1
|
Isingizwe ZR, Sjoelund V, Benbrook DM. Implications of GPIIB-IIIA Integrin and Liver X Receptor in Platelet-Induced Compression of Ovarian Cancer Multi-Cellular Spheroids. Cancers (Basel) 2024; 16:3533. [PMID: 39456628 PMCID: PMC11506604 DOI: 10.3390/cancers16203533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Platelets have been shown to promote ovarian cancer; however, the mechanism is poorly understood. Previously, we demonstrated that platelets reduce the size and increase the density of multi-cellular ovarian cancer spheroids in cell cultures. The objectives of this study were to determine if platelet inhibitors could counteract these effects, and to explore the mechanisms involved. Methods: FDA-approved platelet inhibitors were screened for their abilities to alter platelet effects on ovarian cancer spheroids. Mass spectrometry was used to identify proteins significantly altered in cancer cells upon exposure to platelets. The effects of platelets and/or liver x receptor agonists or antagonists on LXR activity were measured using ES-2 ovarian cancer cells transduced with an LXR-reporter vector. Results: Eptifibatide, a GPIIB-IIIA integrin inhibitor, and dipyridamole, an adenosine reuptake inhibitor, reduced and enhanced platelet effects on ovarian cancer spheroids, respectively. Proteomic studies identified the LXR/RXR and integrin pathways as mediators of platelet effects on ovarian cancer, and downstream effectors of eptifibatide. Conclusions: Integrin pathways and their downstream LXR/RXR effectors are implicated in how platelets alter ovarian cancer spheroid morphology. These results support studying eptifibatide and LXR/RXR agonists as candidate drugs for repurposing as therapeutic strategies to counteract platelet promotion of ovarian cancer.
Collapse
Affiliation(s)
- Zitha Redempta Isingizwe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA;
| | - Virginie Sjoelund
- Department of Biochemistry, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Doris Mangiaracina Benbrook
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA;
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
3
|
Chen Y, Yang Y, Wang N, Liu R, Wu Q, Pei H, Li W. β-Sitosterol suppresses hepatocellular carcinoma growth and metastasis via FOXM1-regulated Wnt/β-catenin pathway. J Cell Mol Med 2024; 28:e18072. [PMID: 38063438 PMCID: PMC10844700 DOI: 10.1111/jcmm.18072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 02/08/2024] Open
Abstract
β-Sitosterol is a natural compound with demonstrated anti-cancer properties against various cancers. However, its effects on hepatocellular carcinoma (HCC) and the underlying mechanisms are not well understood. This study aims to investigate the impact of β-sitosterol on HCC. In this study, we investigated the effects of β-sitosterol on HCC tumour growth and metastasis using a xenograft mouse model and a range of molecular analyses, including bioinformatics, real-time PCR, western blotting, lentivirus transfection, CCK8, scratch and transwell assays. The results found that β-sitosterol significantly inhibits HepG2 cell proliferation, migration and invasion both in vitro and in vivo. Bioinformatics analysis identifies forkhead box M1 (FOXM1) as a potential target for β-sitosterol in HCC treatment. FOXM1 is upregulated in HCC tissues and cell lines, correlating with poor prognosis in patients. β-Sitosterol downregulates FOXM1 expression in vitro and in vivo. FOXM1 overexpression mitigates β-sitosterol's inhibitory effects on HepG2 cells. Additionally, β-sitosterol suppresses epithelial-mesenchymal transition (EMT) in HepG2 cells, while FOXM1 overexpression promotes EMT. Mechanistically, β-sitosterol inhibits Wnt/β-catenin signalling by downregulating FOXM1, regulating target gene transcription related to HepG2 cell proliferation and metastasis. β-Sitosterol shows promising potential as a therapeutic candidate for inhibiting HCC growth and metastasis through FOXM1 downregulation and Wnt/β-catenin signalling inhibition.
Collapse
Affiliation(s)
- Yuankun Chen
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Yijun Yang
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Nengyi Wang
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Rui Liu
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Qiuping Wu
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Hua Pei
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Wenting Li
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
- Department of Infectious DiseasesThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
4
|
Structures of Mammeasins P and Q, Coumarin-Related Polysubstituted Benzofurans, from the Thai Medicinal Plant Mammea siamensis (Miq.) T. Anders.: Anti-Proliferative Activity of Coumarin Constituents against Human Prostate Carcinoma Cell Line LNCaP. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A methanol extract of the flowers of Mammea siamensis (Miq.) T. Anders. (Calophyllaceae) showed anti-proliferative activity against human prostate carcinoma LNCaP cells (IC50 = 2.0 µg/mL). Two new coumarin-related polysubstituted benzofurans, mammeasins P (1) and Q (2), and a known polysubstituted coumarin mammea B/AC cyclo F (39) were isolated from the extract along with 44 previously reported polysubstituted coumarin constituents (3–38 and 40–47). The structures of two new compounds (1 and 2) were determined based on their spectroscopic properties derived from the physicochemical evidence including NMR and MS analyses and taking the plausible generative pathway into account. Among the coumarin constituents, mammeasins A (3, IC50 = 1.2 µM) and B (4, 0.63 µM), sugangin B (18, 1.5 µM), kayeassamins E (24, 3.0 µM) and G (26, 3.5 µM), and mammeas E/BA (40, 0.88 µM), E/BB (41, 0.52 µM), and E/BC (42, 0.12 µM) showed relatively potent anti-proliferative activity.
Collapse
|
5
|
CYP27A1 inhibits proliferation and migration of clear cell renal cell carcinoma via activation of LXRs/ABCA1. Exp Cell Res 2022; 419:113279. [PMID: 35810773 DOI: 10.1016/j.yexcr.2022.113279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022]
Abstract
Cholesterol homeostasis plays an important role in the maintenance of normal body functions. CYP27A1 is a key enzyme known to regulate cholesterol homeostasis, which catalyzes the conversion of cholesterol to 27-HC and has been implicated in the occurrence and metastasis of various cancer types. The present study aimed to explore the regulatory role of CYP27A1 in the development of clear cell renal cell carcinoma (ccRCC). In particular, the effect of CYP27A1 on the proliferation and migration of ccRCC cells was investigated. The construction of a stable 786-O cell line overexpressing CYP27A1/pLVX was mediated by lentiviral infection. The proliferative capacity was assessed using MTT and colony formation. Wound healing assay was used to measure cell migration. Production of intracellular cholesterol and 27-HC was detected by enzyme-linked immunosorbent assay. The LXRs/ABCA1 pathway of cholesterol metabolism regulation was studied by RT-qPCR and Western blotting analysis after cells were treated with stimulation agents of 27-HC or T0901317 and inhibition agents of siRNA or GSK2033. The results revealed that overexpression of CYP27A1 could increase the intracellular production of 27-HC and inhibit the proliferation and migration of 786-O cells. And the treatment of 786-O cells with 27-HC induced a similar effect. CYP27A1/27HC mediated activation of the liver X receptors (LXRs) could up-regulate the expression of ATP-binding cassette transporter A1 (ABCA1), further resulting in the reduction of intracellular cholesterol contents. All of these findings indicated a regulatory role of CYP27A1 in the proliferation and migration of ccRCC, via activating LXRs/ABCA1 to regulate cholesterol homeostasis.
Collapse
|
6
|
Thorne JL, Cioccoloni G. Nuclear Receptors and Lipid Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:83-105. [DOI: 10.1007/978-3-031-11836-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Disruption of Endoplasmic Reticulum and ROS Production in Human Ovarian Cancer by Campesterol. Antioxidants (Basel) 2021; 10:antiox10030379. [PMID: 33802602 PMCID: PMC8001332 DOI: 10.3390/antiox10030379] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Phytosterols, which are present in a variety of foods, exhibit various physiological functions and do not have any side effects. Here, we attempted to identify functional role of campesterol in regulation of oxidative stress by leading to cell death of ovarian cancer. We investigated the effects of campesterol on cancer cell aggregation using a three-dimensional (3D) culture of human ovarian cancer cells. The effects of campesterol on apoptosis, protein expression, proliferation, the cell cycle, and the migration of these cells were determined to unravel the underlying mechanism. We also investigated whether campesterol regulates mitochondrial function, the generation of reactive oxygen species (ROS), and calcium concentrations. Our results show that campesterol activates cell death signals and cell death in human ovarian cancer cells. Excessive calcium levels and ROS production were induced by campesterol in the two selected ovarian cancer cell lines. Moreover, campesterol suppressed cell proliferation, cell cycle progression, and cell aggregation in ovarian cancer cells. Campesterol also enhanced the anticancer effects of conventional anticancer agents. The present study shows that campesterol can be used as a novel anticancer drug for human ovarian cancer.
Collapse
|
8
|
Guo R, Yang B. Hypoxia-Induced LXRα Contributes to the Migration and Invasion of Gastric Cancer Cells. Folia Biol (Praha) 2021; 67:91-101. [PMID: 35151242 DOI: 10.14712/fb2021067030091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Gastric cancer is characterized by the presence of high invasion ability, hypoxia and chemoresistance. Previous studies reported that liver X receptor α (LXRα) was involved in epithelial-mesenchymal transition (EMT) of gastric cancer cells. However, hypoxia-mediated EMT and the role of LXRα in gastric cancer remained elusive. In this study, we demonstrated that LXRa mRNA and protein levels were up-regulated by hypoxia treatment and LXRα played an important role in HIF-1 dimer induced-EMT. The putative HIF-1α binding site was identified in the LXRa promoter. Expression of LXRα and HIF-1α was significantly up-regulated in gastric cancer tissues compared to that in normal tissues. More importantly, we noticed that the expression of LXRα and HIF-1α was significantly correlated. Taken together, these data suggested that LXRα is regulated by the activity and accumulation of HIF-1α and contributes to EMT of gastric cancer cells. This suggests that targeting LXRα might be a potential approach for improving survival of gastric cancer patients.
