1
|
Trumpff C, Huang Q, Michelson J, Liu CC, Shire D, Habeck CG, Stern Y, Picard M. Blood mitochondrial health markers cf-mtDNA and GDF15 in human aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635306. [PMID: 39974983 PMCID: PMC11838371 DOI: 10.1101/2025.01.28.635306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Altered mitochondria biology can accelerate biological aging, but scalable biomarkers of mitochondrial health for population studies are lacking. We examined two potential candidates: 1) cell-free mitochondrial DNA (cf-mtDNA), a marker of mitochondrial signaling elevated with disease states accessible as distinct biological entities from plasma or serum; and 2) growth differentiation factor 15 (GDF15), an established biomarker of biological aging downstream of mitochondrial energy transformation defects and stress signaling. In a cohort of 430 participants aged 24-84 (54.2% women), we measured plasma and serum cf-mtDNA, and plasma GDF15 levels at two timepoints 5 years apart, then assessed their associations with age, BMI, diabetes, sex, health-related behaviors, and psychosocial factors. As expected, GDF15 showed a positive, exponential association with age (r=0.66, p<0.0001) and increased by 33% over five years. cf-mtDNA was not correlated with GDF15 or age. BMI and sex were also not related to cf-mtDNA nor GDF15. Type 2 diabetes was only positively associated with GDF15. Exploring potential drivers of systemic mitochondrial stress signaling, we report a novel association linking higher education to lower age-adjusted GDF15 (r=-0.14, p<0.0034), both at baseline and the 5-year follow up, highlighting a potential influence of psychosocial factors on mitochondrial health. Overall, our findings among adults spanning six decades of lifespan establish associations between age, diabetes and GDF15, an emerging marker of mitochondrial stress signaling. Further studies are needed to determine if the associations of blood GDF15 with age and metabolic stress can be moderated by psychosocial factors or health-related behaviors.
Collapse
Affiliation(s)
- Caroline Trumpff
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Qiuhan Huang
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeremy Michelson
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Cynthia C. Liu
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - David Shire
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Christian G. Habeck
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute, Columbia University, New York, NY, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Neuromuscular Medicine Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
2
|
Lopes MA, Cordeiro MER, de Alencar Teles Barreto F, de Souza Moreno L, de Medeiros Silva AA, de Loyola MB, Soares MVA, de Sousa JB, Pittella-Silva F. Assessment of cfDNA release dynamics during colorectal cancer surgery. Oncotarget 2025; 16:29-38. [PMID: 39835932 PMCID: PMC11749015 DOI: 10.18632/oncotarget.28681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Approximately two-thirds of patients with colorectal cancer (CRC) undergo resection with curative intent; however, 30% to 50% of these patients experience recurrence. The concentration of cell-free DNA (cfDNA) before and after surgery may be related to the prognosis of patients with CRC, but there is limited information regarding cfDNA levels at the time of surgery. Here, we analyzed surgical cfDNA release using plasma samples from 30 colorectal cancer patients at three key points during surgery: preoperative (immediately before surgery), intraoperative (during surgery), and postoperative (at the end of surgery). Automated electrophoresis was used to analyze cfDNA concentrations and fragment sizes, which were then correlated with clinical variables. Our findings indicate a significant increase in cfDNA release during and after surgery (2.8- and 2.2-fold higher respectively, p < 0.01). Characteristic fragments of cfDNA (<400 bp) predominated at all surgical stages; however, the release of genomic material (>400 bp) was also observed. We found that cfDNA concentration increases during and after surgery in patients over 60 years old (2.9-fold higher intraoperatively than preoperatively and 2.3 folds higher postoperatively than preoperatively, p < 0.01); in patients with comorbidities (3.0-fold higher intraoperatively and 2.3-fold higher postoperatively, p < 0.01); and in patients with CEA levels >5 ng/mL (3.1-fold higher intraoperatively and 1.3-fold higher postoperatively, p < 0.01). Interestingly, cfDNA release during surgery is significantly higher in patients with adverse clinical characteristics. Patients bearing locally advanced tumors or metastasis had a 3.1-fold increase in cfDNA release intraoperatively and 2.4-fold increase postoperatively, p < 0.01. cfDNA concentration also increases intraoperatively in patients with a high score of tumor buds (2.6 folds higher, p < 0.02), patients with perineural invasion (3.4-fold higher, p < 0.02) and in patients with lymphovascular invasion (3.1-fold higher, p < 0.05). Furthermore, we observed that cfDNA concentration may rise in correlation with the duration of the surgery, highlighting its potential as a marker of surgical quality. Taken together, our results suggest that in addition to physiological age, comorbidities and unfavorable clinical traits, intense surgical manipulation from the tumor's extent, may result in greater tissue damage and elevated cfDNA release.
