1
|
Shen Y, Li J, Cai X, Jin J, Li D, Wu H, Dong W, Guo Y, Sun M, Sun X. Investigation of the potential regulation of the UDP-glycosyltransferase genes on rice grain size and abiotic stress response. Gene 2025; 933:149003. [PMID: 39406292 DOI: 10.1016/j.gene.2024.149003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
Uridine diphosphate (UDP) glycosyltransferases (UGTs) are widely involved in various metabolic processes. In the present study, we performed a genome-wide survey and identified 199 Oryza sativa UGT genes (OsUGTs), which were classified into 17 groups. We showed that tandem duplication played a major role in the expansion of the OsUGT family, which experienced purifying selection during the evolution process. 163 OsUGTs were expressed in at least one of the six tested tissues, and were clustered into three groups according to their tissue expression profiles. By using the RFGB database, we identified different haplotypes of seven OsUGTs that were highly expressed in seeds, and showed significant differences in grain size among different haplotypes. Moreover, our results also uncovered differential responses of OsUGTs expression to abiotic stresses and hormone treatments, including drought, salt, cold, heat, ABA, JA and AUXIN. By using quantitative real-time PCR, we further confirmed the differential expression of nine selected OsUGTs under ABA, JA, salt, drought and cold treatments, among which OsUGT5 and OsUGT182 were induced by all these five treatments. Our results provide insight into the role of several UGT genes for physiological responses, which will facilitate to investigate their function in regulating rice development and abiotic stress responses.
Collapse
Affiliation(s)
- Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jianwei Li
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jun Jin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Dongpeng Li
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hao Wu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Weifeng Dong
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yongxia Guo
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
2
|
Zeng H, Li S, Wang K, Dai Y, Sun L, Gao Y, Yi S, Li J, Xu S, Xie G, Zhu Y, Zhao Y, Qin M. BvCGT1-mediated differential distribution of flavonoid C-glycosides contributes to plant's response to UV-B stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:354-369. [PMID: 39158506 DOI: 10.1111/tpj.16991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
C-glycosides are a predominant class of flavonoids that demonstrate diverse medical properties and plant physiological functions. The chemical stability, structural diversity, and differential aboveground distribution of these compounds in plants make them ideal protectants. However, little is known about the transcriptional regulatory mechanisms that play these diverse roles in plant physiology. In this study, chard was selected from 69 families for its significantly different flavonoid C-glycosides distributions between the aboveground and underground parts to investigate the role and regulatory mechanism of flavonoid C-glycosides in plants. Our results indicate that flavonoid C-glycosides are affected by various stressors, especially UV-B. Through cloning and validation of key biosynthetic genes of flavonoid C-glycosides in chard (BvCGT1), we observed significant effects induced by UV-B radiation. This finding was further confirmed by resistance testing in BvCGT1 silenced chard lines and in Arabidopsis plants with BvCGT1 overexpression. Yeast one-hybrid and dual-luciferase assays were employed to determine the underlying regulatory mechanisms of BvCGT1 in withstanding UV-B stress. These results indicate a potential regulatory role of BvDof8 and BvDof13 in modulating flavonoid C-glycosides content, through their influence on BvCGT1. In conclusion, we have effectively demonstrated the regulation of BvCGT1 by BvDof8 and BvDof13, highlighting their crucial role in plant adaptation to UV-B radiation. Additionally, we have outlined a comprehensive transcriptional regulatory network involving BvDof8 and BvDof13 in response to UV-B radiation.
Collapse
Affiliation(s)
- Huihui Zeng
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuai Li
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yiqun Dai
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lanlan Sun
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yue Gao
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shanyong Yi
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Junde Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Zhu
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 211198, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 211198, China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
3
|
Zhang F, Yang C, Guo H, Li Y, Shen S, Zhou Q, Li C, Wang C, Zhai T, Qu L, Zhang C, Liu X, Luo J, Chen W, Wang S, Yang J, Yu C, Liu Y. Dissecting the genetic basis of UV-B responsive metabolites in rice. Genome Biol 2024; 25:234. [PMID: 39210441 PMCID: PMC11360312 DOI: 10.1186/s13059-024-03372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND UV-B, an important environmental factor, has been shown to affect the yield and quality of rice (Oryza sativa) worldwide. However, the molecular mechanisms underlying the response to UV-B stress remain elusive in rice. RESULTS We perform comprehensive metabolic profiling of leaves from 160 diverse rice accessions under UV-B and normal light conditions using a widely targeted metabolomics approach. Our results reveal substantial differences in metabolite accumulation between the two major rice subspecies indica and japonica, especially after UV-B treatment, implying the possible role and mechanism of metabolome changes in subspecies differentiation and the stress response. We next conduct a transcriptome analysis from four representative rice varieties under UV-B stress, revealing genes from amino acid and flavonoid pathways involved in the UV-B response. We further perform a metabolite-based genome-wide association study (mGWAS), which reveals 3307 distinct loci under UV-B stress. Identification and functional validation of candidate genes show that OsMYB44 regulates tryptamine accumulation to mediate UV-B tolerance, while OsUVR8 interacts with OsMYB110 to promote flavonoid accumulation and UV-B tolerance in a coordinated manner. Additionally, haplotype analysis suggests that natural variation of OsUVR8groupA contributes to UV-B resistance in rice. CONCLUSIONS Our study reveals the complex biochemical and genetic foundations that govern the metabolite dynamics underlying the response, tolerance, and adaptive strategies of rice to UV-B stress. These findings provide new insights into the biochemical and genetic basis of the metabolome underlying the crop response, tolerance, and adaptation to UV-B stress.
