1
|
Cao W, Huang B, Xu Q, Xie H, Gao J, Mai X, Lin X, Tian C, Huang X, Zhang H. Multiplex qPCR development for the simultaneous and rapid detection of largemouth bass virus and infectious spleen and kidney necrosis virus in aquaculture. J Virol Methods 2024; 330:115012. [PMID: 39214420 DOI: 10.1016/j.jviromet.2024.115012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Largemouth bass virus (LMBV) and infectious spleen and kidney necrosis virus (ISKNV) are both belong to Iridoviridae that cause considerable economic losses in the fish industry. There is no reported literature that can detect these two viruses simultaneously. In this study, we established a multiplex quantitative polymerase chain reaction (qPCR) assay that can specifically and simultaneously detect both LMBV and ISKNV in fish samples. The specificity experiment showed that the method only amplified LMBV and ISKNV but not the other 10 common fish viruses. The slope (m), efficiency (E) and linearity (R2) determined from the generated standard curve were all within the optimal range of qPCR values. The detection limit of the multiplex qPCR assay was as low as 4 copies/μL for LMBV DNA and 7 copies/μL for ISKNV DNA, respectively. The established method exhibited adequate repeatability and reproducibility, and the intra- and inter-assay coefficients of variation were both less than 3 %. The accuracy of the multiplex qPCR method was validated using 229 fish samples and was more precise than that of the conventional PCR assay. In summary, the established multiplex qPCR assay can simultaneously detect LMBV and ISKNV to monitor the risk of infection LMBV and ISKNV and control the disease early.
Collapse
Affiliation(s)
- Weiwei Cao
- College of Food Science and Bioengineering, Guangdong Polytechnic of Science and Trade, Guangzhou 510640, China
| | - Baiqi Huang
- College of Food Science and Bioengineering, Guangdong Polytechnic of Science and Trade, Guangzhou 510640, China
| | - Qian Xu
- College of Food Science and Bioengineering, Guangdong Polytechnic of Science and Trade, Guangzhou 510640, China
| | - Hui Xie
- Guangdong Xuanda Testing Technology Service Co., Ltd., Guangzhou 510320, China
| | - Jinyan Gao
- Guangzhou Double Helix Gene Technology Co., Ltd., Guangzhou 510320, China
| | - Xiaodong Mai
- Xinjiang Agricultural University, Xinjiang 830046, China
| | - Xuejin Lin
- Guangzhou Double Helix Gene Technology Co., Ltd., Guangzhou 510320, China
| | - Chi Tian
- Lianyungang Xuanda Testing Technology Service Co., Ltd., Jiangsu 222000, China
| | - Xianpei Huang
- Shanwei Marine Industry Institute, Shanwei 516600, China.
| | - Huang Zhang
- Guangzhou Double Helix Gene Technology Co., Ltd., Guangzhou 510320, China.
| |
Collapse
|
2
|
Geng S, Lv X, Zheng W, Xu T. An arms race between 5'ppp-RNA virus and its alternative recognition receptor MDA5 in RIG-I-lost teleost fish. eLife 2024; 13:RP94898. [PMID: 39347580 PMCID: PMC11441976 DOI: 10.7554/elife.94898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The incessant arms race between viruses and hosts has led to numerous evolutionary innovations that shape life's evolution. During this process, the interactions between viral receptors and viruses have garnered significant interest since viral receptors are cell surface proteins exploited by viruses to initiate infection. Our study sheds light on the arms race between the MDA5 receptor and 5'ppp-RNA virus in a lower vertebrate fish, Miichthys miiuy. Firstly, the frequent and independent loss events of RIG-I in vertebrates prompted us to search for alternative immune substitutes, with homology-dependent genetic compensation response (HDGCR) being the main pathway. Our further analysis suggested that MDA5 of M. miiuy and Gallus gallus, the homolog of RIG-I, can replace RIG-I in recognizing 5'ppp-RNA virus, which may lead to redundancy of RIG-I and loss from the species genome during evolution. Secondly, as an adversarial strategy, 5'ppp-RNA SCRV can utilize the m6A methylation mechanism to degrade MDA5 and weaken its antiviral immune ability, thus promoting its own replication and immune evasion. In summary, our study provides a snapshot into the interaction and coevolution between vertebrate and virus, offering valuable perspectives on the ecological and evolutionary factors that contribute to the diversity of the immune system.
Collapse
Affiliation(s)
- Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghaiChina
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghaiChina
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghaiChina
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghaiChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special AreaShanghaiChina
| |
Collapse
|
3
|
Emmenegger EJ, Bueren EK, Conway CM, Sanders GE, Hendrix AN, Schroeder T, Di Cicco E, Pham PH, Lumsden JS, Clouthier SC. Host Jump of an Exotic Fish Rhabdovirus into a New Class of Animals Poses a Disease Threat to Amphibians. Viruses 2024; 16:1193. [PMID: 39205167 PMCID: PMC11360232 DOI: 10.3390/v16081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Spring viremia of carp virus (SVCV) is a rhabdovirus that primarily infects cyprinid finfishes and causes a disease notifiable to the World Organization for Animal Health. Amphibians, which are sympatric with cyprinids in freshwater ecosystems, are considered non-permissive hosts of rhabdoviruses. The potential host range expansion of SVCV in an atypical host species was evaluated by testing the susceptibility of amphibians native to the Pacific Northwest. Larval long-toed salamanders Ambystoma macrodactylum and Pacific tree frog Pseudacris regilla tadpoles were exposed to SVCV strains from genotypes Ia, Ib, Ic, or Id by either intraperitoneal injection, immersion, or cohabitation with virus-infected koi Cyprinus rubrofuscus. Cumulative mortality was 100% for salamanders injected with SVCV, 98-100% for tadpoles exposed to virus via immersion, and 0-100% for tadpoles cohabited with SVCV-infected koi. Many of the animals that died exhibited clinical signs of disease and SVCV RNA was found by in situ hybridization in tissue sections of immersion-exposed tadpoles, particularly in the cells of the gastrointestinal tract and liver. SVCV was also detected by plaque assay and RT-qPCR testing in both amphibian species regardless of the virus exposure method, and viable virus was detected up to 28 days after initial exposure. Recovery of infectious virus from naïve tadpoles cohabited with SVCV-infected koi further demonstrated that SVCV transmission can occur between classes of ectothermic vertebrates. Collectively, these results indicated that SVCV, a fish rhabdovirus, can be transmitted to and cause lethal disease in two amphibian species. Therefore, members of all five of the major vertebrate groups (mammals, birds, reptiles, fish, and amphibians) appear to be vulnerable to rhabdovirus infections. Future research studying potential spillover and spillback infections of aquatic rhabdoviruses between foreign and domestic amphibian and fish species will provide insights into the stressors driving novel interclass virus transmission events.
Collapse
Affiliation(s)
- Eveline J Emmenegger
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th Street, Seattle, WA 98115, USA
| | - Emma K Bueren
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th Street, Seattle, WA 98115, USA
- Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA
| | - Carla M Conway
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th Street, Seattle, WA 98115, USA
| | - George E Sanders
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - A Noble Hendrix
- QEDA Consulting, 4007 Densmore Avenue N, Seattle, WA 98103, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tamara Schroeder
- Freshwater Institute, Fisheries and Oceans Canada (DFO), 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - Emiliano Di Cicco
- Pacific Salmon Foundation (PSF), 1682 W 7th Ave., Vancouver, BC V6J 4S6, Canada
| | - Phuc H Pham
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sharon C Clouthier
- Freshwater Institute, Fisheries and Oceans Canada (DFO), 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
4
|
Zhang Y, Gao Y, Li C, Zhang YA, Lu Y, Ye J, Liu X. Parabacteroides distasonis regulates the infectivity and pathogenicity of SVCV at different water temperatures. MICROBIOME 2024; 12:128. [PMID: 39020382 PMCID: PMC11253412 DOI: 10.1186/s40168-024-01799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/24/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Spring viremia of carp virus (SVCV) infects a wide range of fish species and causes high mortality rates in aquaculture. This viral infection is characterized by seasonal outbreaks that are temperature-dependent. However, the specific mechanism behind temperature-dependent SVCV infectivity and pathogenicity remains unclear. Given the high sensitivity of the composition of intestinal microbiota to temperature changes, it would be interesting to investigate if the intestinal microbiota of fish could play a role in modulating the infectivity of SVCV at different temperatures. RESULTS Our study found that significantly higher infectivity and pathogenicity of SVCV infection in zebrafish occurred at relatively lower temperature. Comparative analysis of the intestinal microbiota in zebrafish exposed to high- and low-temperature conditions revealed that temperature influenced the abundance and diversity of the intestinal microbiota in zebrafish. A significantly higher abundance of Parabacteroides distasonis and its metabolite secondary bile acid (deoxycholic acid, DCA) was detected in the intestine of zebrafish exposed to high temperature. Both colonization of Parabacteroides distasonis and feeding of DCA to zebrafish at low temperature significantly reduced the mortality caused by SVCV. An in vitro assay demonstrated that DCA could inhibit the assembly and release of SVCV. Notably, DCA also showed an inhibitory effect on the infectious hematopoietic necrosis virus, another Rhabdoviridae member known to be more infectious at low temperature. CONCLUSIONS This study provides evidence that temperature can be an important factor to influence the composition of intestinal microbiota in zebrafish, consequently impacting the infectivity and pathogenicity of SVCV. The findings highlight the enrichment of Parabacteroides distasonis and its derivative, DCA, in the intestines of zebrafish raised at high temperature, and they possess an important role in preventing the infection of SVCV and other Rhabdoviridae members in host fish. Video Abstract.
Collapse
Affiliation(s)
- Yujun Zhang
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yan Gao
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
- Ocean College, Hebei Agricultural University, Qinhuangdao, Hebei, China
| | - Chen Li
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, Thompson School of Social Work & Public Health, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jing Ye
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xueqin Liu
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Yang J, Xiao S, Lu L, Wang H, Jiang Y. Genomic and molecular characterization of a cyprinid herpesvirus 2 YC-01 strain isolated from gibel carp. Heliyon 2024; 10:e32811. [PMID: 39035518 PMCID: PMC11259805 DOI: 10.1016/j.heliyon.2024.e32811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is the pathogen of herpesviral hematopoietic necrosis (HVHN), causing the severe economic losses in farmed gibel carp (Carassius gibelio). Further exploration of the genome structure and potential molecular pathogenesis of CyHV-2 through complete genome sequencing, comparative genomics, and molecular characterization is required. Herein, the genome of a CyHV-2 YC-01 strain isolated from diseased gibel carp collected in Yancheng, Jiangsu Province, China was sequenced, then we analyzed the genomic structure, genetic properties, and molecular characterization. First, the complete YC-01 genome comprises 275,367 bp without terminal repeat (TR) regions, with 151 potential open reading frames (ORFs). Second, compared with other representative published strains of the genus Cyvirus, several evident variations are found in YC-01, particularly the orientation and position of ORF25 and ORF25B. ORF107 and ORF156 are considered as potential molecular genetic markers for YC-01. ORF55 (encoding thymidine kinase) might be used to distinguish YC-01 and ST-J1 from other CyHV-2 isolates. Third, phylogenetically, YC-01 clusters with the members of the genus Cyvirus (together with the other six CyHV-2 isolates). Fourth, 43 putative proteins are predicted to be functional and are mainly divided into five categories. Several conserved motifs are found in nucleotide, amino acid, and promoter sequences including cis-acting elements identification of YC-01. Finally, the potential virulence factors and linear B cell epitopes of CyHV-2 are predicted to supply possibilities for designing novel vaccines rationally. Our results provide insights for further understanding genomic structure, genetic evolution, and potential molecular mechanisms of CyHV-2.
Collapse
Affiliation(s)
- Jia Yang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Simin Xiao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yousheng Jiang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
6
|
Tammas I, Bitchava K, Gelasakis AI. Transforming Aquaculture through Vaccination: A Review on Recent Developments and Milestones. Vaccines (Basel) 2024; 12:732. [PMID: 39066370 PMCID: PMC11281524 DOI: 10.3390/vaccines12070732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Aquaculture has rapidly emerged as one of the fastest growing industries, expanding both on global and on national fronts. With the ever-increasing demand for proteins with a high biological value, the aquaculture industry has established itself as one of the most efficient forms of animal production, proving to be a vital component of global food production by supplying nearly half of aquatic food products intended for human consumption. As in classic animal production, the prevention of diseases constitutes an enduring challenge associated with severe economic and environmental repercussions. Nevertheless, remarkable strides in the development of aquaculture vaccines have been recently witnessed, offering sustainable solutions to persistent health-related issues challenging resilient aquaculture production. These advancements are characterized by breakthroughs in increased species-specific precision, improved vaccine-delivery systems, and innovations in vaccine development, following the recent advent of nanotechnology, biotechnology, and artificial intelligence in the -omics era. The objective of this paper was to assess recent developments and milestones revolving around aquaculture vaccinology and provide an updated overview of strengths, weaknesses, opportunities, and threats of the sector, by incorporating and comparatively discussing various diffuse advances that span across a wide range of topics, including emerging vaccine technologies, innovative delivery methods, insights on novel adjuvants, and parasite vaccine development for the aquaculture sector.
