1
|
Alatrash R, Vaidya V, Herrera BB. Age-specific dynamics of neutralizing antibodies, cytokines, and chemokines in response to La Crosse virus infection in mice. J Virol 2024:e0176224. [PMID: 39498968 DOI: 10.1128/jvi.01762-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
La Crosse virus (LACV) is a primary cause of pediatric arboviral encephalitis in the United States, particularly affecting children aged 16 years or younger. This age-related susceptibility extends to murine models, where weanling mice (3 weeks old) succumb to LACV infection, while adults (≥6 weeks old) demonstrate resistance. Despite its clinical relevance, the host immune response to LACV is not fully understood. In this study, we investigated the roles of neutralizing antibodies (nAbs), cytokines, and chemokines in weanling and adult mice following infection with 5 × 105 plaque-forming units (PFU) of LACV. Weanling mice demonstrated early disease onset with elevated peripheral viremia, but passive transfer of adult serum, confirmed to have nAbs, to naïve weanlings prior to infection completely rescued them from death. Moreover, adult mice had increased Th1 cytokines, Th9/Th17/Th22/Treg cytokines, and many chemokines. In contrast, weanlings had higher Th2 cytokines, correlating with symptoms onset. Flow cytometry and intracellular cytokine staining further demonstrated that weanling mice produced higher levels of IL-4 by CD4+ and CD8+ T cells compared to adults, regardless of infection status. Conversely, LACV-infected adult mice had increased IFN-γ production by CD8+ T cells compared to uninfected controls. Finally, the adoptive transfer of splenocytes from immune adult mice to naïve weanlings delayed neurological symptoms and improved survival. In conclusion, this study links nAbs and cytokine and chemokine responses to protective immunity in adult mice, contrasting with the pathogenesis seen in weanlings. These findings underscore the importance of further research into innate and adaptive immune mechanisms during LACV infection.IMPORTANCELa Crosse virus (LACV) is a primary cause of pediatric encephalitis in the United States, with an impact on children aged 16 years or younger. This age-related susceptibility is recapitulated in mouse models, where young mice succumb to LACV-induced disease, while adults demonstrate resistance. Our understanding of host responses to LACV remains underexplored. This study sheds light on the dynamics of neutralizing antibodies (nAbs), cytokines, and chemokines following LACV infection in both adult and weanling mice. Our study reveals age-specific variations in viremia, neutralizing antibody titers, survivability, and levels of cytokines and chemokines. Adult mice exhibit significantly elevated levels of Th1 cytokines, contrasting with elevated levels of Th2 cytokines observed in weanling mice, often coinciding with the onset of symptoms. These data reveal age-specific dynamics in cytokines and chemokines associated with protective versus pathogenic immunity, emphasizing the need for further studies on innate and adaptive immunity.
Collapse
Affiliation(s)
- Reem Alatrash
- Rutgers Global Health Institute, Rutgers University, New Brunswick, New Jersey, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Varun Vaidya
- Rutgers Global Health Institute, Rutgers University, New Brunswick, New Jersey, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, New Brunswick, New Jersey, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
2
|
Zhang J, Wang MG, Xiang X, He JQ. Association between a single nucleotide polymorphism of the IL23R gene and tuberculosis in a Chinese Han population: a case‒control study. BMC Pulm Med 2023; 23:265. [PMID: 37464360 DOI: 10.1186/s12890-023-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Severe tuberculosis constitutes a significant menace to human safety and well-being, with a considerable mortality rate. The severity of tuberculosis can be impacted by genetic variations in host genes, particularly single nucleotide polymorphisms (SNPs). METHODS A case‒control study was undertaken, encompassing a cohort of 1137 tuberculosis patients (558 with severe tuberculosis and 579 with mild tuberculosis), alongside 581 healthy controls within the age range of fifteen to forty-five years. Whole blood DNA was extracted from all participants, and three tag polymorphisms (rs1884444, rs7518660, rs7539625) of the IL23R gene were selectively identified and genotyped. RESULTS No significant correlation was observed between the IL23R gene polymorphisms (rs1884444, rs7518660, and rs7539625) and tuberculosis. Upon comparing the tuberculosis group with the healthy control group, the mild tuberculosis group with the healthy control group, and the severe tuberculosis group with the healthy control group, the obtained P-values were> 0.05. However, in the comparison between severe tuberculosis and mild tuberculosis, the presence of rs1884444 G alleles exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex (ORa: 1.199, 95% CI: 1.009-1.424; Pa=0.039, respectively). In subgroup analysis, after accounting for confounding factors, including age and sex, rs1884444 G alleles continued to demonstrate a significantly heightened risk of severe tuberculosis. Nonetheless, the comparison between the multisystemic tuberculosis group and the mild tuberculosis group was no significant difference. Notably, rs1884444 of the IL23R gene exhibited a noteworthy association with the risk of severe tuberculosis in the comparison between severe tuberculosis and mild tuberculosis before and after adjusting for age and sex (ORa: 1.301, 95% CI: 1.030-1.643; Pa=0.027, respectively). Furthermore, the presence of the rs1884444 G allele exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex in the comparison between tuberculous meningitis and mild tuberculosis (ORa: 1.646, 95% CI: 1.100-2.461; Pa=0.015, respectively). CONCLUSIONS The present study suggests that there is no significant association between IL23R gene polymorphism and tuberculosis susceptibility in the Chinese Han population. However, it does indicate a potential link between IL23R polymorphism and an increased risk of developing severe tuberculosis.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
- Intensive Care Unit, Deyang People's Hospital, No 173, North Taishan Road, Deyang, 618000, Sichuan Province, People's Republic of China
| | - Ming-Gui Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xi Xiang
- West China School of Nursing, West China Hospital of Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
3
|
Fink S, Fischer M, Spange S, Beier O, Horn K, Tittelbach J, Wiegand C. Cold Atmospheric Plasma Exerts Antimicrobial Effects in a 3D Skin Model of Cutaneous Candidiasis. Antibiotics (Basel) 2023; 12:antibiotics12050933. [PMID: 37237836 DOI: 10.3390/antibiotics12050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Cutaneous candidiasis is characterized by an overgrowth of Candida leading to skin inflammation and infection. Similar to bacteria, Candida can develop tolerance to common antifungal drugs. Cold atmospheric plasma (CAP), with its proven antimicrobial properties, offers a promising alternative to the prevailing methods. Because of plasma heterogeneity each new device must be tested individually for its effectiveness. Antimicrobial activity is usually studied using planktonic microorganisms or animal models, making it difficult to extrapolate the results to the human system. Therefore, a 3D skin model of cutaneous candidiasis for the antimicrobial testing of CAP was established. First, the reaction of the 3D-skin model to Candida infection was examined using various histological and molecular-biological methods. Infection with C. albicans resulted in increased expression and secretion of pro-inflammatory cytokines and augmented expression of antimicrobial peptides. Within 48 h, hyphal growth spread throughout the model and caused tissue damage. Second, the CAP treatment was employed. It was shown that CAP significantly reduced the spread of the yeast in the infected skin models as well as decreased the expression and secretion of the infection markers. The plasma device exhibited a high antifungal activity by completely inhibiting hyphal growth and reducing inflammation at the highest treatment duration.
