1
|
Barkia B, Sandt V, Melnik D, Cortés-Sánchez JL, Marchal S, Baselet B, Baatout S, Sahana J, Grimm D, Wehland M, Schulz H, Infanger M, Kraus A, Krüger M. The Formation of Stable Lung Tumor Spheroids during Random Positioning Involves Increased Estrogen Sensitivity. Biomolecules 2024; 14:1292. [PMID: 39456226 PMCID: PMC11506229 DOI: 10.3390/biom14101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The formation of tumor spheroids on the random positioning machine (RPM) is a complex and important process, as it enables the study of metastasis ex vivo. However, this process is not yet understood in detail. In this study, we compared the RPM-induced spheroid formation of two cell types of lung carcinoma (NCI-H1703 squamous cell carcinoma cells and Calu-3 adenocarcinoma cells). While NCI-H1703 cells were mainly present as spheroids after 3 days of random positioning, Calu-3 cells remained predominantly as a cell layer. We found that two-dimensional-growing Calu-3 cells have less mucin-1, further downregulate their expression on the RPM and therefore exhibit a higher adhesiveness. In addition, we observed that Calu-3 cells can form spheroids, but they are unstable due to an imbalanced ratio of adhesion proteins (β1-integrin, E-cadherin) and anti-adhesion proteins (mucin-1) and are likely to disintegrate in the shear environment of the RPM. RPM-exposed Calu-3 cells showed a strongly upregulated expression of the estrogen receptor alpha gene ESR1. In the presence of 17β-estradiol or phenol red, more stable Calu-3 spheroids were formed, which was presumably related to an increased amount of E-cadherin in the cell aggregates. Thus, RPM-induced tumor spheroid formation depends not solely on cell-type-specific properties but also on the complex interplay between the mechanical influences of the RPM and, to some extent, the chemical composition of the medium used during the experiments.
Collapse
Affiliation(s)
- Balkis Barkia
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
| | - Viviann Sandt
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
| | - Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
| | - José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre SCK-CEN, 2400 Mol, Belgium; (B.B.); (S.B.)
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre SCK-CEN, 2400 Mol, Belgium; (B.B.); (S.B.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jayashree Sahana
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark; (J.S.); (D.G.)
| | - Daniela Grimm
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark; (J.S.); (D.G.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (A.K.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (A.K.)
| | - Manfred Infanger
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (A.K.)
- Clinic for Plastic, Aesthetic and Hand Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Armin Kraus
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (A.K.)
- Clinic for Plastic, Aesthetic and Hand Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (A.K.)
| |
Collapse
|
2
|
Sokolovskaya AA, Sergeeva EA, Metelkin AA, Popov MA, Zakharova IA, Morozov SG. The Expression of Cell Cycle Cyclins in a Human Megakaryoblast Cell Line Exposed to Simulated Microgravity. Int J Mol Sci 2024; 25:6484. [PMID: 38928190 PMCID: PMC11203866 DOI: 10.3390/ijms25126484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The study of the physiological and pathophysiological processes under extreme conditions facilitates a better understanding of the state of a healthy organism and can also shed light on the pathogenesis of diseases. In recent years, it has become evident that gravitational stress affects both the whole organism and individual cells. We have previously demonstrated that simulated microgravity inhibits proliferation, induces apoptosis, changes morphology, and alters the surface marker expression of megakaryoblast cell line MEG-01. In the present work, we investigate the expression of cell cycle cyclins in MEG-01 cells. We performed several experiments for 24 h, 72 h, 96 h and 168 h. Flow cytometry and Western blot analysis demonstrated that the main change in the levels of cyclins expression occurs under conditions of simulated microgravity after 96 h. Thus, the level of cyclin A expression showed an increase in the RPM group during the first 4 days, followed by a decrease, which, together with the peak of cyclin D, may indicate inhibition of the cell cycle in the G2 phase, before mitosis. In addition, based on the data obtained by PCR analysis, we were also able to see that both cyclin A and cyclin B expression showed a peak at 72 h, followed by a gradual decrease at 96 h. STED microscopy data also confirmed that the main change in cyclin expression of MEG-01 cells occurs at 96 h, under simulated microgravity conditions, compared to static control. These results suggested that the cell cycle disruption induced by RPM-simulated microgravity in MEG-01 cells may be associated with the altered expression of the main regulators of the cell cycle. Thus, these data implicate the development of cellular stress in MEG-01 cells, which may be important for proliferating human cells exposed to microgravity in real space.