Collapse
Affiliation(s)
- Feng Zhang
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chenkun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Hao Guo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Yufei Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Shuangqian Shen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Qianqian Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chun Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Chao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Ting Zhai
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Cheng Zhang
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Xianqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
- Yazhouwan National Laboratory, Sanya, Hainan, 572025, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Shouchuang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
- Yazhouwan National Laboratory, Sanya, Hainan, 572025, China
| | - Jun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China.
| | - Cui Yu
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China.
| | - Yanyan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China.
| |
Collapse
|
4
|
Lv S, Tang X, Jiang L, Zhang J, Sun B, Liu Q, Mao X, Yu H, Chen P, Chen W, Fan Z, Li C. OsLSC6 Regulates Leaf Sheath Color and Cold Tolerance in Rice Revealed by Metabolite Genome Wide Association Study. RICE (NEW YORK, N.Y.) 2024; 17:34. [PMID: 38739288 DOI: 10.1186/s12284-024-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Plant metabolites including anthocyanins play an important role in the growth of plants, as well as in regulating biotic and abiotic stress responses to the environment. Here we report comprehensive profiling of 3315 metabolites and a further metabolic-based genome-wide association study (mGWAS) based on 292,485 SNPs obtained from 311 rice accessions, including 160 wild and 151 cultivars. We identified hundreds of common variants affecting a large number of secondary metabolites with large effects at high throughput. Finally, we identified a novel gene namely OsLSC6 (Oryza sativa leaf sheath color 6), which encoded a UDP 3-O-glucosyltransferase and involved in the anthocyanin biosynthesis of Cyanidin-3-Galc (sd1825) responsible for leaf sheath color, and resulted in significant different accumulation of sd1825 between wild (purple) and cultivars (green). The results of knockout transgenic experiments showed that OsLSC6 regulated the biosynthesis and accumulation of sd1825, controlled the purple leaf sheath. Our further research revealed that OsLSC6 also confers resistance to cold stress during the seedling stage in rice. And we identified that a SNP in OsLSC6 was responsible for the leaf sheath color and chilling tolerance, supporting the importance of OsLSC6 in plant adaption. Our study could not only demonstrate that OsLSC6 is a vital regulator during anthocyanin biosynthesis and abiotic stress responses, but also provide a powerful complementary tool based on metabolites-to-genes analysis by mGWAS for functional gene identification andpromising candidate in future rice breeding and improvement.
Collapse
Affiliation(s)
- Shuwei Lv
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Xuan Tang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Liqun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Bingrui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Pingli Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Wenfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| |
Collapse
|
5
|
Mmbando GS. The recent possible strategies for breeding ultraviolet-B-resistant crops. Heliyon 2024; 10:e27806. [PMID: 38509919 PMCID: PMC10950674 DOI: 10.1016/j.heliyon.2024.e27806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
The sensitivity of crops to ultraviolet B (UVB, 280-315 nm) radiation varies significantly. Plants' sensitivity to UVB is heavily influenced by the activity of the enzyme cyclobutane pyrimidine dimer (CPD) photolyase, which fixes UVB-induced CPDs. Crops grown in tropical areas with high level of UVB radiation, like O. glaberrima from Africa and O. sativa ssp. indica rice from Bengal, are more sensitive to UVB radiation and could suffer more as a result of rising UVB levels on the earth's surface. Therefore, creating crops that can withstand high UVB is crucial in tropical regions. There is, however, little information on current techniques for breeding UVB-resistant plants. The most recent techniques for producing UVB-resistant crops are presented in this review. The use of DNA methylation, boosting the antioxidant system, regulating the expression of micro-RNA396, and overexpressing CPD photolyase in transgenic plants are some of the methods that are discussed. CPD photolyase overexpression in transgenic plants is the most popular technique for producing UVB-resistant rice. The study also offers several strategies for creating UVB-resistant plants using gene editing techniques. To feed the world's rapidly expanding population, researchers can use the information from this study to improve food production.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma P. O. BOX 259, Dodoma, Tanzania
| |
Collapse
|
6
|
Xia H, Pu X, Zhu X, Yang X, Guo H, Diao H, Zhang Q, Wang Y, Sun X, Zhang H, Zhang Z, Zeng Y, Li Z. Genome-Wide Association Study Reveals the Genetic Basis of Total Flavonoid Content in Brown Rice. Genes (Basel) 2023; 14:1684. [PMID: 37761824 PMCID: PMC10531027 DOI: 10.3390/genes14091684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Flavonoids have anti-inflammatory, antioxidative, and anticarcinogenic effects. Breeding rice varieties rich in flavonoids can prevent chronic diseases such as cancer and cardio-cerebrovascular diseases. However, most of the genes reported are known to regulate flavonoid content in leaves or seedlings. To further elucidate the genetic basis of flavonoid content in rice grains and identify germplasm rich in flavonoids in grains, a set of rice core collections containing 633 accessions from 32 countries was used to determine total flavonoid content (TFC) in brown rice. We identified ten excellent germplasms with TFC exceeding 300 mg/100 g. Using a compressed mixed linear model, a total of 53 quantitative trait loci (QTLs) were detected through a genome-wide association study (GWAS). By combining linkage disequilibrium (LD) analysis, location of significant single nucleotide polymorphisms (SNPs), gene expression, and haplotype analysis, eight candidate genes were identified from two important QTLs (qTFC1-6 and qTFC9-7), among which LOC_Os01g59440 and LOC_Os09g24260 are the most likely candidate genes. We also analyzed the geographic distribution and breeding utilization of favorable haplotypes of the two genes. Our findings provide insights into the genetic basis of TFC in brown rice and could facilitate the breeding of flavonoid-rich varieties, which may be a prevention and adjuvant treatment for cancer and cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Haijian Xia
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Xiaoying Pu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (X.P.)
| | - Xiaoyang Zhu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Xiaomeng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (X.P.)
| | - Haifeng Guo
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Henan Diao
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China
| | - Quan Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Yulong Wang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Xingming Sun
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Hongliang Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (X.P.)