Collapse
Affiliation(s)
- R Guo
- Department of General Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - B Yang
- Department of General Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Chen T, Xu J, Fu W. EGFR/FOXO3A/LXR-α Axis Promotes Prostate Cancer Proliferation and Metastasis and Dual-Targeting LXR-α/EGFR Shows Synthetic Lethality. Front Oncol 2020; 10:1688. [PMID: 33224867 PMCID: PMC7667376 DOI: 10.3389/fonc.2020.01688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/29/2020] [Indexed: 01/08/2023] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death in men. Early prostate cancer has a high 5-year survival rate. However, the five-year survival rate is low in progressive prostate cancer, which manifests as bone metastasis. The EGF receptor overexpression increases during disease progression and in the development of castration-resistant disease, and may be a potential therapeutic target. Liver X receptors (LXRs) are ligand-dependent nuclear receptor transcription factors and consist of two subtypes, LXR-α and LXR-β, which can inhibit tumor growth in various cancer cells. We revealed that LXR-α, but not LXR-β, was reduced in prostate cancer tissues compared with adjacent normal tissues. LXRs' agonist GW3965 enhanced the inhibitory action of LXR-α on the proliferation and metastasis of prostate cancer cells. Furthermore, our results support the notion that LXR-α is regulated by the EGFR/AKT/FOXO3A pathway. As an EGFR inhibitor, Afatinib could weaken AKT activation and increase the expression level of FOXO3A in prostate cancer. In addition, we indicated that the combination of Afatinib and GW3965 simultaneously increased and activated LXR-α, which led to an increase of tumor suppressors, and eventually inhibited tumor progression. Therefore, the combination of EGFR inhibitor and LXRs agonist may become a potential treatment strategy for prostate cancer, especially metastatic prostate cancer.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Urology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Xu
- Department of Urology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weihua Fu
- Department of Urology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
10
|
Blanco-Vaca F, Cedó L, Julve J. Phytosterols in Cancer: From Molecular Mechanisms to Preventive and Therapeutic Potentials. Curr Med Chem 2020; 26:6735-6749. [PMID: 29874991 DOI: 10.2174/0929867325666180607093111] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/13/2018] [Accepted: 02/24/2018] [Indexed: 12/17/2022]
Abstract
Cancer is the second leading cause of death worldwide. Compelling evidence supports the hypothesis that the manipulation of dietary components, including plant compounds termed as phytochemicals, demonstrates certain important health benefits in humans, including those in cancer. In fact, beyond their well-known cardiovascular applications, phytosterols may also possess anticancer properties, as has been demonstrated by several studies. Although the mechanism of action by which phytosterols (and derivatives) may prevent cancer development is still under investigation, data from multiple experimental studies support the hypothesis that they may modulate proliferation and apoptosis of tumor cells. Phytosterols are generally considered safe for human consumption and may also be added to a broad spectrum of food matrices; further, they could be used in primary and secondary prevention. However, few interventional studies have evaluated the relationship between the efficacy of different types and forms of phytosterols in cancer prevention. In this context, the purpose of this review was to revisit and update the current knowledge on the molecular mechanisms involved in the anticancer action of phytosterols and their potential in cancer prevention or treatment.
Collapse
Affiliation(s)
- Francisco Blanco-Vaca
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau [IRHSCSP] i Institut d'Investigacio Biomedica Sant Pau [IIB-Sant Pau], Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lídia Cedó
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau [IRHSCSP] i Institut d'Investigacio Biomedica Sant Pau [IIB-Sant Pau], Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Josep Julve
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau [IRHSCSP] i Institut d'Investigacio Biomedica Sant Pau [IIB-Sant Pau], Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| |
Collapse
|
11
|
Naeini MB, Momtazi AA, Jaafari MR, Johnston TP, Barreto G, Banach M, Sahebkar A. Antitumor effects of curcumin: A lipid perspective. J Cell Physiol 2019; 234:14743-14758. [PMID: 30741424 DOI: 10.1002/jcp.28262] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Lipid metabolism plays an important role in cancer development due to the necessities of rapidly dividing cells to increase structural, energetic, and biosynthetic demands for cell proliferation. Basically, obesity, type 2 diabetes, and other related diseases, and cancer are associated with a common hyperactivated "lipogenic state." Recent evidence suggests that metabolic reprogramming and overproduction of enzymes involved in the synthesis of fatty acids are the new hallmarks of cancer, which occur in an early phase of tumorigenesis. As the first evidence to confirm dysregulated lipid metabolism in cancer cells, the overexpression of fatty acid synthase (FAS) was observed in breast cancer patients and demonstrated the role of FAS in cancer. Other enzymes of fatty acid synthesis have recently been found to be dysregulated in cancer, including ATP-dependent citrate lyase and acetyl-CoA carboxylase, which further underscores the connection of these metabolic pathways with cancer cell survival and proliferation. The degree of overexpression of lipogenic enzymes and elevated lipid utilization in tumors is closely associated with cancer progression. The question that arises is whether the progression of cancer can be suppressed, or at least decelerated, by modulating gene expression related to fatty acid metabolism. Curcumin, due to its effects on the regulation of lipogenic enzymes, might be able to suppress, or even cause regression of tumor growth. This review discusses recent evidence concerning the important role of lipogenic enzymes in the metabolism of cancer cells and whether the inhibitory effects of curcumin on lipogenic enzymes is therapeutically efficacious.
Collapse
Affiliation(s)
- Mehri Bemani Naeini
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - George Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Maciej Banach
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Shiota M, Fujimoto N, Kashiwagi E, Eto M. The Role of Nuclear Receptors in Prostate Cancer. Cells 2019; 8:cells8060602. [PMID: 31212954 PMCID: PMC6627805 DOI: 10.3390/cells8060602] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) superfamily consists of 48 members that are divided into seven subfamilies. NRs are transcription factors that play an important role in a number of biological processes. The NR superfamily includes androgen receptor, which is a key player in prostate cancer pathogenesis, suggesting the functional roles of other NRs in prostate cancer. The findings on the roles of NRs in prostate cancer thus far have shown that several NRs such as vitamin D receptor, estrogen receptor β, and mineralocorticoid receptor play antioncogenic roles, while other NRs such as peroxisome proliferator-activated receptor γ and estrogen receptor α as well as androgen receptor play oncogenic roles. However, the roles of other NRs in prostate cancer remain controversial or uninvestigated. Further research on the role of NRs in prostate cancer is required and may lead to the development of novel preventions and therapeutics for prostate cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
13
|
Liang X, Cao Y, Xiang S, Xiang Z. LXRα-mediated downregulation of EGFR suppress colorectal cancer cell proliferation. J Cell Biochem 2019; 120:17391-17404. [PMID: 31104333 DOI: 10.1002/jcb.29003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor family, including the LXRα (NR1H3) and LXRβ (NR1H2) subtypes, which are related to the metabolism of glucose and cholesterol and possess anti-inflammatory functions. Mounting evidence has linked LXRs to the inhibition of cell proliferation in a variety of cancers. We revealed a differential distribution for NR1H3, but not for NR1H2, in colorectal cancer and adjacent normal tissues. We found that NR1H3 enhanced the inhibitory action of GW3965, an agonist of LXRs, on the proliferation of colorectal cancer cells. Upregulation of NR1H3 enhanced the inhibition of cell proliferation by GW3965 while silencing of NR1H3 attenuated the inhibitory effect of GW3965 on cell proliferation. Bioinformatic prediction and luciferase assays showed that NR1H3 was able to inhibit the activity of the epidermal growth factor receptor (EGFR) promoter. Moreover, we demonstrated that activation of NR1H3 inhibited the growth of transplanted tumors in an animal experiment, with the inhibition accompanied by downregulation of EGFR. Our findings suggest that NR1H3 controls cell proliferation by affecting EGFR promoter activity. The high expression of EGFR was due to the downregulation of NR1H3 which is a novel molecular mechanism in the development of colorectal cancer.
