1016/j.jaut.2021.102727] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease secondary to three cardinal pathological features: immune-system alterations, diffuse microangiopathy, and fibrosis involving the skin and internal organs. The etiology of SSc remains quite obscure; it may encompass multiple host genetic and environmental -infectious/chemical-factors. The present review focused on the potential role of environmental agents in the etiopathogenesis of SSc based on epidemiological, clinical, and laboratory investigations previously published in the world literature. Among infectious agents, some viruses that may persist and reactivate in infected individuals, namely human cytomegalovirus (HCMV), human herpesvirus-6 (HHV-6), and parvovirus B19 (B19V), and retroviruses have been proposed as potential causative agents of SSc. These viruses share a number of biological activities and consequent pathological alterations, such as endothelial dysfunction and/or fibroblast activation. Moreover, the acute worsening of pre-existing interstitial lung involvement observed in SSc patients with symptomatic SARS-CoV-2 infection might suggest a potential role of this virus in the overall disease outcome. A variety of chemical/occupational agents might be regarded as putative etiological factors of SSc. In this setting, the SSc complicating silica dust exposure represents one of the most promising models of study. Considering the complexity of SSc pathogenesis, none of suggested causative factors may explain the appearance of the whole SSc; it is likely that the disease is the result of a multifactorial and multistep pathogenetic process. A variable combination of potential etiological factors may modulate the appearance of different clinical phenotypes detectable in individual scleroderma patients. The in-deep investigations on the SSc etiopathogenesis may provide useful insights in the broad field of human diseases characterized by diffuse microangiopathy or altered fibrogenesis.
Collapse
Affiliation(s)
- Clodoveo Ferri
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy; Rheumatology Unit, Casa di Cura Madonna dello Scoglio, Cotronei (KR), Italy.
| | | | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Krystyna Zakrzewska
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Clara Maccari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria D'Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianluca Sighinolfi
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy.
| | - Erica Artoni
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy
| | - Dilia Giuggioli
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy
| |
Collapse
|
6
|
Goldeck D, Adriaensen W, Oettinger L, Vaes B, van Pottelbergh G, Degryse JM, Hamprecht K, Matheï C, Pawelec G. Cellular Immune Phenotypes and Worsening Scores of Frailty-Associated Parameters Over an 18-Month Period in the Very Old. J Gerontol A Biol Sci Med Sci 2021; 76:1356-1361. [PMID: 33780527 DOI: 10.1093/gerona/glab089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Frailty has been related to inflammaging and certain immune parameters. In previous analyses of participants older than 80 years of age in the longitudinal BELFRAIL cohort study, the main focus was on T-cell phenotypes and the association with cytomegalovirus (CMV) serostatus and survival, finding that a CD4:CD8 ratio greater than 5 was associated with frailty, impaired activities of daily living (ADLs), and mortality (but only in women). Here, we phenotyped peripheral blood immune cells via multicolor flow cytometry and correlated these with the dynamics of changes in ADL, geriatric depression score, Mini-Mental State Examination, and Short Physical Performance Battery from baseline values over 18 months follow-up. We found that higher frequencies of B cells and late-differentiated CD8+ T cells at 18 months from baseline were associated with ADL impairment that had worsened over the preceding 18 months. There were no significant associations with monocyte, dendritic cell, or natural killer (NK) cell phenotypes. No associations with the Geriatric Depression Scale, the Mini-Mental State Examination, or the Short Physical Performance Battery were found. Thus, while these results do not establish causality, they suggest that certain adaptive immune, but not innate immune, parameters are associated with a worsened ADL in the very old.
Collapse
Affiliation(s)
| | - Wim Adriaensen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Lilly Oettinger
- Department of Psychiatry and Psychotherapy, Section for Dementia Research, University of Tübingen, Germany
| | - Bert Vaes
- Department of Public Health and Primary Care, KU Leuven (KUL), Belgium
| | | | | | - Klaus Hamprecht
- Institute of Medical Virology and Epidemiology of Viral Disease, University Hospital, Eberhard-Karls University, Tübingen, Germany
| | - Catharina Matheï
- Department of Public Health and Primary Care, KU Leuven (KUL), Belgium
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, Ontario, Canada
| |
Collapse
|
7
|
Khaltourina D, Matveyev Y, Alekseev A, Cortese F, Ioviţă A. Aging Fits the Disease Criteria of the International Classification of Diseases. Mech Ageing Dev 2020; 189:111230. [PMID: 32251691 DOI: 10.1016/j.mad.2020.111230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
The disease criteria used by the World Health Organization (WHO) were applied to human biological aging in order to assess whether aging can be classified as a disease. These criteria were developed for the 11th revision of the International Classification of Diseases (ICD) and included disease diagnostics, mechanisms, course and outcomes, known interventions, and linkage to genetic and environmental factors. RESULTS: Biological aging can be diagnosed with frailty indices, functional, blood-based biomarkers. A number of major causal mechanisms of human aging involved in various organs have been described, such as inflammation, replicative cellular senescence, immune senescence, proteostasis failures, mitochondrial dysfunctions, fibrotic propensity, hormonal aging, body composition changes, etc. We identified a number of clinically proven interventions, as well as genetic and environmental factors of aging. Therefore, aging fits the ICD-11 criteria and can be considered a disease. Our proposal was submitted to the ICD-11 Joint Task force, and this led to the inclusion of the extension code for "Ageing-related" (XT9T) into the "Causality" section of the ICD-11. This might lead to greater focus on biological aging in global health policy and might provide for more opportunities for the new therapy developers.
Collapse
Affiliation(s)
- Daria Khaltourina
- Department of Risk Factor Prevention, Federal Research Institute for Health Organization and Informatics of Ministry of Health of the Russian Federation, Dobrolyubova St. 11, Moscow, 127254, Russia; International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France.
| | - Yuri Matveyev
- Research Lab, Moscow Regional Research and Clinical Institute, Schepkina St. 61/2 k.1, Moscow, 129110, Russia
| | - Aleksey Alekseev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow, 119991, Russia
| | - Franco Cortese
- Biogerontology Research Foundation, Apt 2354 Chynoweth House, Trevissome Park, Truro, London, TR4 8UN, UK
| | - Anca Ioviţă
- International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France
| |
Collapse
|
8
|
Jergović M, Contreras NA, Nikolich-Žugich J. Impact of CMV upon immune aging: facts and fiction. Med Microbiol Immunol 2019; 208:263-269. [PMID: 31004198 PMCID: PMC6635032 DOI: 10.1007/s00430-019-00605-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/30/2019] [Indexed: 12/28/2022]
Abstract
Aging is accompanied by significant defects in immunity and compromised responses to new, previously unencountered microbial pathogens. Most humans carry several persistent or latent viruses as they age, interacting with the host immune systems for years. In that context maybe the most studied persistent virus is Cytomegalovirus, infamous for its ability to recruit very large T cell responses which increase with age and to simultaneously evade elimination by the immune system. Here we will address how lifelong CMV infection and the immunological burden of its control might affect immune reactivity and health of the host over time.