Collapse
Affiliation(s)
- Sarah Fink
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Michael Fischer
- Institute of Micro- and Nanotechnologies, Ilmenau University of Technology, 98639 Ilmenau, Germany
| | | | | | | | - Jörg Tittelbach
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Cornelia Wiegand
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| |
Collapse
|
4
|
Kirillova A, Lado A, Blatt N. Application of Monoclonal Antibody Drugs in Treatment of COVID-19: a Review. BIONANOSCIENCE 2022; 12:1436-1454. [PMID: 35729973 PMCID: PMC9198616 DOI: 10.1007/s12668-022-00997-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus infection can have various degrees of severity and outcomes. In some cases, it causes excessive production of pro-inflammatory cytokines, a so-called cytokine storm, leading to acute respiratory distress syndrome. Unfortunately, the exact pathophysiology and treatment, especially for severe cases of COVID-19, are still uncertain. Results of preliminary studies showed that immunosuppressive therapy, such as interleukin (IL)-6, IL-1, and TNF-α antagonists commonly used in rheumatology, can be considered as treatment options for COVID-19, especially in severe cases. The review focused on the most common and currently studied monoclonal antibody drugs, as well as up-to-date data on the pathogenesis of COVID-19, host immune response against SARS-CoV-2 and its association with cytokine storm. It also covered effects of interleukin (IL)-6, IL-1, and TNF-α blockers on the course of coronavirus infection and outcome in patients treated for the main autoimmune disease and subsequently infected with COVID-19.
Collapse
Affiliation(s)
- Aleksandra Kirillova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Anna Lado
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Nataliya Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
5
|
In silico evaluation of atazanavir as a potential HIV main protease inhibitor and its comparison with new designed analogs. Comput Biol Med 2022; 145:105523. [DOI: 10.1016/j.compbiomed.2022.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 11/21/2022]
|
6
|
Feng Y, Zhou B, Wang Z, Xu G, Wang L, Zhang T, Zhang Y. Risk of Candida Infection and Serious Infections in Patients with Moderate-to-Severe Psoriasis Receiving Biologics: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int J Clin Pract 2022; 2022:2442603. [PMID: 36212052 PMCID: PMC9519312 DOI: 10.1155/2022/2442603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Biological agents used to treat moderate-to-severe plaque psoriasis have been associated with Candida infection and other serious infections. It is, however, necessary to verify whether biologic agents increase the risk of Candida infection and serious infections and whether these risks vary among biologics. METHODS PubMed, EMBASE, and Cochrane Library were searched for eligible randomized controlled trials (RCTs) from their inception to December 2021. Results from individual RCT were pooled using Peto's method with a fixed-effects model, and I 2 was calculated to assess the heterogeneity. A Cochrane collaboration tool was used to examine bias risk, and Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) were used to assess the quality of evidence. RESULTS This study included 48 published articles with data from 52 RCTs involving 27297 participants. The anti-interleukin (IL)-17 agents (95% confidence interval (CI) = 1.54-3.45, P < 0.0001) and anti-IL-12/23 agents (95% CI = 1.69-3.83, P < 0.0001) were associated with an increased risk of Candida infection compared with placebos, but there was no difference in Candida infection risk between anti-IL-17 agents and tumor necrosis factor inhibitors (TNFi) (95% CI = 0.92-3.07, P=0.09). There was no evidence that the biological agents increased the risk of serious infections in adult psoriasis (95% CI = 0.93-2.06, P=0.11) or that the biologics differed in the risk of serious infections. CONCLUSIONS Our results indicated that anti-IL-17 agents, especially secukinumab, were associated with the increased risk of Candida infection. The clinically used biological agents did not increase the risk of serious infections.