Collapse
Affiliation(s)
- Xiaolong Liang
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Cao
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song Xiang
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Xiang
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Wan W, Hou Y, Wang K, Cheng Y, Pu X, Ye X. The LXR-623-induced long non-coding RNA LINC01125 suppresses the proliferation of breast cancer cells via PTEN/AKT/p53 signaling pathway. Cell Death Dis 2019; 10:248. [PMID: 30867411 PMCID: PMC6416354 DOI: 10.1038/s41419-019-1440-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/09/2019] [Accepted: 02/06/2019] [Indexed: 01/11/2023]
Abstract
LXR-623 (WAY-252623), a liver X receptor agonist, reduces atherosclerotic plaque progression and remarkably inhibits the proliferation of glioblastoma cells, owing to its brain-penetrant ability. However, the role of LXR-623 against the proliferation of other cancer cells and the underlying mechanism remain unknown. Long non-coding RNAs (lncRNAs) serve as novel and crucial regulators that participate in cancer tumorigenesis and diverse biological processes. Here, we report a previously uncharacterized mechanism underlying lncRNA-mediated exocytosis of LXR-623 via the phosphatase and tensin homolog (PTEN)/protein kinase B (AKT)/p53 axis to suppress the proliferation of cancer cells in vitro. We found that LXR-623 significantly inhibited the proliferation and induced apoptosis and cell cycle arrest at S phase in breast cancer cells in a concentration- and time-dependent manner. Experiments using a xenograft mouse model revealed the inhibitory effects of LXR-623 on tumor growth. We used lncRNA microarray to investigate the potential genes regulated by LXR-623. As a result, LINC01125 was found to be significantly upregulated in the cells treated with LXR-623. Gain- and loss-of-function assays were conducted to investigate the anti-proliferation role of LINC01125. LINC01125 knockdown resulted in the inhibition of the cytotoxic effect of LXR-623; in contrast, LINC01125 overexpression significantly enhanced the effect of LXR-623. LXR-623 and LINC01125-mediated anti-growth regulation is, at least in part, associated with the participation of the PTEN/AKT/mouse double minute 2 homolog (MDM2)/p53 pathway. In addition, SF1670, a specific PTEN inhibitor with prolonged intracellular retention, may strongly block the anti-proliferation effect induced by LXR-623 and LINC01125 overexpression. Chromatin immunoprecipitation (ChIP) assay results suggest that p53 binds to the promoter of LINC01125 to strengthen the expression of the PTEN/AKT pathway. Taken together, our findings suggest that LXR-623 possesses significant antitumor activity in breast cancer cells that is partly mediated through the upregulation in LINC01125 expression and enhancement in apoptosis via the PTEN/AKT/MDM2/p53 pathway.
Collapse
Affiliation(s)
- Weijun Wan
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Yongying Hou
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Wang
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Cheng
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Xia Pu
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Xiufeng Ye
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
15
|
Fang F, Li D, Zhao L, Li Y, Zhang T, Cui B. Expression of NR1H3 in endometrial carcinoma and its effect on the proliferation of Ishikawa cells in vitro. Onco Targets Ther 2019; 12:685-697. [PMID: 30705597 PMCID: PMC6343513 DOI: 10.2147/ott.s180534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Our study aimed to investigate the expression of NR1H3 in endometrial carcinoma, its effect on the proliferation of endometrial carcinoma cells in vitro, and the underlying mechanism of this effect. Materials and methods Immunohistochemistry of paraffin-embedded, sectioned specimens and of a tissue microarray was conducted to estimate the expression of NR1H3 (liver X receptors α: LXRα) and NR1H2 (liver X receptors β: LXRβ) in endometrial carcinoma tissues. The subcellular localization of NR1H3 in the endometrial carcinoma cell line Ishikawa was determined by immunofluorescence. An agonist of NR1H3, TO901317, was then administered to activate the expression of NR1H3, and cell viability and cell-cycle progression were investigated through MTT and flow cytometric assays, respectively. The gene and protein expression levels of NR1H3, cyclin D1 (CCND1), and cyclin E (CCNE) in cells pretreated with different concentrations of TO901317 for different periods of time were also detected by real-time RT-PCR and Western blot, respectively. Results The results showed that, in contrast to NR1H2, which was expressed at low levels in endometrial tissues, NR1H3 was upregulated in endometrial adenocarcinoma tissues compared to levels in normal endometrial tissues and endometrial polyps. Moreover, NR1H3 was mainly expressed in the cytoplasm of Ishikawa cells. TO901317 significantly decreased cell viability and arrested the cell cycle in Ishikawa cells in a dose- and time-dependent manner. Furthermore, the administration of TO901317 not only promoted the expression of NR1H3 but also inhibited the expression of CCND1 and CCNE in Ishikawa cells. Conclusion We demonstrated that NR1H3 is upregulated in endometrial adenocarcinoma and that it inhibits cell viability by inhibiting the expression of CCND1 and CCNE in endometrial carcinoma cells. Our study indicates that NR1H3 may play a role in the development of endometrial cancer and may emerge as a promising therapeutic target.
Collapse
Affiliation(s)
- Fang Fang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China, .,Department of Obstetrics and Gynecology, Weihai Municipal Hospital, Weihai, Shandong, People's Republic of China
| | - Dawei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China, .,Department of Obstetrics and Gynecology, Weihai Municipal Hospital, Weihai, Shandong, People's Republic of China
| | - Lu Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China,
| | - Yue Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China, .,Department of Obstetrics and Gynecology, Weihai Municipal Hospital, Weihai, Shandong, People's Republic of China
| | - Teng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China,
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China,
| |
Collapse
|
16
|
Ganjali S, Ricciuti B, Pirro M, Butler AE, Atkin SL, Banach M, Sahebkar A. High-Density Lipoprotein Components and Functionality in Cancer: State-of-the-Art. Trends Endocrinol Metab 2019; 30:12-24. [PMID: 30473465 DOI: 10.1016/j.tem.2018.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 01/05/2023]
Abstract
Cancer is the second leading cause of death in western countries, and thus represents a major global public health issue. Whilst it is well-recognized that diet, obesity, and smoking are risk factors for cancer, the role of low levels of high-density lipoprotein cholesterol (HDL-C) in cancer is less well appreciated. Conflicting evidence suggests that serum HDL-C levels may be either positively or negatively associated with cancer incidence and mortality. Such disparate associations are supported in part by the multitude of high-density lipoprotein (HDL) functions that can all have an impact on cancer cell biology. The aim of this review is to provide a comprehensive overview of the crosstalk between HDLs and cancer, focusing on the molecular mechanisms underlying this association.
Collapse
Affiliation(s)
- Shiva Ganjali
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Biagio Ricciuti
- Department of Medical Oncology, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | | | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Zafar U, Khaliq S, Ali Z, Lone K. Adrenergic receptor beta-3 rs4994 (T>C) and liver X receptor alpha rs12221497 (G>A) polymorphism in Pakistanis with metabolic syndrome. CHINESE J PHYSIOL 2019; 62:196-202. [DOI: 10.4103/cjp.cjp_45_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Cariello M, Ducheix S, Maqdasy S, Baron S, Moschetta A, Lobaccaro JMA. LXRs, SHP, and FXR in Prostate Cancer: Enemies or Ménage à Quatre With AR? NUCLEAR RECEPTOR SIGNALING 2018; 15:1550762918801070. [PMID: 30718981 PMCID: PMC6348739 DOI: 10.1177/1550762918801070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022]
Abstract
Androgens and androgen receptor (AR, NR3C4) clearly play a crucial role in
prostate cancer progression. Besides, the link between metabolic disorders and
the risk of developing a prostate cancer has been emerging these last years.
Interestingly, “lipid” nuclear receptors such as LXRα/NR1H3 and LXRβ/NR1H2 (as
well as FXRα/NR1H4 and SHP/NR0B2) have been described to decrease the lipid
metabolism, while AR increases it. Moreover, these former orphan nuclear
receptors can regulate androgen levels and modulate AR activity. Thus, it is not
surprising to find such receptors involved in the physiology of prostate. This
review is focused on the roles of liver X receptors (LXRs), farnesoid X receptor
(FXR), and small heterodimeric partner (SHP) in prostate physiology and their
capabilities to interfere with the androgen-regulated pathways by modulating the
levels of active androgen within the prostate. By the use of prostate cancer
cell lines, mice deficient for these nuclear receptors and human tissue
libraries, several authors have pointed out the putative possibility to
pharmacologically target these receptors. These data open a new field of
research for the development of new drugs that could overcome the castration
resistance in prostate cancer, a usual phenomenon in patients.
Collapse
Affiliation(s)
| | - Simon Ducheix
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Salwan Maqdasy
- Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France.,CHU Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Antonio Moschetta
- "Aldo Moro" University of Bari, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy.,IRCCS Istituto Oncologico "Giovanni Paolo II," Bari, Italy
| | - Jean-Marc A Lobaccaro
- "Aldo Moro" University of Bari, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy.,Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| |
Collapse
|
19
|
The Role of PPAR and Its Cross-Talk with CAR and LXR in Obesity and Atherosclerosis. Int J Mol Sci 2018; 19:ijms19041260. [PMID: 29690611 PMCID: PMC5979375 DOI: 10.3390/ijms19041260] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
The prevalence of obesity and atherosclerosis has substantially increased worldwide over the past several decades. Peroxisome proliferator-activated receptors (PPARs), as fatty acids sensors, have been therapeutic targets in several human lipid metabolic diseases, such as obesity, atherosclerosis, diabetes, hyperlipidaemia, and non-alcoholic fatty liver disease. Constitutive androstane receptor (CAR) and liver X receptors (LXRs) were also reported as potential therapeutic targets for the treatment of obesity and atherosclerosis, respectively. Further clarification of the internal relationships between these three lipid metabolic nuclear receptors is necessary to enable drug discovery. In this review, we mainly summarized the cross-talk of PPARs-CAR in obesity and PPARs-LXRs in atherosclerosis.