Collapse
Affiliation(s)
- Iosif Tammas
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantina Bitchava
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy & Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
7
|
Sravani S, Gopalakrishnan A, John AS, Ramasubramanian R, Kesavaperumal G, Prabhu NM, Dhasarathan B, Natarajan SB. Incidence of mud crab reovirus (MCRV) outbreak in polyculture ponds of Andhra Pradesh, south east coast of India. J Invertebr Pathol 2024; 204:108092. [PMID: 38479455 DOI: 10.1016/j.jip.2024.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Reovirus designated as Mud crab reovirus (MCRV) is associated with the mass mortalities of mud crabs resulting in significant economic loss to crab and shrimp-mud crab polyculture farmers in the Nagayalanka, Krishna district, Andhra Pradesh. The 100 % chronic mass mortalities have been attributed to the outbreak of Mud crab reovirus (MCRV) in the polyculture farms. The moribund crabs showed autotomy, discoloration of carapace, loss of appetite, slow movement and loose gills. Histopathological observations of the infected mud crabs showed an atrophied hepatopancreas, complete degeneration of tissues along with viral inclusions in hepatopancreas, gills and muscles. Further analysis using Transmission electron microscopy (TEM), showed that the viral particles had a diameter of 70 nm and exhibited a non-enveloped, icosahedral shape arranged in a crystalline manner. The virus mainly infects the connective tissue of hepatopancreas, gills, muscle and develops in the cytoplasm. RT-PCR reconfirmed the presence of reovirus in the hepatopancreas of spontaneously infected mud crab Scylla serrata. The current study shows the importance of monitoring the MCRV prevalence in polyculture farms to minimize its spread and precautionary measures can be taken by screening the brooders from the crab hatchery and stocking of wild crabs without screening should be avoided in order to prevent MCRV outbreak.
Collapse
Affiliation(s)
- Savva Sravani
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamilnadu, India
| | - Ayyaru Gopalakrishnan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamilnadu, India.
| | - Anisha Shafni John
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamilnadu, India
| | - Ramasamy Ramasubramanian
- M. S. Swaminathan Research Foundation (MSSRF), 3rd Cross Road, Taramani Institutional Area, Chennai 600113, Tamil Nadu, India
| | - Gopalakrishnan Kesavaperumal
- M. S. Swaminathan Research Foundation (MSSRF), 3rd Cross Road, Taramani Institutional Area, Chennai 600113, Tamil Nadu, India
| | | | - Balu Dhasarathan
- Department of Agricultural Extension, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, India
| | - Sithranga Boopathy Natarajan
- M. S. Swaminathan Research Foundation (MSSRF), 3rd Cross Road, Taramani Institutional Area, Chennai 600113, Tamil Nadu, India
| |
Collapse
|
8
|
Huang J, Zheng S, Li Q, Zhao H, Zhou X, Yang Y, Zhang W, Cao Y. Host miR-146a-3p Facilitates Replication of Infectious Hematopoietic Necrosis Virus by Targeting WNT3a and CCND1. Vet Sci 2024; 11:204. [PMID: 38787176 PMCID: PMC11126136 DOI: 10.3390/vetsci11050204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a serious pathogen that causes great economic loss to the salmon and trout industry. Previous studies showed that IHNV alters the expression patterns of splenic microRNAs (miRNAs) in rainbow trout. Among the differentially expressed miRNAs, miRNA146a-3p was upregulated by IHNV. However, it is unclear how IHNV utilizes miRNA146a-3p to escape the immune response or promote viral replication. The present study suggested that one multiplicity of infection (MOI) of IHNV induced the most significant miR-146a-3p expression at 1 day post infection (dpi). The upregulation of miR-146a-3p by IHNV was due to viral N, P, M, and G proteins and relied on the interferon (IFN) signaling pathway. Further investigation revealed that Wingless-type MMTV integration site family 3a (WNT3a) and G1/S-specific cyclin-D1-like (CCND1) are the target genes of miRNA-146a-3p. The regulation of IHNV infection by miRNA-146a-3p is dependent on WNT3a and CCND1. MiRNA-146a-3p was required for the downregulation of WNT3a and CCND1 by IHNV. Moreover, we also found that WNT3a and CCND1 are novel proteins that induce the type-I IFN response in RTG-2 cells, and both of them could inhibit the replication of IHNV. Therefore, IHNV-induced upregulation of miRNA-146a-3p promotes early viral replication by suppressing the type-I IFN response by targeting WNT3a and CCND1. This work not only reveals the molecular mechanism of miRNA-146a-3p during IHNV infection but also provides new antiviral targets for IHNV.
Collapse
Affiliation(s)
- Jingwen Huang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Shihao Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Qiuji Li
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Hongying Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Xinyue Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Yutong Yang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150069, China
| | - Yongsheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| |
Collapse
|
9
|
Meng XY, Jiang QQ, Yu XD, Zhang QY, Ke F. Eukaryotic translation elongation factor 1 alpha (eEF1A) inhibits Siniperca chuatsi rhabdovirus (SCRV) infection through two distinct mechanisms. J Virol 2023; 97:e0122623. [PMID: 37861337 PMCID: PMC10688370 DOI: 10.1128/jvi.01226-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Although a virus can regulate many cellular responses to facilitate its replication by interacting with host proteins, the host can also restrict virus infection through these interactions. In the present study, we showed that the host eukaryotic translation elongation factor 1 alpha (eEF1A), an essential protein in the translation machinery, interacted with two proteins of a fish rhabdovirus, Siniperca chuatsi rhabdovirus (SCRV), and inhibited virus infection via two different mechanisms: (i) inhibiting the formation of crucial viral protein complexes required for virus transcription and replication and (ii) promoting the ubiquitin-proteasome degradation of viral protein. We also revealed the functional regions of eEF1A that are involved in the two processes. Such a host protein inhibiting a rhabdovirus infection in two ways is rarely reported. These findings provided new information for the interactions between host and fish rhabdovirus.
Collapse
Affiliation(s)
- Xian-Yu Meng
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Qi Jiang
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - Xue-Dong Yu
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Ya Zhang
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Ke
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Wang L, Song Y, Yan X, Xu T. A novel protein encoded by circVPS13D attenuates antiviral innate immunity by targeting MAVS in teleost fish. J Virol 2023; 97:e0088623. [PMID: 37843373 PMCID: PMC10688384 DOI: 10.1128/jvi.00886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE The expression of circVPS13D was upregulated with SCRV invasion, which proved that circVPS13D was involved in the regulation of the antiviral immune response. Our study revealed that the existence of circVPS13D promoted the replication of SCRV. Functionally, circVPS13D negatively regulates the antiviral responses of fish. Mechanistically, we confirmed that circVPS13D inhibited RLRs antiviral signaling pathway via the encoded protein VPS13D-170aa by targeting MAVS. Our study provided novel insights into the roles of protein-coding circRNAs and supported VPS13D-170aa as a negative regulator in the antiviral immune responses of teleost fish.
Collapse
Affiliation(s)
- Linchao Wang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanhong Song
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Ke F, Zhang QY. Advances on genomes studies of large DNA viruses in aquaculture: A minireview. Genomics 2023; 115:110720. [PMID: 37757975 DOI: 10.1016/j.ygeno.2023.110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Genomic studies of viral diseases in aquaculture have received more and more attention with the growth of the aquaculture industry, especially the emerging and re-emerging viruses whose genome could contain recombination, mutation, insertion, and so on, and may lead to more severe diseases and more widespread infections in aquaculture animals. The present review is focused on aquaculture viruses, which is belonged to two clades, Varidnaviria and Duplodnaviria, and one class Naldaviricetes, and respectively three families: Iridoviridae (ranaviruses), Alloherpesviridae (fish herpesviruses), and Nimaviridae (whispoviruses). The viruses possessed DNA genomes nearly or larger than 100 kbp with gene numbers more than 100 and were considered large DNA viruses. Genome analysis and experimental investigation have identified several genes involved in genome replication, transcription, and virus-host interactions. In addition, some genes involved in virus genetic variation or specificity were also discussed. A summary of these advances would provide reference to future discovery and research on emerging or re-emerging aquaculture viruses.
Collapse
Affiliation(s)
- Fei Ke
- Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
12
|
Jiang Q, Meng X, Yu X, Zhang Q, Ke F. Fusing a TurboID tag with the Andrias davidianus ranavirus 2L reduced virus adsorption efficiency. Microb Pathog 2023; 182:106220. [PMID: 37423497 DOI: 10.1016/j.micpath.2023.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Andrias davidianus ranavirus (ADRV) is a member of the genus ranavirus (family Iridoviridae). ADRV 2L is an envelope protein that could be essential in viral infection. In the present study, the function of ADRV 2L was investigated by fusion with the biotin ligase TurboID tag. A recombinant ADRV with a V5-TurboID tag fused in the N-terminal of 2L (ADRVT-2L) and a recombinant ADRV expressing V5-TurboID (ADRVT) were constructed, respectively. Infection of the recombinant viruses and wild-type ADRV (ADRVWT) in the Chinese giant salamander thymus cell line (GSTC) showed that ADRVT-2L had reduced cytopathic effect and lower virus titers than the other two viruses, indicating the fusion of a big tag affected ADRV infection. Analysis of the temporal expression profile showed that the expression of V5-TurboID-2L was delayed than wild-type 2L. However, electron microscopy found that the virion morphogenesis was not affected in ADRVT-2L-infected cells. Furthermore, the virus binding assay revealed that the adsorption efficiency of ADRVT-2L was considerably decreased compared to the other two viruses. Therefore, these data showed that linking the TurboID tag to ADRV 2L affected virus adsorption to the cell membrane, which suggested an important role of 2L in virus entry into cells.
Collapse
Affiliation(s)
- Qiqi Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianyu Meng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuedong Yu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiya Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Ke
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Zhang C, Lu LF, Li ZC, Han KJ, Wang XL, Chen DD, Xiong F, Li XY, Zhou L, Ge F, Li S. Zebrafish MAP2K7 Simultaneously Enhances Host IRF7 Stability and Degrades Spring Viremia of Carp Virus P Protein via Ubiquitination Pathway. J Virol 2023; 97:e0053223. [PMID: 37367226 PMCID: PMC10373533 DOI: 10.1128/jvi.00532-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
During viral infection, host defensive proteins either enhance the host immune response or antagonize viral components directly. In this study, we report on the following two mechanisms employed by zebrafish mitogen-activated protein kinase kinase 7 (MAP2K7) to protect the host during spring viremia of carp virus (SVCV) infection: stabilization of host IRF7 and degradation of SVCV P protein. In vivo, map2k7+/- (map2k7-/- is a lethal mutation) zebrafish showed a higher lethality, more pronounced tissue damage, and more viral proteins in major immune organs than the controls. At the cellular level, overexpression of map2k7 significantly enhanced host cell antiviral capacity, and viral replication and proliferation were significantly suppressed. Additionally, MAP2K7 interacted with the C terminus of IRF7 and stabilized IRF7 by increasing K63-linked polyubiquitination. On the other hand, during MAP2K7 overexpression, SVCV P proteins were significantly decreased. Further analysis demonstrated that SVCV P protein was degraded by the ubiquitin-proteasome pathway, as the attenuation of K63-linked polyubiquitination was mediated by MAP2K7. Furthermore, the deubiquitinase USP7 was indispensable in P protein degradation. These results confirm the dual functions of MAP2K7 during viral infection. IMPORTANCE Normally, during viral infection, host antiviral factors individually modulate the host immune response or antagonize viral components to defense infection. In the present study, we report that zebrafish MAP2K7 plays a crucial positive role in the host antiviral process. According to the weaker antiviral capacity of map2k7+/- zebrafish than that of the control, we find that MAP2K7 reduces host lethality through two pathways, as follows: enhancing K63-linked polyubiquitination to promote host IRF7 stability and attenuating K63-mediated polyubiquitination to degrade the SVCV P protein. These two mechanisms of MAP2K7 reveal a special antiviral response in lower vertebrates.