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
- Sanya Institute, China Agricultural University, Sanya 572025, China
| |
Collapse
|
7
|
Guo H, Li C, Lai J, Tong H, Cao Z, Wang C, Zhao W, He L, Wang S, Yang J, Long T. Comprehensive Analysis of Metabolome and Transcriptome Reveals the Regulatory Network of Coconut Nutrients. Metabolites 2023; 13:683. [PMID: 37367842 DOI: 10.3390/metabo13060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Coconut flesh is widely consumed in the market for its good flavor. However, a comprehensive and dynamic assessment of the nutrients in coconut flesh and their molecular regulatory mechanisms is lacking. In this study, the metabolite accumulation and gene expression of three representative coconut cultivars belonging to two subspecies were investigated using ultra performance liquid chromatography/tandem mass spectrometry. A total of 6101 features were detected, of which 52, 8, and 158 were identified as amino acids and derivatives, polyamines, and lipids, respectively. The analysis of the metabolite pathway showed that glutathione and α-linolenate were the main differential metabolites. Transcriptome data revealed significant differences in the expression of five glutathione structural genes and thirteen polyamine-regulated genes, consistent with trends in metabolite accumulation. Weighted correlation network and co-expression analyses showed that a novel gene WRKY28 was implicated in the regulation of lipid synthesis. These results broaden our understanding of coconut nutrition metabolism and provide new insights into the molecular basis of coconut nutrition metabolism.
Collapse
Affiliation(s)
- Hao Guo
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chun Li
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jun Lai
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Haiyang Tong
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhenfeng Cao
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chao Wang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Wenyu Zhao
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Liqiang He
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shouchuang Wang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jun Yang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Tuan Long
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Yuan P, Xu C, He N, Lu X, Zhang X, Shang J, Zhu H, Gong C, Kuang H, Tang T, Xu Y, Ma S, Sun D, Zhang W, Umer MJ, Shi J, Fernie AR, Liu W, Luo J. Watermelon domestication was shaped by stepwise selection and regulation of the metabolome. SCIENCE CHINA. LIFE SCIENCES 2023; 66:579-594. [PMID: 36346547 DOI: 10.1007/s11427-022-2198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
Although crop domestication has greatly aided human civilization, the sequential domestication and regulation of most quality traits remain poorly understood. Here, we report the stepwise selection and regulation of major fruit quality traits that occurred during watermelon evolution. The levels of fruit cucurbitacins and flavonoids were negatively selected during speciation, whereas sugar and carotenoid contents were positively selected during domestication. Interestingly, fruit malic acid and citric acid showed the opposite selection trends during the improvement. We identified a novel gene cluster (CGC1, cucurbitacin gene cluster on chromosome 1) containing both regulatory and structural genes involved in cucurbitacin biosynthesis, which revealed a cascade of transcriptional regulation operating mechanisms. In the CGC1, an allele caused a single nucleotide change in ClERF1 binding sites (GCC-box) in the promoter of ClBh1, which resulted in reduced expression of ClBh1 and inhibition of cucurbitacin synthesis in cultivated watermelon. Functional analysis revealed that a rare insertion of 244 amino acids, which arose in C. amarus and became fixed in sweet watermelon, in ClOSC (oxidosqualene cyclase) was critical for the negative selection of cucurbitacins during watermelon evolution. This research provides an important resource for metabolomics-assisted breeding in watermelon and for exploring metabolic pathway regulation mechanisms.
Collapse
Affiliation(s)
- Pingli Yuan
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Congping Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Nan He
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xuqiang Lu
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xingping Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China
| | - Jianli Shang
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hongju Zhu
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Chengsheng Gong
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hanhui Kuang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tang Tang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430070, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Shuangwu Ma
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Dexi Sun
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Weiqin Zhang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430070, China
| | - Muhammad J Umer
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jian Shi
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 144776, Germany
| | - Wenge Liu
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Jie Luo
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China.
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430070, China.
- College of Tropical Crops, Hainan University, Haikou, 572208, China.
| |
Collapse
|
9
|
Aiguo Z, Ruiwen D, Cheng W, Cheng C, Dongmei W. Insights into the catalytic and regulatory mechanisms of dihydroflavonol 4-reductase, a key enzyme of anthocyanin synthesis in Zanthoxylum bungeanum. TREE PHYSIOLOGY 2023; 43:169-184. [PMID: 36054375 DOI: 10.1093/treephys/tpac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Accumulation of anthocyanins largely determines the fruit color, and dihydroflavonol 4-reductase (DFR) is a key enzyme involved in the formation of anthocyanins. However, the catalytic and regulatory mechanisms of DFR are unclear. In this study, the gene encoding DFR from Zanthoxylum bungeanum Maxim. was cloned and ZbDFR was analyzed in detail. The ZbDFR accepted dihydrokaempferol, dihydroquercetin and dihydromyricetin as substrates. Flavonols such as myricetin, quercetin and kaempferol significantly inhibited the activity of ZbDFR, while quercitrin and isoquercitrin slightly increased the activity. Quercetin was a competitive inhibitor at low concentrations, and it had a combined effect of competitive and noncompetitive inhibition at high concentrations, which was consistent with ZbDFR having two inhibitor binding sites. In addition, the content of different types of flavonoids in Z. bungeanum peel at green, semi-red and red stage was analyzed, and the in vivo results could be explained by the regulation of ZbDFR activity in vitro. Site-directed mutagenesis combined with enzyme activity experiments showed that Ser128, Tyr163, Phe164 and Lys167 are the key catalytic amino acid residues. The Ser128, Tyr163 and Lys167 were crucial for the hydrogen transfer reaction, and mutation of these amino acids resulted in the loss of all or most of the activity. Phe164 was found to be important for the regulation of ZbDFR by flavonols. Accordingly, ZbDFR is a node at which flavonoids regulate the synthesis of anthocyanins and proanthocyanins.