Collapse
Affiliation(s)
- Mailson Alves Lopes
- Laboratory of Molecular Pathology of Cancer, Faculty of Healthy Sciences, University of Brasília, Federal District, Brasília, Brazil
- These authors contributed equally to this work
| | - Maria Elvira Ribeiro Cordeiro
- Laboratory of Molecular Pathology of Cancer, Faculty of Healthy Sciences, University of Brasília, Federal District, Brasília, Brazil
- These authors contributed equally to this work
| | - Flávio de Alencar Teles Barreto
- Laboratory of Molecular Pathology of Cancer, Faculty of Healthy Sciences, University of Brasília, Federal District, Brasília, Brazil
| | - Lara de Souza Moreno
- Laboratory of Molecular Pathology of Cancer, Faculty of Healthy Sciences, University of Brasília, Federal District, Brasília, Brazil
| | - André Araújo de Medeiros Silva
- Laboratory of Molecular Pathology of Cancer, Faculty of Healthy Sciences, University of Brasília, Federal District, Brasília, Brazil
- Division of Colorectal Surgery, Brasilia University Hospital, Brasília, Brazil
| | - Mariana Braccialli de Loyola
- Laboratory of Molecular Pathology of Cancer, Faculty of Healthy Sciences, University of Brasília, Federal District, Brasília, Brazil
| | - Mayra Veloso Ayrimoraes Soares
- Laboratory of Molecular Pathology of Cancer, Faculty of Healthy Sciences, University of Brasília, Federal District, Brasília, Brazil
| | | | - Fabio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, Faculty of Healthy Sciences, University of Brasília, Federal District, Brasília, Brazil
| |
Collapse
|
3
|
Tabrizi S, Martin-Alonso C, Xiong K, Bhatia SN, Adalsteinsson VA, Love JC. Modulating cell-free DNA biology as the next frontier in liquid biopsies. Trends Cell Biol 2024:S0962-8924(24)00249-6. [PMID: 39730275 DOI: 10.1016/j.tcb.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/29/2024]
Abstract
Technical advances over the past two decades have enabled robust detection of cell-free DNA (cfDNA) in biological samples. Yet, higher clinical sensitivity is required to realize the full potential of liquid biopsies. This opinion article argues that to overcome current limitations, the abundance of informative cfDNA molecules - such as circulating tumor DNA (ctDNA) - collected in a sample needs to increase. To accomplish this, new methods to modulate the biological processes that govern cfDNA production, trafficking, and clearance in the body are needed, informed by a deeper understanding of cfDNA biology. Successful development of such methods could enable a major leap in the performance of liquid biopsies and vastly expand their utility across the spectrum of clinical care.
Collapse
Affiliation(s)
- Shervin Tabrizi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Radiation Oncology, Mass General Brigham, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Carmen Martin-Alonso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute at Harvard University, Boston, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA
| | | | - J Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Valeanu A, Margina D, Weber D, Stuetz W, Moreno-Villanueva M, Dollé MET, Jansen EH, Gonos ES, Bernhardt J, Grubeck-Loebenstein B, Weinberger B, Fiegl S, Sikora E, Mosieniak G, Toussaint O, Debacq-Chainiaux F, Capri M, Garagnani P, Pirazzini C, Bacalini MG, Hervonen A, Slagboom PE, Talbot D, Breusing N, Frank J, Bürkle A, Franceschi C, Grune T, Gradinaru D. Development and validation of cardiometabolic risk predictive models based on LDL oxidation and candidate geromarkers from the MARK-AGE data. Mech Ageing Dev 2024; 222:111987. [PMID: 39284459 DOI: 10.1016/j.mad.2024.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The predictive value of the susceptibility to oxidation of LDL particles (LDLox) in cardiometabolic risk assessment is incompletely understood. The main objective of the current study was to assess its relationship with other relevant biomarkers and cardiometabolic risk factors from MARK-AGE data. A cross-sectional observational study was carried out on 1089 subjects (528 men and 561 women), aged 40-75 years old, randomly recruited age- and sex-stratified individuals from the general population. A correlation analysis exploring the relationships between LDLox and relevant biomarkers was undertaken, as well as the development and validation of several machine learning algorithms, for estimating the risk of the combined status of high blood pressure and obesity for the MARK-AGE subjects. The machine learning models yielded Area Under the Receiver Operating Characteristic Curve Score ranging 0.783-0.839 for the internal validation, while the external validation resulted in an Under the Receiver Operating Characteristic Curve Score between 0.648 and 0.787, with the variables based on LDLox reaching significant importance within the obtained predictions. The current study offers novel insights regarding the combined effects of LDL oxidation and other ageing markers on cardiometabolic risk. Future studies might be extended on larger patient cohorts, in order to obtain reproducible clinical assessment models.
Collapse
Affiliation(s)
- Andrei Valeanu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., Bucharest 020956, Romania.
| | - Denisa Margina
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., Bucharest 020956, Romania.
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal 14558, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14458, Germany.
| | - Wolfgang Stuetz
- Department of Food Biofunctionality, Institute of Nutritional Sciences (140), University of Hohenheim, Stuttgart 70599, Germany.
| | - María Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz 78457, Germany; Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz 78457, Germany.
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, PO Box 1, Bilthoven 3720 BA, the Netherlands.
| | - Eugène Hjm Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, PO Box 1, Bilthoven 3720 BA, the Netherlands.
