1
|
Ding K, Pan X, Yin W, Li L, Bai H, Bai M, Xu J, He J, Zhang W. Natural promising daphnane diterpenoids: An integrated review of their sources, structural classification, biological activities, and synthesis. PHYTOCHEMISTRY 2025; 233:114376. [PMID: 39814091 DOI: 10.1016/j.phytochem.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Daphnane diterpenoids, as one of the representative types of diterpenoid compounds with rich structural diversity and significant biological activities, have an uncommon 5/7/6 tricyclic skeleton mainly found in species of Thymelaeaceae and Euphorbiaceae families. Due to the unique peculiarity of the framework and remarkable pharmacological activities, over the past three decades, novel structures have been continuously discovered and more structural subtypes have been derived. However, there is always a lack of a unified and convincing structural classification strategy for the summary of daphnane diterpenoids, which affects the in-depth and systematic research of pharmaceutical chemists and pharmacologists. In addition, the distinctive skeleton, continuous chiral centers, and prominent bioactivities of daphnane diterpenoids have attracted widespread interest among synthetic chemists. However, there are currently only a few reports of complete synthesis of compounds with low overall yields. Given the broad attention paid to daphnane diterpenoids in recent years, this review summarized the sources, structural classification, biological activities, and synthesis of around 300 natural daphnane diterpenoids discovered from 1993 to 2023, providing a reference for further discovery of novel structures, chemical and biological synthesis, and drug research.
Collapse
Affiliation(s)
- Kang Ding
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xuege Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Weifeng Yin
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongjin Bai
- College of Life Sciences, Tarim University, Alar, 843300, China
| | - Maoli Bai
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiekun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Weiku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
2
|
Otsuki K, Hosoya C, Takamiya R, Kimura M, Kikuchi T, Huang L, Chen CH, Li W. Anti-HIV diterpenoids from Daphne pseudomezereum. PHYTOCHEMISTRY 2025; 232:114366. [PMID: 39694394 PMCID: PMC11748344 DOI: 10.1016/j.phytochem.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/15/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
The plants of the genus Daphne (Thymelaeaceae) are known to be sources of anti-HIV diterpenoids. Therefore, the present study focused on investigating the anti-HIV diterpenoids in Daphne pseudomezereum, for which the isolation of diterpenoids has not been previously reported. The results showed that three previously undescribed daphnane diterpenoids, onishibarins A-C (1-3), along with seven known compounds (4-10) were isolated from the fruits of Daphne pseudomezereum. Their structures were established by comprehensive analysis of physicochemical and spectroscopic data. Evaluation of the anti-HIV activity and cytotoxicity of the isolated compounds showed that compounds 1, 9, and 10 exhibited potent anti-HIV activity at EC50 = 1.26, 0.84, and 0.78 nM, respectively, with cytotoxicity at IC50 > 5 μM.
Collapse
Affiliation(s)
- Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| | - Chihiro Hosoya
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Riko Takamiya
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Mayu Kimura
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Li Huang
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, United States
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, United States
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
3
|
de Souza TA, Pereira LHA, Alves AF, Dourado D, Lins JDS, Scotti MT, Scotti L, Abreu LS, Tavares JF, Silva MS. Jatropha Diterpenes: An Updated Review Concerning Their Structural Diversity, Therapeutic Performance, and Future Pharmaceutical Applications. Pharmaceuticals (Basel) 2024; 17:1399. [PMID: 39459038 PMCID: PMC11510188 DOI: 10.3390/ph17101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The Euphorbiaceae family is a rich source of bioactive terpenoids. Among its genera, Jatropha is a conspicuous producer of diterpenes and includes approximately 175 species, many of which have medicinal uses. To date, 140 diterpenes from Jatropha (JTDs) have been reported. Given their structural diversity and notable biological activities, this work aims to highlight the pharmaceutical potential of JTDs. To achieve this goal, an extensive literature review was conducted, encompassing studies on structural elucidation through NMR and pharmacological assays, both in vitro and in vivo. Based on 132 selected papers, a thorough discussion is presented on the biosynthesis, extraction, isolation, and structural characterization of JTDs, including a compilation of their 13C NMR chemical shifts. The review also covers their synthetic production and biological effects. Additionally, an in silico analysis predicting the drug-likeness of 141 JTDs was carried out. Notably, the occurrence of macrocyclic diterpenes has doubled in the past decade, and the summary of their NMR data provides a useful resource for future research. Furthermore, 21 distinct pharmacological activities were identified, with potent cytotoxic effects targeting new molecular pathways being particularly significant. Recent advances highlight the contributions of modern approaches in organic synthesis and the pharmacological evaluation of natural products. The drug-likeness analysis identified JTD classes and compounds with favorable physicochemical and ADMET features for pharmaceutical development. In light of these findings, the use of nanotechnology is proposed as a future direction for continued research on JTDs, a fascinating class of natural compounds. This work opens up new avenues for the study of Euphorbiaceae species, particularly the Jatropha genus and its bioactive compounds.