Collapse
Affiliation(s)
- Zhao Aiguo
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Exploitation and Utilization of Economic Plant Resources in Shaanxi Province, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Ding Ruiwen
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Wang Cheng
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Exploitation and Utilization of Economic Plant Resources in Shaanxi Province, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Chen Cheng
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Exploitation and Utilization of Economic Plant Resources in Shaanxi Province, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Wang Dongmei
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Exploitation and Utilization of Economic Plant Resources in Shaanxi Province, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Shen S, Zhan C, Yang C, Fernie AR, Luo J. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. MOLECULAR PLANT 2023; 16:43-63. [PMID: 36114669 DOI: 10.1016/j.molp.2022.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Plants are natural experts in organic synthesis, being able to generate large numbers of specific metabolites with widely varying structures that help them adapt to variable survival challenges. Metabolomics is a research discipline that integrates the capabilities of several types of research including analytical chemistry, statistics, and biochemistry. Its ongoing development provides strategies for gaining a systematic understanding of quantitative changes in the levels of metabolites. Metabolomics is usually performed by targeting either a specific cell, a specific tissue, or the entire organism. Considerable advances in science and technology over the last three decades have propelled us into the era of multi-omics, in which metabolomics, despite at an earlier developmental stage than genomics, transcriptomics, and proteomics, offers the distinct advantage of studying the cellular entities that have the greatest influence on end phenotype. Here, we summarize the state of the art of metabolite detection and identification, and illustrate these techniques with four case study applications: (i) comparing metabolite composition within and between species, (ii) assessing spatio-temporal metabolic changes during plant development, (iii) mining characteristic metabolites of plants in different ecological environments and upon exposure to various stresses, and (iv) assessing the performance of metabolomics as a means of functional gene identification , metabolic pathway elucidation, and metabolomics-assisted breeding through analyzing plant populations with diverse genetic variations. In addition, we highlight the prominent contributions of joint analyses of plant metabolomics and other omics datasets, including those from genomics, transcriptomics, proteomics, epigenomics, phenomics, microbiomes, and ion-omics studies. Finally, we discuss future directions and challenges exploiting metabolomics-centered approaches in understanding plant metabolic diversity.
Collapse
Affiliation(s)
- Shuangqian Shen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chuansong Zhan
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chenkun Yang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Jie Luo
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
11
|
Zheng W, Yu S, Zhang W, Zhang S, Fu J, Ying H, Pingcuo G, Liu S, Zhao F, Wu Q, Xu Q, Ma Z, Zeng X. The content and diversity of carotenoids associated with high-altitude adaptation in Tibetan peach fruit. Food Chem 2023; 398:133909. [DOI: 10.1016/j.foodchem.2022.133909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
|
12
|
Ferreira SS, Goeminne G, Simões MS, Pina AVDA, Lima LGAD, Pezard J, Gutiérrez A, Rencoret J, Mortimer JC, Del Río JC, Boerjan W, Cesarino I. Transcriptional and metabolic changes associated with internode development and reduced cinnamyl alcohol dehydrogenase activity in sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6307-6333. [PMID: 35788296 DOI: 10.1093/jxb/erac300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The molecular mechanisms associated with secondary cell wall (SCW) deposition in sorghum remain largely uncharacterized. Here, we employed untargeted metabolomics and large-scale transcriptomics to correlate changes in SCW deposition with variation in global gene expression profiles and metabolite abundance along an elongating internode of sorghum, with a major focus on lignin and phenolic metabolism. To gain deeper insight into the metabolic and transcriptional changes associated with pathway perturbations, a bmr6 mutant [with reduced cinnamyl alcohol dehydrogenase (CAD) activity] was analyzed. In the wild type, internode development was accompanied by an increase in the content of oligolignols, p-hydroxybenzaldehyde, hydroxycinnamate esters, and flavonoid glucosides, including tricin derivatives. We further identified modules of genes whose expression pattern correlated with SCW deposition and the accumulation of these target metabolites. Reduced CAD activity resulted in the accumulation of hexosylated forms of hydroxycinnamates (and their derivatives), hydroxycinnamaldehydes, and benzenoids. The expression of genes belonging to one specific module in our co-expression analysis correlated with the differential accumulation of these compounds and contributed to explaining this metabolic phenotype. Metabolomics and transcriptomics data further suggested that CAD perturbation activates distinct detoxification routes in sorghum internodes. Our systems biology approach provides a landscape of the metabolic and transcriptional changes associated with internode development and with reduced CAD activity in sorghum.
Collapse
Affiliation(s)
- Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | - Geert Goeminne
- VIB Center for Plant Systems Biology, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | | | | | - Jade Pezard
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Wout Boerjan
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| |
Collapse
|
13
|
Zhou J, Liu C, Chen Q, Liu L, Niu S, Chen R, Li K, Sun Y, Shi Y, Yang C, Shen S, Li Y, Xing J, Yuan H, Liu X, Fang C, Fernie AR, Luo J. Integration of rhythmic metabolome and transcriptome provides insights into the transmission of rhythmic fluctuations and temporal diversity of metabolism in rice. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1794-1810. [PMID: 35287184 DOI: 10.1007/s11427-021-2064-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Various aspects of the organisms adapt to cyclically changing environmental conditions via transcriptional regulation. However, the role of rhythmicity in altering the global aspects of metabolism is poorly characterized. Here, we subjected four rice (Oryza sativa) varieties to a range of metabolic profiles and RNA-seq to investigate the temporal relationships of rhythm between transcription and metabolism. More than 40% of the rhythmic genes and a quarter of metabolites conservatively oscillated across four rice accessions. Compared with the metabolome, the transcriptome was more strongly regulated by rhythm; however, the rhythm of metabolites had an obvious opposite trend between day and night. Through association analysis, the time delay of rhythmic transmission from the transcript to the metabolite level was ∼4 h under long-day conditions, although the transmission was nearly synchronous for carbohydrate and nucleotide metabolism. The rhythmic accumulation of metabolites maintained highly coordinated temporal relationships in the metabolic network, whereas the correlation of some rhythmic metabolites, such as branched-chain amino acids (BCAAs), was significantly different intervariety. We further demonstrated that the cumulative diversity of BCAAs was due to the differential expression of branched-chain aminotransferase 2 at dawn. Our research reveals the flexible pattern of rice metabolic rhythm existing with conservation and diversity.
Collapse
Affiliation(s)
- Junjie Zhou
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Chengyuan Liu
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Qiyu Chen
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Ling Liu
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Shuying Niu
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Ridong Chen
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Kang Li
- College of Tropical Crops, Hainan University, Haikou, 570288, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Yangyang Sun
- College of Tropical Crops, Hainan University, Haikou, 570288, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Yuheng Shi
- College of Tropical Crops, Hainan University, Haikou, 570288, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Junwei Xing
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Honglun Yuan
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 144776, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, 570288, China.
