1
|
Anjum N, Maiti MK. OsNAC121 regulates root development, tillering, panicle morphology, and grain filling in rice plant. PLANT MOLECULAR BIOLOGY 2024; 114:82. [PMID: 38954114 DOI: 10.1007/s11103-024-01476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.
Collapse
Affiliation(s)
- Nazma Anjum
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Mrinal K Maiti
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
2
|
Ye Q, Zheng L, Liu P, Liu Q, Ji T, Liu J, Gao Y, Liu L, Dong J, Wang T. The S-acylation cycle of transcription factor MtNAC80 influences cold stress responses in Medicago truncatula. THE PLANT CELL 2024; 36:2629-2651. [PMID: 38552172 PMCID: PMC11218828 DOI: 10.1093/plcell/koae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2024] [Indexed: 07/04/2024]
Abstract
S-acylation is a reversible post-translational modification catalyzed by protein S-acyltransferases (PATs), and acyl protein thioesterases (APTs) mediate de-S-acylation. Although many proteins are S-acylated, how the S-acylation cycle modulates specific biological functions in plants is poorly understood. In this study, we report that the S-acylation cycle of transcription factor MtNAC80 is involved in the Medicago truncatula cold stress response. Under normal conditions, MtNAC80 localized to membranes through MtPAT9-induced S-acylation. In contrast, under cold stress conditions, MtNAC80 translocated to the nucleus through de-S-acylation mediated by thioesterases such as MtAPT1. MtNAC80 functions in the nucleus by directly binding the promoter of the glutathione S-transferase gene MtGSTU1 and promoting its expression, which enables plants to survive under cold stress by removing excess malondialdehyde and H2O2. Our findings reveal an important function of the S-acylation cycle in plants and provide insight into stress response and tolerance mechanisms.
Collapse
Affiliation(s)
- Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihua Zheng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Ji
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinling Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yajuan Gao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Vu BN, Vu TV, Yoo JY, Nguyen NT, Ko KS, Kim JY, Lee KO. CRISPR-Cas-mediated unfolded protein response control for enhancing plant stress resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1271368. [PMID: 37908833 PMCID: PMC10613997 DOI: 10.3389/fpls.2023.1271368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Plants consistently encounter environmental stresses that negatively affect their growth and development. To mitigate these challenges, plants have developed a range of adaptive strategies, including the unfolded protein response (UPR), which enables them to manage endoplasmic reticulum (ER) stress resulting from various adverse conditions. The CRISPR-Cas system has emerged as a powerful tool for plant biotechnology, with the potential to improve plant tolerance and resistance to biotic and abiotic stresses, as well as enhance crop productivity and quality by targeting specific genes, including those related to the UPR. This review highlights recent advancements in UPR signaling pathways and CRISPR-Cas technology, with a particular focus on the use of CRISPR-Cas in studying plant UPR. We also explore prospective applications of CRISPR-Cas in engineering UPR-related genes for crop improvement. The integration of CRISPR-Cas technology into plant biotechnology holds the promise to revolutionize agriculture by producing crops with enhanced resistance to environmental stresses, increased productivity, and improved quality traits.
Collapse
Affiliation(s)
- Bich Ngoc Vu
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| | - Tien Van Vu
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Yong Yoo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Ngan Thi Nguyen
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| | - Ki Seong Ko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio Inc., Jinju, Republic of Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
4
|
Tang N, Wu P, Cao Z, Liu Y, Zhang X, Lou J, Liu X, Hu Y, Sun X, Wang Q, Si S, Chen Z. A NAC transcription factor ZaNAC93 confers floral initiation, fruit development, and prickle formation in Zanthoxylum armatum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107813. [PMID: 37290134 DOI: 10.1016/j.plaphy.2023.107813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Zanthoxylum armatum is a dioecious prickly plant which developed apomictic reproduction. The increases in male flowers and prickle density in female plants lead to low yield and picking efficiency. However, little is known concerning the mechanisms of floral development and prickle formation. NAC is a well-known transcription factor that participates in multiple aspects of plant growth and development. Herein, we characterize the functions and regulatory mechanisms of candidate NACs controlling both traits in Z. armatum. A total of 159 ZaNACs were identified, and 16 of these were male-biased, represented by the NAP subfamily members ZaNAC93 and ZaNAC34, orthologs of AtNAC025 and AtNARS1/NAC2 respectively. Overexpression of ZaNAC93 in tomato led to modifications in flower and fruit development, including earlier flowering, increased numbers of lateral shoots and flowers, accelerated plant senescence, and reduced size and weight of fruits and seeds. In addition, the trichome density in leaves and inflorescences was dramatically reduced in ZaNAC93-OX lines. Overexpression of ZaNAC93 resulted in the up-/downregulation of genes associated with GA, ABA and JA signaling pathways, such as GAI, PYL and JAZ, as well as several TFs, including bZIP2, AGL11, FBP24 and MYB52. Yeast two-hybrid analysis revealed that ZaNAC93 protein could interact with AP1, GAI, bZIP2 and AGL11 in Z. armatum, which might contribute to floral induction, fruit growth, and trichome initiation. This work provides new insights into the molecular mechanisms of ZaNAC93 in reproductive development and prickle formation in Z. armatum.