Collapse
Affiliation(s)
- Thalisson A. de Souza
- Multi-User Characterization and Analysis Laboratory, Research Institute for Drugs and Medicines (IpeFarM), Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (T.A.d.S.); (L.H.A.P.); (J.d.S.L.); (J.F.T.)
| | - Luiz H. A. Pereira
- Multi-User Characterization and Analysis Laboratory, Research Institute for Drugs and Medicines (IpeFarM), Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (T.A.d.S.); (L.H.A.P.); (J.d.S.L.); (J.F.T.)
| | - Alan F. Alves
- Laboratory of Cheminformatics, Program of Post-Graduation on Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (A.F.A.); (M.T.S.); (L.S.)
| | - Douglas Dourado
- Department of Immunology, Instituto Aggeu Magalhães, Fiocruz, Recife 50670-420, Brazil;
| | - Jociano da S. Lins
- Multi-User Characterization and Analysis Laboratory, Research Institute for Drugs and Medicines (IpeFarM), Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (T.A.d.S.); (L.H.A.P.); (J.d.S.L.); (J.F.T.)
| | - Marcus T. Scotti
- Laboratory of Cheminformatics, Program of Post-Graduation on Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (A.F.A.); (M.T.S.); (L.S.)
| | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Post-Graduation on Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (A.F.A.); (M.T.S.); (L.S.)
| | - Lucas S. Abreu
- Department of Organic Chemistry, Universidade Federal Fluminense, Niterói 24220-900, Brazil;
| | - Josean F. Tavares
- Multi-User Characterization and Analysis Laboratory, Research Institute for Drugs and Medicines (IpeFarM), Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (T.A.d.S.); (L.H.A.P.); (J.d.S.L.); (J.F.T.)
| | - Marcelo S. Silva
- Multi-User Characterization and Analysis Laboratory, Research Institute for Drugs and Medicines (IpeFarM), Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (T.A.d.S.); (L.H.A.P.); (J.d.S.L.); (J.F.T.)
| |
Collapse
|
4
|
Overall SA, Hartmann SJ, Luu-Nguyen QH, Judge P, Pinotsi D, Marti L, Sigurdsson ST, Wender PA, Barnes AB. Topological Heterogeneity of Protein Kinase C Modulators in Human T-Cells Resolved with In-Cell Dynamic Nuclear Polarization NMR Spectroscopy. J Am Chem Soc 2024; 146:27362-27372. [PMID: 39322225 PMCID: PMC11468733 DOI: 10.1021/jacs.4c05704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Phorbol ester analogs are a promising class of anticancer therapeutics and HIV latency reversing agents that interact with cellular membranes to recruit and activate protein kinase C (PKC) isoforms. However, it is unclear how these esters interact with membranes and how this might correlate with the biological activity of different phorbol ester analogs. Here, we have employed dynamic nuclear polarization (DNP) NMR to characterize phorbol esters in a native cellular context. The enhanced NMR sensitivity afforded by DNP and cryogenic operation reveals topological heterogeneity of 13C-21,22-phorbol-myristate-acetate (PMA) within T cells utilizing 13C-13C correlation and double quantum filtered NMR spectroscopy. We demonstrate the detection of therapeutically relevant amounts of PMA in T cells down to an upper limit of ∼60.0 pmol per million cells and identify PMA to be primarily localized in cellular membranes. Furthermore, we observe distinct 13C-21,22-PMA chemical shifts under DNP conditions in cells compared to model membrane samples and homogenized cell membranes, that cannot be accounted for by differences in conformation. We provide evidence for distinct membrane topologies of 13C-21,22-PMA in cell membranes that are consistent with shallow binding modes. This is the first of its kind in-cell DNP characterization of small molecules dissolved in the membranes of living cells, establishing in-cell DNP-NMR as an important method for the characterization of drug-membrane interactions within the context of the complex heterogeneous environment of intact cellular membranes. This work sets the stage for the identification of the in-cell structural interactions that govern the biological activity of phorbol esters.