Collapse
|
20
|
Lai C, Cheng H, Lin C, Huang S, Chen T, Chung C, Chang C, Wang H, Chuu C. Activation of liver X receptor suppresses angiogenesis
via
induction of ApoD. FASEB J 2017; 31:5568-5576. [DOI: 10.1096/fj.201700374r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/07/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Chih‐Jen Lai
- Institute of Cellular and System MedicineNational Health Research Institutes Miaoli Taiwan
- Institute of BiotechnologyNational Tsing Hua University Hsinchu Taiwan
| | - Hsu‐Chen Cheng
- Department of Life SciencesNational Chung Hsing University Taichung Taiwan
| | - Ching‐Yu Lin
- Institute of Cellular and System MedicineNational Health Research Institutes Miaoli Taiwan
| | - Shih‐Han Huang
- Institute of Cellular and System MedicineNational Health Research Institutes Miaoli Taiwan
- Department of Life SciencesNational Central University Taoyuan Taiwan
| | - Ting‐Huan Chen
- Institute of Cellular and System MedicineNational Health Research Institutes Miaoli Taiwan
- Institute of BiotechnologyNational Tsing Hua University Hsinchu Taiwan
| | - Chi‐Jung Chung
- Department of Health Risk ManagementChina Medical University Taichung Taiwan
| | - Chung‐Ho Chang
- Institute of Cellular and System MedicineNational Health Research Institutes Miaoli Taiwan
- Department of Internal MedicineChanghua Christian Hospital Changhua Taiwan
| | - Horng‐Dar Wang
- Institute of BiotechnologyNational Tsing Hua University Hsinchu Taiwan
| | - Chih‐Pin Chuu
- Institute of Cellular and System MedicineNational Health Research Institutes Miaoli Taiwan
- Biotechnology CenterNational Chung Hsing University Taichung Taiwan
- Graduate Institute of Basic Medical ScienceChina Medical University Taichung Taiwan
- Graduate Program for AgingChina Medical University Taichung Taiwan
| |
Collapse
|
21
|
Yun SH, Park MG, Kim YM, Roh MS, Park JI. Expression of chicken ovalbumin upstream promoter-transcription factor II and liver X receptor as prognostic indicators for human colorectal cancer. Oncol Lett 2017; 14:4011-4020. [PMID: 28943908 PMCID: PMC5594251 DOI: 10.3892/ol.2017.6659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Cholesterol increases the risk of colorectal cancer. Liver X receptor (LXR), retinoid X receptor (RXR)α and sterol regulatory element binding protein (SREBP)-1c are transcriptional regulators of lipid metabolism. Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) serves an essential role in angiogenesis and development, but its role in cancer is controversial. The expression of COUP-TFII, LXR, RXRα and SREBP-1c in colorectal cancer, as well as their association with clinicopathologic features, was assessed, and their utility as prognostic indicators in colorectal cancer evaluated. Colorectal cancer samples (n=707 patients) were analyzed for COUP-TII, LXR, RXRα and SREBP-1c expression by immunohistochemistry. Overall survival curves of patients with tumors expressing different levels of these proteins were produced and risk factors were assessed. Of the 707 patients, 32.7, 50.9, 56.4, and 41.7% were positive for COUP-TFII, LXR, RXRα, and SREBP-1c, respectively. The lack of COUP-TFII or LXR expression was associated with lower overall survival rates (P=0.0154 for COUP-TFII, and 0.0113 for LXR). Following adjustment for other clinical risk factors (age, sex, tumor size, grade, vascular invasion, and Tumor-Node-Metastasis stage), the lack of COUP-TFII or LXR expression was a negative independent prognostic factor for survival. The expression of COUP-TFII and LXR alone or in combination may be biomarkers to indicate a positive prognosis in patients with colorectal cancer.
Collapse
Affiliation(s)
- Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Min-Gyoung Park
- Department of Pathology, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Yu-Mi Kim
- Department of Preventive Medicine, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Mee-Sook Roh
- Department of Pathology, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| |
Collapse
|
22
|
Sung E, Kwon OK, Lee JM, Lee S. Proteomics approach to identify novel metastatic bone markers from the secretome of PC-3 prostate cancer cells. Electrophoresis 2017. [PMID: 28627741 DOI: 10.1002/elps.201700052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostate cancer is the leading type of cancer diagnosed, and the most frequent cause of worldwide male cancer-related deaths annually. The limitations of current prostate cancer screening tests demand the identification of novel biomarkers for the early diagnosis of prostate cancer bone metastasis. In the present study, we performed a proteomic analysis of secreted proteins from the prostate cancer bone metastasis cell line, PC-3, and the normal prostate cell line, RWPE-1. We thus quantified 917 proteins, of which 68 were found to be secreted at higher levels by PC-3 than by RWPE-1 cells via LC-MS/MS. To characterize the highly secreted proteins in the PC-3 cell line and thereby identify biomarker proteins, we divided the quantifiable proteins into four quantitative categories (Q1-Q4). The KEGG lysine degradation and osteoclast differentiation pathways were demonstrated to be enriched in the highly secreted Q4 protein group. Transforming growth factor (TGF) beta family proteins related to osteoclast differentiation were identified as key regulators of PC-3 cell proliferation. Immunoblotting was used to confirm the observed high level of pentraxin, follistatin, TGF-beta family members, and serpin B3 secretion by PC-3 cells. From the collective results of the present study, we suggest that serpin B3 is a promising novel biomarker candidate for the diagnosis of prostate cancer bone metastasis.
Collapse
Affiliation(s)
- EunJi Sung
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
23
|
Youlin K, Li Z, Weiyang H, Jian K, Siming L, Xin G. Liver X receptor activation inhibits PC-3 prostate cancer cells via the beta-catenin pathway. Pathol Res Pract 2017; 213:267-270. [DOI: 10.1016/j.prp.2016.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/28/2016] [Indexed: 01/01/2023]
|
24
|
Lin HP, Lin CY, Huo C, Jan YJ, Tseng JC, Jiang SS, Kuo YY, Chen SC, Wang CT, Chan TM, Liou JY, Wang J, Chang WSW, Chang CH, Kung HJ, Chuu CP. AKT3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf, and TSC1/TSC2. Oncotarget 2016; 6:27097-112. [PMID: 26318033 PMCID: PMC4694976 DOI: 10.18632/oncotarget.4553] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/29/2015] [Indexed: 01/09/2023] Open
Abstract
The qRT-PCR analysis of 139 clinical samples and analysis of 150 on-line database clinical samples indicated that AKT3 mRNA expression level was elevated in primary prostate tumors. Immunohistochemical staining of 65 clinical samples revealed that AKT3 protein expression was higher in prostate tumors of stage I, II, III as compared to nearby normal tissues. Plasmid overexpression of AKT3 promoted cell proliferation of LNCaP, PC-3, DU-145, and CA-HPV-10 human prostate cancer (PCa) cells, while knockdown of AKT3 by siRNA reduced cell proliferation. Overexpression of AKT3 increased the protein expression of total AKT, phospho-AKT S473, phospho-AKT T308, B-Raf, c-Myc, Skp2, cyclin E, GSK3β, phospho-GSK3β S9, phospho-mTOR S2448, and phospho-p70S6K T421/S424, but decreased TSC1 (tuberous sclerosis 1) and TSC2 (tuberous Sclerosis Complex 2) proteins in PC-3 PCa cells. Overexpression of AKT3 also increased protein abundance of phospho-AKT S473, phospho-AKT T308, and B-Raf but decreased expression of TSC1 and TSC2 proteins in LNCaP, DU-145, and CA-HPV-10 PCa cells. Oncomine datasets analysis suggested that AKT3 mRNA level was positively correlated to BRAF. Knockdown of AKT3 in DU-145 cells with siRNA increased the sensitivity of DU-145 cells to B-Raf inhibitor treatment. Knockdown of TSC1 or TSC2 promoted the proliferation of PCa cells. Our observations implied that AKT3 may be a potential therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Hui-Ping Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Ching-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Chieh Huo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Department of Life Sciences, National Central University, Taiwan
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan.,Medical College of Chung Shan Medical University, Taichung City, Taiwan
| | - Jen-Chih Tseng
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Ying-Yu Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Shyh-Chang Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Chih-Ting Wang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Tzu-Min Chan
- Department of Medical Education and Research, China Medical University Beigan Hospital, Yunlin, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - John Wang
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Wun-Shaing Wayne Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Chung-Ho Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Hsing-Jien Kung
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan.,Graduate Program for Aging, China Medical University, Taichung City, Taiwan.,Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, Taiwan.,Ph.D. program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
25
|
Zuo M, Rashid A, Wang Y, Jain A, Li D, Behari A, Kapoor VK, Koay EJ, Chang P, Vauthey JN, Li Y, Espinoza JA, Roa JC, Javle M. RNA sequencing-based analysis of gallbladder cancer reveals the importance of the liver X receptor and lipid metabolism in gallbladder cancer. Oncotarget 2016; 7:35302-12. [PMID: 27167107 PMCID: PMC5085230 DOI: 10.18632/oncotarget.9181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/16/2016] [Indexed: 12/24/2022] Open
Abstract
Gallbladder cancer (GBC) is an aggressive malignancy. Although surgical resection may be curable, most patients are diagnosed at an advanced unresectable disease stage. Cholelithiasis is the major risk factor; however the pathogenesis of the disease, from gallstone cholecystitis to cancer, is still not understood. To understand the molecular genetic underpinnings of this cancer and explore novel therapeutic targets for GBC, we examined the key genes and pathways involved in GBC using RNA sequencing. We performed gene expression analysis of 32 cases of surgically-resected GBC along with normal gallbladder tissue controls. We observed that 519 genes were differentially expressed between GBC and normal GB mucosal controls. The liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor (FXR) /RXR pathways were the top canonical pathways involved in GBC. Key genes in these pathways, including SERPINB3 and KLK1, were overexpressed in GBC, especially in female GBC patients. Additionally, ApoA1 gene expression suppressed in GBC as compared with normal control tissues. LXR and FXR genes, known to be important in lipid metabolism also function as tumor suppressors and their down regulation appears to be critical for GBC pathogenesis. LXR agonists may have therapeutic value and as potential therapeutic targets.