Collapse
Affiliation(s)
- Mladen Jergović
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85718, USA
| | - Nico A Contreras
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85718, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85718, USA.
- University of Arizona College of Medicine-Tucson, 1501 N Campbell Ave, P.O. Box 221245, Tucson, AZ, 85724, USA.
| |
Collapse
|
9
|
Life-long control of cytomegalovirus (CMV) by T resident memory cells in the adipose tissue results in inflammation and hyperglycemia. PLoS Pathog 2019; 15:e1007890. [PMID: 31220189 PMCID: PMC6605679 DOI: 10.1371/journal.ppat.1007890] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/02/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous herpesvirus infecting most of the world’s population. CMV has been rigorously investigated for its impact on lifelong immunity and potential complications arising from lifelong infection. A rigorous adaptive immune response mounts during progression of CMV infection from acute to latent states. CD8 T cells, in large part, drive this response and have very clearly been demonstrated to take up residence in the salivary gland and lungs of infected mice during latency. However, the role of tissue resident CD8 T cells as an ongoing defense mechanism against CMV has not been studied in other anatomical locations. Therefore, we sought to identify additional locations of anti-CMV T cell residency and the physiological consequences of such a response. Through RT-qPCR we found that mouse CMV (mCMV) infected the visceral adipose tissue and that this resulted in an expansion of leukocytes in situ. We further found, through flow cytometry, that adipose tissue became enriched in cytotoxic CD8 T cells that are specific for mCMV antigens from day 7 post infection through the lifespan of an infected animal (> 450 days post infection) and that carry markers of tissue residence. Furthermore, we found that inflammatory cytokines are elevated alongside the expansion of CD8 T cells. Finally, we show a correlation between the inflammatory state of adipose tissue in response to mCMV infection and the development of hyperglycemia in mice. Overall, this study identifies adipose tissue as a location of viral infection leading to a sustained and lifelong adaptive immune response mediated by CD8 T cells that correlates with hyperglycemia. These data potentially provide a mechanistic link between metabolic syndrome and chronic infection. Mouse cytomegalovirus (mCMV) infection results in initial systemic viremia that is thereafter controlled by the adaptive immune system. Control is mediated in part by T cells that render the virus undetectable systemically, and latent in specific organs, including the lungs and salivary glands. It remains unclear how latent virus is controlled across tissues given the large pool of systemic mCMV-specific T cells. We explored mCMV control in the adipose tissue, whose cellular constituents are potentially susceptible to infection. We found that mCMV infects the adipose tissue during the acute phase, causing local inflammation and a lifelong mCMV-specific CD8 T cell immune response. The response consisted largely from non-recirculating, tissue-resident T cells. The infected adipose tissue showed signs of metabolic changes, that may potentially predispose the infected host to metabolic dysregulation as evidenced by hyperglycemia. Accumulation and persistence of mCMV specific non-circulating resident CD8 T cells (Trm) in adipose tissue reveal a likely generalized mechanism of mCMV tissue reservoir control by Trm cells and identify the adipose tissue as a persistent mCMV reservoir, with potential implications for metabolic health.
Collapse
|
10
|
Bartlett AH, Liang JW, Sandoval-Sierra JV, Fowke JH, Simonsick EM, Johnson KC, Mozhui K. Longitudinal study of leukocyte DNA methylation and biomarkers for cancer risk in older adults. Biomark Res 2019; 7:10. [PMID: 31149338 PMCID: PMC6537435 DOI: 10.1186/s40364-019-0161-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Changes in DNA methylation over the course of life may provide an indicator of risk for cancer. We explored longitudinal changes in CpG methylation from blood leukocytes, and likelihood of future cancer diagnosis. Methods Peripheral blood samples were obtained at baseline and at follow-up visit from 20 participants in the Health, Aging and Body Composition prospective cohort study. Genome-wide CpG methylation was assayed using the Illumina Infinium Human MethylationEPIC (HM850K) microarray. Results Global patterns in DNA methylation from CpG-based analyses showed extensive changes in cell composition over time in participants who developed cancer. By visit year 6, the proportion of CD8+ T-cells decreased (p-value = 0.02), while granulocytes cell levels increased (p-value = 0.04) among participants diagnosed with cancer compared to those who remained cancer-free (cancer-free vs. cancer-present: 0.03 ± 0.02 vs. 0.003 ± 0.005 for CD8+ T-cells; 0.52 ± 0.14 vs. 0.66 ± 0.09 for granulocytes). Epigenome-wide analysis identified three CpGs with suggestive p-values ≤10− 5 for differential methylation between cancer-free and cancer-present groups, including a CpG located in MTA3, a gene linked with metastasis. At a lenient statistical threshold (p-value ≤3 × 10− 5), the top 10 cancer-associated CpGs included a site near RPTOR that is involved in the mTOR pathway, and the candidate tumor suppressor genes REC8, KCNQ1, and ZSWIM5. However, only the CpG in RPTOR (cg08129331) was replicated in an independent data set. Analysis of within-individual change from baseline to Year 6 found significant correlations between the rates of change in methylation in RPTOR, REC8 and ZSWIM5, and time to cancer diagnosis. Conclusion The results show that changes in cellular composition explains much of the cross-sectional and longitudinal variation in CpG methylation. Additionally, differential methylation and longitudinal dynamics at specific CpGs could provide powerful indicators of cancer development and/or progression. In particular, we highlight CpG methylation in the RPTOR gene as a potential biomarker of cancer that awaits further validation. Electronic supplementary material The online version of this article (10.1186/s40364-019-0161-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra H Bartlett
- 1Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN USA
| | - Jane W Liang
- 1Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN USA
| | | | - Jay H Fowke
- 1Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN USA
| | - Eleanor M Simonsick
- 2Intramural Research Program, National Institute on Aging, Baltimore, MD USA
| | - Karen C Johnson
- 1Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN USA
| | - Khyobeni Mozhui
- 1Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN USA
| |
Collapse
|
11
|
Generation, maintenance and tissue distribution of T cell responses to human cytomegalovirus in lytic and latent infection. Med Microbiol Immunol 2019; 208:375-389. [PMID: 30895366 PMCID: PMC6647459 DOI: 10.1007/s00430-019-00598-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Understanding how the T cell memory response directed towards human cytomegalovirus (HCMV) develops and changes over time while the virus persists is important. Whilst HCMV primary infection and periodic reactivation is well controlled by T cell responses in healthy people, when the immune system is compromised such as post-transplantation, during pregnancy, or underdeveloped such as in new-born infants and children, CMV disease can be a significant problem. In older people, HCMV infection is associated with increased risk of mortality and despite overt disease rarely being seen there are increases in HCMV-DNA in urine of older people suggesting that there is a change in the efficacy of the T cell response following lifelong infection. Therefore, understanding whether phenomenon such as “memory inflation” of the immune response is occurring in humans and if this is detrimental to the overall health of individuals would enable the development of appropriate treatment strategies for the future. In this review, we present the evidence available from human studies regarding the development and maintenance of memory CD8 + and CD4 + T cell responses to HCMV. We conclude that there is only limited evidence supportive of “memory inflation” occurring in humans and that future studies need to investigate immune cells from a broad range of human tissue sites to fully understand the nature of HCMV T cell memory responses to lytic and latent infection.