Collapse
Affiliation(s)
- Sarah A. Overall
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| | - Sina J. Hartmann
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| | - Quang H. Luu-Nguyen
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United
States
| | - Patrick Judge
- Department
of Biochemistry, Biophysics, & Structural Biology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Dorothea Pinotsi
- Scientific
Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
| | - Lea Marti
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Paul A. Wender
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United
States
| | - Alexander B. Barnes
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Tan L, Otsuki K, Kikuchi T, Zhou D, Li N, Huang L, Chen CH, Li W. Daphnane diterpenoid orthoesters with an odd-numbered aliphatic side chain from Daphne pedunculata. J Nat Med 2024; 78:901-907. [PMID: 38780746 PMCID: PMC11365762 DOI: 10.1007/s11418-024-01826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Daphnane diterpenoids were recognized for their extensive range of potent biological activities. In the present study, phytochemical investigation including LC-MS/MS analysis resulted in the identification of five daphnane diterpenoid orthoesters (1-5). Among the five daphnane diterpenoids, two previously unreported compounds, daphnepedunins I and J (2 and 4) were isolated from Daphne pedunculata. The structure of new compounds was elucidated with extensive physicochemical and spectroscopic analyses. Their structure was characterized by the presence of an unusual odd-numbered aliphatic chain connected to an orthoester. The isolated compounds were evaluated for their anti-HIV activity against HIV-1 infection of MT4 cells, and the results indicated that compound 1 showed the most potent anti-HIV activity with an IC50 value of 0.82 nM.
Collapse
Affiliation(s)
- Lingjian Tan
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative, Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative, Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Li Huang
- Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Chin-Ho Chen
- Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
6
|
Hu Y, Pan R, Wang Y, Ma M, Peng Y, Fan W, Zhang R, Nian H, Zhu J. Daphne genkwa: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Fitoterapia 2024; 177:106089. [PMID: 38906384 DOI: 10.1016/j.fitote.2024.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Daphne genkwa, as a traditional medicine, is widely distributed in China, Korea and Vietnam. In China, the dried flower buds of this plant are named "Yuanhua". It has the ability to effectively promote urination, eliminate phlegm and alleviate cough, eliminate parasites and cure of scabies, with a broad spectrum of pharmacological effects and considerable clinical efficacy. This paper provides a summary and classification of the main chemical constituents of D. genkwa based on a review of relevant domestic and foreign literature. It also outlines the current research status of traditional clinical usage, pharmacological effects, and toxicity of D. genkwa. The aim is to provide a theoretical basis for further study of D. genkwa and its potential new clinical applications.