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece.
| | | | - Beatrix Grubeck-Loebenstein
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10, Innsbruck 6020, Austria.
| | - Birgit Weinberger
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10, Innsbruck 6020, Austria.
| | - Simone Fiegl
- UMIT TIROL - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol 6060, Austria.
| | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur street, Warsaw 02-093, Poland.
| | - Grazyna Mosieniak
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur street, Warsaw 02-093, Poland.
| | - Olivier Toussaint
- URBC-NARILIS, University of Namur, Rue de Bruxelles, 61, Namur, Belgium
| | | | - Miriam Capri
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna 40126, Italy.
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy.
| | | | - Antti Hervonen
- Medical School, University of Tampere, Tampere 33014, Finland.
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Duncan Talbot
- Department of Unilever Science and Technology, Beauty and Personal Care, Sharnbrook, UK.
| | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70599, Germany.
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences (140), University of Hohenheim, Stuttgart 70599, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz 78457, Germany.
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy; Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, N. I. Lobachevsky State University, Nizhny Novgorod 603005, Russia.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal 14558, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14458, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin 13347, Germany; University of Potsdam, Institute of Nutritional Science, Nuthetal 14458, Germany; University of Vienna, Department of Physiological Chemistry, Faculty of Chemistry, Vienna 1090, Austria.
| | - Daniela Gradinaru
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., Bucharest 020956, Romania; Ana Aslan National Institute of Gerontology and Geriatrics, Bucharest, Romania.
| |
Collapse
|
5
|
Zhou W, Xu X, Qi D, Zhang X, Zheng F. Elevated mtDNA content in RBCs promotes oxidative stress may be responsible for faster senescence in men. Arch Gerontol Geriatr 2024; 125:105504. [PMID: 38870707 DOI: 10.1016/j.archger.2024.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Both we and others have found that RBC counts are significantly lower in older compared to younger. However, when gender is factored in, a significant age-related decrease of RBC counts is observed only in men but not in women. METHODS qPCR and confocal microscopy were used to detect the presence of mtDNA in RBCs. Flow cytometry and specific inhibitors were used to determine how RBCs uptake cf-mtDNA. The peripheral blood was collected from 202 young adults and 207 older adults and RBC and plasma were isolated. The levels of TLR9+RBCs and apoptotic RBCs after uptake of cf-mtDNA by RBCs were measured by flow cytometry. The kit detects changes in SOD and MDA levels after cf-mtDNA uptake by RBCs. Young RBCs (YR) and old RBCs (OR) from single individuals were separated by Percoll centrifugation. RESULTS We found a significant decrease in RBC counts and a significant increase in the RDW with aging only in men. We also found that significantly elevated mtDNA content in RBCs was observed only in men during aging and was not found in women. Further studies demonstrated that RBCs could take up cf-mtDNA via TLR9, and the uptake of mtDNA might lead to a decrease in the RBC number and an increase in RDW due to an increase of oxidative stress. CONCLUSIONS The RBC mtDNA content might be a potential marker of RBC aging and the elevated RBC mtDNA content might be the cause of faster senescence in males than females.
Collapse
Affiliation(s)
- Wenjie Zhou
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China; School of Basic Medical Sciences, Wuhan University, Wuhan, PR China
| | - Xianqun Xu
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Daoxi Qi
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Xiaokang Zhang
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Fang Zheng
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China.
| |
Collapse
|
6
|
Novo M, Nordén R, Westin J, Dellgren G, Böhmer J, Ricksten A, Magnusson JM. Donor Fractions of Cell-Free DNA Are Elevated During CLAD But Not During Infectious Complications After Lung Transplantation. Transpl Int 2024; 37:12772. [PMID: 39114640 PMCID: PMC11303165 DOI: 10.3389/ti.2024.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
During the last few years, cell-free DNA (cfDNA) has emerged as a possible non-invasive biomarker for prediction of complications after lung transplantation. We previously published a proof-of-concept study using a digital droplet polymerase chain reaction (ddPCR)-based method for detection of cfDNA. In the current study, we aimed to further evaluate the potential clinical usefulness of detecting chronic lung allograft dysfunction (CLAD) using three different ddPCR applications measuring and calculating the donor fraction (DF) of cfDNA as well as one method using the absolute amount of donor-derived cfDNA. We analyzed 246 serum samples collected from 26 lung transplant recipients. Nine of the patients had ongoing CLAD at some point during follow-up. All four methods showed statistically significant elevation of the measured variable in the CLAD samples compared to the non-CLAD samples. The results support the use of ddPCR-detected cfDNA as a potential biomarker for prediction of CLAD. These findings need to be validated in a subsequent prospective study.