Collapse
Affiliation(s)
- Ning Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Peiyin Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
| | - Zhengyan Cao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
| | - Yanni Liu
- College of Biology and Food Engineering, Chongqing Three Georges University, Chongqing, 404100, China.
| | - Xian Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
| | - Juan Lou
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Xia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Yang Hu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Xiaofan Sun
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Qiyao Wang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Shuo Si
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Zexiong Chen
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
5
|
Song S, Willems LAJ, Jiao A, Zhao T, Eric Schranz M, Bentsink L. The membrane associated NAC transcription factors ANAC060 and ANAC040 are functionally redundant in the inhibition of seed dormancy in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5514-5528. [PMID: 35604925 PMCID: PMC9467645 DOI: 10.1093/jxb/erac232] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The NAC family of transcription factors is involved in plant development and various biotic and abiotic stresses. The Arabidopsis thaliana ANAC genes ANAC060, ANAC040, and ANAC089 are highly homologous based on protein and nucleotide sequence similarity. These three genes are predicted to be membrane bound transcription factors (MTFs) containing a conserved NAC domain, but divergent C-terminal regions. The anac060 mutant shows increased dormancy when compared with the wild type. Mutations in ANAC040 lead to higher seed germination under salt stress, and a premature stop codon in ANAC089 Cvi allele results in seeds exhibiting insensitivity to high concentrations of fructose. Thus, these three homologous MTFs confer distinct functions, although all related to germination. To investigate whether the differences in function are caused by a differential spatial or temporal regulation, or by differences in the coding sequence (CDS), we performed swapping experiments in which the promoter and CDS of the three MTFs were exchanged. Seed dormancy and salt and fructose sensitivity analyses of transgenic swapping lines in mutant backgrounds showed that there is functional redundancy between ANAC060 and ANAC040, but not between ANAC060 and ANAC089.
Collapse
Affiliation(s)
- Shuang Song
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Leo A J Willems
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Ao Jiao
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Tao Zhao
- Present address: State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, PB Wageningen, The Netherlands
| | | |
Collapse
|
6
|
Shao C, Cai F, Bao Z, Zhang Y, Shi G, Zhou Z, Chen X, Li Y, Bao M, Zhang J. PaNAC089 is a membrane-tethered transcription factor (MTTF) that modulates flowering, chlorophyll breakdown and trichome initiation. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:392-404. [PMID: 35209991 DOI: 10.1071/fp21320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Flowering and senescence are essential developmental stages of green plants, which are governed by complex molecular regulatory networks. However, the connection between flowering regulation and senescence regulation in London plane tree (Platanus acerifolia ) remains unknown. In this study, we identified a gene PaNAC089 from London plane tree, which encodes a membrane-tethered transcription factor (MTTF) belonging to the NAC (NAM, ATAF1/2, CUC2) transcription factor family. We investigated the functions of PaNAC089 in the regulation of flowering and senescence through the analysis of expression profiles and transgenic phenotypes. Heterologous overexpression of ΔPaNAC089 delayed flowering and inhibited chlorophyll breakdown to produce dark green rosette leaves in Arabidopsis . In addition, the trichome density of rosette leaves was decreased in transgenic lines. In ΔPaNAC089 overexpression plants, a series of functional genes with inhibited expression were identified by quantitative real-time polymerase chain reaction (qRT-PCR), including genes that regulate flowering, chlorophyll decomposition, and trichome initiation. Furthermore, Δ PaNAC089 directly binds to the promoter of CONSTANS (CO ) and NON-YELLOWING2 (NYE2 ) in the yeast one-hybrid assay. Consistent with this, luciferase (LUC) transient expression assays also showed that Δ PaNAC089 could inhibit the activity of NYE2 . To summarise, our data suggests that PaNAC089 is an MTTF that modulates flowering, chlorophyll breakdown and trichome initiation.