Collapse
Affiliation(s)
- Yue Hu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Rongrong Pan
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yi Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Minghua Ma
- Department of Pharmacy, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ying Peng
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Weiqing Fan
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ruoxi Zhang
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hua Nian
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Jianyong Zhu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
7
|
Aly SH, Elbadry AMM, Doghish AS, El-Nashar HAS. Unveiling the pharmacological potential of plant triterpenoids in breast cancer management: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5571-5596. [PMID: 38563878 PMCID: PMC11329582 DOI: 10.1007/s00210-024-03054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer is the most prevalent type of cancer, the fifth leading cause of cancer-related deaths, and the second leading cause of cancer deaths among women globally. Recent research has provided increasing support for the significance of phytochemicals, both dietary and non-dietary, particularly triterpenoids, in the mitigation and management of breast cancer. Recent studies showed that triterpenoids are promising agents in the treatment and inhibition of breast cancer achieved through the implementation of several molecular modes of action on breast cancer cells. This review discusses recent innovations in plant triterpenoids and their underlying mechanisms of action in combating breast cancer within the timeframe spanning from 2017 to 2023. The present work is an overview of different plant triterpenoids with significant inhibition on proliferation, migration, apoptosis resistance, tumor angiogenesis, or metastasis in various breast cancer cells. The anticancer impact of triterpenoids may be attributed to their antiproliferative activity interfering with angiogenesis and differentiation, regulation of apoptosis, DNA polymerase inhibition, change in signal transductions, and impeding metastasis. The present review focuses on several targets, mechanisms, and pathways associated with pentacyclic triterpenoids, which are responsible for their anticancer effects. We could conclude that natural triterpenoids are considered promising agents to conquer breast cancer.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, 11829, Egypt.
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
8
|
Yang HD, Hou BL, Yang YG, Tang ZS, Xu HB. Diterpenoids from Acanthopanacis Cortex and their anti-inflammatory activity studies. Fitoterapia 2024; 176:106021. [PMID: 38762074 DOI: 10.1016/j.fitote.2024.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Acanthopanacis Cortex (A.-C) with a long history of more than1000 years, has been used to treat rheumatism effectively. Nineteen diterpenoids have been isolated from A.-C, including six new compounds (1-6). Among them, compounds 7, 9-11, 13, and 17 were discovered from A.-C for the first time. The structures of 1-6 were determined by analyzing their NMR data and comparing their experimental and calculated electronic circular dichroism spectra. Moreover, the single-crystal X-ray diffraction data of 1, 2, 8, and 14 were provided. The anti-inflammatory activity of 1-5 and 7-18 on neutrophil elastase, cyclooxygenase-1 (COX-1), and cyclooxygenase-2 (COX-2) has been studied in vitro, and the results showed that 15 had almost no inhibitory effects on COX-1 at 200 μM but a significant activity against COX-2 with an IC50 of 0.73 ± 0.006 μΜ. It indicated that compound 15 can provide valuable information for the design of selective COX-2 inhibitors.
Collapse
Affiliation(s)
- Hao-Dong Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Bao-Long Hou
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Yuan-Gui Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Zhi-Shu Tang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, PR China; China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Hong-Bo Xu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| |
Collapse
|
9
|
Watanabe A, Hikone Y, Nagatomo M, Inoue M. Conversion of Phorbol into Des-D-Ring Tricycle and Crotonianoid B via Peroxidation Reaction. Org Lett 2024; 26:4335-4339. [PMID: 38738923 DOI: 10.1021/acs.orglett.4c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Phorbol (1) has a tetracyclic ABCD-ring and is readily isolable from a natural source. We previously synthesized 1 and 16 structurally related natural products using common ABC-ring intermediate 2. Here we report a new synthetic route to 2 using 1 as a starting material. Key features of the synthesis are chemoselective removal of the D-ring via cyclopropane opening, peroxidation, and retro-aldol reactions. The high utility of the peroxidation was further demonstrated in the first synthesis of crotonianoid B (9).