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China.
| |
Collapse
|
14
|
Comparative Transcriptome and Pigment Analyses Reveal Changes in Gene Expression Associated with Flavonol Metabolism in Yellow Camellia. FORESTS 2022. [DOI: 10.3390/f13071094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The accumulation of various pigments leads to the formation of different flower colors in plants. However, the regulation mechanism of yellow flower formation and flower color differences between Camellia nitidssima C.W.Chi (CN) and its hybrids C. ‘Zhenghuangqi’ (ZHQ), C. ‘Huangxuanlv’ (HXL), and C. ‘Xinshiji’ (XSJ), remains largely unknown. Here, we showed that the content of two flavonols, quercetin-7-O-glucoside (Qu7G) and quercetin-3-O-glucoside (Qu3G), was positively correlated with the yellow degree of petals in CN and its three hybrids. Additionally, we performed a comparative transcriptomic analysis of petals of the four yellow camellia plants, which revealed 322 common upregulated and 866 common downregulated DEGs (differentially expressed genes) in the CN vs. ZHQ, CN vs. HXL, and CN vs. XSJ comparison groups. Their regulatory pathway analysis showed that flavonol biosynthesis genes (FLSs and GTs) and transcriptional regulatory genes MYBs were all expressed higher in CN than its three hybrids, which corresponded to differences in the flavonol content among the four yellow camellias. Further, two ethylene synthesis genes (ACSs, ACO) and three ethylene signaling genes (EIN2s, EIN3, ERFs) were all upregulated in the yellow petals of CN. In conclusion, the expression of flavonol-related genes and flavonols (Qu7G and Qu3G) accumulation could play a key role in the formation of yellow flowers in camellia, and the ethylene pathway might be involved in the regulation of yellow flower formation of camellias. This work describes the possible regulatory pathway of yellow camellia, thereby laying a foundation for future verification of genes linked to flower coloring and the breeding of yellow camellia.
Collapse
|
15
|
Medina-Lozano I, Díaz A. Applications of Genomic Tools in Plant Breeding: Crop Biofortification. Int J Mol Sci 2022; 23:3086. [PMID: 35328507 PMCID: PMC8950180 DOI: 10.3390/ijms23063086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Crop breeding has mainly been focused on increasing productivity, either directly or by decreasing the losses caused by biotic and abiotic stresses (that is, incorporating resistance to diseases and enhancing tolerance to adverse conditions, respectively). Quite the opposite, little attention has been paid to improve the nutritional value of crops. It has not been until recently that crop biofortification has become an objective within breeding programs, through either conventional methods or genetic engineering. There are many steps along this long path, from the initial evaluation of germplasm for the content of nutrients and health-promoting compounds to the development of biofortified varieties, with the available and future genomic tools assisting scientists and breeders in reaching their objectives as well as speeding up the process. This review offers a compendium of the genomic technologies used to explore and create biodiversity, to associate the traits of interest to the genome, and to transfer the genomic regions responsible for the desirable characteristics into potential new varieties. Finally, a glimpse of future perspectives and challenges in this emerging area is offered by taking the present scenario and the slow progress of the regulatory framework as the starting point.
Collapse
Affiliation(s)
- Inés Medina-Lozano
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón—IA2, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Aurora Díaz
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón—IA2, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
16
|
Wang J, Zhang C, Li Y. Genome-Wide Identification and Expression Profiles of 13 Key Structural Gene Families Involved in the Biosynthesis of Rice Flavonoid Scaffolds. Genes (Basel) 2022; 13:genes13030410. [PMID: 35327963 PMCID: PMC8951560 DOI: 10.3390/genes13030410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022] Open
Abstract
Flavonoids are a class of key polyphenolic secondary metabolites with broad functions in plants, including stress defense, growth, development and reproduction. Oryza sativa L. (rice) is a well-known model plant for monocots, with a wide range of flavonoids, but the key flavonoid biosynthesis-related genes and their molecular features in rice have not been comprehensively and systematically characterized. Here, we identified 85 key structural gene candidates associated with flavonoid biosynthesis in the rice genome. They belong to 13 families potentially encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol synthase (FLS), leucoanthocyanidin dioxygenase (LDOX), anthocyanidin synthase (ANS), flavone synthase II (FNSII), flavanone 2-hydroxylase (F2H), flavonoid 3′-hydroxylase (F3′H), flavonoid 3′,5′-hydroxylase (F3′5′H), dihydroflavonol 4-reductase (DFR), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). Through structural features, motif analyses and phylogenetic relationships, these gene families were further grouped into five distinct lineages and were examined for conservation and divergence. Subsequently, 22 duplication events were identified out of a total of 85 genes, among which seven pairs were derived from segmental duplication events and 15 pairs were from tandem duplications, demonstrating that segmental and tandem duplication events play important roles in the expansion of key flavonoid biosynthesis-related genes in rice. Furthermore, these 85 genes showed spatial and temporal regulation in a tissue-specific manner and differentially responded to abiotic stress (including six hormones and cold and salt treatments). RNA-Seq, microarray analysis and qRT-PCR indicated that these genes might be involved in abiotic stress response, plant growth and development. Our results provide a valuable basis for further functional analysis of the genes involved in the flavonoid biosynthesis pathway in rice.