Collapse
Affiliation(s)
- Changsheng Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Fangfang Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China; and Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Zhiru Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanping Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Gehui Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zheng Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiyan Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yangyang Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
7
|
Lin Y, Liu G, Xue Y, Guo X, Luo J, Pan Y, Chen K, Tian J, Liang C. Functional Characterization of Aluminum (Al)-Responsive Membrane-Bound NAC Transcription Factors in Soybean Roots. Int J Mol Sci 2021; 22:12854. [PMID: 34884659 PMCID: PMC8657865 DOI: 10.3390/ijms222312854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
The membrane-bound NAC transcription (NTL) factors have been demonstrated to participate in the regulation of plant development and the responses to multiple environmental stresses. This study is aimed to functionally characterize soybean NTL transcription factors in response to Al-toxicity, which is largely uncharacterized. The qRT-PCR assays in the present study found that thirteen out of fifteen GmNTL genes in the soybean genome were up-regulated by Al toxicity. However, among the Al-up-regulated GmNTLs selected from six duplicate gene pairs, only overexpressing GmNTL1, GmNTL4, and GmNTL10 could confer Arabidopsis Al resistance. Further comprehensive functional characterization of GmNTL4 showed that the expression of this gene in response to Al stress depended on root tissues, as well as the Al concentration and period of Al treatment. Overexpression of GmNTL4 conferred Al tolerance of transgenic Arabidopsis in long-term (48 and 72 h) Al treatments. Moreover, RNA-seq assay identified 517 DEGs regulated by GmNTL4 in Arabidopsis responsive to Al stress, which included MATEs, ALMTs, PMEs, and XTHs. These results suggest that the function of GmNTLs in Al responses is divergent, and GmNTL4 might confer Al resistance partially by regulating the expression of genes involved in organic acid efflux and cell wall modification.
Collapse
Affiliation(s)
- Yan Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (G.L.); (X.G.); (J.L.); (Y.P.); (K.C.); (J.T.)
| | - Guoxuan Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (G.L.); (X.G.); (J.L.); (Y.P.); (K.C.); (J.T.)
| | - Yingbing Xue
- Department of Resources and Environmental Sciences, College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Xueqiong Guo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (G.L.); (X.G.); (J.L.); (Y.P.); (K.C.); (J.T.)
| | - Jikai Luo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (G.L.); (X.G.); (J.L.); (Y.P.); (K.C.); (J.T.)
| | - Yaoliang Pan
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (G.L.); (X.G.); (J.L.); (Y.P.); (K.C.); (J.T.)
| | - Kang Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (G.L.); (X.G.); (J.L.); (Y.P.); (K.C.); (J.T.)
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (G.L.); (X.G.); (J.L.); (Y.P.); (K.C.); (J.T.)
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (G.L.); (X.G.); (J.L.); (Y.P.); (K.C.); (J.T.)
| |
Collapse
|
8
|
Albertos P, Tatematsu K, Mateos I, Sánchez-Vicente I, Fernández-Arbaizar A, Nakabayashi K, Nambara E, Godoy M, Franco JM, Solano R, Gerna D, Roach T, Stöggl W, Kranner I, Perea-Resa C, Salinas J, Lorenzo O. Redox feedback regulation of ANAC089 signaling alters seed germination and stress response. Cell Rep 2021; 35:109263. [PMID: 34133931 PMCID: PMC8220255 DOI: 10.1016/j.celrep.2021.109263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The interplay between the phytohormone abscisic acid (ABA) and the gasotransmitter nitric oxide (NO) regulates seed germination and post-germinative seedling growth. We show that GAP1 (germination in ABA and cPTIO 1) encodes the transcription factor ANAC089 with a critical membrane-bound domain and extranuclear localization. ANAC089 mutants lacking the membrane-tethered domain display insensitivity to ABA, salt, and osmotic and cold stresses, revealing a repressor function. Whole-genome transcriptional profiling and DNA-binding specificity reveals that ANAC089 regulates ABA- and redox-related genes. ANAC089 truncated mutants exhibit higher NO and lower ROS and ABA endogenous levels, alongside an altered thiol and disulfide homeostasis. Consistently, translocation of ANAC089 to the nucleus is directed by changes in cellular redox status after treatments with NO scavengers and redox-related compounds. Our results reveal ANAC089 to be a master regulator modulating redox homeostasis and NO levels, able to repress ABA synthesis and signaling during Arabidopsis seed germination and abiotic stress.