Collapse
Affiliation(s)
- Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke-Jia Han
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xue-Li Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Feng Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xi-Yin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Feng Ge
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
14
|
Xi Y, Jiang X, Xie X, Zhao M, Zhang H, Qin K, Wang X, Liu Y, Yang S, Shen Q, Ji L, Shang P, Zhang W, Shan T. Viromics Reveals the High Diversity of Viruses from Fishes of the Tibet Highland. Microbiol Spectr 2023; 11:e0094623. [PMID: 37219423 PMCID: PMC10269613 DOI: 10.1128/spectrum.00946-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Aquaculture is important for food security and nutrition. The economy has recently been significantly threatened and the risk of zoonoses significantly increased by aquatic diseases, and the ongoing introduction of new aquatic pathogens, particularly viruses, continues to represent a hazard. Yet, our knowledge of the diversity and abundance of fish viruses is still limited. Here, we conducted a metagenomic survey of different species of healthy fishes caught in the Lhasa River, Tibet, China, and sampled intestinal contents, gills, and tissues. To be more precise, by identifying and analyzing viral genomes, we aim to determine the abundance, diversity, and evolutionary relationships of viruses in fish with other potential hosts. Our analysis identified 28 potentially novel viruses, 22 of which may be associated with vertebrates, across seven viral families. During our research, we found several new strains of viruses in fish, including papillomavirus, hepadnavirus, and hepevirus. Additionally, we discovered two viral families, Circoviridae and Parvoviridae, which were prevalent and closely related to viruses that infect mammals. These findings further expand our understanding of highland fish viruses and highlight the emerging view that fish harbor large, unknown viruses. IMPORTANCE The economy and zoonoses have recently been significantly threatened by aquatic diseases. Yet, our knowledge of the diversity and abundance of fish viruses is still limited. We identified the wide genetic diversity of viruses that these fish were harboring. Since there are currently few studies on the virome of fish living in the Tibet highland, our research adds to the body of knowledge. This discovery lays the groundwork for future studies on the virome of fish species and other highland animals, preserving the ecological equilibrium on the plateau.
Collapse
Affiliation(s)
- Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaojie Jiang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinrui Xie
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Min Zhao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Han Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kailin Qin
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuwei Liu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
15
|
Wang ZX, Liu B, Yang T, Yu D, Zhang C, Zheng L, Xie J, Liu B, Liu M, Peng H, Lai L, Ouyang Q, Ouyang S, Zhang YA. Structure of the Spring Viraemia of Carp Virus Ribonucleoprotein Complex Reveals Its Assembly Mechanism and Application in Antiviral Drug Screening. J Virol 2023; 97:e0182922. [PMID: 36943056 PMCID: PMC10134867 DOI: 10.1128/jvi.01829-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/23/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus infecting the common carp, yet neither a vaccine nor effective therapies are available to treat spring viremia of carp (SVC). Like all negative-sense viruses, SVCV contains an RNA genome that is encapsidated by the nucleoprotein (N) in the form of a ribonucleoprotein (RNP) complex, which serves as the template for viral replication and transcription. Here, the three-dimensional (3D) structure of SVCV RNP was resolved through cryo-electron microscopy (cryo-EM) at a resolution of 3.7 Å. RNP assembly was stabilized by N and C loops; RNA was wrapped in the groove between the N and C lobes with 9 nt nucleotide per protomer. Combined with mutational analysis, our results elucidated the mechanism of RNP formation. The RNA binding groove of SVCV N was used as a target for drug virtual screening, and it was found suramin had a good antiviral effect. This study provided insights into RNP assembly, and anti-SVCV drug screening was performed on the basis of this structure, providing a theoretical basis and efficient drug screening method for the prevention and treatment of SVC. IMPORTANCE Aquaculture accounts for about 70% of global aquatic products, and viral diseases severely harm the development of aquaculture industry. Spring viremia of carp virus (SVCV) is the pathogen causing highly contagious spring viremia of carp (SVC) disease in cyprinids, especially common carp (Cyprinus carpio), yet neither a vaccine nor effective therapies are available to treat this disease. In this study, we have elucidated the mechanism of SVCV ribonucleoprotein complex (RNP) formation by resolving the 3D structure of SVCV RNP and screened antiviral drugs based on the structure. It is found that suramin could competitively bind to the RNA binding groove and has good antiviral effects both in vivo and in vitro. Our study provides a template for rational drug discovery efforts to treat and prevent SVCV infections.
Collapse
Affiliation(s)
- Zhao-Xi Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Bing Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Tian Yang
- School of Physics, Peking University, Beijing, China
| | - Daqi Yu
- School of Physics, Peking University, Beijing, China
| | - Chu Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liming Zheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jin Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bin Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Mengxi Liu
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hailin Peng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Physics, Peking University, Beijing, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Lin Z, Li L, Song K, Yang B, Zhou G, Zhang G, Teng J, Wang E, Liu X, Ling F, Wang G, Liu T. Boronic acid-modified bacterial cellulose microspheres as packing materials for enveloped virus removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160341. [PMID: 36414067 DOI: 10.1016/j.scitotenv.2022.160341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Viruses are the most abundant microorganisms on the earth, their existence in contaminated waters possesses a significant threat to humans. Waterborne viral infections could be fatal to sensitive population including young child, the elderly, and the immune-compromised. It is imperative to remove viruses during water treatment to better protect public health, especially in the light of evidence of detection of coronaviruses genetic fragments in raw sewage. We reported bench-scale experiments evaluating the extent and mechanisms of removal of a model virus (spring viremia of carp virus, SVCV) in water by adsorption. Microspheres made by boronic acid-modified bacterial cellulose with excellent mechanical strength were successfully fabricated as packing materials for the column to remove glycoproteins and enveloped viruses from water. The synthesized adsorbent was characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Brunauer Emmett Teller (BET) measurement. The adsorption efficiency of glycoproteins was investigated by SDS-PAGE and the Broadford protein assay, while the binding capacity with the virus (spring viremia of carp virus) was monitored by cell culture to calculate the viral cytopathic effect and viral titer caused by the virus. The data obtained from the above experiments showed that ∼3-log removal of SVCV in 3 h, which significantly reduced the virus concentration from microspheres packed column. The present study provides substantial evidence to prove beyond doubt that material based on bacterial cellulose seems to have the potential for virus removal from water which can be extended to systems of significant importance.
Collapse
Affiliation(s)
- Zhiyang Lin
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Linhan Li
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Kaige Song
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Bin Yang
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Guoqing Zhou
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Gengrong Zhang
- College of Veterinary Medicine, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Jiang Teng
- College of Veterinary Medicine, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Erlong Wang
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Xiaoqiang Liu
- College of Veterinary Medicine, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China.
| | - Tianqiang Liu
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China; Shenzhen Research Institute, Northwest A & F University, Gaoxin South 4th Road, Shenzhen Virtual University Park Building, High-Tech Industrial Park, Shenzhen 518057, PR China.
| |
Collapse
|
17
|
Li ZC, Lu LF, Zhang C, Wang XL, Tong JF, Han KJ, Chen DD, Li XY, Zhou L, Gui JF, Li S. GCRV NS38 counteracts SVCV proliferation by intracellular antagonization during co-infection. Virol Sin 2023; 38:142-156. [PMID: 36526167 PMCID: PMC10006313 DOI: 10.1016/j.virs.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Viral co-infection has been found in animals; however, the mechanisms of co-infection are unclear. The abundance and diversity of viruses in water make fish highly susceptible to co-infection. Here, we reported a co-infection in fish, which resulted in reduced host lethality and illustrated the intracellular molecular mechanism of viral co-infection. The spring viremia of carp virus (SVCV) is a highly lethal virus that infects Cyprinidae, such as zebrafish. The mortality of SVCV infection was significantly reduced when co-infected with the grass carp reovirus (GCRV). The severity of tissue damage and viral proliferation of SVCV was also reduced in co-infection with GCRV. The transcriptome bioinformatics analysis demonstrated that the effect on the host transcripts in response to SVCV infection was significantly reduced in co-infection. After excluding the extracellular interactions of these two viruses, the intracellular mechanisms were studied. We found that the GCRV NS38 remarkably decreased SVCV infection and viral proliferation. The interaction between GCRV NS38 and SVCV nucleoprotein (N) and phosphoprotein (P) proteins was identified, and NS38 downregulated both N and P proteins. Further analysis demonstrated that the N protein was degraded by NS38 indispensable of the autophagy receptor, sequestosome 1 (p62). Meanwhile, K63-linked ubiquitination of the P protein was reduced by NS38, leading to ubiquitinated degradation of the P protein. These results reveal that the intracellular viral protein interactions are a crucial mechanism of co-infection and influence the host pathology and expand our understanding in intracellular viral interactions co-infection.
Collapse
Affiliation(s)
- Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Li Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Jin-Feng Tong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke-Jia Han
- University of Chinese Academy of Sciences, Beijing, 100049, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Yin Li
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Zhou
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Wang XL, Li ZC, Zhang C, Jiang JY, Han KJ, Tong JF, Yang XL, Chen DD, Lu LF, Li S. Spring Viremia of Carp Virus N Protein Negatively Regulates IFN Induction through Autophagy-Lysosome-Dependent Degradation of STING. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:72-81. [PMID: 36426999 DOI: 10.4049/jimmunol.2200477] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
Fish possess a powerful IFN system to defend against aquatic virus infections. Nevertheless, spring viremia of carp virus (SVCV) causes large-scale mortality in common carp and significant economic losses to aquaculture. Therefore, it is necessary to investigate the strategies used by SVCV to escape the IFN response. In this study, we show that the SVCV nucleoprotein (N protein) negatively regulates cellular IFN production by degrading stimulator of IFN genes (STING) via the autophagy-lysosome-dependent pathway. First, overexpression of N protein inhibited the IFN promoter activation induced by polyinosinic-polycytidylic acid and STING. Second, the N protein associated with STING and experiments using a dominant-negative STING mutant demonstrated that the N-terminal transmembrane domains of STING were indispensable for this interaction. Then, the N protein degraded STING in a dose-dependent and autophagy-lysosome-dependent manner. Intriguingly, in the absence of STING, individual N proteins could not elicit host autophagic flow. Furthermore, the autophagy factor Beclin1 was found to interact with the N protein to attenuate N protein-mediated STING degradation after beclin1 knockdown. Finally, the N protein remarkably weakened STING-enhanced cellular antiviral responses. These findings reveal that SVCV uses the host autophagic process to achieve immune escape, thus broadening our understanding of aquatic virus pathogenesis.
Collapse
Affiliation(s)
- Xue-Li Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; and
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; and.,University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; and.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Yu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; and.,University of Chinese Academy of Sciences, Beijing, China
| | - Ke-Jia Han
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; and
| | - Jin-Feng Tong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; and.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Li Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; and.,University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; and
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; and
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; and
| |
Collapse
|
19
|
Environmental Factors and Their Threshold Affecting the Survival of Five Aquatic Animal Viruses in Different Animal Cells. Viruses 2022; 14:v14112546. [PMID: 36423155 PMCID: PMC9696523 DOI: 10.3390/v14112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Aquatic animal viruses infect and transmit in aquatic environments, causing serious harm to the aquaculture industry and a variety of wild aquatic animals. How are they affected by environmental factors and do they represent potential threat to mammalian heath or not? Here, the effects of environmental factors (ultraviolet radiation (UV), temperature, pH, and drying) and their threshold on five epidemic aquatic animal viruses infecting amphibians and bony fish, including Rana grylio virus (RGV), Andrias davidianus ranavirus (ADRV), Grass carp reovirus (GCRV), Paralichthys olivaceus rhabdovirus (PORV), and Scophthalmus maximus rhabdovirus (SMRV), were measured and compared in a fish cell line. The examination of virus titers after different treatment in fish cells showed that the two iridoviruses, RGV and ADRV, had a higher tolerance to all of the environmental factors, such as they only had a decay rate of 22-36% when incubated at 37 °C for 7 days. However, the rhabdovirus SMRV was sensitive to all of the factors, with a decay rate of more than 80% in most of the treatments; even a complete inactivation (100%) can be observed after drying treatment. To address the potential threat to mammals, infectivity and limitation factors of the five viruses in Baby hamster kidney fibroblast cells (BHK-21) were tested, which showed that three of the five viruses can replicate at a low temperature, but a high temperature strongly inhibited their infection and none of them could replicate at 37 °C. This study clarified the sensitivity or tolerance of several different types of aquatic animal viruses to the main environmental factors in the aquatic environment and proved that the viruses cannot replicate in mammalian cells at normal physiological temperature.