Collapse
Affiliation(s)
- Mirza Novo
- Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rickard Nordén
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Westin
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Dellgren
- Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Cardiothoracic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jens Böhmer
- Pediatric Heart Center, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Clinic Frankfurt-Höchst, Frankfurt, Germany
| | - Anne Ricksten
- Department of Clinical Genetics and Genomics, Sahlgrenska Academy, University of Gothenbururg, Gothenburg, Sweden
| | - Jesper M. Magnusson
- Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Juškevičiūtė E, Neuberger E, Eimantas N, Venckunas T, Kamandulis S, Simon P, Brazaitis M. Three-week sprint interval training (SIT) reduces cell-free DNA and low-frequency fatigue but does not induce VO2max improvement in older men. Eur J Appl Physiol 2024; 124:1297-1309. [PMID: 38015284 DOI: 10.1007/s00421-023-05366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE This study aimed to investigate the impact of sprint interval training (SIT) on both the acute and 3-week modulations of cell-free DNA (cfDNA), as well as its association with neuromuscular fatigue and physical performance in healthy young and old men. METHODS Ten young (20-25 year old) and nine elderly (63-72 year old) healthy men performed nine SIT sessions consisting of 4-to-6-all-out cycling repetitions of 30 s interspaced with 4-min rest intervals. We compared the maximal voluntary contractions torque, central activation ratio, low-frequency fatigue (LFF), and cfDNA concentrations between the groups before, immediately after, 1 h after, and 24 h after the first and ninth SIT sessions. RESULTS The plasma cfDNA levels were increased post-exercise (from 1.4 ± 0.258 to 1.91 ± 0.278 ng/ml (P < 0.01) on a log10 scale), without significant differences between the groups. However, older individuals showed a slight decrease in the baseline cfDNA values, from 1.39 ± 0.176 to 1.29 ± 0.085 ng/ml on a log10 scale, after 3 weeks (P = 0.043). Importantly, the elevation of the post-exercise cfDNA values was correlated with an increase in LFF in both groups. Three weeks of SIT induced an improvement in the recovery of LFF (main session effect, P = 0.0029); however, only the young group showed an increase in aerobic capacity (VO2max) (from 40.8 ± 6.74 to 43.0 ± 5.80 ml/kg/min, P = 0.0039). CONCLUSION Three weeks of SIT diminished the baseline cfDNA values in the old group, together with an improvement in the recovery of LFF. However, VO2max was increased only in the young group.
Collapse
Affiliation(s)
- Ema Juškevičiūtė
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
- Department of Sports Medicine, Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Elmo Neuberger
- Department of Sports Medicine, Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Perikles Simon
- Department of Sports Medicine, Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
| |
Collapse
|
8
|
Yao Z, Jia X, Chen Z, Zhang T, Li X, Zhang L, Chen F, Zhang J, Zhang Z, Liu Z, Chen Z. Dietary patterns, metabolomics and frailty in a large cohort of 120 000 participants. Food Funct 2024; 15:3174-3185. [PMID: 38441259 DOI: 10.1039/d3fo03575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Objective: To examine the associations of dietary patterns with frailty and whether metabolic signatures (MSs) mediate these associations. Methods: We used UK Biobank data to examine (1) the associations of four dietary patterns (i.e., alternate Mediterranean diet [aMED], Recommended Food Score [RFS], Dietary Approaches to Stop Hypertension [DASH] and Mediterranean-DASH Intervention for Neurodegenerative Delay [MIND] diet) with frailty (measured by the frailty phenotype and the frailty index) using multivariable logistic regression (analytic sample 1: N = 124 261; mean age = 57.7 years), and (2) the mediating role of MSs (weighted sums of the metabolites selected from 168 plasma metabolites using the LASSO algorithm) in the above associations via mediation analysis (analytic sample 2: N = 26 270; mean age = 57.7 years). Results: Four dietary patterns were independently associated with frailty (all P < 0.001). For instance, compared to participants in the lowest tertile for RFS, those in the intermediate (odds ratio [OR]: 0.81; 95% confidence interval [CI]: 0.74, 0.89) and highest (OR: 0.62; 95% CI: 0.56, 0.68) tertiles had a lower risk of frailty. We found that 98, 68, 123 and 75 metabolites were associated with aMED, RFS, DASH and MIND, respectively, including 16 common metabolites (e.g., fatty acids, lipoproteins, acetate and glycoprotein acetyls). The MSs based on these metabolites partially mediated the association of the four dietary patterns with frailty, with the mediation proportion ranging from 26.52% to 45.83%. The results were robust when using another frailty measure, the frailty index. Conclusions: The four dietary patterns were associated with frailty, and these associations were partially mediated by MSs. Adherence to healthy dietary patterns may potentially reduce frailty development by modulating metabolites.
Collapse
Affiliation(s)
- Zhao Yao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China.
- The Second Affiliated Hospital and Yuying Children's Hospital of, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xueqing Jia
- The Second Affiliated Hospital and School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Zhuoneng Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China.
| | - Xin Li
- Department of Exercise and Nutrition Science, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Liming Zhang
- The Second Affiliated Hospital and School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Fenfen Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
- Department of Rehabilitation Medicine, Taizhou Hospital Affiliated to Wenzhou Medical University, China
| | - Jingyun Zhang
- The Second Affiliated Hospital and School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Ziwei Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China.
| | - Zuyun Liu
- The Second Affiliated Hospital and School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China.