Collapse
Affiliation(s)
- Pablo Albertos
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain
| | - Kiyoshi Tatematsu
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Isabel Mateos
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain
| | - Inmaculada Sánchez-Vicente
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain
| | - Alejandro Fernández-Arbaizar
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain
| | - Kazumi Nakabayashi
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Marta Godoy
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - José M Franco
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Davide Gerna
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, Innsbruck A-6020, Austria
| | - Thomas Roach
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, Innsbruck A-6020, Austria
| | - Wolfgang Stöggl
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, Innsbruck A-6020, Austria
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, Innsbruck A-6020, Austria
| | - Carlos Perea-Resa
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain.
| |
Collapse
|
9
|
Yan J, Chen Q, Cui X, Zhao P, Gao S, Yang B, Liu JX, Tong T, Deyholos MK, Jiang YQ. Ectopic overexpression of a membrane-tethered transcription factor gene NAC60 from oilseed rape positively modulates programmed cell death and age-triggered leaf senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:600-618. [PMID: 33119146 DOI: 10.1111/tpj.15057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Senescence is an integrative final stage of plant development that is governed by internal and external cues. The NAM, ATAF1/2, CUC2 (NAC) transcription factor (TF) family is specific to plants and membrane-tethered NAC TFs (MTTFs) constitute a unique and sophisticated mechanism in stress responses and development. However, the function of MTTFs in oilseed rape (Brassica napus L.) remains unknown. Here, we report that BnaNAC60 is an MTTF associated with the endoplasmic reticulum (ER) membrane. Expression of BnaNAC60 was induced during the progression of leaf senescence. Translocation of BnaNAC60 into nuclei was induced by ER stress and oxidative stress treatments. It binds to the NTLBS motif, rather than the canonical NAC recognition site. Overexpression of BnaNAC60 devoid of the transmembrane domain, but not the full-length BnaNAC60, induces significant reactive oxygen species (ROS) accumulation and hypersensitive response-like cell death in both tobacco (Nicotiana benthamiana) and oilseed rape protoplasts. Moreover, ectopic overexpression of BnaNAC60 devoid of the transmembrane domain, but not the full-length BnaNAC60, in Arabidopsis also induces precocious leaf senescence. Furthermore, screening and expression profiling identified an array of functional genes that are significantly induced by BnaNAC60 expression. Further it was found that BnaNAC60 can activate the promoter activities of BnaNYC1, BnaRbohD, BnaBFN1, BnaZAT12, and multiple BnaVPEs in a dual-luciferase reporter assay. Electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative PCR assays revealed that BnaNAC60 directly binds to the promoter regions of these downstream target genes. To summarize, our data show that BnaNAC60 is an MTTF that modulates cell death, ROS accumulation, and leaf senescence.