Collapse
|
12
|
Aging, Immunity, and Neuroinflammation: The Modulatory Potential of Nutrition. NUTRITION AND IMMUNITY 2019. [PMCID: PMC7123246 DOI: 10.1007/978-3-030-16073-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aging influences an organism’s entire physiology, affecting functions at the molecular, cellular, and systemic levels and increasing susceptibility to many major chronic diseases. The changes in the immune system that accompany human aging are very complex and are generally referred to as immunosenescence. The factors and mechanisms of immunosenescence are multiple and include, among others, defects in the bone marrow, thymic involution, and intrinsic defects in the formation, maturation, homeostasis, and migration of peripheral lymphocytes. Aging affects both the innate and adaptive arms of the immune system. The process of aging is commonly accompanied by low-grade inflammation thought to contribute to neuroinflammation and to many age-related diseases. Numerous attempts to define the role of chronic inflammation in aging have implicated chronic oxidative stress, mitochondrial damage, immunosenescence, epigenetic modifications, and other phenomena. Several lifestyle strategies, such as intervening to provide an adequate diet and physical and mental activity, have been shown to result in improved immune and neuroprotective functions, a decrease in oxidative stress and inflammation, and a potential increase in individual longevity. The studies published thus far describe a critical role for nutrition in maintaining the immune response of the aged, but they also indicate the need for a more in-depth, holistic approach to determining the optimal nutritional and behavioral strategies that would maintain immune and other physiological systems in elderly people. In this chapter, we focus first on the age-related changes of the immune system. Further, we discuss possible deleterious influences of immunosenescence and low-grade inflammation (inflammaging) on neurodegenerative processes in the normally aging brain. Finally, we consider our current understanding of the modulatory potential of nutrition that may mediate anti-inflammatory effects and thus positively affect immunity and the aging brain.
Collapse
|
13
|
Elias R, Hartshorn K, Rahma O, Lin N, Snyder-Cappione JE. Aging, immune senescence, and immunotherapy: A comprehensive review. Semin Oncol 2018; 45:187-200. [PMID: 30539714 DOI: 10.1053/j.seminoncol.2018.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/07/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
Abstract
The advent of immune checkpoint inhibitors (ICIs) has changed the landscape of cancer treatment. Older adults represent the majority of cancer patients; however, direct data evaluating ICIs in this patient population is lacking. Aging is associated with changes in the immune system known as "immunosenescence" that could impact the efficacy and safety profile of ICIs. In this paper, we review aging-associated changes in the immune system as they may relate to cancer and immunotherapy, with mention of the effect of chronic viral infections and frailty. Furthermore, we summarize the current clinical evidence of ICI effectiveness and toxicity among older adults with cancer.
Collapse
Affiliation(s)
- Rawad Elias
- Hartford HealthCare Cancer Institute, Hartford Hospital, Hartford, CT, USA.
| | - Kevan Hartshorn
- Section of Hematology Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Osama Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nina Lin
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, MA, USA
| | - Jennifer E Snyder-Cappione
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
14
|
Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 2018; 14:576-590. [PMID: 30046148 DOI: 10.1038/s41574-018-0059-4] [Citation(s) in RCA: 1636] [Impact Index Per Article: 233.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing and age-related diseases share some basic mechanistic pillars that largely converge on inflammation. During ageing, chronic, sterile, low-grade inflammation - called inflammaging - develops, which contributes to the pathogenesis of age-related diseases. From an evolutionary perspective, a variety of stimuli sustain inflammaging, including pathogens (non-self), endogenous cell debris and misplaced molecules (self) and nutrients and gut microbiota (quasi-self). A limited number of receptors, whose degeneracy allows them to recognize many signals and to activate the innate immune responses, sense these stimuli. In this situation, metaflammation (the metabolic inflammation accompanying metabolic diseases) is thought to be the form of chronic inflammation that is driven by nutrient excess or overnutrition; metaflammation is characterized by the same mechanisms underpinning inflammaging. The gut microbiota has a central role in both metaflammation and inflammaging owing to its ability to release inflammatory products, contribute to circadian rhythms and crosstalk with other organs and systems. We argue that chronic diseases are not only the result of ageing and inflammaging; these diseases also accelerate the ageing process and can be considered a manifestation of accelerated ageing. Finally, we propose the use of new biomarkers (DNA methylation, glycomics, metabolomics and lipidomics) that are capable of assessing biological versus chronological age in metabolic diseases.
Collapse
Affiliation(s)
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
- Laboratory of Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| | - Paolo Parini
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.
- Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy.
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Arcangeletti MC, Maccari C, Vescovini R, Volpi R, Giuggioli D, Sighinolfi G, De Conto F, Chezzi C, Calderaro A, Ferri C. A Paradigmatic Interplay between Human Cytomegalovirus and Host Immune System: Possible Involvement of Viral Antigen-Driven CD8+ T Cell Responses in Systemic Sclerosis. Viruses 2018; 10:E508. [PMID: 30231575 PMCID: PMC6163388 DOI: 10.3390/v10090508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a highly prevalent opportunistic agent in the world population, which persists as a latent virus after a primary infection. Besides the well-established role of this agent causing severe diseases in immunocompromised individuals, more recently, HCMV has been evoked as a possible factor contributing to the pathogenesis of autoimmune diseases such as systemic sclerosis (SSc). The interplay between HCMV and immune surveillance is supposed to become unbalanced in SSc patients with expanded anti-HCMV immune responses, which are likely involved in the exacerbation of inflammatory processes. In this study, blood samples from a cohort of SSc patients vs. healthy subjects were tested for anti-HCMV immune responses (IgM, IgG antibodies, and T cells to peptide pools spanning the most immunogenic HCMV proteins). Statistically significant increase of HCMV-specific CD8+ T cell responses in SSc patients vs. healthy subjects was observed. Moreover, significantly greater HCMV-specific CD8+ T cell responses were found in SSc patients with a longer disease duration and those with higher modified Rodnan skin scores. Given the known importance of T cells in the development of SSc and that this virus may contribute to chronic inflammatory diseases, these data support a relevant role of HCMV-specific CD8+ T cell responses in SSc pathogenesis.