- The Second Affiliated Hospital and Yuying Children's Hospital of, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
- Department of Rehabilitation Medicine, Taizhou Hospital Affiliated to Wenzhou Medical University, China
| |
Collapse
|
9
|
Fisher T, Powell E, Yuwono NL, Ford CE, Warton K. Circulating cell-free DNA is elevated in postmenopausal compared with pre- and perimenopausal women. Menopause 2024; 31:171-175. [PMID: 38385729 DOI: 10.1097/gme.0000000000002313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
OBJECTIVE With the rising use of circulating cell-free DNA (cirDNA) liquid biopsies for disease screening, it is important to understand biological differences that may impact the accuracy of cirDNA-based clinical tests. Although a number of biological factors have been researched, the relationship between menopause and cirDNA has not been thoroughly investigated. We aimed to compare plasma cirDNA concentration and DNA fragment integrity in healthy women pre- and postmenopause. METHODS Blood was collected from healthy female volunteers 40 years and older. cirDNA was extracted from plasma (n = 52) and quantified by quantitative polymerase chain reaction (n = 47; 26 premenopause, mean age-46 y; 21 postmenopause, mean age-59 y). cirDNA concentration was quantitated using an ALU repetitive sequence with a 115-base-pair (bp) product (ALU-115), and long cirDNA fragments were quantitated using an ALU repetitive sequence with a 247-bp product (ALU-247). cirDNA integrity was expressed as a ratio of ALU-247 over ALU-115. Mann-Whitney U test was used to compare pre- and postmenopause qPCR results, and a two-tailed, unpaired t test was undertaken to compare the integrity ratio between the two groups. RESULTS Postmenopause plasma samples were found to have a significantly higher cirDNA concentration (P < 0.0001, premenopause: mean, 3.10 ± 1.84 ng/mL; median, 2.90 ng/mL; postmenopause: mean, 5.28 ± 2.76 ng/mL; median, 4.56 ng/mL) and significantly higher concentration of long-stranded cirDNA fragments (P = 0.0033, premenopause: mean, 1.06 ± 0.48 ng/mL; median, 0.96 ng/mL; postmenopause: mean, 1.69 ± 0.89 ng/mL; median, 1.48 ng/mL). There was no significant difference in the integrity ratio between the groups (P = 0.1788). CONCLUSIONS Plasma cirDNA concentrations are higher in postmenopausal women. This has important implications in cirDNA liquid biopsy development and screening, especially for diseases such as cancer where the majority of cases are diagnosed postmenopause.
Collapse
Affiliation(s)
- Teagan Fisher
- From the Gynaecological Cancer Research Group, Adult Cancer Program, School of Clinical Medicine University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
10
|
Thorsen SU, Moseholm KF, Clausen FB. Circulating cell-free DNA and its association with cardiovascular disease: what we know and future perspectives. Curr Opin Lipidol 2024; 35:14-19. [PMID: 37800671 DOI: 10.1097/mol.0000000000000907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to explore a possible link between cell-free DNA (cfDNA) and cardiovascular disease (CVD), which may hold valuable potential for future diagnostics. RECENT FINDINGS cfDNA has become topic of high interest across several medical fields. cfDNA is used as a diagnostic biomarker in cancer, prenatal care, and transplantation. In addition, cfDNA may play an unrecognized role in biological processes that are involved in or underlying various disease states, for example, inflammation. Elevated levels of cfDNA are associated with various elements of CVD, cardio-metabolic risk factors, and autoimmune diseases. Mitochondrial cfDNA and neutrophil extracellular traps may play distinct roles. Total circulating cfDNA may reflect the unspecific accumulation of stressors and the organism's susceptibility and resilience to such stressors. As such, cfDNA, in a stressful situation, may provide predictive value for future development of CVD. We suggest exploring such possibility through a large-scale prospective cohort study of pregnant women. SUMMARY There is no doubt that cfDNA is a valuable biomarker. For CVD, its potential is indicated but less explored. New studies may identify cfDNA as a valuable circulating cardiovascular risk marker to help improve risk stratification.
Collapse
Affiliation(s)
| | - Kristine Frøsig Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
11
|
Leotta C, Hernandez L, Tothova L, Arefin S, Ciceri P, Cozzolino MG, Barany P, Chromek M, Stenvinkel P, Kublickiene K. Levels of Cell-Free DNA in Kidney Failure Patients before and after Renal Transplantation. Cells 2023; 12:2774. [PMID: 38132094 PMCID: PMC10741614 DOI: 10.3390/cells12242774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Circulating cell-free DNA (cfDNA) has diverse applications in oncological, prenatal, toxicological, cardiovascular, and autoimmune diseases, diagnostics, and organ transplantation. In particular, mitochondrial cfDNA (mt-cfDNA) is associated with inflammation and linked to early vascular ageing (EVA) in end-stage kidney failure (ESKF), which could be a noninvasive marker for graft rejection and organ damage. Plasma samples from 44 ESKF patients, of whom half (n = 22) underwent either conservative therapy (non-HD) or hemodialysis (HD) before kidney transplantation (KT). These samples were analyzed at baseline and two years after KT. cfDNA was extracted from plasma and quantified using the fluorometric method. qPCR was used to quantify and differentiate the fractions of mt-cfDNA and nuclear cfDNA (nc-cfDNA). mt-cfDNA levels in KT patients decreased significantly from baseline to two years post-KT (p < 0.0268), while levels of total cfDNA and nc-cfDNA did not differ. Depending on therapy modality (HD vs. non-HD) before KT, total cfDNA levels were higher in HD patients at both baseline (p = 0.0133) and two years post-KT (p = 0.0421), while nc-cfDNA levels were higher in HD only at baseline (p = 0.0079). Males showed a nonsignificant trend of higher cfDNA levels. Patients with assessed vascular fibrosis (p = 0.0068), either alone or in combination with calcification plus fibrosis, showed reduced mt-cfDNA post-KT (p = 0.0195). Changes in mt-cfDNA levels suggests the impact of KT on the inflammatory state of ESKF, as evidenced via its correlation with high sensitivity C-reactive protein after KT. Further studies are warranted to assess if cfDNA could serve as a noninvasive method for monitoring the response to organ transplantation and even for amelioration of EVA status per se.