Collapse
Affiliation(s)
- Jingli Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Qinqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xing Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Peiyu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shidong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tiantian Tong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Michael K Deyholos
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
10
|
Emami H, Kumar A, Kempken F. Transcriptomic analysis of poco1, a mitochondrial pentatricopeptide repeat protein mutant in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:209. [PMID: 32397956 PMCID: PMC7216612 DOI: 10.1186/s12870-020-02418-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Flowering is a crucial stage during plant development. Plants may respond to unfavorable conditions by accelerating reproductive processes like flowering. In a recent study, we showed that PRECOCIOUS1 (POCO1) is a mitochondrial pentatricopeptide repeat (PPR) protein involved in flowering time and abscisic acid (ABA) signaling in Arabidopsis thaliana. Here, we use RNA-seq data to investigate global gene expression alteration in the poco1 mutant. RESULTS RNA-seq analysis was performed during different developmental stages for wild-type and poco1 plants. The most profound differences in gene expression were found when wild-type and poco1 plants of the same developmental stage were compared. Coverage analysis confirmed the T-DNA insertion in POCO1, which was concomitant with truncated transcripts. Many biological processes were found to be enriched. Several flowering-related genes such as FLOWERING LOCUS T (FT), which may be involved in the early-flowering phenotype of poco1, were differentially regulated. Numerous ABA-associated genes, including the core components of ABA signaling such as ABA receptors, protein phosphatases, protein kinases, and ABA-responsive element (ABRE) binding proteins (AREBs)/ABRE-binding factors (ABFs) as well as important genes for stomatal function, were mostly down-regulated in poco1. Drought and oxidative stress-related genes, including ABA-induced stress genes, were differentially regulated. RNA-seq analysis also uncovered differentially regulated genes encoding various classes of transcription factors and genes involved in cellular signaling. Furthermore, the expression of stress-associated nuclear genes encoding mitochondrial proteins (NGEMPs) was found to be altered in poco1. Redox-related genes were affected, suggesting that the redox state in poco1 might be altered. CONCLUSION The identification of various enriched biological processes indicates that complex regulatory mechanisms underlie poco1 development. Differentially regulated genes associated with flowering may contribute to the early-flowering phenotype of poco1. Our data suggest the involvement of POCO1 in the early ABA signaling process. The down-regulation of many ABA-related genes suggests an association of poco1 mutation with the ABA signaling deficiency. This condition further affects the expression of many stress-related, especially drought-associated genes in poco1, consistent with the drought sensitivity of poco1. poco1 mutation also affects the expression of genes associated with the cellular regulation, redox, and mitochondrial perturbation.
Collapse
Affiliation(s)
- Hossein Emami
- Department of Botany, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany
| | - Abhishek Kumar
- Present address: Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Present address: Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Frank Kempken
- Department of Botany, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
11
|
Wang Q, Liu M, Zang Y, Xiao W. The C-terminal extension of Arabidopsis Uev1A/B with putative prenylation site plays critical roles in protein interaction, subcellular distribution and membrane association. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110324. [PMID: 31928655 DOI: 10.1016/j.plantsci.2019.110324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Lysine (K) 63-linked polyubiquitination plays important roles in cellular processes including DNA-damage tolerance (DDT), NF-κB signaling and endocytosis. Compared to yeast and mammals, little is known about K63-linked polyubiquitination in plants. To date, a Uev-Ubc13 complex is the only known Ub-conjugating enzyme to catalyze K63-linked polyubiquitination, in which Uev serves as a regulatory subunit. The Arabidopsis thaliana genome contains four UEV1 genes that can be classified into two subfamilies (UEV1A/B and UEV1C/D), in which Uev1A/B have a C-terminal extension. Database analysis reveals that all higher plant genomes contain both subfamily UEV1s, which were evolved as early as angiosperm plants. Interestingly, all C-terminal tails in the Uev1A/B subfamily contain a putative prenylation motif, CaaX. Combined experimental results using AtUev1B demonstrated that it is most likely farnesylated and that its C-terminal tail, particularly the catalytic Cys residue in the CaaX motif, plays critical roles in protein-protein interaction, nuclear exclusion and membrane association. Using AtUev1B as bait for a yeast-two-hybrid screen, we identified 14 interaction proteins in a prenylation-dependent manner. These results collectively imply that prenylation of AtUev1A/B plays a critical role in its functional differentiation from AtUev1C/D.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China; Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China
| | - Maoqing Liu
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuepeng Zang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
12
|
Sanjari S, Shirzadian-Khorramabad R, Shobbar ZS, Shahbazi M. Systematic analysis of NAC transcription factors' gene family and identification of post-flowering drought stress responsive members in sorghum. PLANT CELL REPORTS 2019; 38:361-376. [PMID: 30627770 DOI: 10.1007/s00299-019-02371-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/02/2019] [Indexed: 05/25/2023]
Abstract