Collapse
Affiliation(s)
- Yue Feng
- Department of Dermatology, Shenyang Seventh People's Hospital, Shenyang 110001, Liaoning, China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110001, Liaoning, China
| | - Zhen Wang
- Department of Dermatology, Shenyang Seventh People's Hospital, Shenyang 110001, Liaoning, China
| | - Guijuan Xu
- Department of Dermatology, Shenyang Seventh People's Hospital, Shenyang 110001, Liaoning, China
| | - Lili Wang
- Department of Dermatology, Shenyang Seventh People's Hospital, Shenyang 110001, Liaoning, China
| | - Tingting Zhang
- Department of Dermatology, Shenyang Seventh People's Hospital, Shenyang 110001, Liaoning, China
| | - Yanping Zhang
- Department of Dermatology, Shenyang Seventh People's Hospital, Shenyang 110001, Liaoning, China
| |
Collapse
|
7
|
Affiliation(s)
- Philip G Bardin
- From Monash Lung Sleep Allergy and Immunology, Monash University and Hospital, and Hudson Institute of Medical Research, Melbourne, VIC (P.G.B.), and the School of Biomedical Sciences and Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW (P.S.F.) - all in Australia
| | - Paul S Foster
- From Monash Lung Sleep Allergy and Immunology, Monash University and Hospital, and Hudson Institute of Medical Research, Melbourne, VIC (P.G.B.), and the School of Biomedical Sciences and Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW (P.S.F.) - all in Australia
| |
Collapse
|
8
|
Characterization of the IL-17 and CD4+ Th17 Cells in the Clinical Course of Dengue Virus Infections. Viruses 2020; 12:v12121435. [PMID: 33322218 PMCID: PMC7763078 DOI: 10.3390/v12121435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
The aims of this study were to determine the involvement of interleukin 17 (IL-17) and IL-17-producing cells in dengue pathogenesis. Blood samples from dengue virus (DENV)-infected patients were collected on different days after the onset of symptoms. Patients were classified according to 1997 World Health Organization guidelines. Our study examined 152 blood samples from dengue fever (DF, n = 109) and dengue hemorrhagic fever (DHF, n = 43) patients and 90 blood samples from healthy controls (HC). High serum concentrations of IL-17A and IL-22 were also associated with DHF (IL-17A [DHF vs. DF, p < 0.01; DHF vs. HC, p < 0.0001]; IL-22 [DHF vs. DF, p < 0.05; DHF vs. HC, p < 0.0001]). Moreover, there was a positive correlation between serum levels of IL-17A and IL-23, a key cytokine that promotes IL-17-based immune responses (r = 0.4089, p < 0.0001). Consistent with the IL-17-biased immune response in DHF patients, we performed ex vivo activation of peripheral blood mononuclear cells (PBMCs) from DHF patients and flow cytometry analysis showed a robust IL-17-biased immune response, characterized by a high frequency of CD4+IL-17+ producing cells. Our results suggests IL-17-producing cells and their related cytokines can play a prominent role in this viral disease.
Collapse
|
9
|
Wang H, Kjer-Nielsen L, Shi M, D'Souza C, Pediongco TJ, Cao H, Kostenko L, Lim XY, Eckle SBG, Meehan BS, Zhu T, Wang B, Zhao Z, Mak JYW, Fairlie DP, Teng MWL, Rossjohn J, Yu D, de St Groth BF, Lovrecz G, Lu L, McCluskey J, Strugnell RA, Corbett AJ, Chen Z. IL-23 costimulates antigen-specific MAIT cell activation and enables vaccination against bacterial infection. Sci Immunol 2020; 4:4/41/eaaw0402. [PMID: 31732518 DOI: 10.1126/sciimmunol.aaw0402] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are activated in a TCR-dependent manner by antigens derived from the riboflavin synthesis pathway, including 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), bound to MHC-related protein-1 (MR1). However, MAIT cell activation in vivo has not been studied in detail. Here, we have found and characterized additional molecular signals required for optimal activation and expansion of MAIT cells after pulmonary Legionella or Salmonella infection in mice. We show that either bone marrow-derived APCs or non-bone marrow-derived cells can activate MAIT cells in vivo, depending on the pathogen. Optimal MAIT cell activation in vivo requires signaling through the inducible T cell costimulator (ICOS), which is highly expressed on MAIT cells. Subsequent expansion and maintenance of MAIT-17/1-type responses are dependent on IL-23. Vaccination with IL-23 plus 5-OP-RU augments MAIT cell-mediated control of pulmonary Legionella infection. These findings reveal cellular and molecular targets for manipulating MAIT cell function under physiological conditions.