Collapse
|
20
|
Gui L, Zhao Y, Xu D, Li X, Luo J, Zhou W, Li M. Quick detection of Carassius auratus herpesvirus (CaHV) by recombinase-aid amplification lateral flow dipstick (RAA-LFD) method. Front Cell Infect Microbiol 2022; 12:981911. [PMID: 36171755 PMCID: PMC9512145 DOI: 10.3389/fcimb.2022.981911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
Crucian carp (Carassius auratus) is one of the major freshwater species and is also a common food fish in China. Recently, Carassius auratus herpesvirus (CaHV) could induce fatal viral disease with high mortality of crucian carp, which had caused huge economic losses. In this study, we described a rapid and simple recombinase-aid amplification (RAA) assay coupled with lateral flow dipstick (LFD), which could achieve sensitive diagnosis of tumor necrosis factor receptor (TNFR) of CaHV within 35 min at 40°C. Our RAA-LFD method had a satisfactory detection limit of 100 gene copies per reaction, which was 100-fold more sensitive than traditional PCR. In addition, no cross-reaction was observed with other viral pathogens, including koi herpesvirus (KHV), cyprinid herpesvirus 2 (CyHV-2), infectious hematopoietic necrosis virus (IHNV), spring viremia of carp virus (SVCV) and grass carp reovirus (GCRV). Furthermore, the overall cost of the method was cut in half compared to previous studies. In conclusion, RAA-LFD assay is therefore, a promising alternative for point-of-care testing (POCT) of CaHV, which is feasible and of certain value in application of aquatic disease control.
Collapse
Affiliation(s)
- Lang Gui
- Key Laboratory of integrated rice-fish farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yun Zhao
- Key Laboratory of integrated rice-fish farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Dan Xu
- Key Laboratory of integrated rice-fish farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Xinyu Li
- Key Laboratory of integrated rice-fish farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jianhua Luo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Wenzong Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Wenzong Zhou, ; Mingyou Li,
| | - Mingyou Li
- Key Laboratory of integrated rice-fish farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- *Correspondence: Wenzong Zhou, ; Mingyou Li,
| |
Collapse
|
21
|
Wang RX, Huang Y, Shi Y, Jiang FH, Gao Y, Liu X, Zhao Z. Characterization and functional analysis of a c-type lysozyme gene from obscure puffer Takifugu obscurus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104412. [PMID: 35405184 DOI: 10.1016/j.dci.2022.104412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Lysozyme (Lyz) is an alkaline enzyme that hydrolyzes mucopolysaccharides in bacteria and is highly conserved vertebrates and invertebrates. In this study, a c-type lysozyme gene (named ToLyzC) from the obscure puffer Takifugu obscurus was cloned and characterized. The full-length cDNA of ToLyzC was 432 bp, encoding 143 amino acids, with a predicted molecular mass of 16.2 kDa and a theoretical pI of 8.86. The depicted protein sequence contained a LYZ1 domain from 16 to 142 amino acids, seven conserved cysteine residues. Phylogenetic analysis indicated that ToLyzC clustered with Lyzs from other teleost fishes. Quantitative real-time PCR analysis revealed that ToLyzC mRNA was mainly expressed in the liver. The transcript level of ToLyzC gene was significantly upregulated after Staphylococcus aureus and Vibrio harveyi challenge. The optimal pH and temperature of recombinant ToLyzC protein (rToLyzC) lytic activity was detected to be 7.5 and 35 °C, respectively. rToLyzC exhibited significant antibacterial and bacterial binding activities against S. aureus, Aeromonas hydrophila, V. harveyi, and Edwardsiella tarda at different time points. In addition, the morphological changes of V. harveyi cells treated with rToLyzC were observed under scanning electron microscope, which further confirmed the antibacterial and bacteriolytic activity of rToLyzC. Taken together, our current study indicated that ToLyzC is involved in the immune response to bacterial infection in obscure puffers.
Collapse
Affiliation(s)
- Rui-Xia Wang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Yan Shi
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Fu-Hui Jiang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Yang Gao
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Xin Liu
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Zhe Zhao
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China.
| |
Collapse
|
22
|
Andrias davidianus Ranavirus (ADRV) Genome Replicate Efficiently by Engaging Cellular Mismatch Repair Protein MSH2. Viruses 2022; 14:v14050952. [PMID: 35632694 PMCID: PMC9142936 DOI: 10.3390/v14050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/25/2022] Open
Abstract
As nucleocytoplasmic large DNA viruses, replication of ranaviruses (genus Ranavirus, family Iridoviridae) involves a series of viral and host proteins. We have described that the replication and transcription machinery of Andrias davidianus ranavirus (ADRV) which was isolated from the Chinese giant salamander contained host factors. Here, a new host factor, the MutS homolog 2 (MSH2), was proved as an important protein that participated in ADRV infection. Expression of MSH2 was stable during ADRV infection in cultured cells and it localized at the cytoplasmic viral factories and colocalized with virus nascent DNA, indicating its possible role in virus genome replication. Investigation of the viral proteins that interacted with MSH2 by co-immunoprecipitation showed that A. davidianus MSH2 can interact with ADRV-35L (possible components associated with virus transcription), ADRV-47L (virus DNA polymerase), and ADRV-98R. Further knockdown MSH2 expression by RNAi significantly reduced the late gene expression of ADRV. Additionally, MSH2 knockout by CRISPR/Cas9 significantly reduced viral titers, genome replication, and late gene transcription of ADRV. Thus, the current study proved that ADRV can engage cellular MSH2 for its efficient genome replication and late gene transcription, which provided new information for understanding the roles of host factors in ranavirus replication and transcription.
Collapse
|
23
|
Chen DD, Lu LF, Xiong F, Wang XL, Jiang JY, Zhang C, Li ZC, Han KJ, Li S. Zebrafish CERKL Enhances Host TBK1 Stability and Simultaneously Degrades Viral Protein via Ubiquitination Modulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2196-2206. [PMID: 35418468 DOI: 10.4049/jimmunol.2101007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
In the viral infection process, host gene function is usually reported as either defending the host or assaulting the virus. In this study, we demonstrated that zebrafish ceramide kinase-like (CERKL) mediates protection against viral infection via two distinct mechanisms: stabilization of TANK-binding kinase 1 (TBK1) through impairing K48-linked ubiquitination and degradation of spring viremia of carp virus (SVCV) P protein by dampening K63-linked ubiquitination, resulting in an improvement of the host immune response and a decline in viral activity in epithelioma papulosum cyprini (EPC) cells. On SVCV infection, ifnφ1 expression was increased or blunted by CERKL overexpression or knockdown, respectively. Subsequently, we found that CERKL localized in the cytoplasm, where it interacted with TBK1 and enhanced its stability by impeding the K48-linked polyubiquitination; meanwhile, the antiviral capacity of TBK1 was significantly potentiated by CERKL. In contrast, CERKL also interacted with and degraded SVCV P protein to disrupt its function in viral proliferation. Further mechanism analysis revealed K63-linked deubiquitination is the primary means of CERKL-mediated SVCV P protein degradation. Taken together, our study reveals a novel mechanism of fish defense against viral infection: the single gene cerkl is both a shield for the host and a spear against the virus, which strengthens resistance.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Feng Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xue-Li Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; and
| | - Jing-Yu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke-Jia Han
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; and
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China;
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
24
|
Long Noncoding RNA MIR122HG Inhibits MAVS-Mediated Antiviral Immune Response by Deriving miR-122 in Miiuy Croaker ( Miichthys miiuy). Viruses 2022; 14:v14050930. [PMID: 35632672 PMCID: PMC9143459 DOI: 10.3390/v14050930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) function as micro regulators to impact gene expression after multiple pathogen infections, which have been largely studied in the last few years. Although lncRNA studies on lower vertebrates have received less attention than those on mammals, current studies suggest that lncRNA plays an important role in the immune response of fish to pathogen infections. Here, we studied the effect of MIR122HG as the host gene of miR-122 and indirectly negatively regulate MAVS-mediated antiviral immune responses in miiuy croaker (Miichthysmiiuy). We found that poly(I:C) significantly increases the host MIR122HG expression. The increased MIR122HG expression inhibited the production of the antiviral immune-related genes IFN-1, ISG15 and Viperin upon SCRV treatment. In addition, MIR122HG can act as a pivotally negative regulator involved in the MAVS-mediated NF-κB and IRF3 signaling pathways, which can effectively avoid an excessive immune response. Additionally, we found that MIR122HG can promote the replication of SCRV. Our study provides evidence about the involvement of lncRNAs in the antiviral immune response of fish and broadens the understanding of the function of lncRNAs as a precursor miRNA in teleost fish.
Collapse
|
25
|
Ke F, Zhang QY. ADRV 12L: A Ranaviral Putative Rad2 Family Protein Involved in DNA Recombination and Repair. Viruses 2022; 14:v14050908. [PMID: 35632650 PMCID: PMC9146916 DOI: 10.3390/v14050908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The Andrias davidianus ranavirus (ADRV) is a member of the family Iridoviridae and belongs to the nucleocytoplasmic large DNA viruses. Based on genomic analysis, an ADRV-encoding protein, ADRV 12L, and its homologs from other iridoviruses were predicted as Rad2 family proteins based on the conserved amino acids, domains, and secondary structures. Expression analysis showed that the transcription of ADRV 12L started at 4 h post infection, and its expression was not inhibited by a DNA-replication inhibitor. Meanwhile, immunofluorescence localization showed that ADRV 12L mainly localized in viral factories and colocalized with the viral nascent DNA, which hinted at a possible role in DNA replication. Furthermore, a mutant ADRV lacking 12L (ADRV-Δ12L) was constructed. In both luciferase assays based on homologous recombination (HR) and double-strand break repair (DSBR) that followed, ADRV-Δ12L induced less luciferase activity than the wild-type ADRV, indicating that HR and DSBR were impaired in ADRV-Δ12L infected cells. In addition, infection with ADRV-Δ12L resulted in smaller plaque sizes and lower viral titers than that with wild-type ADRV, indicating an important role for 12L in efficient virus infection. Therefore, the results suggest that Rad2 homologs encoded by iridovirus have important roles in HR- and DSBR-process of the viral DNA and, thus, affect virus replication and the production of progeny virions.
Collapse
Affiliation(s)
- Fei Ke
- Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China;
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-027-6878-0002
| | - Qi-Ya Zhang
- Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China;
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Dong W, Geng S, Cui J, Gao W, Sun Y, Xu T. MicroRNA-103 and microRNA-190 negatively regulate NF-κB-mediated immune responses by targeting IL-1R1 in Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2022; 123:94-101. [PMID: 35240295 DOI: 10.1016/j.fsi.2022.02.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/26/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Accumulating evidence has demonstrated that microRNAs (miRNAs) regulate various physiological and pathological processes at the transcriptional level, thus called novel regulators in immune response. In this study, we used bioinformatics and functional experiments to determine the role of miR-103 and miR-190 in the regulation of IL-1R1 gene involved in the immune and inflammatory responses in miiuy croakers. First, we predicted the target genes of miR-103 and miR-190 through bioinformatics and found that IL-1R1 is a direct target gene of miR-103 and miR-190. This was further confirmed by the dual-luciferase reporter assay that the over-expression of miR-103, miR-190 mimics and the pre-miR-103, pre-miR-190 plasmids inhibit the luciferase levels of the wild-type of IL-1R1 3'UTR. miR-103 and miR-190 inhibitors increase the luciferase levels of IL-1R1-3'UTR. Additionally, we found that miR-103 and miR-190 could negatively regulate the mRNA expression of IL-1R1. Importantly, we demonstrated that miR-103 and miR-190 significantly inhibit the NF-κB signaling pathway by targeting IL-1R1 upon LPS stimulation. Collectively, these results provide strong evidence for an important regulatory mechanism of miR-103 and miR-190 targeting the IL-1R1 gene, thereby preventing excessive inflammatory immune responses from causing autoimmunity.