SbNAC genes (131) encoding 183 proteins were identified from the sorghum genome and characterized. The expression patterns of SbSNACs were evaluated at three sampling time points under post-flowering drought stress. NAC proteins are specific transcription factors in plants, playing vital roles in development and response to various environmental stresses. Despite the fact that Sorghum bicolor is well-known for its drought-tolerance, it suffers from grain yield loss due to pre and post-flowering drought stress. In the present study, 131 SbNAC genes encoding 183 proteins were identified from the sorghum genome. The phylogenetic trees were constructed based on the NAC domains of sorghum, and also based on sorghum with Arabidopsis and 8 known NAC domains of other plants, which classified the family into 15 and 19 subfamilies, respectively. Based on the obtained results, 13 SbNAC proteins joined the SNAC subfamily, and these proteins are expected to be involved in response to abiotic stresses. Promoter analysis revealed that all SbNAC genes comprise different stress-associated cis-elements in their promoters. UTRs analysis indicated that 101 SbNAC transcripts had upstream open reading frames, while 39 of the transcripts had internal ribosome entry sites in their 5'UTR. Moreover, 298 miRNA target sites were predicted to exist in the UTRs of SbNAC transcripts. The expression patterns of SbSNACs were evaluated in three genotypes at three sampling time points under post-flowering drought stress. Based on the results, it could be suggested that some gene members are involved in response to drought stress at the post-flowering stage since they act as positive or negative transcriptional regulators. Following further functional analyses, some of these genes might be perceived to be promising candidates for breeding programs to enhance drought tolerance in crops.
Collapse
Affiliation(s)
- Sepideh Sanjari
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Reza Shirzadian-Khorramabad
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Maryam Shahbazi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
13
|
Ren WL, Wen YJ, Dunwell JM, Zhang YM. pKWmEB: integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. Heredity (Edinb) 2018; 120:208-218. [PMID: 29234158 PMCID: PMC5836593 DOI: 10.1038/s41437-017-0007-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 11/08/2022] Open
Abstract
Although nonparametric methods in genome-wide association studies (GWAS) are robust in quantitative trait nucleotide (QTN) detection, the absence of polygenic background control in single-marker association in genome-wide scans results in a high false positive rate. To overcome this issue, we proposed an integrated nonparametric method for multi-locus GWAS. First, a new model transformation was used to whiten the covariance matrix of polygenic matrix K and environmental noise. Using the transferred model, Kruskal-Wallis test along with least angle regression was then used to select all the markers that were potentially associated with the trait. Finally, all the selected markers were placed into multi-locus model, these effects were estimated by empirical Bayes, and all the nonzero effects were further identified by a likelihood ratio test for true QTN detection. This method, named pKWmEB, was validated by a series of Monte Carlo simulation studies. As a result, pKWmEB effectively controlled false positive rate, although a less stringent significance criterion was adopted. More importantly, pKWmEB retained the high power of Kruskal-Wallis test, and provided QTN effect estimates. To further validate pKWmEB, we re-analyzed four flowering time related traits in Arabidopsis thaliana, and detected some previously reported genes that were not identified by the other methods.
Collapse
Affiliation(s)
- Wen-Long Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Statistical Genomics Lab, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang-Jun Wen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Statistical Genomics Lab, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jim M Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK
| | - Yuan-Ming Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- Statistical Genomics Lab, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Fletcher RS, Herrmann D, Mullen JL, Li Q, Schrider DR, Price N, Lin J, Grogan K, Kern A, McKay JK. Identification of Polymorphisms Associated with Drought Adaptation QTL in Brassica napus by Resequencing. G3 (BETHESDA, MD.) 2016; 6:793-803. [PMID: 26801646 PMCID: PMC4825650 DOI: 10.1534/g3.115.021279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/17/2016] [Indexed: 11/24/2022]
Abstract
Brassica napus is a globally important oilseed for which little is known about the genetics of drought adaptation. We previously mapped twelve quantitative trait loci (QTL) underlying drought-related traits in a biparental mapping population created from a cross between winter and spring B. napus cultivars. Here we resequence the genomes of the mapping population parents to identify genetic diversity across the genome and within QTL regions. We sequenced each parental cultivar on the Illumina HiSeq platform to a minimum depth of 23 × and performed a reference based assembly in order to describe the molecular variation differentiating them at the scale of the genome, QTL and gene. Genome-wide patterns of variation were characterized by an overall higher single nucleotide polymorphism (SNP) density in the A genome and a higher ratio of nonsynonymous to synonymous substitutions in the C genome. Nonsynonymous substitutions were used to categorize gene ontology terms differentiating the parent genomes along with a list of putative functional variants contained within each QTL. Marker assays were developed for several of the discovered polymorphisms within a pleiotropic QTL on chromosome A10. QTL analysis with the new, denser map showed the most associated marker to be that developed from an insertion/deletion polymorphism located in the candidate gene Bna.FLC.A10, and it was the only candidate within the QTL interval with observed polymorphism. Together, these results provide a glimpse of genome-wide variation differentiating annual and biennial B. napus ecotypes as well as a better understanding of the genetic basis of root and drought phenotypes.