Collapse
Affiliation(s)
- Huimeng Wang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Mai Shi
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - Criselle D'Souza
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3010, Australia
| | - Troi J Pediongco
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hanwei Cao
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Tianyuan Zhu
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - Bingjie Wang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Zhe Zhao
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Saint Lucia, QLD 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Saint Lucia, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Saint Lucia, QLD 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Saint Lucia, QLD 4072, Australia
| | - Michele W L Teng
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, CF14 4XN Wales, UK
| | - Di Yu
- John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601 Australia
| | - Barbara Fazekas de St Groth
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - George Lovrecz
- Biomedical Manufacturing, CSIRO, Parkville, VIC, 3052, Australia
| | - Louis Lu
- Biomedical Manufacturing, CSIRO, Parkville, VIC, 3052, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Zhenjun Chen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
10
|
Syed MN, Shin DB, Wan MT, Winthrop KL, Gelfand JM. The risk of respiratory tract infections in patients with psoriasis treated with interleukin 23 pathway-inhibiting biologics: A meta-estimate of pivotal trials relevant to decision making during the COVID-19 pandemic. J Am Acad Dermatol 2020; 83:1523-1526. [PMID: 32622891 PMCID: PMC7331500 DOI: 10.1016/j.jaad.2020.06.1014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Maha N Syed
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Daniel B Shin
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marilyn T Wan
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kevin L Winthrop
- Division of Infectious diseases and Public Health, Oregon Health and Sciences University, Portland, Oregon
| | - Joel M Gelfand
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
11
|
Swanta N, Aryal S, Nejtek V, Shenoy S, Ghorpade A, Borgmann K. Blood-based inflammation biomarkers of neurocognitive impairment in people living with HIV. J Neurovirol 2020; 26:358-370. [PMID: 32193795 DOI: 10.1007/s13365-020-00834-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
Inflammation in people living with HIV (PLWH) correlates with severity of HIV-associated neurocognitive disorders. The objective of this study is to identify blood-based markers of neurocognitive function in a demographic balanced cohort of PLWH. Seven neurocognitive domains were evaluated in 121 seropositive Black/African American, Non-Hispanic White, and White Hispanic men and women using computerized assessments. Associations among standardized neurocognitive function and HIV-related parameters, relevant sociodemographic variables, and inflammation-associated cytokines measured in plasma and cellular supernatants were examined using multivariate and univariate regression models. Outlier and covariate analyses were used to identify and normalize for education level, CD4 T cell count, viral load, CNS and drug abuse comorbidities, which could influence biomarker and neurocognitive function associations. Plasma levels of chemokine (C-C motif) ligand (CCL) 8 significantly associated with memory, complex attention, cognitive flexibility, psychomotor speed, executive function, and processing speed. Plasma tissue inhibitor of metalloproteinases 1 associated with the aforementioned domains except memory and processing speed. In addition, plasma interleukin-23 significantly associated with processing speed and executive function. Analysis of peripheral blood cell culture supernatants revealed no significant markers for neurocognitive function. In this cohort, CD4 T cell count and education level also significantly associated with neurocognitive function. All identified inflammatory biomarkers demonstrated a negative correlation to neurocognitive function. These cytokines have known connections to HIV pathophysiology and are potential biomarkers for neurocognitive function in PLWH with promising clinical applications.
Collapse
Affiliation(s)
- Naomi Swanta
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Subhash Aryal
- Department of Biostatistics, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Gynecology Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vicki Nejtek
- Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sangeeta Shenoy
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.,Medical Innovation Collaborative of North Texas, Irving, TX, USA
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA. .,Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
12
|
Wang D, Shao Y, Zhang X, Lu G, Liu B. IL-23 and PSMA-targeted duo-CAR T cells in Prostate Cancer Eradication in a preclinical model. J Transl Med 2020; 18:23. [PMID: 31937346 PMCID: PMC6961333 DOI: 10.1186/s12967-019-02206-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Background Prostate cancer is one of the most common adult malignancies in men, and nearly all patients with metastatic prostate cancer can develop and receive resistance to primary androgen deprivation therapy (ADT), a state known as metastatic castration-resistant prostate cancer (mCRPC). Recent reports demonstrated the great breakthroughs made by the chimeric antigen receptor T (CAR-T) cell therapy, which is significantly different from traditional T cells therapies. In spite of the progress of CAR-T technology in the treatment of lymphoma, leukemia, and other blood system tumor, there are still many difficulties in the treatment of solid tumors by CAR-T technology. Methods In this report, we designed a panel of IL23mAb-PSMA-CARs, including PSMA-CAR, IL23mAb-T2A-PSMA-CAR, IL23mAb-PSMA-CAR, and PSMA-CAR (soluble IL23mAb). And we studied the function of these CARs in mice model. Results Co-culture experiments with different CAR T cells have normal lysis function in vitro. The duo-CAR T cells co-expressing the IL-23mAb and PSMA-mAb had a significant higher population than the rest three different CAR T cells in co-culturing experiments at day 28, 35 and 42. A panel of cytokines were differentially secreted at higher amounts in IL23mAb-T2A-PSMA-CAR T cells than CAR T cells in other groups. In NOD/SCID IL-2 gamma (NSG) mice model, IL23mAb-T2A-PSMA-CAR T cells functioned significantly better than CAR T cells from the other groups and eradicated the tumor from these mice starting at day 14 post T cells injection and regained the body weight immediately. In IL23mAb-T2A-PSMA-CAR mice, CD45RO+ CD8+ T cells and CD127+ CD4+ CAR T cells were significantly increased. RNA sequencing revealed a difference expression pattern of genes in IL23mAb-T2A-PSMA-CAR mice. A reverse infusion experiment under the same model further proved the tumor eradication function of IL23mAb-T2A-PSMA-CAR T cells. Conclusions We found that IL-23mAb combined PSMA CARs worked better than PSMA CAR only in Prostate Cancer Eradication, and we further discussed the mechanisms among different IL-23mAb combined PSMA CARs in Prostate Cancer Eradication.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, No.999, Xiwang Road Jiading District, Shanghai, 201800, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, No.999, Xiwang Road Jiading District, Shanghai, 201800, China.
| | - Xiang Zhang
- Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, No.999, Xiwang Road Jiading District, Shanghai, 201800, China
| | - Guoliang Lu
- Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, No.999, Xiwang Road Jiading District, Shanghai, 201800, China
| | - Boke Liu
- Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, No.999, Xiwang Road Jiading District, Shanghai, 201800, China
| |
Collapse
|
13
|
Guo Y, Cao W, Zhu Y. Immunoregulatory Functions of the IL-12 Family of Cytokines in Antiviral Systems. Viruses 2019; 11:v11090772. [PMID: 31443406 PMCID: PMC6784021 DOI: 10.3390/v11090772] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the interleukin 12 (IL-12) family have been known to be inflammatory factors since their discovery. The IL-12 family consists of IL-12, IL-23, IL-27, IL-35, and a new member, IL-39, which has recently been identified and has not yet been studied extensively. Current literature has described the mechanisms of immunity of these cytokines and potential uses for therapy and medical cures. IL-12 was found first and is effective in combatting a wide range of naturally occurring viral infections through the upregulation of various cytokines to clear the infected cells. IL-23 has an essential function in immune networks, can induce IL-17 production, and can antagonize inhibition from IL-12 in the presence of T helper (Th) 17 cells, resulting in type II IFN (IFN-γ) regulation. IL-27 has a competitive relationship to IL-35 because they both include the same subunit, the Epstein–Barr virus-induced gene3 (EBi3). This review provides a simple introduction to the IL-12 family and focuses on their functions relevant to their actions to counteract viral infections.