Collapse
Affiliation(s)
- Ayumu Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuto Hikone
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Watanabe A, Nagatomo M, Hirose A, Hikone Y, Kishimoto N, Miura S, Yasutake T, Abe T, Misumi S, Inoue M. Total Syntheses of Phorbol and 11 Tigliane Diterpenoids and Their Evaluation as HIV Latency-Reversing Agents. J Am Chem Soc 2024; 146:8746-8756. [PMID: 38486375 DOI: 10.1021/jacs.4c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Tigliane diterpenoids possess exceptionally complex structures comprising common 5/7/6/3-membered ABCD-rings and disparate oxygen functionalities. While tiglianes display a wide range of biological activities, compounds with HIV latency-reversing activity can eliminate viral reservoirs, thereby serving as promising leads for new anti-HIV agents. Herein, we report collective total syntheses of phorbol (13) and 11 tiglianes 14-24 with various acylation patterns and oxidation states, and their evaluation as HIV latency-reversing agents. The syntheses were strategically divided into five stages to increase the structural complexity. First, our previously established sequence enabled the expeditious preparation of ABC-tricycle 9 in 15 steps. Second, hydroxylation of 9 and ring-contractive D-ring formation furnished phorbol (13). Third, site-selective attachment of two acyl groups to 13 produced four phorbol diesters 14-17. Fourth, the oxygen functionalities were regio- and stereoselectively installed to yield five tiglianes 18-22. Fifth, further oxidation to the most densely oxygenated acerifolin A (23) and tigilanol tiglate (24) was realized through organizing a 3D shape of the B-ring. Assessment of the HIV latency-reversing activities of the 12 tiglianes revealed seven tiglianes (14-17 and 22-24) with 20- to 300-fold improved efficacy compared with prostratin (12), a representative latency-reversing agent. Therefore, the robust synthetic routes to a variety of tiglianes with promising activities devised in this study provide opportunities for advancing HIV eradication strategies.
Collapse
Affiliation(s)
- Ayumu Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Hirose
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuto Hikone
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Satoshi Miura
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tae Yasutake
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Towa Abe
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Otsuki K, Kobayashi T, Nakamura K, Kikuchi T, Huang L, Chen CH, Koike K, Li W. LC-MS identification, isolation, and structural elucidation of anti-HIV macrocyclic daphnane orthoesters from Edgeworthia chrysantha. Fitoterapia 2024; 172:105731. [PMID: 37935270 PMCID: PMC10842090 DOI: 10.1016/j.fitote.2023.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
The occurrence of macrocyclic daphnane orthoesters (MDOs) with a 1-alkyl group originating from a C14 aliphatic chain is extremely limited in the plant kingdom and has only been isolated from Edgeworthia chrysantha. In the present study, LC-ESI-MS/MS analysis was performed on different parts of E. chrysantha, including flower buds, flowers, leaves, and stems, and resulted in the identification of seven MDOs in all the four plant parts, including two previously unreported compounds 1 and 7. Further LC-MS guided isolation was carried out to afford compounds 1 and 7, and their structures were determined by various spectroscopic analyses. These compounds were also evaluated for anti-HIV activity, thus expanding insights into the structure-activity relationships for MDOs.
Collapse
Affiliation(s)
- Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | - Tsubasa Kobayashi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Kazuki Nakamura
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Li Huang
- Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Chin-Ho Chen
- Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
12
|
Tan L, Otsuki K, Zhang M, Kikuchi T, Zhou D, Li N, Huang L, Chen CH, Li W. Daphnepedunins G and H, anti-HIV macrocyclic 3,4-seco-daphnane orthoesters from Daphne pedunculata. J Nat Med 2024; 78:114-122. [PMID: 37713094 PMCID: PMC10841610 DOI: 10.1007/s11418-023-01750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Daphnepedunins G (1) and H (2) with unusual macrocyclic 3,4-seco-daphnane orthoester structure were isolated from Daphne pedunculata. Their structures were determined by physicochemical and spectroscopic analyses combined with synthetic methods, including methyl esterification, derivatization reaction using a chiral anisotropic agent, and biomimetic conversion. Compounds 1 and 2 along with their methyl esters 1a and 2a were evaluated for anti-HIV activity, among which 1a and 2a exhibited potent activity with IC50 values of 1.08 and 1.17 μM, respectively.