Collapse
Affiliation(s)
- Maria-Cristina Arcangeletti
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Clara Maccari
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Rosanna Vescovini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Riccardo Volpi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Dilia Giuggioli
- Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, University-Hospital Policlinico of Modena, 41121 Modena, Italy.
| | - Gianluca Sighinolfi
- Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, University-Hospital Policlinico of Modena, 41121 Modena, Italy.
| | - Flora De Conto
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carlo Chezzi
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Adriana Calderaro
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Clodoveo Ferri
- Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, University-Hospital Policlinico of Modena, 41121 Modena, Italy.
| |
Collapse
|
16
|
Lifelong CMV infection improves immune defense in old mice by broadening the mobilized TCR repertoire against third-party infection. Proc Natl Acad Sci U S A 2018; 115:E6817-E6825. [PMID: 29967140 DOI: 10.1073/pnas.1719451115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lifelong interactions between host and the ubiquitous and persistent cytomegalovirus (CMV) have been proposed to contribute to the age-related decline in immunity. Prior work from us and others found some support for that idea, yet evidence that this led to increased vulnerability to other infections was not obtained. Moreover, evidence has accumulated that CMV infection can be beneficial to immune defense in young/adult mice and humans, dominantly via enhanced innate immunity. Here, we describe an unexpected impact of murine CMV (MCMV) upon the T cell response of old mice to Listeria monocytogenes expressing the model antigen, OVA (Lm-OVA). Single-cell sequencing of the OVA-specific CD8 T cell receptor β (TCRβ) repertoire of old mice demonstrated that old MCMV-infected mice recruited many diverse clonotypes that afforded broad and often more efficient recognition of antigenic peptide variants. This stood in contrast to old control mice, which exhibited strong narrowing and homogenization of the elicited repertoire. High-throughput sequencing of the total naïve CD8 TCRβ repertoire showed that many of these diverse OVA-specific clonotypes were present in the naïve CD8 repertoire of mice in all groups (adult, old control, and old MCMV+) yet were only recruited into the Lm-OVA response in MCMV+ old mice. These results have profound implications for our understanding of T cell immunity over a life span and suggest that our coevolution with CMV may include surprising, potentially positive impacts on adaptive heterologous immunity in late life.
Collapse
|
17
|
Contreras NA, Fontana L, Tosti V, Nikolich-Žugich J. Calorie restriction induces reversible lymphopenia and lymphoid organ atrophy due to cell redistribution. GeroScience 2018; 40:279-291. [PMID: 29804201 DOI: 10.1007/s11357-018-0022-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022] Open
Abstract
Calorie restriction (CR) without malnutrition increases life span and health span in multiple model organisms. In non-human and human primates, CR causes changes that protect against several age-related pathologies, reduces inflammation, and preserves or improves cell-mediated immunity. However, CR has also been shown to exhibit adverse effects on certain organs and systems, including the immune system, and to impact genetically different organisms of the same species differentially. Alternately, short periods of fasting followed by refeeding may result in the proliferation of bone marrow stem cells, suggesting a potential rejuvenation effect that could impact the hematopoietic compartment. However, the global consequences of CR followed by refeeding on the immune system have not been carefully investigated. Here, we show that individuals practicing long-term CR with adequate nutrition have markedly lower circulating levels of total leukocytes, neutrophils, lymphocytes, and monocytes. In 10-month-old mice, short-term CR lowered lymphocyte cellularity in multiple lymphoid tissues, but not in bone marrow, which appears to be a site of influx, or a "safe haven" for B, NK, and T cells during CR. Cellular loss and redistribution was reversed within the first week of refeeding. Based on BrdU incorporation and Ki67 expression assays, repopulating T cells exhibited high proliferation in the refeeding group following CR. Finally, we demonstrated that the thymus was not essential for T cell repopulation following refeeding. These findings are of potential relevance to strategies to rejuvenate the immune system in mammals and warrant further investigation.
Collapse
Affiliation(s)
- Nico A Contreras
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Luigi Fontana
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Experimental and Clinical Sciences, Brescia University, Brescia, Italy.
| | - Valeria Tosti
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, AZ, USA. .,Arizona Center on Aging, College of Medicine, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
18
|
Veel E, Westera L, van Gent R, Bont L, Otto S, Ruijsink B, Rabouw HH, Mudrikova T, Wensing A, Hoepelman AIM, Borghans JAM, Tesselaar K. Impact of Aging, Cytomegalovirus Infection, and Long-Term Treatment for Human Immunodeficiency Virus on CD8 + T-Cell Subsets. Front Immunol 2018; 9:572. [PMID: 29619031 PMCID: PMC5871714 DOI: 10.3389/fimmu.2018.00572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/06/2018] [Indexed: 01/09/2023] Open
Abstract
Both healthy aging and human immunodeficiency virus (HIV) infection lead to a progressive decline in naive CD8+ T-cell numbers and expansion of the CD8+ T-cell memory and effector compartments. HIV infection is therefore often considered a condition of premature aging. Total CD8+ T-cell numbers of HIV-infected individuals typically stay increased even after long-term (LT) combination antiretroviral treatment (cART), which is associated with an increased risk of non-AIDS morbidity and mortality. The causes of these persistent changes in the CD8+ T-cell pool remain debated. Here, we studied the impact of age, CMV infection, and LT successful cART on absolute cell numbers in different CD8+ T-cell subsets. While naïve CD8+ T-cell numbers in cART-treated individuals (N = 38) increased to healthy levels, central memory (CM), effector memory (EM), and effector CD8+ T-cell numbers remained higher than in (unselected) age-matched healthy controls (N = 107). Longitudinal analysis in a subset of patients showed that cART did result in a loss of memory CD8+ T-cells, mainly during the first year of cART, after which memory cell numbers remained relatively stable. As CMV infection is known to increase CD8+ T-cell numbers in healthy individuals, we studied whether any of the persistent changes in the CD8+ T-cell pools of cART-treated patients could be a direct reflection of the high CMV prevalence among HIV-infected individuals. We found that EM and effector CD8+ T-cell numbers in CMV+ healthy individuals (N = 87) were significantly higher than in CMV- (N = 170) healthy individuals. As a result, EM and effector CD8+ T-cell numbers in successfully cART-treated HIV-infected individuals did not deviate significantly from those of age-matched CMV+ healthy controls (N = 39). By contrast, CM T-cell numbers were quite similar in CMV+ and CMV- healthy individuals across all ages. The LT expansion of the CM CD8+ T-cell pool in cART-treated individuals could thus not be attributed directly to CMV and was also not related to residual HIV RNA or to the presence of HIV-specific CM T-cells. It remains to be investigated why the CM CD8+ T-cell subset shows seemingly irreversible changes despite years of effective treatment.