Collapse
Affiliation(s)
- Yifei Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
14
|
Liao Y, Hu X, Guo X, Zhang B, Xu W, Jiang H. Promoting effects of IL‑23 on myocardial ischemia and reperfusion are associated with increased expression of IL‑17A and upregulation of the JAK2‑STAT3 signaling pathway. Mol Med Rep 2017; 16:9309-9316. [PMID: 29039526 PMCID: PMC5779984 DOI: 10.3892/mmr.2017.7771] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 05/02/2017] [Indexed: 01/23/2023] Open
Abstract
Interleukin (IL)-23, as a novel pro-inflammatory cytokine, is important in several inflammatory diseases, including myocardial ischemia and reperfusion (I/R) injury, however, the underlying mechanism remains to be elucidated. The present study was designed to investigate the specific role of IL-23 in myocardial I/R injury, and whether the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2-STAT3) signaling pathway, one of the important downstream signaling pathways of IL-23, and the IL-17A downstream pro-inflammatory cytokine, were involved. Anesthetized rats underwent different treatments with adenovirus (Ad) vectors (Ad-GFP, Ad-IL-23, Anti-IL-23 or Ad-IL-23+AG490) and were then subjected to ischemia for 30 min prior to 4 h reperfusion. The effects of the upregulation and downregulation of IL-23 on myocardial injury, inflammatory responses in myocardial tissue, and myocardial apoptosis were measured accordingly. In addition, the levels of phosphorylated (P-)JAK2 and P-STAT3 were measured to assess the activity of the JAK2-STAT3 signaling pathway. The results demonstrated that there was an increased expression of IL-23 in the myocardial tissue exposed to myocardial I/R injury (P<0.05). The upregulation of IL-23 significantly increased the infarct size and the expression levels of lactate dehydrogenase and creatine kinase (P<0.05). The upregulation of IL-23 significantly increased inflammatory responses, as reflected by the high expression levels of IL-17A, IL-6, tumor necrosis factor-α in the myocardial tissues (P<0.05). Furthermore, the upregulation of IL-23 significantly facilitated the decrease in the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein ratio, and the increases in the myocardial apoptotic index and expression of caspase-3 induced by myocardial I/R (P<0.05). IL-23 also activated the JAK2-STAT3 signaling pathway, upregulating the expression levels of P-JAK2 and P-STAT3 in the myocardial tissues (P<0.05). Treatment with AG490, an inhibitor of JAK2-STAT3, partially attenuated the pro-inflammatory and pro-apoptotic effects of IL-23 (P<0.05). The results of the present study suggested that IL-23 aggravated myocardial I/R injury by promoting inflammatory responses and myocardial apoptosis, which may be associated with high expression levels of IL-17A and upregulation of the JAK2-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yanxi Liao
- Department of Cardiology, Central Hospital of Wuhan, Wuhan, Hubei 430014, P.R. China
| | - Xiaorong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xin Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bofang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weipan Xu
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435002, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
15
|
Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype. Exp Cell Res 2017; 352:9-19. [PMID: 28132881 DOI: 10.1016/j.yexcr.2017.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 02/08/2023]
Abstract
Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4+ T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling.
Collapse
|
16
|
|
17
|
The Role of Interleukin-23 in the Early Development of Emphysema in HIV1(+) Smokers. J Immunol Res 2016; 2016:3463104. [PMID: 27446965 PMCID: PMC4942665 DOI: 10.1155/2016/3463104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/19/2016] [Indexed: 12/28/2022] Open
Abstract
Rationale. Matrix metalloproteinase-9 (MMP-9) expression is upregulated in alveolar macrophages (AM) of HIV1+ smokers who develop emphysema. Knowing that lung epithelial lining fluid (ELF) of HIV1+ smokers contains increased levels of inflammatory cytokines compared to HIV1− smokers, we hypothesized that upregulation of lung cytokines in HIV1+ smokers may be functionally related to increased MMP-9 expression. Methods. Cytokine arrays evaluated cytokine protein levels in ELF obtained from 5 groups of individuals: HIV1− healthy nonsmokers, HIV1− healthy smokers, HIV1− smokers with low diffusing capacity (DLCO), HIV1+ nonsmokers, and HIV1+ smokers with low DLCO. Results. Increased levels of the Th17 related cytokine IL-23 were found in HIV1− smokers with low DLCO and HIV1+ smokers and nonsmokers. Relative IL-23 gene expression was increased in AM of HIV1+ individuals, with greater expression in AM of HIV1+ smokers with low DLCO. Infection with HIV1 in vitro induced IL-23 expression in normal AM. IL-23 stimulation of AM/lymphocyte cocultures in vitro induced upregulation of MMP-9. Lung T lymphocytes express receptor IL-23R and interact with AM in order to upregulate MMP-9. Conclusion. This mechanism may contribute to the increased tissue destruction in the lungs of HIV1+ smokers and suggests that Th17 related inflammation may play a role.