Collapse
Affiliation(s)
- Wenjing Dong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenya Gao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| |
Collapse
|
27
|
Ke F, Yu XD, Wang ZH, Gui JF, Zhang QY. Replication and transcription machinery for ranaviruses: components, correlation, and functional architecture. Cell Biosci 2022; 12:6. [PMID: 34991685 PMCID: PMC8734342 DOI: 10.1186/s13578-021-00742-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ranaviruses (family Iridoviridae) are promiscuous pathogens that can infect across species barriers in poikilotherms and can replicate in amphibian and fish cells and even in cultured mammalian cells. However, as nucleocytoplasmic large DNA viruses (NCLDVs), their replication and transcription mechanisms remain largely unknown. Here, we screened and uncovered the replication and transcription machinery of two ranaviruses, Andrias davidianus ranavirus (ADRV) and Rana grylio virus (RGV), by a combination of methods, including the isolation of proteins on nascent DNA, recombinant virus-based affinity, and NanoLuc complementation assay. RESULTS The ranavirus replication and transcription machinery was deeply dissected and identified as a complicated apparatus containing at least 30 viral and 6 host proteins. The viral proteins ADRV-47L/RGV-63R (DNA polymerase, vDPOL), ADRV-23L/RGV-91R (proliferating cell nuclear antigen, vPCNA), ADRV-85L/RGV-27R (single-stranded DNA binding protein, vSSB), ADRV-88L/RGV-24R (vhelicase/primase), etc., constitute the core replisome. Specifically, the core of the transcription complex, the viral RNA polymerase, contain the host RNAPII subunits Rpb3, Rpb6, and Rpb11, which was a first report in NCLDVs. Furthermore, correlations and interactions among these factors in the machinery were described. Significantly, the replisome core protein vDPOL (ADRV-47L) can interact with numerous viral and host proteins and could act as a linker and regulation center in viral DNA replication and transcription. Thus, these results depicted an architecture for ranavirus replication and transcription. CONCLUSIONS Up to 36 components from ranavirus and their host were found to form viral replisomes and transcription complexes using a series of precise methods, which further constructed an architecture for ranavirus replication and transcription in which vDPOL was a key central factor and various components correlated and cooperated. Therefore, it provides a cornerstone for further understanding the mechanisms of the replication and transcription of ranaviruses which can ensure the efficient production of progeny virus and adaptation to cross-species infection.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xue-Dong Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zi-Hao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China. .,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
28
|
Nash KL, van Putten I, Alexander KA, Bettiol S, Cvitanovic C, Farmery AK, Flies EJ, Ison S, Kelly R, Mackay M, Murray L, Norris K, Robinson LM, Scott J, Ward D, Vince J. Oceans and society: feedbacks between ocean and human health. REVIEWS IN FISH BIOLOGY AND FISHERIES 2022. [PMID: 34366579 DOI: 10.22541/au.160166568.89566317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
UNLABELLED The concentration of human population along coastlines has far-reaching effects on ocean and societal health. The oceans provide benefits to humans such as food, coastal protection and improved mental well-being, but can also impact negatively via natural disasters. At the same time, humans influence ocean health, for example, via coastal development or through environmental stewardship. Given the strong feedbacks between ocean and human health there is a need to promote desirable interactions, while minimising undesirable interactions. To this end, we articulate two scenarios for 2030. First, Business-as-Usual, named 'Command and (out of) Control', focuses on the anticipated future based on our current trajectory. Second, a more sustainable scenario called 'Living and Connecting', emphasises the development of interactions between oceans and society consistent with achieving the Sustainable Development Goals. We describe a potential pathway to achieving the 'Living and Connecting' scenario, centred on improving marine citizenship, achieving a more equitable distribution of power among stakeholders, and more equitable access to resources and opportunities. The constituent actions of this pathway can be categorised into four groups: (i) improved approaches to science and health communication that account for society's diverse values, beliefs and worldviews, (ii) a shift towards more trusted relationships among stakeholders to enable two-way knowledge exchange, (iii) economic incentives that encourage behavioural changes necessary for achieving desired sustainability outcomes, and (iv) stronger regulations that simultaneously focus on ocean and human health. We contend that these changes will provide improved outcomes for both oceans and society over the United Nations Decade of Ocean Science. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11160-021-09669-5.
Collapse
Affiliation(s)
- Kirsty L Nash
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS 7001 Australia
| | - Ingrid van Putten
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- CSIRO, Oceans and Atmosphere, Castray Esplanade, Battery Point, TAS 7004 Australia
| | - Karen A Alexander
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS 7001 Australia
| | - Silvana Bettiol
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000 Australia
| | - Christopher Cvitanovic
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Australian National Centre for the Public Awareness of Science, Australian National University, Canberra, Australia
| | - Anna K Farmery
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Australian National Centre for Ocean Resources and Security, University of Wollongong, Wollongong, Australia
| | - Emily J Flies
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001 Australia
| | - Sierra Ison
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS 7001 Australia
| | - Rachel Kelly
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS 7001 Australia
| | - Mary Mackay
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- CSIRO, Oceans and Atmosphere, Castray Esplanade, Battery Point, TAS 7004 Australia
| | - Linda Murray
- School of Health Sciences, College of Health, Massey University, Wellington, 6140 New Zealand
| | - Kimberley Norris
- School of Psychological Sciences, University of Tasmania, Private Bag 30, Hobart, TAS 7001 Australia
| | - Lucy M Robinson
- Oceans Institute, The University of Western Australia, Perth, WA 6009 Australia
- Oceans Graduate School, The University of Western Australia, Perth, WA 6009 Australia
- CSIRO Oceans and Atmosphere, Crawley, WA 6009 Australia
| | - Jennifer Scott
- School of Psychological Sciences, University of Tasmania, Private Bag 30, Hobart, TAS 7001 Australia
| | - Delphi Ward
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS 7001 Australia
| | - Joanna Vince
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- School of Social Sciences, University of Tasmania, Locked Bag 1340, Launceston, TAS 7250 Australia
| |
Collapse
|
29
|
Nash KL, van Putten I, Alexander KA, Bettiol S, Cvitanovic C, Farmery AK, Flies EJ, Ison S, Kelly R, Mackay M, Murray L, Norris K, Robinson LM, Scott J, Ward D, Vince J. Oceans and society: feedbacks between ocean and human health. REVIEWS IN FISH BIOLOGY AND FISHERIES 2022; 32:161-187. [PMID: 34366579 PMCID: PMC8335471 DOI: 10.1007/s11160-021-09669-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/22/2021] [Indexed: 05/19/2023]
Abstract
UNLABELLED The concentration of human population along coastlines has far-reaching effects on ocean and societal health. The oceans provide benefits to humans such as food, coastal protection and improved mental well-being, but can also impact negatively via natural disasters. At the same time, humans influence ocean health, for example, via coastal development or through environmental stewardship. Given the strong feedbacks between ocean and human health there is a need to promote desirable interactions, while minimising undesirable interactions. To this end, we articulate two scenarios for 2030. First, Business-as-Usual, named 'Command and (out of) Control', focuses on the anticipated future based on our current trajectory. Second, a more sustainable scenario called 'Living and Connecting', emphasises the development of interactions between oceans and society consistent with achieving the Sustainable Development Goals. We describe a potential pathway to achieving the 'Living and Connecting' scenario, centred on improving marine citizenship, achieving a more equitable distribution of power among stakeholders, and more equitable access to resources and opportunities. The constituent actions of this pathway can be categorised into four groups: (i) improved approaches to science and health communication that account for society's diverse values, beliefs and worldviews, (ii) a shift towards more trusted relationships among stakeholders to enable two-way knowledge exchange, (iii) economic incentives that encourage behavioural changes necessary for achieving desired sustainability outcomes, and (iv) stronger regulations that simultaneously focus on ocean and human health. We contend that these changes will provide improved outcomes for both oceans and society over the United Nations Decade of Ocean Science. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11160-021-09669-5.
Collapse
Affiliation(s)
- Kirsty L. Nash
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS 7001 Australia
| | - Ingrid van Putten
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- CSIRO, Oceans and Atmosphere, Castray Esplanade, Battery Point, TAS 7004 Australia
| | - Karen A. Alexander
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS 7001 Australia
| | - Silvana Bettiol
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000 Australia
| | - Christopher Cvitanovic
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Australian National Centre for the Public Awareness of Science, Australian National University, Canberra, Australia
| | - Anna K. Farmery
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Australian National Centre for Ocean Resources and Security, University of Wollongong, Wollongong, Australia
| | - Emily J. Flies
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001 Australia
| | - Sierra Ison
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS 7001 Australia
| | - Rachel Kelly
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS 7001 Australia
| | - Mary Mackay
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- CSIRO, Oceans and Atmosphere, Castray Esplanade, Battery Point, TAS 7004 Australia
| | - Linda Murray
- School of Health Sciences, College of Health, Massey University, Wellington, 6140 New Zealand
| | - Kimberley Norris
- School of Psychological Sciences, University of Tasmania, Private Bag 30, Hobart, TAS 7001 Australia
| | - Lucy M. Robinson
- Oceans Institute, The University of Western Australia, Perth, WA 6009 Australia
- Oceans Graduate School, The University of Western Australia, Perth, WA 6009 Australia
- CSIRO Oceans and Atmosphere, Crawley, WA 6009 Australia
| | - Jennifer Scott
- School of Psychological Sciences, University of Tasmania, Private Bag 30, Hobart, TAS 7001 Australia
| | - Delphi Ward
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS 7001 Australia
| | - Joanna Vince
- Centre for Marine Socioecology, Private Bag 129, Hobart, TAS 7001 Australia
- School of Social Sciences, University of Tasmania, Locked Bag 1340, Launceston, TAS 7250 Australia
| |
Collapse
|
30
|
Tong JF, Zhou L, Li S, Lu LF, Li ZC, Li Z, Gan RH, Mou CY, Zhang QY, Wang ZW, Zhang XJ, Wang Y, Gui JF. Two Duplicated Ptpn6 Homeologs Cooperatively and Negatively Regulate RLR-Mediated IFN Response in Hexaploid Gibel Carp. Front Immunol 2021; 12:780667. [PMID: 34899743 PMCID: PMC8662705 DOI: 10.3389/fimmu.2021.780667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 01/28/2023] Open
Abstract
Src homology region 2 domain-containing phosphatase 1 (SHP1), encoded by the protein tyrosine phosphatase nonreceptor type 6 (ptpn6) gene, belongs to the family of protein tyrosine phosphatases (PTPs) and participates in multiple signaling pathways of immune cells. However, the mechanism of SHP1 in regulating fish immunity is largely unknown. In this study, we first identified two gibel carp (Carassius gibelio) ptpn6 homeologs (Cgptpn6-A and Cgptpn6-B), each of which had three alleles with high identities. Then, relative to Cgptpn6-B, dominant expression in adult tissues and higher upregulated expression of Cgptpn6-A induced by polyinosinic-polycytidylic acid (poly I:C), poly deoxyadenylic-deoxythymidylic (dA:dT) acid and spring viremia of carp virus (SVCV) were uncovered. Finally, we demonstrated that CgSHP1-A (encoded by the Cgptpn6-A gene) and CgSHP1-B (encoded by the Cgptpn6-B gene) act as negative regulators of the RIG-I-like receptor (RLR)-mediated interferon (IFN) response via two mechanisms: the inhibition of CaTBK1-induced phosphorylation of CaMITA shared by CgSHP1-A and CgSHP1-B, and the autophagic degradation of CaMITA exclusively by CgSHP1-A. Meanwhile, the data support that CgSHP1-A and CgSHP1-B have sub-functionalized and that CgSHP1-A overwhelmingly dominates CgSHP1-B in the process of RLR-mediated IFN response. The current study not only sheds light on the regulative mechanism of SHP1 in fish immunity, but also provides a typical case of duplicated gene evolutionary fates.
Collapse
Affiliation(s)
- Jin-Feng Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
31
|
Gong YM, Zhang C, Li Y, Chen G, Wang GX, Zhu B. Optimization of immunization procedure for SWCNTs-based subunit vaccine with mannose modification against spring viraemia of carp virus in common carp. JOURNAL OF FISH DISEASES 2021; 44:1925-1936. [PMID: 34383969 DOI: 10.1111/jfd.13506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 05/19/2023]
Abstract
Immersion vaccination of single-walled carbon nanotubes loaded with mannose-modified glycoprotein (SWCNTs-MG) vaccine has been proved to be effective in preventing spring viraemia of carp virus (SVCV). Immunization procedure has immense consequence on the immune effect of the immersion vaccine. However, immunization procedure optimization for SWCNTs-MG vaccine against SVCV has not been reported. In this study, accordingly, a full-factor experiment was designed to optimize the immunization procedure of SWCNTs-MG vaccine by three aspects of vaccine dose (30 mg/L, 40 mg/L and 50 mg/L), immunization density (8 fish L-1 , 24 fish L-1 and 48 fish L-1 ) and immunization time (6, 12 and 24 hr). Furthermore, we used the immunization group (A1B2C1, 30 mg/L, 24 fish L-1 and 6 hr) in the previous study as a positive control (PC) to evaluate the immunization effect optimized conditions from the expression of immune-related genes and relative percentage survival (RPS). At 28 days post-vaccination (DPV), common carps were intraperitoneal injected SVCV challenged test indicated that the A1B2C2 group (30 mg/L, 24 fish L-1 , 12 hr) displayed superiority of protective efficacy compare with other groups and the RPS with 77.9%, which was 15.6% higher than the PC group of RPS with 62.3%. Moreover, the expression of immune-related genes such as IL-10, CD4 and MHC-II was also significantly higher than PC group. The specific experimental flow chart is shown in Figure 1. Conclusively, these results demonstrated that vaccine dose, immunization density and immunization time are 30 mg/L, 24 fish L-1 and 12 hr, which is the more appropriate immunization programme with juvenile carp for SWCNTs-MG vaccine. This study provides a profitable reference for improving the immune efficiency of aquatic immersion vaccine. [Figure: see text].