Collapse
Affiliation(s)
- Chiara Leotta
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo Hospital Milan, University of Milan, 20142 Milan, Italy (M.G.C.)
| | - Leah Hernandez
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
| | - Lubomira Tothova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Samsul Arefin
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
| | - Paola Ciceri
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo Hospital Milan, University of Milan, 20142 Milan, Italy (M.G.C.)
| | - Mario Gennaro Cozzolino
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo Hospital Milan, University of Milan, 20142 Milan, Italy (M.G.C.)
| | - Peter Barany
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
| | - Milan Chromek
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
- Division of Pediatrics, Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
| | - Karolina Kublickiene
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
| |
Collapse
|
12
|
Ottestad AL, Johansen H, Halvorsen TO, Dai HY, Wahl SGF, Emdal EF, Grønberg BH. Associations between detectable circulating tumor DNA and tumor glucose uptake measured by 18F-FDG PET/CT in early-stage non-small cell lung cancer. BMC Cancer 2023; 23:646. [PMID: 37434111 PMCID: PMC10334612 DOI: 10.1186/s12885-023-11147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The low level of circulating tumor DNA (ctDNA) in the blood is a well-known challenge for the application of liquid biopsies in early-stage non-small cell lung cancer (NSCLC) management. Studies of metastatic NSCLC indicate that ctDNA levels are associated with tumor metabolic activity as measured by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET/CT). This study investigated this association in NSCLC patients considered for potentially curative treatment and explored whether the two methods provide independent prognostic information. METHOD Patients with stage I-III NSCLC who had routinely undergone an 18F-FDG PET/CT scan and exploratory ctDNA analyses were included. Tumor glucose uptake was measured by maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) from the 18F-FDG PET/CT scans. ctDNA detectability and quantity, using variant allele frequency, were estimated by tumor-informed ctDNA analyses. RESULTS In total, 63 patients (median age 70 years, 60% women, and 90% adenocarcinoma) were included. The tumor glucose uptake (SUVmax, MTV, and TLG) was significantly higher in patients with detectable ctDNA (n = 19, p < 0.001). The ctDNA quantity correlated with MTV (Spearman's ρ = 0.53, p = 0.021) and TLG (Spearman's ρ = 0.56, p = 0.013) but not with SUVmax (Spearman's ρ = 0.034, p = 0.15). ctDNA detection was associated with shorter OS independent of MTV (HR: 2.70, 95% CI: 1.07-6.82, p = 0.035) and TLG (HR: 2.63, 95% CI: 1.06-6.51, p = 0.036). Patients with high tumor glucose uptake and detectable ctDNA had shorter overall survival and progression-free survival than those without detectable ctDNA, though these associations were not statistically significant (p > 0.05). CONCLUSION There was a positive correlation between plasma ctDNA quantity and MTV and TLG in early-stage NSCLC patients. Despite the correlation, the results indicated that ctDNA detection was a negative prognostic factor independent of MTV and TLG.
Collapse
Affiliation(s)
- Anine Larsen Ottestad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7030, Norway.
- Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway.
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway
| | - Tarje Onsøien Halvorsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7030, Norway
- Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway
| | - Hong Yan Dai
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7030, Norway
- Department of Pathology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway
| | - Sissel Gyrid Freim Wahl
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7030, Norway
- Department of Pathology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway
| | - Elisabeth Fritzke Emdal
- Department of Pathology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway
| | - Bjørn Henning Grønberg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7030, Norway
- Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway
| |
Collapse
|
13
|
Michelson J, Rausser S, Peng A, Yu T, Sturm G, Trumpff C, Kaufman BA, Rai AJ, Picard M. MitoQuicLy: A high-throughput method for quantifying cell-free DNA from human plasma, serum, and saliva. Mitochondrion 2023; 71:26-39. [PMID: 37172669 PMCID: PMC10524316 DOI: 10.1016/j.mito.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/12/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Circulating cell-free mitochondrial DNA (cf-mtDNA) is an emerging biomarker of psychobiological stress and disease which predicts mortality and is associated with various disease states. To evaluate the contribution of cf-mtDNA to health and disease states, standardized high-throughput procedures are needed to quantify cf-mtDNA in relevant biofluids. Here, we describe MitoQuicLy: Mitochondrial DNA Quantification in cell-free samples by Lysis. We demonstrate high agreement between MitoQuicLy and the commonly used column-based method, although MitoQuicLy is faster, cheaper, and requires a smaller input sample volume. Using 10 µL of input volume with MitoQuicLy, we quantify cf-mtDNA levels from three commonly used plasma tube types, two serum tube types, and saliva. We detect, as expected, significant inter-individual differences in cf-mtDNA across different biofluids. However, cf-mtDNA levels between concurrently collected plasma, serum, and saliva from the same individual differ on average by up to two orders of magnitude and are poorly correlated with one another, pointing to different cf-mtDNA biology or regulation between commonly used biofluids in clinical and research settings. Moreover, in a small sample of healthy women and men (n = 34), we show that blood and saliva cf-mtDNAs correlate with clinical biomarkers differently depending on the sample used. The biological divergences revealed between biofluids, together with the lysis-based, cost-effective, and scalable MitoQuicLy protocol for biofluid cf-mtDNA quantification, provide a foundation to examine the biological origin and significance of cf-mtDNA to human health.