Collapse
Affiliation(s)
- Ellen Veel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Liset Westera
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rogier van Gent
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Louis Bont
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sigrid Otto
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bram Ruijsink
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Huib H Rabouw
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tania Mudrikova
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annemarie Wensing
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Andy I M Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - José A M Borghans
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kiki Tesselaar
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
19
|
Choi IY, Lee C, Longo VD. Nutrition and fasting mimicking diets in the prevention and treatment of autoimmune diseases and immunosenescence. Mol Cell Endocrinol 2017; 455:4-12. [PMID: 28137612 PMCID: PMC5862044 DOI: 10.1016/j.mce.2017.01.042] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 02/04/2023]
Abstract
Complex and coordinated signals are necessary to initiate and sustain the activation, proliferation, and differentiation of lymphocytes. These signals, which are known to determine T-cell fate and function, also depend on the metabolic state of the organism. Recent studies indicate that both the type and levels of nutrients can influence the generation, survival and function of lymphocytes and therefore can affect several autoimmune diseases. Here, we review the dysregulation of lymphocytes during autoimmunity and aging, the mechanisms associated with loss of immune function, and how fasting mimicking diets and other dietary interventions affect autoimmunity and immunosenescence.
Collapse
Affiliation(s)
- In Young Choi
- Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Microbiology, Immunology, Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Changhan Lee
- Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Valter D Longo
- Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Neuroscience, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; IFOM, FIRC Institute of Molecular Oncology, 20139, Milan, Italy.
| |
Collapse
|
20
|
Nikolich-Zugich J, Goodrum F, Knox K, Smithey MJ. Known unknowns: how might the persistent herpesvirome shape immunity and aging? Curr Opin Immunol 2017; 48:23-30. [PMID: 28780492 DOI: 10.1016/j.coi.2017.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/08/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022]
Abstract
The microbial community that colonizes all living organisms is gaining appreciation for its contributions to both physiologic and pathogenic processes. The virome, a subset of the overall microbiome, large and diverse, including viruses that persistently inhabit host cells, endogenous viral elements genomically or epigenomically integrated into cells, and viruses that infect the other (bacterial, protozoan, fungal, and archaeal) microbiome phylla. These viruses live in the organism for its life, and therefore are to be considered part of the aging process experienced by the organism. This review considers the impact of the persistent latent virome on immune aging. Specific attention will be devoted to the role of herpesviruses, and within them, the cytomegalovirus, as the key modulators of immune aging.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, United States.
| | - Felicia Goodrum
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, United States
| | - Kenneth Knox
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, United States; University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Megan J Smithey
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, United States.
| |
Collapse
|
21
|
|
22
|
Abstract
Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to elicit conventional and unconventional T cell responses.
Collapse
|
23
|
The emerging role of ECM crosslinking in T cell mobility as a hallmark of immunosenescence in humans. Ageing Res Rev 2017; 35:322-335. [PMID: 27876574 DOI: 10.1016/j.arr.2016.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023]
Abstract
Immunosenescence is thought to result from cellular aging and to reflect exposure to environmental stressors and antigens, including cytomegalovirus (CMV). However, not all of the features of immunosenescence are consistent with this view, and this has led to the emergence of the sister theory of "inflammaging". The recently discovered diffuse tissue distribution of resident memory T cells (TRM) which don't recirculate, calls these theories into question. These cells account for most T cells residing in barrier epithelia which sit in and travel through the extracellular matrix (ECM). With almost all studies to date carried out on peripheral blood, the age-related changes of the ECM and their consequences for T cell mobility, which is crucial for the function of these cells, have been largely ignored. We propose an update of the theoretical framework of immunosenescence, based on a novel hypothesis: the increasing stiffness and cross-linking of the senescent ECM lead to a progressive immunodeficiency due to an age-related decrease in T cell mobility and eventually the death of these cells. A key element of this mechanism is the mechanical stress to which the cell cytoplasm and nucleus are subjected during passage through the ECM. This hypothesis is based on an "evo-devo" perspective bringing together some major characteristics of aging, to create a single interpretive framework for immunosenescence.
Collapse
|
24
|
Immunotherapy comes of age: Immune aging & checkpoint inhibitors. J Geriatr Oncol 2017; 8:229-235. [DOI: 10.1016/j.jgo.2017.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/08/2017] [Accepted: 02/03/2017] [Indexed: 12/24/2022]
|
25
|
Di Benedetto S, Müller L, Wenger E, Düzel S, Pawelec G. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev 2017; 75:114-128. [PMID: 28161508 DOI: 10.1016/j.neubiorev.2017.01.044] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 01/08/2023]
Abstract
It is widely accepted that the brain and the immune system continuously interact during normal as well as pathological functioning. Human aging is commonly accompanied by low-grade inflammation in both the immune and central nervous systems, thought to contribute to many age-related diseases. This review of the current literature focuses first on the normal neuroimmune interactions occurring in the brain, which promote learning, memory and neuroplasticity. Further, we discuss the protective and dynamic role of barriers to neuroimmune interactions, which have become clearer with the recent discovery of the meningeal lymphatic system. Next, we consider age-related changes of the immune system and possible deleterious influences of immunosenescence and low-grade inflammation (inflammaging) on neurodegenerative processes in the normally aging brain. We survey the major immunomodulators and neuroregulators in the aging brain and their highly tuned dynamic and reciprocal interactions. Finally, we consider our current understanding of how physical activity, as well as a combination of physical and cognitive interventions, may mediate anti-inflammatory effects and thus positively impact brain aging.