Collapse
Affiliation(s)
- Alisa A. Sokolovskaya
- Department of Molecular and Cellular Pathophysiology, Institute of General Pathology and Pathophysiology, Baltiyskaya Str. 8, 125315 Moscow, Russia; (E.A.S.); (A.A.M.); (M.A.P.); (I.A.Z.); (S.G.M.)
| | | | | | | | | | | |
Collapse
|
3
|
Vora PM, Prabhu S. Exploring the influence of microgravity on chemotherapeutic drug response in cancer: Unveiling new perspectives. J Cell Mol Med 2024; 28:e18347. [PMID: 38693857 PMCID: PMC11063729 DOI: 10.1111/jcmm.18347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Microgravity, an altered gravity condition prevailing in space, has been reported to have a profound impact on human health. Researchers are very keen to comprehensively investigate the impact of microgravity and its intricate involvement in inducing physiological changes. Evidenced transformations were observed in the internal architecture including cytoskeletal organization and cell membrane morphology. These alterations can significantly influence cellular function, signalling pathways and overall cellular behaviour. Further, microgravity has been reported to alter in the expression profile of genes and metabolic pathways related to cellular processes, signalling cascades and structural proteins in cancer cells contributing to the overall changes in the cellular architecture. To investigate the effect of microgravity on cellular and molecular levels numerous ground-based simulation systems employing both in vitro and in vivo models are used. Recently, researchers have explored the possibility of leveraging microgravity to potentially modulate cancer cells against chemotherapy. These findings hold promise for both understanding fundamental processes and could potentially lead to the development of more effective, personalized and innovative approaches in therapeutic advancements against cancer.
Collapse
Affiliation(s)
- Preksha Manish Vora
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationManipalIndia
| | - Sudharshan Prabhu
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationManipalIndia
| |
Collapse
|
4
|
Graf J, Schulz H, Wehland M, Corydon TJ, Sahana J, Abdelfattah F, Wuest SL, Egli M, Krüger M, Kraus A, Wise PM, Infanger M, Grimm D. Omics Studies of Tumor Cells under Microgravity Conditions. Int J Mol Sci 2024; 25:926. [PMID: 38255998 PMCID: PMC10815863 DOI: 10.3390/ijms25020926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer is defined as a group of diseases characterized by abnormal cell growth, expansion, and progression with metastasis. Various signaling pathways are involved in its development. Malignant tumors exhibit a high morbidity and mortality. Cancer research increased our knowledge about some of the underlying mechanisms, but to this day, our understanding of this disease is unclear. High throughput omics technology and bioinformatics were successful in detecting some of the unknown cancer mechanisms. However, novel groundbreaking research and ideas are necessary. A stay in orbit causes biochemical and molecular biological changes in human cancer cells which are first, and above all, due to microgravity (µg). The µg-environment provides conditions that are not reachable on Earth, which allow researchers to focus on signaling pathways controlling cell growth and metastasis. Cancer research in space already demonstrated how cancer cell-exposure to µg influenced several biological processes being involved in cancer. This novel approach has the potential to fight cancer and to develop future cancer strategies. Space research has been shown to impact biological processes in cancer cells like proliferation, apoptosis, cell survival, adhesion, migration, the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors, among others. This concise review focuses on publications related to genetic, transcriptional, epigenetic, proteomic, and metabolomic studies on tumor cells exposed to real space conditions or to simulated µg using simulation devices. We discuss all omics studies investigating different tumor cell types from the brain and hematological system, sarcomas, as well as thyroid, prostate, breast, gynecologic, gastrointestinal, and lung cancers, in order to gain new and innovative ideas for understanding the basic biology of cancer.
Collapse
Affiliation(s)
- Jenny Graf
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
| | - Fatima Abdelfattah
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
| | - Simon L. Wuest
- Space Biology Group, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland (M.E.)
| | - Marcel Egli
- Space Biology Group, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland (M.E.)
- National Center for Biomedical Research in Space, Innovation Cluster Space and Aviation (UZH Space Hub), University Zurich, 8006 Zurich, Switzerland
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Armin Kraus
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Manfred Infanger
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
| |
Collapse
|
5
|
Zhou Y, Lv W, Peng X, Cheng Y, Tu Y, Song G, Luo Q. Simulated microgravity attenuates skin wound healing by inhibiting dermal fibroblast migration via F-actin/YAP signaling pathway. J Cell Physiol 2023; 238:2751-2764. [PMID: 37795566 DOI: 10.1002/jcp.31126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Skin and its cell components continuously subject to extrinsic and intrinsic mechanical forces and are mechanical sensitive. Disturbed mechanical homeostasis may lead to changes in skin functions. Gravity is the integral mechanical force on the earth, however, how gravity contributes to the maintenance of skin function and how microgravity in space affects the wound healing are poorly understood. Here, using microgravity analogs, we show that simulated microgravity (SMG) inhibits the healing of cutaneous wound and the accumulation of dermal fibroblasts in the wound bed. In vitro, SMG inhibits the migration of human foreskin fibroblast cells (HFF-1), and decreases the F-actin polymerization and YAP (yes-associated protein) activity. The SMG-inhibited migration can be recovered by activating YAP or F-actin polymerization using lysophosphatidic acid (LPA) or jasplakinolide (Jasp), suggesting the involvement of F-actin/YAP signaling pathway in this process. In SMG rats, LPA treatment improves the cutaneous healing with increased dermal fibroblasts in the wound bed. Together, our results demonstrate that SMG attenuates the cutaneous wound healing by inhibiting dermal fibroblast migration, and propose the crucial role of F-actin/YAP mechano-transduction in the maintenance of skin homeostasis under normal gravity, and YAP as a possible therapeutic target for the skin care of astronauts in space.