Collapse
Affiliation(s)
- Mingxin Zuo
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Asif Rashid
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Apurva Jain
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anu Behari
- Department of Surgical Gastroenterology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP, India
| | - Vinay Kumar Kapoor
- Department of Surgical Gastroenterology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP, India
| | - Eugene J. Koay
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Chang
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jean Nicholas Vauthey
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanan Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaime A. Espinoza
- SciLifeLab, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Juan Carlos Roa
- Department of Pathology, Advanced Center for Chronic Diseases (ACCDiS), UC-Center for Investigational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
26
|
Abstract
Nuclear receptors (NR) act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate). Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV) we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g. NR3C2/MR and NR5A2/LRH-1)) whereas others were uniquely down-regulated in one tumor (e.g. NR1B3/RARG). The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression.
Collapse
Affiliation(s)
- Mark D Long
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Moray J Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
27
|
LXR ligands sensitize EGFR-TKI-resistant human lung cancer cells in vitro by inhibiting Akt activation. Biochem Biophys Res Commun 2015; 467:900-5. [PMID: 26471306 DOI: 10.1016/j.bbrc.2015.10.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022]
Abstract
Lung adenocarcinoma cells harboring epidermal growth factor receptor (EGFR) mutations are sensitive to EGFR tyrosine kinase inhibitors (TKIs). Prolonged cancer treatment will induce the development of acquired resistance to EGFR TKI. Here we investigate the effects of two novel liver x receptor (LXR) ligands (T0901317 or GW3965) on the development of acquired resistance to an EGFR TKI gefitinib. We observed known mechanisms of acquired resistance to EGFR TKI, including the EGFR T790M mutation, MET gene amplification and loss of PTEN in the gefitinib-resistant HCC827-8-1 cells. However, we found expression of MET was lower in HCC827-8-1 cells than in HCC827 cells. T0901317 or GW3965 inhibited Akt activation and sensitized HCC827-8-1 cells to gefitinib-induced cytotoxicity. In contrast, LXR ligands alone had no significant effect on HCC827-8-1 cells. In conclusion, this combined treatment may be of interest for treatment of lung adenocarcinomas harboring EGFR mutations and acquired resistance to gefitinib.
Collapse
|
28
|
Waizenegger J, Lenze D, Luckert C, Seidel A, Lampen A, Hessel S. Dose-dependent induction of signaling pathways by the flavonoid quercetin in human primary hepatocytes: A transcriptomic study. Mol Nutr Food Res 2015; 59:1117-29. [DOI: 10.1002/mnfr.201400764] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Julia Waizenegger
- Department of Food Safety; Federal Institute for Risk Assessment; Berlin Germany
- Biochemical Institute for Environmental Carcinogens; Grosshansdorf Germany
| | - Dido Lenze
- Institute of Pathology; Charité - University Hospital Berlin; Berlin Germany
| | - Claudia Luckert
- Department of Food Safety; Federal Institute for Risk Assessment; Berlin Germany
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens; Grosshansdorf Germany
| | - Alfonso Lampen
- Department of Food Safety; Federal Institute for Risk Assessment; Berlin Germany
| | - Stefanie Hessel
- Department of Food Safety; Federal Institute for Risk Assessment; Berlin Germany
| |
Collapse
|
29
|
Tsui KH, Chung LC, Feng TH, Lee TY, Chang PL, Chen WT, Juang HH. Divergent effect of liver X receptor agonists on prostate-specific antigen expression is dependent on androgen receptor in prostate carcinoma cells. Prostate 2015; 75:603-15. [PMID: 25560459 DOI: 10.1002/pros.22944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/17/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Liver X receptor (LXR) isoforms, LXRα and LXRβ, have similar protein structures and ligands, but diverse tissue distribution. We used two synthetic, non-steroidal LXR agonists, T0901317 and GW3965, to investigate the effects of LXR agonist modulation on prostate specific antigen (PSA) via the expressions of androgen receptors (AR), LXRα, or LXRβ, in prostate carcinoma cells. METHODS LXRα- or LXRβ-knockdown cells were transduced with specific shRNA lentiviral particles. LXRα and LXRβ expressions were assessed by immunoblotting and RT-qPCR assays. Cell proliferation was determined by (3) H-thymidine incorporation assays. The effects of LXR agonists and epigallocatechin gallate (EGCG) on PSA expression were determined by ELISA, immunoblotting, or transient gene expression assays. RESULTS Treatment with either T0901317 or GW3965 significantly attenuated cell proliferation of LNCaP cells. T0901317 treatment suppressed PSA expression while GW3965 treatment enhanced PSA expression. The increase of PSA promoter activity by GW3965 was dependent on the expression of AR. Either LXRα- or LXRβ-knockdown did not affect the activation of androgen on PSA gene expression. However, as compared with mock knockdown-LNCaP cells, the LXRα-knockdown but not the LXRβ-knockdown attenuated the effects of T0901317 and GW3965 on PSA expressions. The effect of GW3965 on PSA expression was blocked by the addition of EGCG. CONCLUSIONS Our results indicate that T0901317 and GW3965 have divergent effects on PSA expressions. The effects of LXR agonists on PSA expression are LXRα-dependent and AR-dependent. EGCG blocks the inducing effect of GW3965 on PSA expression.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linko, Kwei-Shan, Tao-Yuan, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Roshan-Moniri M, Hsing M, Butler MS, Cherkasov A, Rennie PS. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers. Cancer Treat Rev 2015; 40:1137-52. [PMID: 25455729 DOI: 10.1016/j.ctrv.2014.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs), a family of 48 transcriptional factors, have been studied intensively for their roles in cancer development and progression. The presence of distinctive ligand binding sites capable of interacting with small molecules has made NRs attractive targets for developing cancer therapeutics. In particular, a number of drugs have been developed over the years to target human androgen- and estrogen receptors for the treatment of prostate cancer and breast cancer. In contrast, orphan nuclear receptors (ONRs), which in many cases lack known biological functions or ligands, are still largely under investigated. This review is a summary on ONRs that have been implicated in prostate and breast cancers, specifically retinoic acid-receptor-related orphan receptors (RORs), liver X receptors (LXRs), chicken ovalbumin upstream promoter transcription factors (COUP-TFs), estrogen related receptors (ERRs), nerve growth factor 1B-like receptors, and ‘‘dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1’’ (DAX1). Discovery and development of small molecules that can bind at various functional sites on these ONRs will help determine their biological functions. In addition, these molecules have the potential to act as prototypes for future drug development. Ultimately, the therapeutic value of targeting the ONRs may go well beyond prostate and breast cancers.
Collapse
|
31
|
Androgen suppresses the proliferation of androgen receptor-positive castration-resistant prostate cancer cells via inhibition of Cdk2, CyclinA, and Skp2. PLoS One 2014; 9:e109170. [PMID: 25271736 PMCID: PMC4182885 DOI: 10.1371/journal.pone.0109170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/28/2014] [Indexed: 12/21/2022] Open
Abstract
The majority of prostate cancer (PCa) patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC). We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR) and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27Kip1; and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27Kip1 and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2.
Collapse
|
32
|
Zhang W, Jiang H, Zhang J, Zhang Y, Liu A, Zhao Y, Zhu X, Lin Z, Yuan X. Liver X receptor activation induces apoptosis of melanoma cell through caspase pathway. Cancer Cell Int 2014; 14:16. [PMID: 24564864 PMCID: PMC3941804 DOI: 10.1186/1475-2867-14-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/20/2014] [Indexed: 12/17/2022] Open
Abstract
Liver X receptors (LXRs) are nuclear receptors that function as ligand-activated transcription factors regulating lipid metabolism and inflammation. Recent discoveries found LXRs could regulate tumor growth in a variety of cancer cell lines. In this study, we investigated the effect of LXR activation on melanoma cell proliferation and apoptosis both in vitro and in vivo. Treatment of B16F10 and A-375 melanoma cells with synthetic LXR agonist T0901317 significantly inhibited the proliferation of melanoma cells in vitro. Meanwhile, T0901317 induced the apoptosis of B16F10 melanoma cells in a dose-dependent manner. Furthermore, western blot assay showed that the pro-apoptotic effect of T0901317 on B16F10 melanoma cells was mediated through caspase-3 pathway. Oral administration of T0901317 inhibited the growth of B16F10 melanoma in C56BL/6 mice. Altogether, this study demonstrates the critical role of LXRs in the regulation of melanoma growth and presents the LXR agonist T0901317 as a potential anti-melanoma agent.
Collapse
Affiliation(s)
| | - Hua Jiang
- Department of Plastic Surgery, Changzheng Hospital, 18F, No, 415 Fengyang Road, Shanghai, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Solomon G, Atkins A, Shahar R, Gertler A, Monsonego-Ornan E. Effect of peripherally administered leptin antagonist on whole body metabolism and bone microarchitecture and biomechanical properties in the mouse. Am J Physiol Endocrinol Metab 2014; 306:E14-27. [PMID: 24169045 DOI: 10.1152/ajpendo.00155.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leptin's in vivo effect on the rodent skeleton depends on the model used and the mode of administration. Superactive mouse leptin antagonist (SMLA) was produced and then pegylated (PEG) to prolong and enhance its in vivo activity. We blocked leptin signaling by injecting this antagonist peripherally into normal mice at various time points and studied their metabolic and skeletal phenotypes. Subcutaneous PEG-SMLA injections into 4-wk-old female C57BL/6J mice increased weight gain and food consumption significantly after only 1 mo, and the effect lasted for the 3 mo of the experiment, proving its central inhibiting activity. Mice showed a significant increase in serum glucose, cholesterol, triglycerides, insulin, and HOMA-IR throughout the experiment. Quantification of gene expression in "metabolic" tissues also indicated the development of insulin resistance. Bone analyses revealed a significant increase in trabecular and cortical parameters measured in both the lumbar vertebrae and tibiae in PEG-SMLA-treated mice in the 1st and 3rd months as well as a significant increase in tibia biomechanical parameters. Interestingly, 30 days of treatment with the antagonist in older mice (aged 3 and 6 mo) affected body weight and eating behavior, just as they had in the 1-mo-old mice, but had no effect on bone parameters, suggesting that leptin's effect on bones, either directly or through its obesogenic effect, is dependent upon stage of skeletal development. This potent and reversible antagonist enabled us to study leptin's in vivo role in whole body and bone metabolism and holds potential for future therapeutic use in diseases involving leptin signaling.