Collapse
|
18
|
Noll J, Helk E, Fehling H, Bernin H, Marggraff C, Jacobs T, Huber S, Pelczar P, Ernst T, Ittrich H, Otto B, Mittrücker HW, Hölscher C, Tacke F, Bruchhaus I, Tannich E, Lotter H. IL-23 prevents IL-13-dependent tissue repair associated with Ly6C(lo) monocytes in Entamoeba histolytica-induced liver damage. J Hepatol 2016; 64:1147-1157. [PMID: 26809113 DOI: 10.1016/j.jhep.2016.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS The IL-23/IL-17 axis plays an important role in the pathogenesis of autoimmune diseases and the pathological consequences of infection. We previously showed that immunopathologic mechanisms mediated by inflammatory monocytes underlie the severe focal liver damage induced by the protozoan parasite, Entamoeba histolytica. Here, we analyze the contribution of the IL-23/IL-17 axis to the induction and subsequent recovery from parasite-induced liver damage. METHODS IL-23p19(-/-), IL-17A/F(-/-), CCR2(-/-), and wild-type (WT) mice were intra-hepatically infected with E. histolytica trophozoites and disease onset and recovery were analyzed by magnetic resonance imaging. Liver-specific gene and protein expression during infection was examined by qPCR, microarray, FACS analysis and immunohistochemistry. Immuno-depletion and substitution experiments were performed in IL-23p19(-/-) and WT mice to investigate the role of IL-13 in disease outcome. RESULTS Liver damage in infected IL-23p19(-/-), IL-17A/F(-/-), and CCR2(-/-) mice was strongly attenuated compared with that in WT mice. IL-23p19(-/-) mice showed reduced accumulation of IL-17 and CCL2 mRNA and proteins. Increased numbers of IL-13-producing CD11b(+)Ly6C(lo) monocytes were associated with disease attenuation in IL-23p19(-/-) mice. Immuno-depletion of IL-13 in IL-23p19(-/-) mice reversed this attenuation and treatment of infected WT mice with an IL-13/anti-IL-13-mAb complex supported liver recovery. CONCLUSIONS The IL-23/IL-17 axis plays a critical role in the immunopathology of hepatic amebiasis. IL-13 secreted by CD11b(+)Ly6C(lo) monocytes may be associated with recovery from liver damage. An IL-13/anti-IL13-mAb complex mimics this function, suggesting a novel therapeutic option to support tissue healing after liver damage.
Collapse
Affiliation(s)
- Jill Noll
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Elena Helk
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Helena Fehling
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hannah Bernin
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Thomas Jacobs
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Samuel Huber
- Department of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Penelope Pelczar
- Department of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Ernst
- Department and Clinic for Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Ittrich
- Department and Clinic for Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Otto
- Department of Bioinformatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Hölscher
- Division of Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hannelore Lotter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
19
|
Malecka A, Wang Q, Shah S, Sutavani RV, Spendlove I, Ramage JM, Greensmith J, Franks HA, Gough MJ, Saalbach A, Patel PM, Jackson AM. Stromal fibroblasts support dendritic cells to maintain IL-23/Th17 responses after exposure to ionizing radiation. J Leukoc Biol 2016; 100:381-9. [PMID: 27049023 PMCID: PMC4945355 DOI: 10.1189/jlb.3a1015-474r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/18/2016] [Indexed: 12/30/2022] Open
Abstract
Cross talk between DCs and FBs in understanding the effects of IR in DC function. Dendritic cell function is modulated by stromal cells, including fibroblasts. Although poorly understood, the signals delivered through this crosstalk substantially alter dendritic cell biology. This is well illustrated with release of TNF-α/IL-1β from activated dendritic cells, promoting PGE2 secretion from stromal fibroblasts. This instructs dendritic cells to up-regulate IL-23, a key Th17-polarizing cytokine. We previously showed that ionizing radiation inhibited IL-23 production by human dendritic cells in vitro. In the present study, we investigated the hypothesis that dendritic cell-fibroblast crosstalk overcomes the suppressive effect of ionizing radiation to support appropriately polarized Th17 responses. Radiation (1–6 Gy) markedly suppressed IL-23 secretion by activated dendritic cells (P < 0.0001) without adversely impacting their viability and consequently, inhibited the generation of Th17 responses. Cytokine suppression by ionizing radiation was selective, as there was no effect on IL-1β, -6, -10, and -27 or TNF-α and only a modest (11%) decrease in IL-12p70 secretion. Coculture with fibroblasts augmented IL-23 secretion by irradiated dendritic cells and increased Th17 responses. Importantly, in contrast to dendritic cells, irradiated fibroblasts maintained their capacity to respond to TNF-α/IL-1β and produce PGE2, thus providing the key intermediary signals for successful dendritic cell-fibroblasts crosstalk. In summary, stromal fibroblasts support Th17-polarizing cytokine production by dendritic cells that would otherwise be suppressed in an irradiated microenvironment. This has potential ramifications for understanding the immune response to local radiotherapy. These findings underscore the need to account for the impact of microenvironmental factors, including stromal cells, in understanding the control of immunity.