Collapse
Affiliation(s)
- Lingjian Tan
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| | - Mi Zhang
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Li Huang
- Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Chin-Ho Chen
- Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
13
|
Ezzanad A, De los Reyes C, Macías-Sánchez AJ, Hernández-Galán R. Isolation and Identification of 12-Deoxyphorbol Esters from Euphorbia resinifera Berg Latex: Targeted and Biased Non-Targeted Identification of 12-Deoxyphorbol Esters by UHPLC-HRMS E. PLANTS (BASEL, SWITZERLAND) 2023; 12:3846. [PMID: 38005743 PMCID: PMC10674858 DOI: 10.3390/plants12223846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Diterpenes from the Euphorbia genus are known for their ability to regulate the protein kinase C (PKC) family, which mediates their ability to promote the proliferation of neural precursor cells (NPCs) or neuroblast differentiation into neurons. In this work, we describe the isolation from E. resinifera Berg latex of fifteen 12-deoxyphorbol esters (1-15). A triester of 12-deoxy-16-hydroxyphorbol (4) and a 12-deoxyphorbol 13,20-diester (13) are described here for the first time. Additionally, detailed structural elucidation is provided for compounds 3, 5, 6, 14 and 15. The absolute configuration for compounds 3, 4, 6, 13, 14 and 15 was established by the comparison of their theoretical and experimental electronic circular dichroism (ECD) spectra. Access to the above-described collection of 12-deoxyphorbol derivatives, with several substitution patterns and attached acyl moieties, allowed for the study of their fragmentation patterns in the collision-induced dissociation of multiple ions, without precursor ion isolation mass spectra experiments (HRMSE), which, in turn, revealed a correlation between specific substitution patterns and the fragmentation pathways in their HRMSE spectra. In turn, this allowed for a targeted UHPLC-HRMSE analysis and a biased non-targeted UHPLC-HRMSE analysis of 12-deoxyphorbols in E. resinifera latex which yielded the detection and identification of four additional 12-deoxyphorbols not previously isolated in the initial column fractionation work. One of them, identified as 12-deoxy-16-hydroxyphorbol 20-acetate 13-phenylacetate 16-propionate (20), has not been described before.
Collapse
Affiliation(s)
- Abdellah Ezzanad
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Puerto Real, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.E.); (C.D.l.R.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Carolina De los Reyes
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Puerto Real, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.E.); (C.D.l.R.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Antonio J. Macías-Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Puerto Real, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.E.); (C.D.l.R.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Rosario Hernández-Galán
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Puerto Real, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.E.); (C.D.l.R.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
14
|
Zhang M, Otsuki K, Takahashi R, Kikuchi T, Zhou D, Li N, Li W. Identification of Daphnane Diterpenoids from Wikstroemia indica Using Liquid Chromatography with Tandem Mass Spectrometry. PLANTS (BASEL, SWITZERLAND) 2023; 12:3620. [PMID: 37896083 PMCID: PMC10609749 DOI: 10.3390/plants12203620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for the rapid identification of compounds within natural resources. Daphnane diterpenoids, a class of natural compounds predominantly found in plants belonging to the Thymelaeaceae and Euphorbiaceae families, have attracted much attention due to their remarkable anticancer and anti-HIV activities. In the present study, the presence of daphnane diterpenoids in Wikstroemia indica, a plant belonging to the Thymelaeaceae family, was investigated by LC-MS/MS analysis. As a result, 21 daphnane diterpenoids (1-21) in the stems of W. indica were detected. Among these, six major compounds (12, 15, 17, 18, 20, and 21) were isolated and their structures were unequivocally identified through a comprehensive analysis of the MS and NMR data. For the minor compounds (1-11, 13, 14, 16, and 19), their structures were elucidated by in-depth MS/MS fragmentation analysis. This study represents the first disclosure of structurally diverse daphnane diterpenoids in W. indica, significantly contributing to our understanding of bioactive diterpenoids in plants within the Thymelaeaceae family.
Collapse
Affiliation(s)
- Mi Zhang
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| | - Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| | - Reo Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| | - Di Zhou
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (D.Z.); (N.L.)
| | - Ning Li
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (D.Z.); (N.L.)
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| |
Collapse
|