Collapse
|
34
|
Trinh TN, McLaughlin EA, Gordon CP, McCluskey A. Hedgehog signalling pathway inhibitors as cancer suppressing agents. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00334e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Lin HP, Lin CY, Hsiao PH, Wang HD, Sheng Jiang S, Hsu JM, Jim WT, Chen M, Kung HJ, Chuu CP. Difference in protein expression profile and chemotherapy drugs response of different progression stages of LNCaP sublines and other human prostate cancer cells. PLoS One 2013; 8:e82625. [PMID: 24349321 PMCID: PMC3857776 DOI: 10.1371/journal.pone.0082625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/25/2013] [Indexed: 12/29/2022] Open
Abstract
Androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, 80-90% of the patients who receive androgen ablation therapy ultimately develop recurrent tumors in 12-33 months after treatment with a median overall survival time of 1-2 years after relapse. LNCaP is a commonly used cell line established from a human lymph node metastatic lesion of prostatic adenocarcinoma. We previously established two relapsed androgen receptor (AR)-rich androgen-independent LNCaP sublines 104-R1 (androgen depleted for 12 months) and 104-R2 cells (androgen depleted for 24 months) from AR-positive androgen-dependent LNCaP 104-S cells. LNCaP 104-R1 and 104-R2 mimics the AR-positive hormone-refractory relapsed tumors in patients receiving androgen ablation therapy. Androgen treatment stimulates proliferation of 104-S cells, but causes growth inhibition and G1 cell cycle arrest in 104-R1 and 104-R2 cells. We investigated the protein expression profile difference between LNCaP 104-S vs. LNCaP 104-R1, 104-R2, PC-3, and DU-145 cells as well as examined the sensitivity of these prostate cancer cells to different chemotherapy drugs and small molecule inhibitors. Compared to 104-S cells, 104-R1 and 104-R2 cells express higher protein levels of AR, PSA, c-Myc, Skp2, BCL-2, P53, p-MDM2 S166, Rb, and p-Rb S807/811. The 104-R1 and 104-R2 cells express higher ratio of p-Akt S473/Akt, p-EGFR/EGFR, and p-Src/Src, but lower ratio of p-ERK/ERK than 104-S cells. PC-3 and DU-145 cells express higher c-Myc, Skp2, Akt, Akt1, and phospho-EGFR but less phospho-Akt and phospho-ERK. Overexpression of Skp2 increased resistance of LNCaP cells to chemotherapy drugs. Paclitaxel, androgen, and inhibitors for PI3K/Akt, EGFR, Src, or Bcl-2 seem to be potential choices for treatment of advanced prostate cancers. Our study provides rationale for targeting Akt, EGFR, Src, Bcl-2, and AR signaling as a treatment for AR-positive relapsed prostate tumors after hormone therapy.
Collapse
Affiliation(s)
- Hui-Ping Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, County, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, County, Taiwan
| | - Ching-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, County, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, County, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, County, Taiwan
| | - Ping-Hsuan Hsiao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City, Taiwan
| | - Shih Sheng Jiang
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, County, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, County, Taiwan
| | - Jong-Ming Hsu
- Department of Urology, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Wai-Tim Jim
- Department of Pediatrics, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Marcelo Chen
- Department of Urology, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Hsing-Jien Kung
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, County, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, County, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, County, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, County, Taiwan
- Graduate Program for Aging, China Medical University, Taichung City, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, Taiwan
- * E-mail:
| |
Collapse
|
36
|
Hu C, Liu D, Zhang Y, Lou G, Huang G, Chen B, Shen X, Gao M, Gong W, Zhou P, Dai S, Zeng Y, He F. LXRα-mediated downregulation of FOXM1 suppresses the proliferation of hepatocellular carcinoma cells. Oncogene 2013; 33:2888-97. [PMID: 23812424 DOI: 10.1038/onc.2013.250] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 12/18/2022]
Abstract
Liver X receptors (LXRs), including LXRα and LXRβ isoforms, have important roles in the metabolic regulation of glucose, cholesterol and lipid. Moreover, activation of LXRs also represses the expression of cyclin D1 and cyclin B1, and thus suppresses the proliferation of multiple cancer cells, but the relevant mechanism is not well known. Forkhead box M1 (FOXM1) is a proliferation-specific member of forkhead box family, which is highly expressed in proliferating normal cells and numerous cancer cells. FOXM1 directly activates transcription of cyclin D1 and cyclin B1, resulting in the enhancement of cell cycle progression and cell proliferation. However, it is unclear whether LXRs are involved in the regulation of FOXM1. In this study, we demonstrated that specific LXRs agonists downregulated expression of FOXM1, cyclin D1 and cyclin B1 in hepatocellular carcinoma (HCC) cells, which led to cell cycle and cell proliferation arrest. Knockdown of FOXM1 significantly alleviated LXRs activation-mediated cell cycle arrest and cell growth suppression. Reporter assays showed that the activation of LXRs significantly reduced the transcriptional activity of FOXM1 promoter. Electrophoretic mobility shift assay and chromatin immunoprecipitation assays demonstrated that LXRα but not LXRβ could bind to an inverted repeat IR2 (-52CCGTCAcgTGACCT-39) in the promoter region of FOXM1 gene. Moreover, the xenograft tumor growth and the corresponding FOXM1 expression in nude mice were dramatically repressed by LXRs agonists. Taken together, we conclude that LXRα but not LXRβ functions as a transcriptional repressor for FOXM1 expression. The pathway 'LXRα-FOXM1-cyclin D1/cyclin B1' is a novel mechanism by which LXRs suppress the proliferation of HCC cells, suggesting that the pathway may be a novel target for HCC treatment.
Collapse
Affiliation(s)
- C Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - D Liu
- 1] Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China [2] Depeartment of State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital and Institute of Surgery Research, Chongqing, China
| | - Y Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - G Lou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - G Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - B Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - X Shen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - M Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - W Gong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - P Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - S Dai
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Y Zeng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - F He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
37
|
Nguyen-Vu T, Vedin LL, Liu K, Jonsson P, Lin JZ, Candelaria NR, Candelaria LP, Addanki S, Williams C, Gustafsson JÅ, Steffensen KR, Lin CY. Liver × receptor ligands disrupt breast cancer cell proliferation through an E2F-mediated mechanism. Breast Cancer Res 2013; 15:R51. [PMID: 23809258 PMCID: PMC4053202 DOI: 10.1186/bcr3443] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/20/2013] [Indexed: 01/24/2023] Open
Abstract
Introduction Liver × receptors (LXRs) are members of the nuclear receptor family of ligand-dependent transcription factors and have established functions as regulators of cholesterol, glucose, and fatty acid metabolism and inflammatory responses. Published reports of anti-proliferative effects of synthetic LXR ligands on breast, prostate, ovarian, lung, skin, and colorectal cancer cells suggest that LXRs are potential targets in cancer prevention and treatment. Methods To further determine the effects of LXR ligands and identify their potential mechanisms of action in breast cancer cells, we carried out microarray analysis of gene expression in four breast cancer cell lines following treatments with the synthetic LXR ligand GW3965. Differentially expressed genes were further subjected to gene ontology and pathway analyses, and their expression profiles and associations with disease parameters and outcomes were examined in clinical samples. Response of E2F target genes were validated by real-time PCR, and the posited role of E2F2 in breast cancer cell proliferation was tested by RNA interference experiments. Results We observed cell line-specific transcriptional responses as well as a set of common responsive genes. In the common responsive gene set, upregulated genes tend to function in the known metabolic effects of LXR ligands and LXRs whereas the downregulated genes mostly include those which function in cell cycle regulation, DNA replication, and other cell proliferation-related processes. Transcription factor binding site analysis of the downregulated genes revealed an enrichment of E2F binding site sequence motifs. Correspondingly, E2F2 transcript levels are downregulated following LXR ligand treatment. Knockdown of E2F2 expression, similar to LXR ligand treatment, resulted in a significant disruption of estrogen receptor positive breast cancer cell proliferation. Ligand treatment also decreased E2F2 binding to cis-regulatory regions of target genes. Hierarchical clustering of breast cancer patients based on the expression profiles of the commonly downregulated LXR ligand-responsive genes showed a strong association of these genes with patient survival. Conclusions Taken together, these results indicate that LXR ligands target gene networks, including those regulated by E2F family members, are critical for tumor biology and disease progression and merit further consideration as potential agents in the prevention and treatment of breast cancers.