Collapse
Affiliation(s)
- Yu-Ming Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Bačnik K, Kutnjak D, Černi S, Bielen A, Hudina S. Virome Analysis of Signal Crayfish ( Pacifastacus leniusculus) along Its Invasion Range Reveals Diverse and Divergent RNA Viruses. Viruses 2021; 13:2259. [PMID: 34835065 PMCID: PMC8624288 DOI: 10.3390/v13112259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 01/08/2023] Open
Abstract
Crayfish are a keystone species of freshwater ecosystems and a successful invasive species. However, their pathogens, including viruses, remain understudied. The aim of this study was to analyze the virome of the invasive signal crayfish (Pacifastacus leniusculus) and to elucidate the potential differences in viral composition and abundance along its invasion range in the Korana River, Croatia. By the high-throughput sequencing of ribosomal RNA, depleted total RNA isolated from the crayfish hepatopancreas, and subsequent sequence data analysis, we identified novel and divergent RNA viruses, including signal crayfish-associated reo-like, hepe-like, toti-like, and picorna-like viruses, phylogenetically related to viruses previously associated with crustacean hosts. The patterns of reads abundance and calculated nucleotide diversities of the detected viral sequences varied along the invasion range. This could indicate the possible influence of different factors and processes on signal crayfish virome composition: e.g., the differences in signal crayfish population density, the non-random dispersal of host individuals from the core to the invasion fronts, and the transfer of viruses from the native co-occurring and phylogenetically related crayfish species. The study reveals a high, previously undiscovered diversity of divergent RNA viruses associated with signal crayfish, and sets foundations for understanding the potential risk of virus transmissions as a result of this invader's dispersal.
Collapse
Affiliation(s)
- Katarina Bačnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Silvija Černi
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
33
|
Long noncoding RNA MIR2187HG suppresses TBK1-mediated antiviral signaling through deriving miR-2187-3p in teleost fish. J Virol 2021; 96:e0148421. [PMID: 34643431 DOI: 10.1128/jvi.01484-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) function as microregulatory factors that influence gene expression after a variety of pathogenic infection, which have been extensively studied in the past few years. Although less attention has been paid to lncRNAs in lower vertebrates than in mammals, current studies reveals that lncRNAs plays a vital role in fish stimulated by pathogens. Here, we discovered a new lncRNA, termed as MIR2187HG, which can function as a precursor of a small RNA miR-2187-3p with regulatory functions in miiuy croaker (Miichthys miiuy). Upon Siniperca chuatsi rhabdovirus (SCRV) virus infection, the expression levels of MIR2187HG were remarkably enhanced. Elevated MIR2187HG expression can act as a pivotally negative regulator that participates in the innate immune response of teleost fish to inhibit the intracellular TANK-binding kinase 1 (TBK1)-mediated antiviral signaling pathways, which can effectively avoid excessive immunity. In addition, we found that the SCRV virus could also utilize MIR2187HG to enhance its own number. Our results not only provide evidence regarding the involvement of the lncRNAs in response to anti-viruses in fish, but also broaden our understanding of the function of lncRNAs as precursor miRNA in teleost fish for the first time. Importance: SCRV infection upregulates MIR2187HG levels, which in turn suppresses SCRV-triggered type I interferon production, thus promoting viral replication in miiuy croaker. Notably, MIR2187HG regulates the release of miR-2187-3p, and TBK1 is a target of miR-2187-3p. MIR2187HG could obtain the function from miR-2187-3p to inhibit TBK1 expression and subsequently modulate TBK1-mediated NF-κB and IRF3 signaling. The collective results suggest that the novel regulation mechanism of TBK1-mediated antiviral response during RNA viral infection was regulated by MIR2187HG. Therefore, a new regulation mechanism for lncRNAs to regulate antiviral immune responses in fish is proposed.
Collapse
|
34
|
Jiang N, Fan Y, Zhou Y, Meng Y, Liu W, Li Y, Xue M, Robert J, Zeng L. The Immune System and the Antiviral Responses in Chinese Giant Salamander, Andrias davidianus. Front Immunol 2021; 12:718627. [PMID: 34675918 PMCID: PMC8524050 DOI: 10.3389/fimmu.2021.718627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
The Chinese giant salamander, belonging to an ancient amphibian lineage, is the largest amphibian existing in the world, and is also an important animal for artificial cultivation in China. However, some aspects of the innate and adaptive immune system of the Chinese giant salamander are still unknown. The Chinese giant salamander iridovirus (GSIV), a member of the Ranavirus genus (family Iridoviridae), is a prominent pathogen causing high mortality and severe economic losses in Chinese giant salamander aquaculture. As a serious threat to amphibians worldwide, the etiology of ranaviruses has been mainly studied in model organisms, such as the Ambystoma tigrinum and Xenopus. Nevertheless, the immunity to ranavirus in Chinese giant salamander is distinct from other amphibians and less known. We review the unique immune system and antiviral responses of the Chinese giant salamander, in order to establish effective management of virus disease in Chinese giant salamander artificial cultivation.
Collapse
Affiliation(s)
- Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York, NY, United States
| | - Yuding Fan
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Wenzhi Liu
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yiqun Li
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York, NY, United States
| | - Lingbing Zeng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
35
|
Zeng W, Bergmannc SM, Dong H, Yang Y, Wu M, Liu H, Chen Y, Li H. Identification, Virulence, and Molecular Characterization of a Recombinant Isolate of Grass Carp Reovirus Genotype I. Viruses 2021; 13:807. [PMID: 33946252 PMCID: PMC8146692 DOI: 10.3390/v13050807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
The hemorrhagic disease of grass carp (HDGC) caused by grass carp reovirus (GCRV) still poses a great threat to the grass carp industry. Isolation and identification of the GCRV genotype I (GCRV-I) has been rarely reported in the past decade. In this study, a new GCRV was isolated from diseased fish with severe symptoms of enteritis and mild hemorrhages on the body surface. The isolate was further identified by cell culture, transmission electron, indirect immunofluorescence, and SDS-PAGE electrophoretic pattern analysis of genomic RNA. The results were consistent with the new isolate as a GCRV-I member and tentatively named GCRV-GZ1208. Both grass carp and rare minnow infected by the GCRV-GZ1208 have no obvious hemorrhagic symptoms, and the final mortality rate was ≤10%, indicating that it may be a low virulent isolate. GZ1208 possessed highest genomic homology to 873/GCHV (GCRV-I) and golden shiner reovirus (GSRV). Additionally, it was found a 90.7-98.3% nucleotide identity, a 96.4-100% amino acid identity, and <50% identity with GCRV-II and III genotypes. Interestingly, the sequences of some segments of GZ1208 were similar to GCRV-8733/GCHV, whereas the remaining segments were more closely related to GSRV, suggesting that a recombination event had occurred. Bootscan analysis of the complete genomic sequence confirmed this hypothesis, and recombination events between 873/GCHV and other GSRV-like viruses were also accompanied by gene mutations.
Collapse
Affiliation(s)
- Weiwei Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (H.D.); (Y.Y.); (Y.C.); (H.L.)
| | - Sven M. Bergmannc
- Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 17493 Greifswald, Germany;
| | - Hanxu Dong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (H.D.); (Y.Y.); (Y.C.); (H.L.)
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (H.D.); (Y.Y.); (Y.C.); (H.L.)
| | - Minglin Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
| | - Hong Liu
- Inspection and Quarantine Academy of Science, Shenzhen 518045, China;
| | - Yanfeng Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (H.D.); (Y.Y.); (Y.C.); (H.L.)
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (H.D.); (Y.Y.); (Y.C.); (H.L.)
| |
Collapse
|
36
|
Li W, Cao Y, Chen Z, Tan Y, Dai Y, Wei J, Xiao J, Feng H. Black carp TRADD suppresses MAVS/IFN signaling during the innate immune activation. FISH & SHELLFISH IMMUNOLOGY 2021; 111:83-93. [PMID: 33513437 DOI: 10.1016/j.fsi.2021.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Tumor necrosis factor receptor 1 (TNFR1) associated death domain protein (TRADD) is a pivotal adaptor in TNF signaling pathway and up-regulates MAVS/IFN signaling pathway in human and mammal. However, the role of TRADD in teleost fish remains obscure. To reveal the function of teleost TRADD in the innate immune response, the TRADD homologue (bcTRADD) of black carp (Mylopharyngodon piceus) has been cloned and the function of bcTRADD is investigated in this study, which shares similar functional domain to its mammalian counterpart. bcTRADD mRNA expression level increased in response to different stimuli, including LPS, poly (I:C) and virus infection in host cells. bcTRADD activated the transcriptional activity of NF-κB promoter in the reporter assay; however, showed hardly any effect on the transcriptional activity of IFN promoter. It was interesting that black carp mitochondria antiviral signaling protein (bcMAVS)-activated IFN promoter transcription were dramatically depressed by bcTRADD and the C-terminal death domain of bcTRADD was indispensable for its regulation of bcMAVS. Accordingly, the plaque assay result showed that EPC cells co-expressing bcMAVS and bcTRADD presented much attenuated antiviral activity than EPC cells expressing bcMAVS alone. Knockdown of bcTRADD slightly promoted the antiviral ability of the host cells against SVCV. The current data support the conclusion that bcTRADD suppresses MAVS-mediated antiviral signaling, which is different to its mammalian counterpart.
Collapse
Affiliation(s)
- Wanzhen Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yingyi Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhaoyuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yaqi Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuhan Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jing Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
37
|
Hu Q, Liu Y, Liao X, Tian H, Ji X, Zhu J, Xiao H. A high-density genetic map construction and sex-related loci identification in Chinese Giant salamander. BMC Genomics 2021; 22:230. [PMID: 33794798 PMCID: PMC8017863 DOI: 10.1186/s12864-021-07550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Chinese giant salamander Andrias davidianus is an important amphibian species in China because of its increasing economic value, protection status and special evolutionary position from aquatic to terrestrial animal. Its large genome presents challenges to genetic research. Genetic linkage mapping is an important tool for genome assembly and determination of phenotype-related loci. RESULTS In this study, we constructed a high-density genetic linkage map using ddRAD sequencing technology to obtain SNP genotyping data of members from an full-sib family which sex had been determined. A total of 10,896 markers were grouped and oriented into 30 linkage groups, representing 30 chromosomes of A. davidianus. The genetic length of LGs ranged from 17.61 cM (LG30) to 280.81 cM (LG1), with a mean inter-locus distance ranging from 0.11(LG3) to 0.48 cM (LG26). The total genetic map length was 2643.10 cM with an average inter-locus distance of 0.24 cM. Three sex-related loci and four sex-related markers were found on LG6 and LG23, respectively. CONCLUSION We constructed the first High-density genetic linkage map and identified three sex-related loci in the Chinese giant salamander. Current results are expected to be a useful tool for future genomic studies aiming at the marker-assisted breeding of the species.
Collapse
Affiliation(s)
- Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, Hubei, China.
| | - Yang Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaolin Liao
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, 430079, China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, Hubei, China
| | - Xiangshan Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Jiajie Zhu
- Guangxi Academy of Fishery Sciences, Nanning, 530021, Guangxi Province, China
| | - Hanbing Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, Hubei, China
| |
Collapse
|
38
|
Yao Q, Zhang M, Zu S, Yang H, Xie W, Chen J, Chen Z, Ge Y, Zeng W, Zhao Z. Integrated mRNA and microRNA Transcriptome Sequencing Characterizes Sequence Variants and mRNA-microRNA Regulatory Networks in Grass Carp Fibroblasts Infected with Virulent and Attenuated GCRV. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:342-355. [PMID: 33748916 DOI: 10.1007/s10126-021-10029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Grass carp hemorrhagic disease is a fatal disease caused by the grass carp reovirus (GCRV). The aberrant regulation of transcripts has been implicated in many types of diseases. In the present study, we characterized mRNA and miRNA transcriptomes of different virulent GCRVs using RNA sequencing (RNA-Seq). One hundred eighteen miRNAs were identified as being differentially expressed between different virulent viruses in grass carp fibroblasts. Eight miRNAs were selected to verify the RNA-Seq results using RT-PCR and mRNA methods. In total, 996 differentially expressed mRNA genes were identified in grass carp fibroblasts, while 901 miRNA-mRNA target pairs were observed to be inversely regulated in grass carp fibroblasts. Integrated mRNA/miRNA expression profiling analysis results showed that the most influenced processes were the immune response and cell death. Three miRNAs were shown to exhibit the same expression patterns when two different methods were used and had important functions during viral infection. These results provide insights into the miRNA-mediated regulation of mRNA and valuable resources on transcript variation and regulation during GCRV infection, which are potentially useful for mechanistic and drug studies.