Collapse
Affiliation(s)
- Svetlana Di Benedetto
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195, Berlin, Germany; Center for Medical Research, Department of Internal Medicine II, University of Tübingen, Waldhörnlestr. 22, 72072 Tübingen, Germany
| | - Ludmila Müller
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195, Berlin, Germany.
| | - Elisabeth Wenger
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195, Berlin, Germany
| | - Sandra Düzel
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195, Berlin, Germany
| | - Graham Pawelec
- Center for Medical Research, Department of Internal Medicine II, University of Tübingen, Waldhörnlestr. 22, 72072 Tübingen, Germany
| |
Collapse
|
26
|
Arosa FA, Esgalhado AJ, Padrão CA, Cardoso EM. Divide, Conquer, and Sense: CD8 +CD28 - T Cells in Perspective. Front Immunol 2017; 7:665. [PMID: 28096804 PMCID: PMC5206803 DOI: 10.3389/fimmu.2016.00665] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8+ T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the “signal 2” CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8+ T cells, also known as CD8+CD28−, CD8+KIR+, NK-like CD8+ T cells, or innate CD8+ T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8+ T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Carolina A Padrão
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Elsa M Cardoso
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
27
|
Föhlinger M, Palamides P, Mansmann U, Beigel F, Siebeck M, Gropp R. Immunological profiling of patients with ulcerative colitis leads to identification of two inflammatory conditions and CD1a as a disease marker. J Transl Med 2016; 14:310. [PMID: 27809916 PMCID: PMC5094062 DOI: 10.1186/s12967-016-1048-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023] Open
Abstract
Background Conventional approaches to understand mechanisms underlying the development of pathological manifestations in ulcerative colitis (UC) mostly rely on identification of certain cell types and cytokines followed by verification of their roles in vitro and in vivo. In light of the highly dynamic processes in UC, requiring the cross talk of immune cells, epithelial-, endothelial-, muscle cells and fibrocytes, this approach might neglect temporal and spatial connectivity of individually differing inflammatory responses. Methods We undertook a more holistic approach whereby we designed a flow cytometric analysis- and ELISA panel and determined the immunological profiles of UC patients in comparison to Non UC donors. This panel consisted of B-cells, T-cells, macrophages, monocytes, NK- and NK T-cells and subtypes thereof, the cytokines TGFß1 and HGF, the chemokine TARC and periostin. Blood was collected from 41 UC patients and 30 non-UC donors. Isolated PBMC were subjected to flow cytometric analysis and sera were analyzed by ELISA. Data were analysed by cluster- and correlation analysis. To corroborate that the identified cells reflected the inflammatory condition in the colon of UC patients, leucocytes were isolated from colons of UC patients and subjected to the same flow cytometric analysis. Results Immunological profiling followed by cluster- and correlation analysis led to the identification of two inflammatory conditions: An ‘acute’ condition characterized by adaptive immune cells as plasma cells, TSLPR expressing CD11b+ macrophages, CD64 and CCR2 expressing CD14+ monocytes, HGF and TARC and a ‘remodeling’ condition signified by NK T-cells and TLSPR expressing CD14+ monocytes, TGFß1 and periostin. ROC analysis identified TARC and TGFß1 as biological markers with high potential to discriminate between these two conditions (Δ = −6687.72 ng/ml; p = 1E−04; AUC = 0.87). In addition, CD1a+ CD11b+ macrophages (Δ = 17.73% CD1a+ CD11b+; p = 5E−04; AUC = 0.86) and CD1a+ CD14+ monocytes (Δ = 20.35; p = 0.02, AUC = 0.75) were identified as markers with high potential to discriminate between UC and Non UC donors. CD1a+ CD11b+ macrophages and NK T-cells were found to be significantly increased in inflamed colons of UC patients as compared to non-UC control samples (p = 0.02). Conclusions Immunological profiling of UC patients might improve our understanding of the pathology underlying individual manifestations and phases of the disease. This might lead to the development of novel diagnostics and therapeutic interventions adapted to individual needs and different phases of the disease. In addition, it might result in stratification of patients for clinical trials. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1048-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Föhlinger
- Department of General Visceral, and Transplantation Surgery, Hospital of the LMU Munich, Nussbaumstr. 20, 80336, Munich, Germany
| | - P Palamides
- Institute of Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377, Munich, Germany
| | - U Mansmann
- Institute for Medical Informatics, Biometry and Epidemiology, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - F Beigel
- Department of Medicine II-Grosshadern, Ludwig-Maximilians-University (LMU), Marchioninistr. 15, 81377, Munich, Germany
| | - M Siebeck
- Department of General Visceral, and Transplantation Surgery, Hospital of the LMU Munich, Nussbaumstr. 20, 80336, Munich, Germany
| | - R Gropp
- Department of General Visceral, and Transplantation Surgery, Hospital of the LMU Munich, Nussbaumstr. 20, 80336, Munich, Germany.
| |
Collapse
|
28
|
Turner JE. Is immunosenescence influenced by our lifetime "dose" of exercise? Biogerontology 2016; 17:581-602. [PMID: 27023222 PMCID: PMC4889625 DOI: 10.1007/s10522-016-9642-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
Abstract
The age-associated decline in immune function, referred to as immunosenescence, is well characterised within the adaptive immune system, and in particular, among T cells. Hallmarks of immunosenescence measured in the T cell pool, include low numbers and proportions of naïve cells, high numbers and proportions of late-stage differentiated effector memory cells, poor proliferative responses to mitogens, and a CD4:CD8 ratio <1.0. These changes are largely driven by infection with Cytomegalovirus, which has been directly linked with increased inflammatory activity, poor responses to vaccination, frailty, accelerated cognitive decline, and early mortality. It has been suggested however, that exercise might exert an anti-immunosenescence effect, perhaps delaying the onset of immunological ageing or even rejuvenating aged immune profiles. This theory has been developed on the basis of evidence that exercise is a powerful stimulus of immune function. For example, in vivo antibody responses to novel antigens can be improved with just minutes of exercise undertaken at the time of vaccination. Further, lymphocyte immune-surveillance, whereby cells search tissues for antigens derived from viruses, bacteria, or malignant transformation, is thought to be facilitated by the transient lymphocytosis and subsequent lymphocytopenia induced by exercise bouts. Moreover, some forms of exercise are anti-inflammatory, and if repeated regularly over the lifespan, there is a lower morbidity and mortality from diseases with an immunological and inflammatory aetiology. The aim of this article is to discuss recent theories for how exercise might influence T cell immunosenescence, exploring themes in the context of hotly debated issues in immunology.