Collapse
Affiliation(s)
- Jeremy Michelson
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Shannon Rausser
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Amanda Peng
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Temmie Yu
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Gabriel Sturm
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine and the Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, USA
| | - Alex J Rai
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
14
|
M’Kacher R, Colicchio B, Junker S, El Maalouf E, Heidingsfelder L, Plesch A, Dieterlen A, Jeandidier E, Carde P, Voisin P. High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview. Int J Mol Sci 2023; 24:ijms24065699. [PMID: 36982772 PMCID: PMC10054499 DOI: 10.3390/ijms24065699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In the event of a radiological or nuclear accident, or when physical dosimetry is not available, the scoring of radiation-induced chromosomal aberrations in lymphocytes constitutes an essential tool for the estimation of the absorbed dose of the exposed individual and for effective triage. Cytogenetic biodosimetry employs different cytogenetic assays including the scoring of dicentrics, micronuclei, and translocations as well as analyses of induced premature chromosome condensation to define the frequency of chromosome aberrations. However, inherent challenges using these techniques include the considerable time span from sampling to result, the sensitivity and specificity of the various techniques, and the requirement of highly skilled personnel. Thus, techniques that obviate these challenges are needed. The introduction of telomere and centromere (TC) staining have successfully met these challenges and, in addition, greatly improved the efficiency of cytogenetic biodosimetry through the development of automated approaches, thus reducing the need for specialized personnel. Here, we review the role of the various cytogenetic dosimeters and their recent improvements in the management of populations exposed to genotoxic agents such as ionizing radiation. Finally, we discuss the emerging potentials to exploit these techniques in a wider spectrum of medical and biological applications, e.g., in cancer biology to identify prognostic biomarkers for the optimal triage and treatment of patients.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
- Correspondence: ; Tel.: +33-160878918
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Elie El Maalouf
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| | | | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, D-68804 Altlussheim, Germany
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 69093 Mulhouse, France
| | - Patrice Carde
- Department of Hematology, Institut Gustave Roussy, 94804 Villejuif, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| |
Collapse
|
15
|
Panizzi L, Dittmer KE, Vignes M, Doucet JS, Gedye K, Waterland MR, Rogers CW, Sano H, McIlwraith CW, Riley CB. Plasma and Synovial Fluid Cell-Free DNA Concentrations Following Induction of Osteoarthritis in Horses. Animals (Basel) 2023; 13:ani13061053. [PMID: 36978592 PMCID: PMC10044647 DOI: 10.3390/ani13061053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Biomarkers for osteoarthritis (OA) in horses have been extensively investigated, but translation into clinical use has been limited due to cost, limited sensitivity, and practicality. Identifying novel biomarkers that overcome these limitations could facilitate early diagnosis and therapy. This study aimed to compare the concentrations of synovial fluid (SF) and plasma cell-free DNA (cfDNA) over time in control horses with those with induced carpal OA. Following an established model, unilateral carpal OA was induced in 9 of 17 healthy Thoroughbred fillies, while the remainder were sham-operated controls. Synovial fluid and plasma samples were obtained before induction of OA (Day 0) and weekly thereafter until Day 63, and cfDNA concentrations were determined using fluorometry. The SF cfDNA concentrations were significantly higher for OA joints than for sham-operated joints on Days 28 (median 1430 μg/L and 631 μg/L, respectively, p = 0.017) and 63 (median 1537 μg/L and 606 μg/L, respectively, p = 0.021). There were no significant differences in plasma cfDNA between the OA and the sham groups after induction of carpal OA. Plasma cfDNA measurement is not sufficiently sensitive for diagnostic purposes in this induced model of OA. Synovial fluid cfDNA measurement may be used as a biomarker to monitor early disease progression in horses with OA.