Collapse
Affiliation(s)
- Qiucheng Yao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Mengdi Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Shaopo Zu
- Haikou Customs District P.R. China, Haikou, Hainan, China
| | - Hong Yang
- Nanchang Animal Disease Prevention and Control Center, Jiangxi, Nanchang, People's Republic of China
| | - Weitian Xie
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Jinjun Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Zhibao Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Ye Ge
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China.
| | - Weiwei Zeng
- School of Life Science and Engineering, Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, 528231, China.
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, People's Republic of China.
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China.
| |
Collapse
|
39
|
Circular RNA circPIKfyve acts as a sponge of miR-21-3p to enhance antiviral immunity through regulating MAVS in teleost fish. J Virol 2021; 95:JVI.02296-20. [PMID: 33536171 PMCID: PMC8103680 DOI: 10.1128/jvi.02296-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of widespread and diverse covalently closed circular endogenous RNAs that exert crucial functions in regulating gene expression in mammals. However, the function and regulation mechanism of circRNAs in lower vertebrates are still unknown. Here, we discovered a novel circRNA derived from PIKfyve, named circPIKfyve, that is related to the antiviral responses in teleost fish. The results showed that circPIKfyve plays essential roles in host antiviral immunity and inhibition of SCRV replication. Moreover, we also found that the antiviral effect inhibited by miR-21-3p could be reversed with the addition of circPIKfyve. In mechanism, our data revealed that circPIKfyve is a competitive endogenous RNA (ceRNA) of MAVS by sponging miR-21-3p, leading to activation of NF-κB/IRF3 pathway, which then enhance the innate antiviral responses. In addition, we firstly found that RNA binding protein QKI is involved in the formation and regulation of circPIKfyve. Our results provided a strong basis that circRNAs to play a regulatory role in antiviral immune responses in teleost fish.Importance: Here, we identified a novel circRNA, namely, circPIKfyve, that can act as a key regulator of the innate immune response in teleost fish. circPIKfyve acts as a molecular sponge by competitive adsorbing of miR-21-3p, thereby increasing the abundance of MAVS and activating the downstream NF-κB/IRF3 pathway to enhance the antiviral response. In addition, this study was the first to find that QKI protein is involved in regulating the formation of circPIKfyve in fish. The overall results of this study suggest that circPIKfyve plays an active regulatory role in the antiviral immune response of teleost fish.
Collapse
|
40
|
A Highly Conserved Circular RNA circRasGEF1B Enhances Antiviral Immunity by Regulating miR-21-3p/MITA Pathway in Lower Vertebrates. J Virol 2021; 95:JVI.02145-20. [PMID: 33441345 PMCID: PMC8092700 DOI: 10.1128/jvi.02145-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) represent a class of widespread, diverse, and covalently closed circRNAs that function as microRNA (miRNA) sponges and crucial regulators of gene expression in mammals. However, the regulation and function of circRNAs in lower vertebrates are still unknown. Here, we first discover a highly conserved circRNA termed circRasGEF1B, which displays a high conservation from mammals to fish and serves as key regulator in eliciting antiviral immunity in teleost fish. Results indicate that circRasGEF1B was highly expressed in Siniperca chuatsi rhabdovirus-infected tissues and cells. Functionally, miR-21-3p could inhibit cellular antiviral responses significantly, whereas circRasGEF1B counteract the effects of miR-21-3p. In mechanism, the results demonstrate that circRasGEF1B acts as a competing endogenous RNA (ceRNA) of miR-21-3p to relieve the repressive effect of miR-21-3p on its target MITA, then enhance the innate antiviral responses. Our results not only provide a novel insight into the functions of circRNAs in lower vertebrates, but broaden our understanding of circRNAs in viral infection.IMPORTANCE Siniperca chuatsi rhabdovirus (SCRV) is a typical fish RNA rhabdovirus, which is one of the most significant viral pathogens in teleost fish and can cause severe hemorrhagic septicemia in freshwater and marine fishes. Here, we discovered a highly conserved circRNAs called circRasGEF1B, which acts as a key regulator for innate antiviral responses upon SCRV infection. circRasGEF1B acts as an endogenous sponge of miR-21-3p that downregulates miR-21-3p expression levels. circRasGEF1B is able to bind to miR-21-3p directly and regulates MITA expression. To our knowledge, this report is the first to characterize circRNA-miRNA regulatory networks that exist in lower vertebrates.
Collapse
|
41
|
Development and comparison of qPCR and qLAMP for rapid detection of the decapod iridescent virus 1 (DIV1). J Invertebr Pathol 2021; 182:107567. [PMID: 33711317 DOI: 10.1016/j.jip.2021.107567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022]
Abstract
Decapod iridescent virus 1 (DIV1) is a new virus discovered in recent years that infects farmed shrimp. DIV1 is highly infectious and causes substantial economic loss to the aquaculture industry of China. To prevent and control the spread and outbreak of DIV1 in a timely manner, it is necessary to establish an efficient method for DIV1 diagnosis. In this study, quantitative real-time polymerase chain reaction (qPCR) and quantitative real-time loop-mediated isothermal amplification (qLAMP) detection methods were established based on the specific sequence of the viral ATPase gene. The results indicated that the minimum detection limits of qPCR and qLAMP were 1.9 × 101 copies/μL and 1.9 × 102 copies/μL, respectively; the designed primer had good specificity for DIV1 and did not react with 13 other viruses, including white spot syndrome virus (WSSV), Enterocytozoon hepatopenaei (EHP), acute hepatopancreatic necrosis disease (AHPND), infectious hypodermal and haematopoietic necrosis virus (IHHNV), etc. A total of 43 clinical samples suspected of DIV1 infection were diagnosed by qPCR and qLAMP. Our qPCR demonstrated results consistent with a qPCR assay published previously, and the diagnostic sensitivity (DSe) and diagnostic specificity (DSp) of qLAMP were 85.71% and 100%, respectively. This result indicates that qPCR and qLAMP have good accuracy in the detection of DIVI in clinical samples. As established in this study, qPCR and qLAMP combined with a comprehensive comparative analysis can provide effective new solutions for the detection of DIV1.
Collapse
|
42
|
Gao W, Chang R, Sun Y, Xu T. MicroRNA-2187 Modulates the NF-κB and IRF3 Pathway in Teleost Fish by Targeting TRAF6. Front Immunol 2021; 12:647202. [PMID: 33659012 PMCID: PMC7917119 DOI: 10.3389/fimmu.2021.647202] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
The innate immune organs and cells detect the invasion of pathogenic microorganisms, which trigger the innate immune response. A proper immune response can protect the organisms from pathogen invasion. However, excessive immunity can destroy immune homeostasis, leading to uncontrolled inflammation or pathogen transmission. Evidence shows that the miRNA-mediated immune regulatory network in mammals has had a significant impact, but the antibacterial and antiviral responses involved in miRNAs need to be further studied in lower vertebrates. Here, we report that miR-2187 as a negative regulator playing a critical role in the antiviral and antibacterial response of miiuy croaker. We find that pathogens such as Vibrio anguillarum and Siniperca chuatsi rhabdovirus (SCRV) can up-regulate the expression of miR-2187. Elevated miR-2187 is capable of reducing the production of inflammatory factors and antiviral genes by targeting TRAF6, thereby avoiding excessive inflammatory response. Furthermore, we proved that miR-2187 modulates innate immunity through TRAF6-mediated NF-κB and IRF3 signaling pathways. The above results indicate that miR-2187 acts as an immune inhibitor involved in host antibacterial and antiviral responses, thus enriching the immune regulatory network of the interaction between host and pathogen in lower vertebrates.
Collapse
Affiliation(s)
- Wenya Gao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Renjie Chang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
43
|
Xiao X, Zhu W, Zhang Y, Liao Z, Wu C, Yang C, Zhang Y, Xiao S, Su J. Broad-Spectrum Robust Direct Bactericidal Activity of Fish IFNφ1 Reveals an Antimicrobial Peptide-like Function for Type I IFNs in Vertebrates. THE JOURNAL OF IMMUNOLOGY 2021; 206:1337-1347. [PMID: 33568398 DOI: 10.4049/jimmunol.2000680] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Type I IFNs (IFN-Is) play pivotal roles in host defense against viral infections but remain enigmatic against bacterial pathogens. In this study, we recombinantly expressed and purified intact grass carp (Ctenopharyngodon idella) IFNφ1 (gcIFNφ1), a teleost IFN-I. gcIFNφ1 widely powerfully directly kills both Gram-negative and Gram-positive bacteria in a dose-dependent manner. gcIFNφ1 binds to LPS or peptidoglycan and provokes bacterial membrane depolarization and disruption, resulting in bacterial death. Furthermore, gcIFNφ1 can efficiently protect zebrafish against Aeromonas hydrophila infection and significantly reduce the bacterial loads in tissues by an infection model. In addition, we wonder whether antibacterial IFN-I members exist in other vertebrates. The amino acid compositions of representative IFN-Is with strong positive charges from Pisces, Amphibia, reptiles, Aves, and Mammalia demonstrate high similarities with those of 2237 reported cationic antimicrobial peptides in antimicrobial peptide database. Recombinant intact representative IFN-I members from the nonmammalian sect exhibit potent broad-spectrum robust bactericidal activity through bacterial membrane depolarization; in contrast, the bactericidal activity is very weak from mammalian IFN-Is. The findings display a broad-spectrum potent direct antimicrobial function for IFN-Is, to our knowledge previously unknown. The results highlight that IFN-Is are important and robust in host defense against bacterial pathogens, and unify direct antibacterial and indirect antiviral bifunction in nonmammalian jawed vertebrates.
Collapse
Affiliation(s)
- Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; and.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wentao Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Changsong Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongan Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaobo Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; and
| |
Collapse
|
44
|
Wang ZH, Ke F, Zhang QY, Gui JF. Structural and Functional Diversity among Five RING Finger Proteins from Carassius Auratus Herpesvirus (CaHV). Viruses 2021; 13:v13020254. [PMID: 33562288 PMCID: PMC7914681 DOI: 10.3390/v13020254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Carassius auratus herpesvirus (CaHV) has been identified as a high-virulence pathogenic virus that infects aquatic animals, but the key factor for virus–host interaction is still unclear. Five Really interesting new genes (RING) finger proteins (39L, 52L, 131R, 136L, and 143R) of CaHV were screened to determine structural diversity. RING finger proteins were also predicted in other known fish herpesviruses, with an arrangement and number similar to CaHV. We performed multifaceted analyses of the proteins, including protein sizes, skeleton structures, subcellular localizations, and ubiquitination activities, to determine their precise roles in virus–host interactions. The five proteins were overexpressed and detected different levels of ubiquitination activities, and 143R showed the highest activity. Then, the prokaryotic expressed and purified full-length proteins (131R and 136L), RING domain isolates (131R12–43 and 136L45–87), and RING domain-deleted mutants (131RΔ12–43 and 136LΔ45–87) were prepared to detect their activities through ubiquitination assays. The results indicate that both full-length proteins and their isolates have activities that catalyze ubiquitination, and the full-length proteins possess higher activity than the isolates, but RING domain-deleted mutants lose their activities. Furthermore, the activities of the five proteins were verified as E3 ubiquitin ligase activity, showing that the RING domains determine the ubiquitination activity. These proteins present different subcellular localization. RING domain-deleted mutants showed similar subcellular localization with their full-length proteins, and all the isolates diffused in whole cells. The current results indicate that the sequence outside the RING domain determines subcellular localization and the level of ubiquitination activity, suggesting that the RING finger proteins of fish herpesviruses might have diverse functions in virus–host interaction.
Collapse
Affiliation(s)
- Zi-Hao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.-H.W.); (F.K.)
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.-H.W.); (F.K.)
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.-H.W.); (F.K.)
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Q.-Y.Z.); (J.-F.G.); Tel.: +86-027-68780792 (Q.-Y.Z.); +86-027-68780707 (J.-F.G.)
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.-H.W.); (F.K.)