Collapse
Affiliation(s)
- Anna Malecka
- Host-Tumour Interactions Group, University of Nottingham, Nottingham, United Kingdom
| | - Qunwei Wang
- Host-Tumour Interactions Group, University of Nottingham, Nottingham, United Kingdom
| | - Sabaria Shah
- Host-Tumour Interactions Group, University of Nottingham, Nottingham, United Kingdom
| | - Ruhcha V Sutavani
- Cancer Immunotherapy Group, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom; Cell Signalling and Immunology, University of Dundee, Scotland, United Kingdom
| | - Ian Spendlove
- Cancer Immunotherapy Group, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Judith M Ramage
- Cancer Immunotherapy Group, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Julie Greensmith
- Host-Tumour Interactions Group, University of Nottingham, Nottingham, United Kingdom; Intelligent Modelling and Analysis Research Group, University of Nottingham, Nottingham, United Kingdom
| | - Hester A Franks
- Host-Tumour Interactions Group, University of Nottingham, Nottingham, United Kingdom
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, Oregon, USA
| | - Anja Saalbach
- Klinik fur Dermatologie, University of Leipzig, Germany; and
| | - Poulam M Patel
- Host-Tumour Interactions Group, University of Nottingham, Nottingham, United Kingdom
| | - Andrew M Jackson
- Host-Tumour Interactions Group, University of Nottingham, Nottingham, United Kingdom;
| |
Collapse
|
20
|
Jiang Y, Husain M, Qi Z, Bird S, Wang T. Identification and expression analysis of two interleukin-23α (p19) isoforms, in rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar. Mol Immunol 2015; 66:216-28. [PMID: 25841173 DOI: 10.1016/j.molimm.2015.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-23 is a heterodimeric IL-12 family cytokine composed of a p19 α-chain, linked to a p40 β-chain that is shared with IL-12. IL-23 is distinguished functionally from IL-12 by its ability to induce the production of IL-17, and differentiation of Th17 cells in mammals. Three isoforms of p40 (p40a, p40b and p40c) have been found in some 3R teleosts. Salmonids also possess three p40 isoforms (p40b1, p40b2 and p40c) although p40a is missing, and two copies (paralogues) of p40b are present that have presumably been retained following the 4R duplication in this fish lineage. Teleost p19 has been discovered recently in zebrafish, but to date there is limited information on expression and modulation of this molecule. In this report we have cloned two p19 paralogues (p19a and p19b) in salmonids, suggesting that a salmonid can possess six potential IL-23 isoforms. Whilst Atlantic salmon has two active p19 genes, the rainbow trout p19b gene may have been pseudogenized. The salmonid p19 translations share moderate identities (22.8-29.9%) to zebrafish and mammalian p19 molecules, but their identity was supported by structural features, a conserved 4 exon/3 intron gene organisation, and phylogenetic tree analysis. The active salmonid p19 genes are highly expressed in blood and gonad. Bacterial (Yersinia ruckeri) and viral infection in rainbow trout induces the expression of p19a, suggesting pathogen-specific induction of IL-23 isoforms. Trout p19a expression was also induced by PAMPs (poly IC and peptidoglycan) and the proinflammatory cytokine IL-1β in primary head kidney macrophages. These data may indicate diverse functional roles of trout IL-23 isoforms in regulating the immune response in fish.
Collapse
Affiliation(s)
- Yousheng Jiang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; College of Fishery and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mansourah Husain
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Zhitao Qi
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Key Laboratory of Aquaculture and Ecology of Coastal pool in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Steve Bird
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Molecular Genetics, School of Science, University of Waikato, Hamilton, New Zealand
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
21
|
Th17 cells in autoimmune and infectious diseases. Int J Inflam 2014; 2014:651503. [PMID: 25152827 PMCID: PMC4137509 DOI: 10.1155/2014/651503] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/20/2014] [Indexed: 02/06/2023] Open
Abstract
The view of CD4 T-cell-mediated immunity as a balance between distinct lineages of Th1 and Th2 cells has changed dramatically. Identification of the IL-17 family of cytokines and of the fact that IL-23 mediates the expansion of IL-17-producing T cells uncovered a new subset of Th cells designated Th17 cells, which have emerged as a third independent T-cell subset that may play an essential role in protection against certain extracellular pathogens. Moreover, Th17 cells have been extensively analyzed because of their strong association with inflammatory disorders and autoimmune diseases. Also, they appear to be critical for controlling these disorders. Similar to Th1 and Th2 cells, Th17 cells require specific cytokines and transcription factors for their differentiation. Th17 cells have been characterized as one of the major pathogenic Th cell populations underlying the development of many autoimmune diseases, and they are enhanced and stabilized by IL-23. The characteristics of Th17 cells, cytokines, and their sources, as well as their role in infectious and autoimmune diseases, are discussed in this review.
Collapse
|
22
|
Bandaru A, Devalraju KP, Paidipally P, Dhiman R, Venkatasubramanian S, Barnes PF, Vankayalapati R, Valluri V. Phosphorylated STAT3 and PD-1 regulate IL-17 production and IL-23 receptor expression in Mycobacterium tuberculosis infection. Eur J Immunol 2014; 44:2013-24. [PMID: 24643836 DOI: 10.1002/eji.201343680] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 02/13/2014] [Accepted: 03/14/2014] [Indexed: 11/07/2022]
Abstract
We studied the factors that regulate IL-23 receptor expression and IL-17 production in human tuberculosis infection. Mycobacterium tuberculosis (M. tb)-stimulated CD4(+) T cells from tuberculosis patients secreted less IL-17 than did CD4(+) T cells from healthy tuberculin reactors (PPD(+) ). M. tb-cultured monocytes from tuberculosis patients and PPD(+) donors expressed equal amounts of IL-23p19 mRNA and protein, suggesting that reduced IL-23 production is not responsible for decreased IL-17 production by tuberculosis patients. Freshly isolated and M. tb-stimulated CD4(+) T cells from tuberculosis patients had reduced IL-23 receptor and phosphorylated STAT3 (pSTAT3) expression, compared with cells from PPD(+) donors. STAT3 siRNA reduced IL-23 receptor expression and IL-17 production by CD4(+) T cells from PPD(+) donors. Tuberculosis patients had increased numbers of PD-1(+) T cells compared with healthy PPD(+) individuals. Anti-PD-1 antibody enhanced pSTAT3 and IL-23R expression and IL-17 production by M. tb-cultured CD4(+) T cells of tuberculosis patients. Anti-tuberculosis therapy decreased PD-1 expression, increased IL-17 and IFN-γ production and pSTAT3 and IL-23R expression. These findings demonstrate that increased PD-1 expression and decreased pSTAT3 expression reduce IL-23 receptor expression and IL-17 production by CD4(+) T cells of tuberculosis patients.