Collapse
Affiliation(s)
| | - David Herrmann
- Cargill Specialty Seeds & Oils, Fort Collins, Colorado 80525
| | - Jack L Mullen
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Qinfei Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Daniel R Schrider
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Nicholas Price
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Junjiang Lin
- Department of Computer Science, University of Toronto, Ontario M5S 2J7, Canada
| | - Kelsi Grogan
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Andrew Kern
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - John K McKay
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
15
|
Liang M, Li H, Zhou F, Li H, Liu J, Hao Y, Wang Y, Zhao H, Han S. Subcellular Distribution of NTL Transcription Factors inArabidopsis thaliana. Traffic 2015. [DOI: 10.1111/tra.12311] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mingwei Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences; Beijing Normal University; Beijing 100875 China
| | - Hongjuan Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences; Beijing Normal University; Beijing 100875 China
| | - Fang Zhou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences; Beijing Normal University; Beijing 100875 China
| | - Huiyong Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences; Beijing Normal University; Beijing 100875 China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences; Beijing Normal University; Beijing 100875 China
| | - Yi Hao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences; Beijing Normal University; Beijing 100875 China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences; Beijing Normal University; Beijing 100875 China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences; Beijing Normal University; Beijing 100875 China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences; Beijing Normal University; Beijing 100875 China
| |
Collapse
|
16
|
Wang B, Guo X, Wang C, Ma J, Niu F, Zhang H, Yang B, Liang W, Han F, Jiang YQ. Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death. PLANT MOLECULAR BIOLOGY 2015; 87:395-411. [PMID: 25616736 DOI: 10.1007/s11103-015-0286-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 01/16/2015] [Indexed: 05/10/2023]
Abstract
NAC transcription factors are plant-specific and play important roles in plant development processes, response to biotic and abiotic cues and hormone signaling. However, to date, little is known about the NAC genes in canola (or oilseed rape, Brassica napus L.). In this study, a total of 60 NAC genes were identified from canola through a systematical analysis and mining of expressed sequence tags. Among these, the cDNA sequences of 41 NAC genes were successfully cloned. The translated protein sequences of canola NAC genes with the NAC genes from representative species were phylogenetically clustered into three major groups and multiple subgroups. The transcriptional activities of these BnaNAC proteins were assayed in yeast. In addition, by quantitative real-time RT-PCR, we further observed that some of these BnaNACs were regulated by different hormone stimuli or abiotic stresses. Interestingly, we successfully identified two novel BnaNACs, BnaNAC19 and BnaNAC82, which could elicit hypersensitive response-like cell death when expressed in Nicotiana benthamiana leaves, which was mediated by accumulation of reactive oxygen species. Overall, our work has laid a solid foundation for further characterization of this important NAC gene family in canola.
Collapse
Affiliation(s)
- Boya Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and College of Life Sciences, Northwest A & F University, Yangling, 712100, Shaanxi, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Seo PJ. Recent advances in plant membrane-bound transcription factor research: emphasis on intracellular movement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:334-342. [PMID: 24299191 DOI: 10.1111/jipb.12139] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/25/2013] [Indexed: 06/02/2023]
Abstract
Transcription factors constitute numerous signal transduction networks and play a central role in gene expression regulation. Recent studies have shown that a limited portion of transcription factors are anchored in the cellular membrane, storing as dormant forms. Upon exposure to environmental and developmental cues, these transcription factors are released from the membrane and translocated to the nucleus, where they regulate associated target genes. As this process skips both transcriptional and translational regulations, it guarantees prompt response to external and internal signals. Membrane-bound transcription factors (MTFs) undergo several unique steps that are not involved in the action of canonical nuclear transcription factors: proteolytic processing and intracellular movement. Recently, alternative splicing has also emerged as a mechanism to liberate MTFs from the cellular membranes, establishing an additional activation scheme independent of proteolytic processing. Multiple layers of MTF regulation add complexity to transcriptional regulatory scheme and ensure elaborate action of MTFs. In this review, we provide an overview of recent findings on MTFs in plants and highlight the molecular mechanisms underlying MTF liberation from cellular membranes with an emphasis on intracellular movement.