Collapse
Affiliation(s)
- Luca Panizzi
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
- Correspondence:
| | - Keren E. Dittmer
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
| | - Matthieu Vignes
- School of Mathematical and Computational Sciences, College of Science, Massey University, Palmerston North 4442, New Zealand;
| | - Jennie S. Doucet
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Kristene Gedye
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
| | - Mark R. Waterland
- School of Natural Sciences, College of Science, Massey University, Palmerston North 4442, New Zealand;
| | - Chris W. Rogers
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
- School of Agriculture and Environment, College of Science, Massey University, Palmerston North 4442, New Zealand
| | - Hiroki Sano
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
| | - C. Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, School of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523-1601, USA;
| | - Christopher B. Riley
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
- Department of Clinical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
16
|
Martínez de Toda I, González-Sánchez M, Díaz-Del Cerro E, Valera G, Carracedo J, Guerra-Pérez N. Sex differences in markers of oxidation and inflammation. Implications for ageing. Mech Ageing Dev 2023; 211:111797. [PMID: 36868323 DOI: 10.1016/j.mad.2023.111797] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Sexual dimorphism is a key factor to consider in the ageing process given the impact that it has on life expectancy. The oxidative-inflammatory theory of ageing states that the ageing process is the result of the establishment of oxidative stress which, due to the interplay of the immune system, translates into inflammatory stress, and that both processes are responsible for the damage and loss of function of an organism. We show that there are relevant gender differences in a number of oxidative and inflammatory markers and propose that they may account for the differential lifespan between sexes, given that males display, in general, higher oxidation and basal inflammation. In addition, we explain the significant role of circulating cell-free DNA as a marker of oxidative damage and an inductor of inflammation, connecting both processes and having the potential to become a useful ageing marker. Finally, we discuss how oxidative and inflammatory changes take place differentially with ageing in each sex, which could also have an impact on the sex-differential lifespan. Further research including sex as an essential variable is needed to understand the grounds of sex differences in ageing and to better comprehend ageing itself.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Mónica González-Sánchez
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Gemma Valera
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Julia Carracedo
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Natalia Guerra-Pérez
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| |
Collapse
|
17
|
Michelson J, Rausser S, Peng A, Yu T, Sturm G, Trumpff C, Kaufman BA, Rai AJ, Picard M. MitoQuicLy: a high-throughput method for quantifying cell-free DNA from human plasma, serum, and saliva. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522744. [PMID: 36711938 PMCID: PMC9882007 DOI: 10.1101/2023.01.04.522744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Circulating cell-free mitochondrial DNA (cf-mtDNA) is an emerging biomarker of psychobiological stress and disease which predicts mortality and is associated with various disease states. To evaluate the contribution of cf-mtDNA to health and disease states, standardized high-throughput procedures are needed to quantify cf-mtDNA in relevant biofluids. Here, we describe MitoQuicLy: Mito chondrial DNA Qu antification in c ell-free samples by Ly sis. We demonstrate high agreement between MitoQuicLy and the commonly used column-based method, although MitoQuicLy is faster, cheaper, and requires a smaller input sample volume. Using 10 µL of input volume with MitoQuicLy, we quantify cf-mtDNA levels from three commonly used plasma tube types, two serum tube types, and saliva. We detect, as expected, significant inter-individual differences in cf-mtDNA across different biofluids. However, cf-mtDNA levels between concurrently collected plasma, serum, and saliva from the same individual differ on average by up to two orders of magnitude and are poorly correlated with one another, pointing to different cf-mtDNA biology or regulation between commonly used biofluids in clinical and research settings. Moreover, in a small sample of healthy women and men (n=34), we show that blood and saliva cf-mtDNAs correlate with clinical biomarkers differently depending on the sample used. The biological divergences revealed between biofluids, together with the lysis-based, cost-effective, and scalable MitoQuicLy protocol for biofluid cf-mtDNA quantification, provide a foundation to examine the biological origin and significance of cf-mtDNA to human health.
Collapse
Affiliation(s)
- Jeremy Michelson
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Shannon Rausser
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Amanda Peng
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Temmie Yu
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Gabriel Sturm
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Brett A. Kaufman
- Center for Metabolism and Mitochondrial Medicine and the Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine
| | - Alex J. Rai
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
18
|
Lorenzo EC, Kuchel GA, Kuo CL, Moffitt TE, Diniz BS. Major depression and the biological hallmarks of aging. Ageing Res Rev 2023; 83:101805. [PMID: 36410621 PMCID: PMC9772222 DOI: 10.1016/j.arr.2022.101805] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Major depressive disorder (MDD) is characterized by psychological and physiological manifestations contributing to the disease severity and outcome. In recent years, several lines of evidence have suggested that individuals with MDD have an elevated risk of age-related adverse outcomes across the lifespan. This review provided evidence of a significant overlap between the biological abnormalities in MDD and biological changes commonly observed during the aging process (i.e., hallmarks of biological aging). Based on such evidence, we formulate a mechanistic model showing how abnormalities in the hallmarks of biological aging can be a common denominator and mediate the elevated risk of age-related health outcomes commonly observed in MDD. Finally, we proposed a roadmap for novel studies to investigate the intersection between the biology of aging and MDD, including the use of geroscience-guided interventions, such as senolytics, to delay or improve major depression by targeting biological aging.
Collapse
Affiliation(s)
- Erica C Lorenzo
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Chia-Ling Kuo
- Department of Public Health Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, Kings College London, London, United Kingdom; PROMENTA Center, University of Oslo, Oslo, Norway
| | - Breno S Diniz
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|