Collapse
|
38
|
Cholestane-3β, 5α, 6β-triol suppresses proliferation, migration, and invasion of human prostate cancer cells. PLoS One 2013; 8:e65734. [PMID: 23785446 PMCID: PMC3681800 DOI: 10.1371/journal.pone.0065734] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/27/2013] [Indexed: 01/10/2023] Open
Abstract
Oxysterols are oxidation products of cholesterol. Cholestane-3β, 5α, 6β-triol (abbreviated as triol) is one of the most abundant and active oxysterols. Here, we report that triol exhibits anti-cancer activity against human prostate cancer cells. Treatment of cells with triol dose-dependently suppressed proliferation of LNCaP CDXR-3, DU-145, and PC-3 human prostate cancer cells and reduced colony formation in soft agar. Oral administration of triol at 20 mg/kg daily for three weeks significantly retarded the growth of PC-3 xenografts in nude mice. Flow cytometric analysis revealed that triol treatment at 10–40 µM caused G1 cell cycle arrest while the TUNEL assay indicated that triol treatment at 20–40 µM induced apoptosis in all three cell lines. Micro-Western Arrays and traditional Western blotting methods indicated that triol treatment resulted in reduced expression of Akt1, phospho-Akt Ser473, phospho-Akt Thr308, PDK1, c-Myc, and Skp2 protein levels as well as accumulation of the cell cycle inhibitor p27Kip. Triol treatment also resulted in reduced Akt1 protein expression in PC-3 xenografts. Overexpression of Skp2 in PC-3 cells partially rescued the growth inhibition caused by triol. Triol treatment suppressed migration and invasion of DU-145, PC-3, and CDXR-3 cells. The expression levels of proteins associated with epithelial-mesenchymal transition as well as focal adhesion kinase were affected by triol treatment in these cells. Triol treatment caused increased expression of E-cadherin protein levels but decreased expression of N-cadherin, vimentin, Slug, FAK, phospho-FAK Ser722, and phospho-FAK Tyr861 protein levels. Confocal laser microscopy revealed redistribution of β-actin and α-tubulin at the periphery of the CDXR-3 and DU-145 cells. Our observations suggest that triol may represent a promising therapeutic agent for advanced metastatic prostate cancer.
Collapse
|
39
|
Dufour J, Pommier A, Alves G, De Boussac H, Lours-Calet C, Volle DH, Lobaccaro JMA, Baron S. Lack of liver X receptors leads to cell proliferation in a model of mouse dorsal prostate epithelial cell. PLoS One 2013; 8:e58876. [PMID: 23554947 PMCID: PMC3595217 DOI: 10.1371/journal.pone.0058876] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/07/2013] [Indexed: 11/19/2022] Open
Abstract
Recent studies underline the implication of Liver X Receptors (LXRs) in several prostate diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. In order to understand the molecular mechanisms involved, we derived epithelial cells from dorsal prostate (MPECs) of wild type (WT) or Lxrαβ−/− mice. In the WT MPECs, our results show that LXR activation reduces proliferation and correlates with the modification of the AKT-survival pathway. Moreover, LXRs regulate lipid homeostasis with the regulation of Abca1, Abcg1 and Idol, and, in a lesser extent, Srebp1, Fas and Acc. Conversely cells derived from Lxrαβ−/− mice show a higher basal phosphorylation and consequently activation of the survival/proliferation transduction pathways AKT and MAPK. Altogether, our data point out that the cell model we developed allows deciphering the molecular mechanisms inducing the cell cycle arrest. Besides, we show that activated LXRs regulate AKT and MAPK transduction pathways and demonstrate that LXRs could be good pharmacological targets in prostate disease such as cancer.
Collapse
Affiliation(s)
- Julie Dufour
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Aurélien Pommier
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Georges Alves
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Hugues De Boussac
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Corinne Lours-Calet
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - David H. Volle
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Silvère Baron
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
40
|
Lin HP, Lin CY, Liu CC, Su LC, Huo C, Kuo YY, Tseng JC, Hsu JM, Chen CK, Chuu CP. Caffeic Acid phenethyl ester as a potential treatment for advanced prostate cancer targeting akt signaling. Int J Mol Sci 2013; 14:5264-83. [PMID: 23466879 PMCID: PMC3634405 DOI: 10.3390/ijms14035264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/19/2013] [Accepted: 02/28/2013] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is the fifth most common cancer overall in the world. Androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, most prostate cancer patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant tumors within 1–3 years after treatment. The median overall survival time is 1–2 years after tumor relapse. Chemotherapy shows little effect on prolonging survival for patients with metastatic hormone-refractory prostate cancer. More than 80% of prostate tumors acquire mutation or deletion of tumor suppressor phosphatase and tensin homolog (PTEN), a negative regulator of PI3K/Akt signaling, indicating that inhibition of PI3K/Akt might be a potential therapy for advanced prostate tumors. Caffeic acid phenethyl ester (CAPE) is a strong antioxidant extracted from honeybee hive propolis. CAPE is a well-known NF-κB inhibitor. CAPE has been used in folk medicine as a potent anti-inflammatory agent. Recent studies indicate that CAPE treatment suppresses tumor growth and Akt signaling in human prostate cancer cells. We discuss the potential of using CAPE as a treatment for patients with advanced prostate cancer targeting Akt signaling pathway in this review article.
Collapse
Affiliation(s)
- Hui-Ping Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; E-Mails: (H.-P.L.); (C.-Y.L.); (L.-C.S.); (C.H.); (Y.-Y.K.); (J.-C.T.)
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ching-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; E-Mails: (H.-P.L.); (C.-Y.L.); (L.-C.S.); (C.H.); (Y.-Y.K.); (J.-C.T.)
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli 35053, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chun-Chieh Liu
- Division of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City 10449, Taiwan; E-Mail:
- Mackay Medical College, New Taipei City 25245, Taiwan
- Mackay Medicine, Nursing and Management College, New Taipei City 25245, Taiwan
| | - Liang-Cheng Su
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; E-Mails: (H.-P.L.); (C.-Y.L.); (L.-C.S.); (C.H.); (Y.-Y.K.); (J.-C.T.)
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chieh Huo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; E-Mails: (H.-P.L.); (C.-Y.L.); (L.-C.S.); (C.H.); (Y.-Y.K.); (J.-C.T.)
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli 35053, Taiwan
- Department of Life Sciences, National Central University, Taoyuan City 32001, Taiwan
| | - Ying-Yu Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; E-Mails: (H.-P.L.); (C.-Y.L.); (L.-C.S.); (C.H.); (Y.-Y.K.); (J.-C.T.)
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jen-Chih Tseng
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; E-Mails: (H.-P.L.); (C.-Y.L.); (L.-C.S.); (C.H.); (Y.-Y.K.); (J.-C.T.)
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 30013, Taiwan
| | - Jong-Ming Hsu
- Department of Urology, Mackay Memorial Hospital, Taipei City 10449, Taiwan; E-Mail:
| | - Chi-Kuan Chen
- Department of Pathology, Mackay Memorial Hospital, Taipei City 10449, Taiwan; E-Mail:
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; E-Mails: (H.-P.L.); (C.-Y.L.); (L.-C.S.); (C.H.); (Y.-Y.K.); (J.-C.T.)
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli 35053, Taiwan
- Graduate Program for Aging, China Medical University, Taichung City 40402, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City 40227, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-3724-6166 (ext. 37300); Fax: +886-3758-7408
| |
Collapse
|
41
|
Cholesterol accumulation in prostate cancer: a classic observation from a modern perspective. Biochim Biophys Acta Rev Cancer 2013; 1835:219-29. [PMID: 23357067 DOI: 10.1016/j.bbcan.2013.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 12/26/2022]
Abstract
Prostate cancer (PCa) is the most common cancer in men in developed countries. Epidemiological studies have associated high blood-cholesterol levels with an increased risk of PCa, whilst cholesterol-lowering drugs (statins) reduce the risk of advanced PCa. Furthermore, normal prostate epithelial cells have an abnormally high cholesterol content, with cholesterol levels increasing further during progression to PCa. In this review, we explore why and how this occurs. Concurrent to this observation, intense efforts have been expended in cardiovascular research to better understand the regulators of cholesterol homeostasis. Here, we apply this knowledge to elucidate the molecular mechanisms driving the accumulation of cholesterol in PCa. For instance, recent evidence from our group and others shows that major signalling players in prostate growth and differentiation, such as androgens and Akt, modulate the key transcriptional regulators of cholesterol homeostasis to enhance cholesterol levels. This includes adjusting central carbon metabolism to sustain greater lipid synthesis. Perturbations in cholesterol homeostasis appear to be maintained even when PCa approaches the advanced, 'castration-resistant' state. Overall, this provides a link between cholesterol accumulation and PCa cell growth. Given there is currently no cure for castration-resistant PCa, could cholesterol metabolism be a novel target for PCa therapy? Overall, this review presents a picture that cholesterol metabolism is important for PCa development: growth-promoting factors stimulate cholesterol accumulation, which in turn presents a possible target for chemotherapy. Consequently, we recommend future investigations, both to better elucidate the mechanisms driving this accumulation and applying it in novel chemotherapeutic strategies.