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Q.-Y.Z.); (J.-F.G.); Tel.: +86-027-68780792 (Q.-Y.Z.); +86-027-68780707 (J.-F.G.)
| |
Collapse
|
45
|
Recombinant Baculovirus-Produced Grass Carp Reovirus Virus-Like Particles as Vaccine Candidate That Provides Protective Immunity against GCRV Genotype II Infection in Grass Carp. Vaccines (Basel) 2021; 9:vaccines9010053. [PMID: 33466933 PMCID: PMC7830148 DOI: 10.3390/vaccines9010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Grass carp reovirus (GCRV) leads to severe hemorrhagic disease in grass carp (Ctenopharyngodon idella) and causes economic losses in grass carp aquaculture. Recent epidemiological investigations showed that GCRV genotype II is the dominant subtype in China. Therefore, it is very important to develop a novel vaccine for preventing diseases caused by GCRV genotype II. In this study, we employed a bac-to-bac expression system to generate GCRV-II-based virus-like particles (VLPs). Previous studies have shown that the structural proteins VP3, VP4, and VP38 encoded by the segments S3, S6, and S10 of type II GCRV are immunogenic. Hence, the GCRV-VLPs were produced by co-infection of sf9 cells with recombinant baculoviruses PFBH-VP3, PFBH-VP4, and PFBH-VP38. The expressions of VP3, VP4, and VP38 proteins in GCRV-VLPs were tested by IFA and Western blot analysis. By electron microscopic observations of ultrathin sections, purified VLPs showed that the expressed proteins are similar in shape to GCRV genotype II with a size range from 40 nm to 60 nm. The immunogenicity of GCRV-VLPs was evaluated by the injection immunization of grass carp. The analysis of serum-specific IgM antibody showed that grass carp immunized with GCRV-VLPs produced GCRV-specific antibodies. Furthermore, injection with GCRV-VLPs increased the expressions of immune-related genes (IgM, IFN, TLR3, TLR7) in the spleen and kidney. In addition, grass carp immunized with a GCRV-VLPs-based vaccine showed a relative percent survival rate (RPS) of 83.33% after challenge. The data in this study showed that GCRV-VLPs demonstrated an excellent immunogenicity and represent a promising approach for vaccine development against GCRV genotype II infection.
Collapse
|
46
|
Ran C, Li Y, Ma X, Xie Y, Xie M, Zhang Y, Zhou W, Yang Y, Zhang Z, Zhou L, Wei K, Zhou Z. Interactions between commensal bacteria and viral infection: insights for viral disease control in farmed animals. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1437-1448. [PMID: 33420920 DOI: 10.1007/s11427-020-1721-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Viral diseases cause serious economic loss in farmed animals industry. However, the efficacy of remedies for viral infection in farmed animals is limited, and treatment strategies are generally lacking for aquatic animals. Interactions of commensal microbiota and viral infection have been studied in recent years, demonstrating a third player in the interaction between hosts and viruses. Here, we discuss recent developments in the research of interactions between commensal bacteria and viral infection, including both promotion and inhibition effect of commensal bacteria on viral pathogenesis, as well as the impact of viral infection on commensal microbiota. The antiviral effect of commensal bacteria is mostly achieved through priming or regulation of the host immune responses, involving differential microbial components and host signaling pathways, and gives rise to various antiviral probiotics. Moreover, we summarize studies related to the interaction between commensal bacteria and viral infection in farmed animals, including pigs, chickens, fish and invertebrate species. Further studies in this area will deepen our understanding of antiviral immunity of farmed animals in the context of commensal microbiota, and promote the development of novel strategies for treatment of viral diseases in farmed animals.
Collapse
Affiliation(s)
- Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Li
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xufa Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yadong Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingxu Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuting Zhang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kaijian Wei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
47
|
He JH, Huang L, Guo Z, Weng S, He J, Xu X. Transcriptional programs of infectious spleen and kidney necrosis virus (ISKNV) in vitro and in vivo. Virus Genes 2020; 56:749-755. [PMID: 33033883 DOI: 10.1007/s11262-020-01800-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/26/2020] [Indexed: 11/26/2022]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV), causing serious infectious diseases to marine and freshwater fishes, is the type species of the genus Megalocytivirus, family Iridoviridae. In this study, the transcriptional programs of ISKNV in vitro (MFF-1 cells) and in vivo (spleens from mandarin fish) were investigated using real-time PCR. Transcription of all the putative open reading frames (ORFs) of ISKNV was verified. The temporal expression patterns of ISKNV ORFs in vitro and in vivo, including peak expression times (PETs) and relative maximal expression levels, were determined and compared. The K-means clustering with Spearman rank correlation was generated in heat maps constructed based on ISKNV ORF expression profiles in vivo and in vitro. The current study may provide a global picture of ISKNV infection at the transcription level and help better understand the molecular pathogenic mechanism of megalocytiviruses.
Collapse
Affiliation(s)
- Jian-Hui He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lichao Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhixun Guo
- South China Sea Fisheries Research Institute (CAFS), Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, P. R. China.
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China.
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, P. R. China.
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China.
| |
Collapse
|
48
|
Lu WJ, Zhou L, Gao FX, Zhou YL, Li Z, Zhang XJ, Wang Y, Gui JF. Dynamic and Differential Expression of Duplicated Cxcr4/Cxcl12 Genes Facilitates Antiviral Response in Hexaploid Gibel Carp. Front Immunol 2020; 11:2176. [PMID: 33013914 PMCID: PMC7516010 DOI: 10.3389/fimmu.2020.02176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
Chemokine receptor cxcr4 and its ligand cxcl12 have evolved two paralogs in the teleost lineage. In this study, we have identified four duplicated cxcr4 and cxcl12 genes from hexaploid gibel carp, Carassius gibelio, respectively. Cgcxcr4bs and Cgcxcl12as were dynamically and differentially expressed in immune-related tissues, and significantly up-regulated in head kidney and spleen after crucian carp herpesvirus (CaHV) infection. Blocking Cxcr4/Cxcl12 axis by injecting AMD3100 brought more severe bleeding symptom and lower survival rate in CaHV-infected fish. AMD3100 treatment also suppressed the up-regulation of key antiviral genes in head kidney and spleen, and resulted in more acute replication of CaHV in vivo. Consistently, the similar suppression of up-regulated expression of key antiviral genes were also observed in CAB cells treated by AMD3100 after poly(I:C) stimulation. Finally, MAPK3 and JAK/STAT were identified as the possible pathways that CgCxcr4s and CgCxcl12s participate in to promote the antiviral response in vitro.
Collapse
Affiliation(s)
- Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Fan-Xiang Gao
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Yu-Lin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
49
|
Cordier C, Stavrakakis C, Morga B, Degrémont L, Voulgaris A, Bacchi A, Sauvade P, Coelho F, Moulin P. Removal of pathogens by ultrafiltration from sea water. ENVIRONMENT INTERNATIONAL 2020; 142:105809. [PMID: 32554141 DOI: 10.1016/j.envint.2020.105809] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Among water treatment processes, ultrafiltration is known to be efficient for the elimination of micro-organisms (bacteria and viruses). In this study, two pathogens were targeted, a bacterium, Vibrio aestuarianus and a virus, OsHV-1, with the objective to produce high quality water from seawater, in the case of shellfish productions. The retention of those microorganisms by ultrafiltration was evaluated at labscale. In the case of OsHV-1, the protection of oysters was validated by in vivo experiments using oysters spat and larvae, both stages being highly susceptible to the virus. The oysters raised using contaminated seawater which was then subsequently treated by ultrafiltration, had similar mortality to the negative controls. In the case of V. aestuarianus, ultrafiltration allowed a high retention of the bacteria in seawater with concentrations below the detection limits of the 3 analytical methods (flow cytometry, direct seeding and seeding after filtration to 0.22 µm). Thus, the quantity of V. aestuarianus was at least, 400 times inferior to the threshold known to induce mortalities in oysters. Industrial scale experiment on a several months period confirmed the conclusion obtained at lab scale on the Vibrio bacteria retention. Indeed, no bacteria from this genus, potentially harmful for oysters, was detected in permeate and this, whatever the quality of the seawater treated and the bacteria concentration upstream of the membrane. Moreover, the resistance of the process was confirmed with a stability of hydraulic performances over time for two water qualities and even facing an algal bloom. In terms of retention and resistance, ultrafiltration process was validated for the treatment of seawater towards the targeted pathogenic microorganisms, with the aim of biosecuring shellfish productions.
Collapse
Affiliation(s)
- Clémence Cordier
- Aix Marseille Univ., Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2-CNRS-UMR 7340, EPM), Equipe Procédés Membranaires, Europôle de l'Arbois, BP 80, Bat. Laennec, Hall C, 13545 Aix-en-Provence cedex 04, Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2-CNRS-UMR 7340), Aix-Marseille Université, Europôle de l'Arbois, BP 80, Bat. Laennec, Hall C, 13545 Aix-en-Provence cedex 04, France
| | - Christophe Stavrakakis
- Plateforme expérimentale Mollusques Marins, Station Ifremer de Bouin, Polder des Champs, 85230 Bouin, France
| | - Benjamin Morga
- Laboratoire de Génétique et de Pathologie des Mollusques Marins, Station Ifremer de La Tremblade, Avenue du Mus du Loup, 17 390 La Tremblade, France
| | - Lionel Degrémont
- Laboratoire de Génétique et de Pathologie des Mollusques Marins, Station Ifremer de La Tremblade, Avenue du Mus du Loup, 17 390 La Tremblade, France
| | - Alexandra Voulgaris
- Plateforme expérimentale Mollusques Marins, Station Ifremer de Bouin, Polder des Champs, 85230 Bouin, France
| | - Alessia Bacchi
- Plateforme expérimentale Mollusques Marins, Station Ifremer de Bouin, Polder des Champs, 85230 Bouin, France
| | - Patrick Sauvade
- Suez - Aquasource, 20, Avenue Didier Daurat, 31029 Toulouse cedex 04, France
| | - Franz Coelho
- Suez - Aquasource, 20, Avenue Didier Daurat, 31029 Toulouse cedex 04, France
| | - Philippe Moulin
- Aix Marseille Univ., Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2-CNRS-UMR 7340, EPM), Equipe Procédés Membranaires, Europôle de l'Arbois, BP 80, Bat. Laennec, Hall C, 13545 Aix-en-Provence cedex 04, Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2-CNRS-UMR 7340), Aix-Marseille Université, Europôle de l'Arbois, BP 80, Bat. Laennec, Hall C, 13545 Aix-en-Provence cedex 04, France.
| |
Collapse
|
50
|
Mordecai GJ, Di Cicco E, Günther OP, Schulze AD, Kaukinen KH, Li S, Tabata A, Ming TJ, Ferguson HW, Suttle CA, Miller KM. Discovery and surveillance of viruses from salmon in British Columbia using viral immune-response biomarkers, metatranscriptomics, and high-throughput RT-PCR. Virus Evol 2020; 7:veaa069. [PMID: 33623707 PMCID: PMC7887441 DOI: 10.1093/ve/veaa069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emergence of infectious agents poses a continual economic and environmental challenge to aquaculture production, yet the diversity, abundance, and epidemiology of aquatic viruses are poorly characterised. In this study, we applied salmon host transcriptional biomarkers to identify and select fish in a viral disease state, but only those that were negative for known viruses based on RT-PCR screening. These fish were selected for metatranscriptomic sequencing to discover potential viral pathogens of dead and dying farmed Atlantic (Salmo salar) and Chinook (Oncorhynchus tshawytscha) salmon in British Columbia (BC). We found that the application of the biomarker panel increased the probability of discovering viruses in aquaculture populations. We discovered two viruses that have not previously been characterised in Atlantic salmon farms in BC (Atlantic salmon calicivirus and Cutthroat trout virus-2), as well as partially sequenced three putative novel viruses. To determine the epidemiology of the newly discovered or emerging viruses, we conducted high-throughput reverse transcription polymerase chain reaction (RT-PCR) and screened over 9,000 farmed and wild salmon sampled over one decade. Atlantic salmon calicivirus and Cutthroat trout virus-2 were in more than half of the farmed Atlantic salmon we tested. Importantly we detected some of the viruses we first discovered in farmed Atlantic salmon in Chinook salmon, suggesting a broad host range. Finally, we applied in situ hybridisation to determine infection and found differing cell tropism for each virus tested. Our study demonstrates that continual discovery and surveillance of emerging viruses in these ecologically important salmon will be vital for management of both aquaculture and wild resources in the future.
Collapse
Affiliation(s)
- Gideon J Mordecai
- Department of Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor Vancouver, BC Canada V5Z 1M9, Canada
- Corresponding author: E-mail:
| | - Emiliano Di Cicco
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
- Pacific Salmon Foundation, 1682 W 7th Ave, Vancouver, BC V6J 4S6, Canada
| | - Oliver P Günther
- Günther Analytics, 402-5775 Hampton Place, Vancouver, BC, V6T 2G6, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Hugh W Ferguson
- School of Veterinary Medicine, St George’s University, True Blue, GrenadaWest Indies
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, 1365 - 2350 Health Sciences Mall Vancouver, British Columbia Canada V6T 1Z3
- Department of Botany, University of British Columbia, 3156-6270 University Blvd. Vancouver, BC Canada V6T 1Z4, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|