Collapse
|
17
|
Wang Y, Wang J, Lv Q, He YK. ADH2/GSNOR1 is a key player in limiting genotoxic damage mediated by formaldehyde and UV-B in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:378-391. [PMID: 34919280 DOI: 10.1111/pce.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Maintenance of genome stability is an essential requirement for all living organisms. Formaldehyde and UV-B irradiation cause DNA damage and affect genome stability, growth and development, but the interplay between these two genotoxic factors is poorly understood in plants. We show that Arabidopsis adh2/gsnor1 mutant, which lacks alcohol dehydrogenase 2/S-nitrosoglutathione reductase 1 (ADH2/GSNOR1), are hypersensitive to low fluence UV-B irradiation or UV-B irradiation-mimetic chemicals. Although the ADH2/GSNOR1 enzyme can act on different substrates, notably on S-hydroxymethylglutathione (HMG) and S-nitrosoglutathione (GSNO), our study provides several lines of evidence that the sensitivity of gsnor1 to UV-B is caused mainly by UV-B-induced formaldehyde accumulation rather than other factors such as alteration of the GSNO concentration. Our results demonstrate an interplay between formaldehyde and UV-B that exacerbates genome instability, leading to severe DNA damage and impaired growth and development in Arabidopsis, and show that ADH2/GSNOR1 is a key player in combating these effects.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jinzheng Wang
- College of Life Sciences, Capital Normal University, Beijing, China
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yi-Kun He
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
18
|
Zhang F, Huang J, Guo H, Yang C, Li Y, Shen S, Zhan C, Qu L, Liu X, Wang S, Chen W, Luo J. OsRLCK160 contributes to flavonoid accumulation and UV-B tolerance by regulating OsbZIP48 in rice. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1380-1394. [PMID: 35079956 DOI: 10.1007/s11427-021-2036-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/12/2021] [Indexed: 12/23/2022]
Abstract
Plants produce specialized metabolites to adapt to the ever-changing environments. Flavonoids are antioxidants essential for growth, development, and breeding with increased stress resistance in crops. However, the mechanism of the involvement of flavonoids in ultraviolet-B (UV-B) stress in rice (Oryza sativa) is largely unknown. In this study, we cloned and functionally identified a receptor-like kinase (OsRLCK160) and a bZIP transcription factor (OsbZIP48) positively regulating flavonoid accumulation through metabolite-based genome-wide association study of the flavonoid content in rice. Meanwhile, OsRLCK160 interacted with and phosphorylated OsbZIP48 to regulate the flavonoid accumulation and participate in UV-B tolerance in rice. Our study indicates the importance of applying OsRLCK160 and OsbZIP48 to advance the fundamental understanding of stable rice production and breed UV-B-tolerant rice varieties, which may contribute to breeding high-yield rice varieties.
Collapse
Affiliation(s)
- Feng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiacheng Huang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Guo
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuansong Zhan
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Shouchuang Wang
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China. .,College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China.
| |
Collapse
|
19
|
Liang YY, Zan XY, Sun L, Fu X, Cui FJ, Tan M, Shao ZY, Sun WJ. A uridine diphosphate-glycosyltransferase GFUGT88A1 derived from edible mushroom Grifola frondosa extends oligosaccharide chains. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Plant metabolism paves the way for breeding crops with high nutritional value and stable yield. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2202-2205. [PMID: 34536206 DOI: 10.1007/s11427-021-2004-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
|
21
|
Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H. The Flavonoid Biosynthesis Network in Plants. Int J Mol Sci 2021; 22:ijms222312824. [PMID: 34884627 PMCID: PMC8657439 DOI: 10.3390/ijms222312824] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.
Collapse
Affiliation(s)
- Weixin Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yi Feng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Suhang Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xinlei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (J.L.); (H.Y.); Tel.: +86-571-6334-6372 (J.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (J.L.); (H.Y.); Tel.: +86-571-6334-6372 (J.L.)
| |
Collapse
|
22
|
Gong C, Zhu H, Lu X, Yang D, Zhao S, Umer MJ, He N, Yuan P, Anees M, Diao W, Kaseb MO, Liu W. An integrated transcriptome and metabolome approach reveals the accumulation of taste-related metabolites and gene regulatory networks during watermelon fruit development. PLANTA 2021; 254:35. [PMID: 34292405 DOI: 10.1007/s00425-021-03680-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/06/2021] [Indexed: 05/08/2023]
Abstract
Accumulation patterns and gene regulatory networks of sugars and cucurbitacins and related primary and secondary metabolites during cultivated watermelon 'Cheng Lan' and wild watermelon 'PI 632,751' fruit development were identified. Metabolites are the end products of cellular regulatory processes and play important roles in fruit taste formation. However, comprehensive studies on the accumulation patterns of watermelon fruit metabolites and transcriptional regulatory networks are still scarce. In this study, 451 annotated metabolites were identified at four key fruit developmental stages in wild watermelon 'PI 632,751' and modern cultivated watermelon 'Cheng Lan'. Interestingly, 11 sugars and 25 major primary metabolites were mainly accumulated in 'Cheng Lan' during fruit development, which are considered to be the potential metabolites beneficial to the formation of watermelon taste. Cucurbitacins and the main flavonoids were mainly specifically accumulated in 'PI 632,751', not being considered to be responsible for the taste. Moreover, forty-seven genes involved in carbohydrate metabolism, glycolysis, and TCA cycle were highly expressed in 'Cheng Lan', which was positively correlated with the accumulation of major primary metabolites. Alternatively, seven UDP-glycosyltransferase genes are closely related to the glycosylation of cucurbitacins through co-expression analysis. Our findings established a global map of metabolite accumulation and gene regulation during fruit development in wild and cultivated watermelons and provided valuable information on taste formation in watermelon fruit.
Collapse
Affiliation(s)
- Chengsheng Gong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hongju Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Dongdong Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Muhammad Jawad Umer
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Pingli Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Muhammad Anees
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Weinan Diao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - M O Kaseb
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
23
|
Functional Characterization of a Novel Glycosyltransferase (UGT73CD1) from Iris tectorum Maxim. for the Substrate promiscuity. Mol Biotechnol 2021; 63:1030-1039. [PMID: 34196922 DOI: 10.1007/s12033-021-00364-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Glycosylflavonoids are a class of natural products with multiple pharmacological activities and a lot of glycosyltransferases from various plant species have been reported that they were involved in the biosynthesis of these phytochemicals. However, no corresponding glycosyltransferase has been identified from the famous horticultural and medicinal plant Iris tectorum Maxim. Here, UGT73CD1, a novel glycosyltransferase, was identified from I. tectorum. based on transcriptome analysis and functional identification. Phylogenetic analysis revealed that UGT73CD1 grouped into the clade of flavonoid 7-OH OGTs. Biochemical analysis showed that UGT73CD1 was able to glycosylate tectorigenin at 7-OH to produce tectoridin, and thus assigned as a 7-O-glycosyltransferase. In addition, it also possessed robust catalytic promiscuity toward 12 structurally diverse flavonoid scaffolds and 3, 4-dichloroaniline, resulting in forming O- and N-glycosides. This work will provide insights into efficient biosynthesis of structurally diverse flavonoid glycosides for drug discovery.