Collapse
Affiliation(s)
- Pil Joon Seo
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, 561-756, Korea; Research Center of Bioactive Materials, Chonbuk National University, Jeonju, 561-756, Korea; Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju, 561-756, Korea
| |
Collapse
|
18
|
The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genet 2014; 10:e1004243. [PMID: 24675811 PMCID: PMC3967986 DOI: 10.1371/journal.pgen.1004243] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/02/2014] [Indexed: 12/20/2022] Open
Abstract
The unfolded protein response (UPR) is activated to sustain cell survival by reducing misfolded protein accumulation in the endoplasmic reticulum (ER). The UPR also promotes programmed cell death (PCD) when the ER stress is severe; however, the underlying molecular mechanisms are less understood, especially in plants. Previously, two membrane-associated transcriptions factors (MTFs), bZIP28 and bZIP60, were identified as the key regulators for cell survival in the plant ER stress response. Here, we report the identification of another MTF, NAC089, as an important PCD regulator in Arabidopsis (Arabidopsis thaliana) plants. NAC089 relocates from the ER membrane to the nucleus under ER stress conditions. Inducible expression of a truncated form of NAC089, in which the transmembrane domain is deleted, induces PCD with increased caspase 3/7-like activity and DNA fragmentation. Knock-down NAC089 in Arabidopsis confers ER stress tolerance and impairs ER-stress-induced caspase-like activity. Transcriptional regulation analysis and ChIP-qPCR reveal that NAC089 plays important role in regulating downstream genes involved in PCD, such as NAC094, MC5 and BAG6. Furthermore, NAC089 is up-regulated by ER stress, which is directly controlled by bZIP28 and bZIP60. These results show that nuclear relocation of NAC089 promotes ER-stress-induced PCD, and both pro-survival and pro-death signals are elicited by bZIP28 and bZIP60 during plant ER stress response. Protein folding is fundamentally important for development and responses to environmental stresses in eukaryotes. When excess misfolded proteins are accumulated in the endoplasmic reticulum (ER), the unfolded protein response (UPR) is triggered to promote cell survival through optimizing protein folding, and also promote programmed cell death (PCD) when the stress is severe. However, the link from ER-stress-sensing to PCD is largely unknown. Here, we report the identification of one membrane-associated transcription factor NAC089 as an important regulator of ER stress-induced PCD in plants. We have established a previously unrecognized molecular connection between ER stress sensors and PCD regulators. We have shown that organelle-to-organelle translocation of a transcription factor is important for its function in transcriptional regulation. Our results have provided novel insights into the molecular mechanisms of PCD in plants, especially under ER stress conditions.
Collapse
|
19
|
Zeng-Yi CHANG. Science China Life Sciences in 2010: a New Name Marking a New Start. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Slabaugh E, Brandizzi F. Membrane-tethered transcription factors provide a connection between stress response and developmental pathways. PLANT SIGNALING & BEHAVIOR 2011; 6:1210-1. [PMID: 21758012 PMCID: PMC3260725 DOI: 10.4161/psb.6.8.16047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Membrane-tethered transcription factors (MTTFs) are proteins that are targeted to membranes and are capable of regulating gene expression. In this way, they are physically restrained from entering the nucleus and are innately dormant. Upon specific signal recognition cues, MTTFs are activated through cleavage by a protease that releases the transcription factor domain into the cytosol thus allowing it to translocate to the nucleus where it can regulate gene expression. MTTFs are classically thought to provide an advantage to an organism by allowing for rapid signal transduction in response to cellular and environmental stresses. However, recent findings suggest that MTTFs may not only act as a means to respond quickly to stress but also are able to regulate developmental pathways, illustrating a point of interaction between stress and development.
Collapse
Affiliation(s)
- Erin Slabaugh
- Plant Research Laboratory, Department of Energy, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|