Collapse
Affiliation(s)
- James E Turner
- Department for Health, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
29
|
Impact of Persistent Cytomegalovirus Infection on Dynamic Changes in Human Immune System Profile. PLoS One 2016; 11:e0151965. [PMID: 26990192 PMCID: PMC4798275 DOI: 10.1371/journal.pone.0151965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/07/2016] [Indexed: 12/22/2022] Open
Abstract
Human cytomegalovirus (HCMV) imprints the immune system after primary infection, however its effect during chronic infection still needs to be deciphered. In this study we report the variation of blood cell count along with anti-HCMV IgG and T cell responses to pp-65 and IE-1 antigens, that occurred after an interval of five years in a cohort of 25 seropositive healthy adults. We found increased anti-viral IgG antibody responses and intracellular interferon-gamma secreting CD8+ T cell responses to pp-65: a result consistent with memory inflation. With the only exception of shortage in naive CD8+ T cells most memory T cell subsets as well as total CD8+ T cells, T cells, lymphocytes, monocytes and leukocytes had increased. By contrast, none of the cell types tested were found to have increased in 14 subjects stably seronegative. Rather, in addition to a shortage in naive CD8+ T cells, also memory T cell subsets and most other cell types decreased, either in a statistically significant or non-significant manner. The trend of T cell pool representation with regard to CD4/CD8 ratio was in the opposing directions depending on HCMV serology. Globally, this study demonstrates different dynamic changes of most blood cell types depending on presence or absence of HCMV infection. Therefore, HCMV plays a continual role in modulating homeostasis of blood T cells and a broader expanding effect on other cell populations of lymphoid and myeloid origin.
Collapse
|
30
|
Fuertes Marraco SA, Soneson C, Cagnon L, Gannon PO, Allard M, Abed Maillard S, Montandon N, Rufer N, Waldvogel S, Delorenzi M, Speiser DE. Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination. Sci Transl Med 2016; 7:282ra48. [PMID: 25855494 DOI: 10.1126/scitranslmed.aaa3700] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Efficient and persisting immune memory is essential for long-term protection from infectious and malignant diseases. The yellow fever (YF) vaccine is a live attenuated virus that mediates lifelong protection, with recent studies showing that the CD8(+) T cell response is particularly robust. Yet, limited data exist regarding the long-term CD8(+) T cell response, with no studies beyond 5 years after vaccination. We investigated 41 vaccinees, spanning 0.27 to 35 years after vaccination. YF-specific CD8(+) T cells were readily detected in almost all donors (38 of 41), with frequencies decreasing with time. As previously described, effector cells dominated the response early after vaccination. We detected a population of naïve-like YF-specific CD8(+) T cells that was stably maintained for more than 25 years and was capable of self-renewal ex vivo. In-depth analyses of markers and genome-wide mRNA profiling showed that naïve-like YF-specific CD8(+) T cells in vaccinees (i) were distinct from genuine naïve cells in unvaccinated donors, (ii) resembled the recently described stem cell-like memory subset (Tscm), and (iii) among all differentiated subsets, had profiles closest to naïve cells. Our findings reveal that CD8(+) Tscm are efficiently induced by a vaccine in humans, persist for decades, and preserve a naïveness-like profile. These data support YF vaccination as an optimal mechanistic model for the study of long-lasting memory CD8(+) T cells in humans.
Collapse
Affiliation(s)
- Silvia A Fuertes Marraco
- Ludwig Cancer Center, University of Lausanne, Epalinges CH-1066, Switzerland. Department of Oncology, University Hospital of Lausanne (Centre Hospitalier Universitaire Vaudois), Lausanne CH-1011, Switzerland
| | - Charlotte Soneson
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Laurène Cagnon
- Department of Oncology, University Hospital of Lausanne (Centre Hospitalier Universitaire Vaudois), Lausanne CH-1011, Switzerland
| | - Philippe O Gannon
- Department of Oncology, University Hospital of Lausanne (Centre Hospitalier Universitaire Vaudois), Lausanne CH-1011, Switzerland
| | - Mathilde Allard
- Department of Oncology, University Hospital of Lausanne (Centre Hospitalier Universitaire Vaudois), Lausanne CH-1011, Switzerland
| | - Samia Abed Maillard
- Department of Oncology, University Hospital of Lausanne (Centre Hospitalier Universitaire Vaudois), Lausanne CH-1011, Switzerland
| | - Nicole Montandon
- Department of Oncology, University Hospital of Lausanne (Centre Hospitalier Universitaire Vaudois), Lausanne CH-1011, Switzerland
| | - Nathalie Rufer
- Department of Oncology, University Hospital of Lausanne (Centre Hospitalier Universitaire Vaudois), Lausanne CH-1011, Switzerland
| | - Sophie Waldvogel
- Service Vaudois de Transfusion Sanguine de la Croix Rouge, Epalinges CH-1066, Switzerland
| | - Mauro Delorenzi
- Ludwig Cancer Center, University of Lausanne, Epalinges CH-1066, Switzerland. Department of Oncology, University Hospital of Lausanne (Centre Hospitalier Universitaire Vaudois), Lausanne CH-1011, Switzerland. Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Daniel E Speiser
- Ludwig Cancer Center, University of Lausanne, Epalinges CH-1066, Switzerland. Department of Oncology, University Hospital of Lausanne (Centre Hospitalier Universitaire Vaudois), Lausanne CH-1011, Switzerland.
| |
Collapse
|
31
|
Stervbo U, Bozzetti C, Baron U, Jürchott K, Meier S, Mälzer JN, Nienen M, Olek S, Rachwalik D, Schulz AR, Neumann A, Babel N, Grützkau A, Thiel A. Effects of aging on human leukocytes (part II): immunophenotyping of adaptive immune B and T cell subsets. AGE (DORDRECHT, NETHERLANDS) 2015; 37:93. [PMID: 26324156 PMCID: PMC5005833 DOI: 10.1007/s11357-015-9829-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
Immunosenescence results from a continuous deterioration of immune responses resulting in a decreased response to vaccines. A well-described age-related alteration of the immune system is the decrease of de novo generation of T and B cells. In addition, the accumulation of memory cells and loss of diversity in antigen specificities resulting from a lifetime of exposure to pathogens has also been described. However, the effect of aging on subsets of γδTCR(+) T cells and Tregs has been poorly described, and the efficacy of the recall response to common persistent infections in the elderly remains obscure. Here, we investigated alterations in the subpopulations of the B and T cells among 24 healthy young (aged 19-30) and 26 healthy elderly (aged 53-67) individuals. The analysis was performed by flow cytometry using freshly collected peripheral blood. γδTCR(+) T cells were overall decreased, while CD4(+)CD8(-) cells among γδTCR(+) T cells were increased in the elderly. Helios(+)Foxp3(+) and Helios(-)Foxp3(+) Treg cells were unaffected with age. Recent thymic emigrants, based on CD31 expression, were decreased among the Helios(+)Foxp3(+), but not the Helios(-)Foxp3(+) cell populations. We observed a decrease in Adenovirus-specific CD4(+) and CD8(+) T cells and an increase in CMV-specific CD4(+) T cells in the elderly. Similarly, INFγ(+)TNFα(+) double-positive cells were decreased among activated T cells after Adenovirus stimulation but increased after CMV stimulation. The data presented here indicate that γδTCR(+) T cells might stabilize B cells, and functional senescence might dominate at higher ages than those studied here.