Collapse
|
24
|
Shahzad R, Ewas M, Harlina PW, Khan SU, Zhenyuan P, Nie X, Nishawy E. β-Sitosterol differentially regulates key metabolites for growth improvement and stress tolerance in rice plants during prolonged UV-B stress. J Genet Eng Biotechnol 2021; 19:79. [PMID: 34052903 PMCID: PMC8164654 DOI: 10.1186/s43141-021-00183-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Elevated ultraviolet-B (UV-B) radiation is potentially deleterious to many organisms specifically crop plants and has become a global challenge. Rice is an exceptionally important staple food which is grown worldwide, and many efforts have been done recently to improve rice varieties against UV-B stress. This current study aims to investigate the effects of exogenous application of β-sitosterol (βSito) on growth improvement and tolerance level of rice plants against prolonged UV-B stress. The physiological and metabolic responses were evaluated in rice plants not supplemented with βSito (Nβ) and those supplemented with βSito (Sβ). RESULTS The Nβ and Sβ plants were grown under non-stress (ns) and under prolonged UV-B stress (uvs) conditions and termed as Nβns, Sβns and Nβuvs, Sβuvs, respectively. The application of βSito contributes positively under non-stress and specifically to UV-B stress in terms of improving numerous physiological parameters associated with growth and development such as shoot and root length, RWC, whole plant biomass, chlorophyll pigments, and photosynthetic-related parameters (Pn, Gs, Tr, WUEi, Fv/Fm, and NPQ) in Sβ compared with Nβ plants. Moreover, enhanced oxidative stress tolerance of Sβuvs vs. Nβuvs plants under stress was attributed to low levels of ROS and substantial trigger in activities of antioxidant enzymes (SOD, POD, CAT, and APX). Metabolic analysis was performed using GC-TOFMS, which revealed higher accumulation of several key metabolites including organic acids, sugars, amino acids, and others in Sβuvs vs. Nβuvs plants, which were mainly reduced in Nβ plants under stress vs. non-stress conditions. CONCLUSION These results provide useful data regarding the important role of βSito on growth maintenance and modulation of several metabolites associated with osmotic and redox adjustments during UV-B stress tolerance in rice plants. Importantly, βSito-regulated plasticity could further be explored specifically in relation to different environmental stresses in other economically useful crop plants.
Collapse
Affiliation(s)
- Raheel Shahzad
- Department of Biotechnology, Faculty of Science and Technology, Universitas Muhammadiyah Bandung, Bandung, West Java, 40614, Indonesia. .,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Mohamed Ewas
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Department of Plant Genetic Resources, Desert Research Center, Cairo, 11753, Egypt.
| | - Putri Widyanti Harlina
- Department of Food Technology, Faculty of Science and Technology, Universitas Muhammadiyah Bandung, Bandung, West Java, 40614, Indonesia
| | - Shahid Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pan Zhenyuan
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, Agricultural College, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, Agricultural College, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Elsayed Nishawy
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Plant Genetic Resources, Desert Research Center, Cairo, 11753, Egypt
| |
Collapse
|
25
|
Zhao B, Zhang S, Yang W, Li B, Lan C, Zhang J, Yuan L, Wang Y, Xie Q, Han J, Mur LAJ, Hao X, Roberts JA, Miao Y, Yu K, Zhang X. Multi-omic dissection of the drought resistance traits of soybean landrace LX. PLANT, CELL & ENVIRONMENT 2021; 44:1379-1398. [PMID: 33554357 DOI: 10.1111/pce.14025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
With diverse genetic backgrounds, soybean landraces are valuable resource for breeding programs. Herein, we apply multi-omic approaches to extensively characterize the molecular basis of drought tolerance in the soybean landrace LX. Initial screens established that LX performed better with PEG6000 treatment than control cultivars. LX germinated better than William 82 under drought conditions and accumulated more anthocyanin and flavonoids. Untargeted mass spectrometry in combination with transcriptomic analyses revealed the chemical diversity and genetic basis underlying the overall performance of LX landrace. Under control and drought conditions, significant differences in the expression of a suite of secondary metabolism genes, particularly those involved in the general phenylpropanoid pathway and flavonoid but not lignin biosynthesis, were seen in LX and William 82. The expression of these genes correlated with the corresponding metabolites in LX plants. Further correlation analysis between metabolites and transcripts identified pathway structural genes and transcription factors likely are responsible for the LX agronomic traits. The activities of some key biosynthetic genes or regulators were confirmed through heterologous expression in transgenic Arabidopsis and hairy root transformation in soybean. We propose a regulatory mechanism based on flavonoid secondary metabolism and adaptive traits of this landrace which could be of relevance to cultivated soybean.
Collapse
Affiliation(s)
- Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Shulin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Bingyan Li
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiwan Han
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Xingyu Hao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Devon, UK
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
26
|
Maher M, Ahmad H, Nishawy E, Li Y, Luo J. Novel Transcriptome Study and Detection of Metabolic Variations in UV-B-Treated Date Palm ( Phoenix dactylifera cv. Khalas). Int J Mol Sci 2021; 22:2564. [PMID: 33806362 PMCID: PMC7961990 DOI: 10.3390/ijms22052564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Date palm (Phoenix dactylifera) is one of the most widespread fruit crop species and can tolerate drastic environmental conditions that may not be suitable for other fruit species. Excess UV-B stress is one of the greatest concerns for date palm trees and can cause genotoxic effects. Date palm responds to UV-B irradiation through increased DEG expression levels and elaborates upon regulatory metabolic mechanisms that assist the plants in adjusting to this exertion. Sixty-day-old Khalas date palm seedlings (first true-leaf stage) were treated with UV-B (wavelength, 253.7 nm; intensity, 75 μW cm-2 for 72 h (16 h of UV light and 8 h of darkness). Transcriptome analysis revealed 10,249 and 12,426 genes whose expressions were upregulated and downregulated, respectively, compared to the genes in the control. Furthermore, the differentially expressed genes included transcription factor-encoding genes and chloroplast- and photosystem-related genes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to detect metabolite variations. Fifty metabolites, including amino acids and flavonoids, showed changes in levels after UV-B excess. Amino acid metabolism was changed by UV-B irradiation, and some amino acids interacted with precursors of different pathways that were used to synthesize secondary metabolites, i.e., flavonoids and phenylpropanoids. The metabolite content response to UV-B irradiation according to hierarchical clustering analysis showed changes in amino acids and flavonoids compared with those of the control. Amino acids might increase the function of scavengers of reactive oxygen species by synthesizing flavonoids that increase in response to UV-B treatment. This study enriches the annotated date palm unigene sequences and enhances the understanding of the mechanisms underlying UV-B stress through genetic manipulation. Moreover, this study provides a sequence resource for genetic, genomic and metabolic studies of date palm.