Collapse
Affiliation(s)
- Anuradha Bandaru
- Blue Peter Research Center, LEPRA Society, Cherlapally, Hyderabad, India
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sugitharini V, Prema A, Berla Thangam E. Inflammatory mediators of systemic inflammation in neonatal sepsis. Inflamm Res 2013; 62:1025-34. [DOI: 10.1007/s00011-013-0661-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022] Open
|
24
|
Higuita EA, Jaimes FA, Rugeles MT, Montoya CJ. In vivo effect of statins on the expression of the HIV co-receptors CCR5 and CXCR4. AIDS Res Ther 2013; 10:10. [PMID: 23634877 PMCID: PMC3668251 DOI: 10.1186/1742-6405-10-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 04/06/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During the HIV-1 replication cycle, several molecules including chemokine receptors and cholesterol are crucial, and are therefore potential targets for therapeutic intervention. Indeed statins, compounds that inhibit cellular synthesis of cholesterol and have anti-inflammatory and immunomodulatory properties were shown to inhibit HIV-1 infection by R5 tropic strains but not by X4 strains in vitro, mainly by altering the chemokine receptor/ligands axes. Therefore, the objective of this study was to characterize in vivo, the capacity of statins to modulate in HIV seronegative and chronically HIV-1-infected adults the expression of CCR5 and CXCR4, of their ligands and the tropism of circulating HIV-1 strains. METHODS Samples from asymptomatic HIV-1-infected adults enrolled in a clinical trial aimed at evaluating the antiretroviral activity of lovastatin were used to evaluate in vivo the modulation by lovastatin of CCR5, CXCR4, their ligands, and the shift in plasma viral tropism over one year of intervention. In addition, ten HIV negative adults received a daily oral dose of 40 mg of lovastatin or 20 mg of atorvastatin; seven other HIV negative individuals who received no treatment were followed as controls. The frequency and phenotype of immune cells were determined by flow-cytometry; mRNA levels of chemokine receptors and their ligands were determined by real-time PCR. Viral tropism was determined by PCR and sequencing, applying the clonal and clinical model of analyses. RESULTS Our study shows that long-term administration of lovastatin in HIV-infected individuals does not induce a shift in viral tropism, or induce a significant modulation of CCR5 and CXCR4 on immune cells in HIV-infected patients. Similar results were found in HIV seronegative control subjects, treated with lovastatin or atorvastatin, but a significant increase in CCL3 and CCL4 transcription was observed in these individuals. CONCLUSIONS These findings suggest that long-term administration of statins at therapeutic doses, does not significantly affect the expression of HIV-1 co-receptors or of their ligands. In addition it is important to point out that based on the results obtained, therapeutic administration of statins in HIV-infected patients with lipid disorders is safe in terms of selecting X4 strains.
Collapse
|
25
|
Moniuszko A, Pancewicz S, Czupryna P, Grygorczuk S, Świerzbińska R, Kondrusik M, Penza P, Zajkowska J. ssICAM-1, IL-21 and IL-23 in patients with tick borne encephalitis and neuroborreliosis. Cytokine 2012; 60:468-72. [PMID: 22705151 PMCID: PMC7128343 DOI: 10.1016/j.cyto.2012.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/02/2012] [Accepted: 05/11/2012] [Indexed: 11/26/2022]
Abstract
Objective There have been few reports on the role of Intercellular Adhesion Molecule 1 (ICAM-1), but not interleukin-21 (IL-21) and interleukin-23 (IL-23) in tick-borne encephalitis (TBE) and neuroborreliosis (NB). We postulate that these two interleukins may participate in the early phase of TBE and NB. The aim of the study was to measure serum and cerebrospinal fluid (CSF) concentration of ICAM-1, IL-21 and IL-23 in patients with TBE and NB before treatment and to assess their usefulness in the diagnosis and monitoring of inflammatory process in TBE and NB. Methods Forty-three patients hospitalized in The Department of Infectious Diseases and Neuroinfections of Medical University in Bialystok, Poland, were included in the study. Patients were divided into three groups: TBE, NB and CG. Pre-treatment blood and CSF samples were obtained from all patients. ELISA kits (DRG Instruments, Germany) were used to measure the concentration of IL-21, IL-23 and sICAM-1. Results Significant differences between TBE/CG and NB/CG concentration of sICAM-1 were found only in the CSF. CSF IL-21 levels in NB were lower than in TBE. In TBE, a strong negative correlation between CSF concentration of IL-21 and IL-23 and monocyte count in CSF was observed. Negative correlation between IL-21 in CSF and neutrophil count was also noted. Serum IL-23 correlated positively with leukocytes and platelet count in serum. In NB, a strong positive correlation between serum IL-21 and platelet count and negative correlation between IL-21 in serum and CSF with pleocytosis was observed. Conclusions Increased sICAM-1 concentration in TBE and NB may be a proof of brain–blood barrier disturbances in the early phase of these diseases. IL-21 and IL-23 do not appear to play an important role in the pathogenesis of the early stages of TBE and NB.
Collapse
Affiliation(s)
- Anna Moniuszko
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland.
| | | | | | | | | | | | | | | |
Collapse
|