Collapse
|
42
|
Llaverias G, Escolà-Gil JC, Lerma E, Julve J, Pons C, Cabré A, Cofán M, Ros E, Sánchez-Quesada JL, Blanco-Vaca F. Phytosterols inhibit the tumor growth and lipoprotein oxidizability induced by a high-fat diet in mice with inherited breast cancer. J Nutr Biochem 2013; 24:39-48. [DOI: 10.1016/j.jnutbio.2012.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/02/2012] [Accepted: 01/17/2012] [Indexed: 12/13/2022]
|
43
|
A key regulator of cholesterol homoeostasis, SREBP-2, can be targeted in prostate cancer cells with natural products. Biochem J 2012; 446:191-201. [PMID: 22657538 DOI: 10.1042/bj20120545] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is growing evidence showing that prostate cancer cells have perturbed cholesterol homoeostasis, accumulating cholesterol to promote cell growth. Consequently, cholesterol-lowering drugs such as statins are being evaluated in prostate cancer treatment. Furthermore, natural products such as betulin (from birch tree bark) and tocotrienol (a minor form of vitamin E) have been shown to lower cholesterol levels. Using these drugs and oxysterols, we have determined which aspects of cholesterol homoeostasis should be targeted in prostate cancer, e.g. cellular cholesterol levels are increased by the transcription factor SREBP-2 (sterol-regulatory-element-binding protein isoform 2), whereas LXR (liver X receptor) promotes cholesterol efflux. Whereas betulin exerted non-specific effects on cell viability, tocotrienols produced a strong direct correlation between SREBP-2 activity and cell viability. Mechanistically, tocotrienols lowered SREBP-2 activity by degrading mature SREBP-2 independently of the proteasome. In contrast, no correlation was seen between LXR activity and cell viability, implying that SREBP-2 is a better target than LXR for prostate cancer treatment. Lastly, androgen-dependent and -independent LNCaP cells were both sensitive to tocotrienols. Overall, this suggests that tocotrienols and other drugs targeting the SREBP-2 pathway are a potential therapeutic option for prostate cancer.
Collapse
|
44
|
Dentatin Induces Apoptosis in Prostate Cancer Cells via Bcl-2, Bcl-xL, Survivin Downregulation, Caspase-9, -3/7 Activation, and NF-κB Inhibition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:856029. [PMID: 23091559 PMCID: PMC3471446 DOI: 10.1155/2012/856029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 01/01/2023]
Abstract
This study was set to investigate antiproliferative potential of dentatin (a natural coumarin isolated from Clausena excavata Burm. F) against prostate cancer and to delineate the underlying mechanism of action. Treatment with dentatin dose-dependently inhibited cell growth of PC-3 and LNCaP prostate cancer cell lines, whereas it showed less cytotoxic effects on normal prostate epithelial cell line (RWPE-1). The inhibitory effect of dentatin on prostate cancer cell growth was due to induction of apoptosis as evidenced by Annexin V staining and cell shrinkage. We found that dentatin-mediated accumulation of reactive oxygen species (ROS) and downregulated expression levels of antiapoptotic molecules (Bcl-2, Bcl-xL, and Survivin), leading to disruption of mitochondrial membrane potential (MMP), cell membrane permeability, and release of cytochrome c from the mitochondria into the cytosol. These effects were associated with induction of caspase-9, -3/7 activities, and subsequent DNA fragmentation. In addition, we found that dentatin inhibited TNF-α-induced nuclear translocation of p65, suggesting dentatin as a potential NF-κB inhibitor. Thus, we suggest that dentatin may have therapeutic value in prostate cancer treatment worthy of further development.
Collapse
|
45
|
Yang CM, Lu YL, Chen HY, Hu ML. Lycopene and the LXRα agonist T0901317 synergistically inhibit the proliferation of androgen-independent prostate cancer cells via the PPARγ-LXRα-ABCA1 pathway. J Nutr Biochem 2012; 23:1155-62. [DOI: 10.1016/j.jnutbio.2011.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 06/15/2011] [Accepted: 06/24/2011] [Indexed: 11/26/2022]
|
46
|
Biological Roles of Liver X Receptors in Immune Cells. Arch Immunol Ther Exp (Warsz) 2012; 60:235-49. [DOI: 10.1007/s00005-012-0179-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
|
47
|
T0901317 inhibits cisplatin-induced apoptosis in ovarian cancer cells [corrected]. Int J Gynecol Cancer 2012; 21:1350-6. [PMID: 21921802 DOI: 10.1097/igc.0b013e318228f558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To determine the function of T0901317 in combination treatment with cisplatin in ovarian cancer cells. METHODS We screened the effects of 3 nuclear hormone receptor ligands on cell viability in a panel of ovarian cancer cell lines. T0901317 regulation of apoptosis and cell cycle regulators was determined when applied as a single agent or in combination with cisplatin. RESULTS Surprisingly, the liver X receptor agonist T0901317 had no significant effects on a panel of 7 ovarian cancer cell lines as a single agent. T0901317 does, however, significantly decrease cisplatin efficacy in at least 3 ovarian cancer cell lines. T0901317 reduces cisplatin-induced apoptosis and reverses cisplatin-induced expression of cell cycle regulators. T0901317 seems to work in a liver X receptor-, pregnane X receptor-, and farnesoid X receptor-independent manner, as agonists of these nuclear hormone receptors did not show similar effects. Interestingly, in the A2780-cp drug-resistant cell line, the effect of T0901317 is lost, suggesting that the pathways stimulated by T0901317 to reduce cisplatin efficacy could be inherently active features of the selected resistance. CONCLUSIONS Together, these data suggest that T0901317 inhibits cisplatin in some ovarian cancer cells. These data provide an avenue to investigate when T0901317 may be acting to promote tumor survival and drug resistance through control of apoptosis and when it may be acting as an antitumor agent as has been previously reported.
Collapse
|
48
|
Lin HP, Jiang SS, Chuu CP. Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells. PLoS One 2012; 7:e31286. [PMID: 22347457 PMCID: PMC3274546 DOI: 10.1371/journal.pone.0031286] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/05/2012] [Indexed: 12/21/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21(Cip1). Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer.
Collapse
Affiliation(s)
- Hui-Ping Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
| | - Shih Sheng Jiang
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
- Graduate Program for Aging, China Medical University, Taichung, Taiwan
| |
Collapse
|
49
|
Chuu CP, Kokontis JM, Hiipakka RA, Fukuchi J, Lin HP, Lin CY, Huo C, Su LC. Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer. J Biomed Sci 2011; 18:63. [PMID: 21859492 PMCID: PMC3170584 DOI: 10.1186/1423-0127-18-63] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/23/2011] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer is the most frequently diagnosed non-cutaneous tumor of men in Western countries. While surgery is often successful for organ-confined prostate cancer, androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, this therapy is associated with several undesired side-effects, including increased risk of cardiovascular diseases. Shortening the period of androgen ablation therapy may benefit prostate cancer patients. Intermittent Androgen Deprivation therapy improves quality of life, reduces toxicity and medical costs, and delays disease progression in some patients. Cell culture and xenograft studies using androgen receptor (AR)-positive castration-resistant human prostate cancers cells (LNCaP, ARCaP, and PC-3 cells over-expressing AR) suggest that androgens may suppress the growth of AR-rich prostate cancer cells. Androgens cause growth inhibition and G1 cell cycle arrest in these cells by regulating c-Myc, Skp2, and p27Kip via AR. Higher dosages of testosterone cause greater growth inhibition of relapsed tumors. Manipulating androgen/AR signaling may therefore be a potential therapy for AR-positive advanced prostate cancer.
Collapse
Affiliation(s)
- Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
| | - John M Kokontis
- Ben May Department for Cancer Research, The University of Chicago, Chicago, USA
| | - Richard A Hiipakka
- Ben May Department for Cancer Research, The University of Chicago, Chicago, USA
| | | | - Hui-Ping Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
| | - Chiech Huo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
- Department of Life Sciences, National Central University, Chungli, Taiwan
| | - Liang-Cheng Su
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
50
|
Chuu CP, Kokontis JM, Hiipakka RA, Fukuchi J, Lin HP, Lin CY, Huo C, Huo C, Su LC, Liao S. Androgen suppresses proliferation of castration-resistant LNCaP 104-R2 prostate cancer cells through androgen receptor, Skp2, and c-Myc. Cancer Sci 2011; 102:2022-8. [PMID: 21781227 DOI: 10.1111/j.1349-7006.2011.02043.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, this therapy is associated with several undesired side-effects, including increased risk of cardiovascular diseases. To study if termination of long-term androgen ablation and restoration of testosterone levels could suppress the growth of relapsed hormone-refractory prostate tumors, we implanted testosterone pellets in castrated nude mice carrying androgen receptor (AR)-positive LNCaP 104-R2 cells, which relapsed from androgen-dependent LNCaP 104-S cells after long-term androgen deprivation. 104-R2 tumor xenografts regressed after testosterone pellets were implanted. Of 33 tumors, 24 adapted to elevation of testosterone level and relapsed as androgen-insensitive tumors. Relapsed tumors (R2Ad) expressed less AR and prostate-specific antigen. We then studied the molecular mechanism underlying the androgenic regulation of prostate cancer cell proliferation. Androgen suppresses proliferation of 104-R2 by inducing G(1) cell cycle arrest through reduction of S-phase kinase-associated protein 2 (Skp2) and c-Myc, and induction of p27(Kip1). 104-R2 cells adapted to androgen treatment and the adapted cells, R2Ad, were androgen-insensitive cells with a slower growth rate and low protein level of AR, high levels of c-Myc and Skp2, and low levels of p27(Kip1). Nuclear AR and prostate-specific antigen expression is present in 104-R2 cells but not R2Ad cells when androgen is absent. Overexpression of AR in R2Ad cells regenerated an androgen-repressed phenotype; knockdown of AR in 104-R2 cells generated an androgen-insensitive phenotype. Overexpression of Skp2 and c-Myc in 104-R2 cells blocked the growth inhibition caused by androgens. We concluded that androgens cause growth inhibition in LNCaP 104-R2 prostate cancer cells through AR, Skp2, and c-Myc.
Collapse
Affiliation(s)
- Chih-Pin Chuu
- Institute of Cellular and System Medicine, Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|