Collapse
Affiliation(s)
- Mohamed Maher
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
- Department of Biochemistry, College of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Hasan Ahmad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
- National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Elsayed Nishawy
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
- Desert Research Center, Genetics Resource Department, Egyptian Deserts Gene Bank, Cairo 11735, Egypt
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
- Institute of Tropical Agriculture and Forestry of Hainan University, Haikou 570288, China
| |
Collapse
|
27
|
Dong NQ, Lin HX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:180-209. [PMID: 33325112 DOI: 10.1111/jipb.13054] [Citation(s) in RCA: 556] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/10/2020] [Indexed: 05/21/2023]
Abstract
Phenylpropanoid metabolism is one of the most important metabolisms in plants, yielding more than 8,000 metabolites contributing to plant development and plant-environment interplay. Phenylpropanoid metabolism materialized during the evolution of early freshwater algae that were initiating terrestrialization and land plants have evolved multiple branches of this pathway, which give rise to metabolites including lignin, flavonoids, lignans, phenylpropanoid esters, hydroxycinnamic acid amides, and sporopollenin. Recent studies have revealed that many factors participate in the regulation of phenylpropanoid metabolism, and modulate phenylpropanoid homeostasis when plants undergo successive developmental processes and are subjected to stressful environments. In this review, we summarize recent progress on elucidating the contribution of phenylpropanoid metabolism to the coordination of plant development and plant-environment interaction, and metabolic flux redirection among diverse metabolic routes. In addition, our review focuses on the regulation of phenylpropanoid metabolism at the transcriptional, post-transcriptional, post-translational, and epigenetic levels, and in response to phytohormones and biotic and abiotic stresses.
Collapse
Affiliation(s)
- Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
28
|
Sun Y, Shi Y, Liu G, Yao F, Zhang Y, Yang C, Guo H, Liu X, Jin C, Luo J. Natural variation in the OsbZIP18 promoter contributes to branched-chain amino acid levels in rice. THE NEW PHYTOLOGIST 2020; 228:1548-1558. [PMID: 32654152 DOI: 10.1111/nph.16800] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/29/2020] [Indexed: 05/21/2023]
Abstract
Branched-chain amino acids (BCAAs) are essential amino acids that must be obtained from the diet for humans and animals, and they play important roles in various aspects of plant growth and development. Although BCAA biosynthetic pathways in higher plants have been uncovered, knowledge of their genetic control is still limited, and no positive regulators have been identified to date. Here, we showed that variation in BCAA levels in rice is attributable to differential transcription of OsbZIP18, a basic leucine zipper (bZIP) transcription factor, due to polymorphisms in its promoter. Functional analysis revealed that OsbZIP18 positively regulates BCAA synthesis by binding directly to the ACE and C-box cis-elements in the promoters of the biosynthetic genes branched-chain aminotransferase1 (OsBCAT1) and OsBCAT2. We further demonstrated that OsbZIP18 is strongly induced by nitrogen (N) deficiency and that N starvation results in enhanced BCAA levels in an OsbZIP18-dependent manner. Overall, we identified OsbZIP18, a positive regulator of BCAA biosynthesis, which contributed to natural variation in BCAA levels and mediated BCAA accumulation through de novo synthesis by directly modulating the key biosynthetic genes OsBCAT1 and OsBCAT2.
Collapse
Affiliation(s)
- Yangyang Sun
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuheng Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Guige Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Yao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Zhang
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Guo
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Cheng Jin
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| |
Collapse
|
29
|
Zhou X, Liu L, Li Y, Li K, Liu X, Zhou J, Yang C, Liu X, Fang C, Luo J. Integrative Metabolomic and Transcriptomic Analyses Reveal Metabolic Changes and Its Molecular Basis in Rice Mutants of the Strigolactone Pathway. Metabolites 2020; 10:metabo10110425. [PMID: 33114491 PMCID: PMC7693813 DOI: 10.3390/metabo10110425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022] Open
Abstract
Plants have evolved many metabolites to meet the demands of growth and adaptation. Although strigolactones (SLs) play vital roles in controlling plant architecture, their function in regulating plant metabolism remains elusive. Here we report the integrative metabolomic and transcriptomic analyses of two rice SL mutants, d10 (a biosynthesis mutant) and d14 (a perception mutant). Both mutants displayed a series of metabolic and transcriptional alterations, especially in the lipid, flavonoid, and terpenoid pathways. Levels of several diterpenoid phytoalexins were substantially increased in d10 and d14, together with the induction of terpenoid gene cluster and the corresponding upstream transcription factor WRKY45, an established determinant of plant immunity. The fact that WRKY45 is a target of IPA1, which acted as a downstream transcription factor of SL signaling, suggests that SLs contribute to plant defense through WRKY45 and phytoalexins. Moreover, our data indicated that SLs may modulate rice metabolism through a vast number of clustered or tandemly duplicated genes. Our work revealed a central role of SLs in rice metabolism. Meanwhile, integrative analysis of the metabolome and transcriptome also suggested that SLs may contribute to metabolite-associated growth and defense.
Collapse
Affiliation(s)
- Xiujuan Zhou
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Ling Liu
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (C.Y.)
| | - Kang Li
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Xiaoli Liu
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Junjie Zhou
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (C.Y.)
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
- Correspondence: (C.F.); (J.L.)
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (C.Y.)
- Correspondence: (C.F.); (J.L.)
| |
Collapse
|