Collapse
Affiliation(s)
- Ulrik Stervbo
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum – a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Marienhospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Cecilia Bozzetti
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Udo Baron
- Epiontis GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - Karsten Jürchott
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sarah Meier
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Julia Nora Mälzer
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mikalai Nienen
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Marienhospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Sven Olek
- Epiontis GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - Dominika Rachwalik
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Axel Ronald Schulz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Avidan Neumann
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nina Babel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Marienhospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum – a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Thiel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
32
|
Narrowing of human influenza A virus-specific T cell receptor α and β repertoires with increasing age. J Virol 2015; 89:4102-16. [PMID: 25609818 DOI: 10.1128/jvi.03020-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Alterations in memory CD8 T cell responses may contribute to the high morbidity and mortality caused by seasonal influenza A virus (IAV) infections in older individuals. We questioned whether memory CD8 responses to this nonpersistent virus, to which recurrent exposure with new strains is common, changed over time with increasing age. Here, we show a direct correlation between increasing age and narrowing of the HLA-A2-restricted IAV Vα and Vβ T cell repertoires specific to M1 residues 58 to 66 (M158-66), which simultaneously lead to oligoclonal expansions, including the usage of a single identical VA12-JA29 clonotype in all eight older donors. The Vα repertoire of older individuals also had longer CDR3 regions with increased usage of G/A runs, whose molecular flexibility may enhance T cell receptor (TCR) promiscuity. Collectively, these results suggest that CD8 memory T cell responses to nonpersistent viruses like IAV in humans are dynamic, and with aging there is a reduced diversity but a preferential retention of T cell repertoires with features of enhanced cross-reactivity. IMPORTANCE With increasing age, the immune system undergoes drastic changes, and older individuals have declined resistance to infections. Vaccinations become less effective, and infection with influenza A virus in older individuals is associated with higher morbidity and mortality. Here, we questioned whether T cell responses directed against the highly conserved HLA-A2-restricted M158-66 peptide of IAV evolves with increasing age. Specifically, we postulated that CD8 T cell repertoires narrow with recurrent exposure and may thus be less efficient in response to new infections with new strains of IAV. Detailed analyses of the VA and VB TCR repertoires simultaneously showed a direct correlation between increasing age and narrowing of the TCR repertoire. Features of the TCRs indicated potentially enhanced cross-reactivity in all older donors. In summary, T cell repertoire analysis in older individuals may be useful as one of the predictors of protection after vaccination.
Collapse
|
33
|
Liao Y, Geng P, Tian Y, Miao H, Liang H, Zeng R, Ni B, Ruan Z. Marked anti-tumor effects of CD8(+)CD62L(+) T cells from melanoma-bearing mice. Immunol Invest 2014; 44:147-63. [PMID: 25122543 DOI: 10.3109/08820139.2014.944980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD8(+)CD62L(+) T cells have been shown to play pivotal roles in anti-viral immunity, chronic myeloid leukemia and renal cell carcinoma. Recently, CD8(+)CD62L(+) T cells from naïve mice (nCD8(+)CD62L(+) T cells) have shown superior anti-tumor properties in melanoma-bearing mice. Considering that antigen-specific memory T cells have shown to possess more potent immunity than non-specific memory T cells, we hypothesized that CD8(+)CD62L(+) T cells from tumor-bearing individuals (mCD8(+)CD62L(+) T cells) might have superior anti-tumor effect than nCD8(+)CD62L(+) T cells. Therefore, we investigated phenotypes, functions and the in vivo distribution of mCD8(+)CD62L(+) T cells in tumor-bearing mice. We found that, while keeping the features of central memory T cells, the frequency of mCD8(+)CD62L(+) T cell in the spleen of tumor-bearing mice was significantly higher than that the one of nCD8(+)CD62L(+) T cell in naive mice. Moreover, we demonstrated that mCD8(+)CD62L(+) T cells had higher proliferation rate and IFN-γ production than nCD8(+)CD62L(+) T cells, in vitro. We performed adoptive transfer of mCD8(+)CD62L(+) T cells into melanoma-bearing mice and tracked them in spleen, lymph nodes and in melanoma tissues. Our results show that mCD8(+)CD62L(+) T cells had stronger in vivo anti-tumoral activity than nCD8(+)CD62L(+) T cells. This study highlights the therapeutic potential of mCD8(+)CD62L(+) T cells in the immunotherapy of melanoma and possibly other tumors.
Collapse
Affiliation(s)
- Yunmei Liao
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University , Chongqing , China , and
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wertheimer AM, Bennett MS, Park B, Uhrlaub JL, Martinez C, Pulko V, Currier NL, Nikolich-Žugich D, Kaye J, Nikolich-Žugich J. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. THE JOURNAL OF IMMUNOLOGY 2014; 192:2143-55. [PMID: 24501199 DOI: 10.4049/jimmunol.1301721] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The impact of intrinsic aging upon human peripheral blood T cell subsets remains incompletely quantified and understood. This impact must be distinguished from the influence of latent persistent microorganisms, particularly CMV, which has been associated with age-related changes in the T cell pool. In a cross-sectional cohort of 152 CMV-negative individuals, aged 21-101 y, we found that aging correlated strictly to an absolute loss of naive CD8, but not CD4, T cells but, contrary to many reports, did not lead to an increase in memory T cell numbers. The loss of naive CD8 T cells was not altered by CMV in 239 subjects (range 21-96 y), but the decline in CD4(+) naive cells showed significance in CMV(+) individuals. These individuals also exhibited an absolute increase in the effector/effector memory CD4(+) and CD8(+) cells with age. That increase was seen mainly, if not exclusively, in older subjects with elevated anti-CMV Ab titers, suggesting that efficacy of viral control over time may determine the magnitude of CMV impact upon T cell memory, and perhaps upon immune defense. These findings provide important new insights into the age-related changes in the peripheral blood pool of older adults, demonstrating that aging and CMV exert both distinct and joint influence upon blood T cell homeostasis in humans.
Collapse
Affiliation(s)
- Anne M Wertheimer
- Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724
| | | | | | | | | | | | | | | | | | | |
Collapse
|