Collapse
Affiliation(s)
- Yuhao Zhou
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Wenjun Lv
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Xiufen Peng
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Yansiwei Cheng
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Yun Tu
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Simulated Microgravity Influences Immunity-Related Biomarkers in Lung Cancer. Int J Mol Sci 2022; 24:ijms24010155. [PMID: 36613598 PMCID: PMC9820811 DOI: 10.3390/ijms24010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Microgravity is a novel strategy that may serve as a complementary tool to develop future cancer therapies. In lung cancer, the influence of microgravity on cellular processes and the migratory capacity of cells is well addressed. However, its effect on the mechanisms that drive lung cancer progression remains in their infancy. In this study, 13 differentially expressed genes were shown to be associated with the prognosis of lung cancer under simulated microgravity (SMG). Using gene set enrichment analysis, these genes are enriched in humoral immunity pathways. In lieu, alveolar basal-epithelial (A549) cells were exposed to SMG via a 2D clinostat system in vitro. In addition to morphology change and decrease in proliferation rate, SMG reverted the epithelial-to-mesenchymal transition (EMT) phenotype of A549, a key mechanism in cancer progression. This was evidenced by increased epithelial E-cadherin expression and decreased mesenchymal N-cadherin expression, hence exhibiting a less metastatic state. Interestingly, we observed increased expression of FCGBP, BPIFB, F5, CST1, and CFB and their correlation to EMT under SMG, rendering them potential tumor suppressor biomarkers. Together, these findings reveal new opportunities to establish novel therapeutic strategies for lung cancer treatment.
Collapse
|
7
|
Millar-Wilson A, Ward Ó, Duffy E, Hardiman G. Multiscale modeling in the framework of biological systems and its potential for spaceflight biology studies. iScience 2022; 25:105421. [DOI: 10.1016/j.isci.2022.105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Marfia G, Navone SE, Guarnaccia L, Campanella R, Locatelli M, Miozzo M, Perelli P, Della Morte G, Catamo L, Tondo P, Campanella C, Lucertini M, Ciniglio Appiani G, Landolfi A, Garzia E. Space flight and central nervous system: Friends or enemies? Challenges and opportunities for neuroscience and neuro-oncology. J Neurosci Res 2022; 100:1649-1663. [PMID: 35678198 PMCID: PMC9544848 DOI: 10.1002/jnr.25066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Space environment provides many challenges to pilots, astronauts, and space scientists, which are constantly subjected to unique conditions, including microgravity, radiations, hypoxic condition, absence of the day and night cycle, etc. These stressful stimuli have the potential to affect many human physiological systems, triggering physical and biological adaptive changes to re‐establish the homeostatic state. A particular concern regards the risks for the effects of spaceflight on the central nervous system (CNS), as several lines of evidence reported a great impact on neuroplasticity, cognitive functions, neurovestibular system, short‐term memory, cephalic fluid shift, reduction in motor function, and psychological disturbances, especially during long‐term missions. Aside these potential detrimental effects, the other side of the coin reflects the potential benefit of applicating space‐related conditions on Earth‐based life sciences, as cancer research. Here, we focused on examining the effect of real and simulated microgravity on CNS functions, both in humans and in cellular models, browsing the different techniques to experience or mime microgravity on‐ground. Increasing evidence demonstrate that cancer cells, and brain cancer cells in particular, are negatively affected by microgravity, in terms of alteration in cell morphology, proliferation, invasion, migration, and apoptosis, representing an advancing novel side of space‐based investigations. Overall, deeper understandings about the mechanisms by which space environment influences CNS and tumor biology may be promisingly translated into many clinical fields, ranging from aerospace medicine to neuroscience and oncology, representing an enormous pool of knowledge for the implementation of countermeasures and therapeutic applications.
Collapse
Affiliation(s)
- Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Aldo Ravelli' Research Center, Milan, Italy.,Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Aldo Ravelli' Research Center, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Aldo Ravelli' Research Center, Milan, Italy.,Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Monica Miozzo
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Unit of Medical Genetics, ASST Santi Paolo e Carlo, Milan, Italy
| | - Pietro Perelli
- Istituto di Medicina Aerospaziale "Aldo Di Loreto", Aeronautica Militare, Rome, Italy
| | - Giulio Della Morte
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Leonardo Catamo
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Pietro Tondo
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Carmelo Campanella
- Istituto di Medicina Aerospaziale "Aldo Di Loreto", Aeronautica Militare, Roma, Italy
| | | | | | | | - Emanuele Garzia
- Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| |
Collapse
|
9
|
Effects of Titanium Dioxide Nanoparticles on Cell Growth and Migration of A549 Cells under Simulated Microgravity. NANOMATERIALS 2022; 12:nano12111879. [PMID: 35683734 PMCID: PMC9182076 DOI: 10.3390/nano12111879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023]
Abstract
With the increasing application of nanomaterials in aerospace technology, the long-term space exposure to nanomaterials especially in the space full of radiation coupled with microgravity condition has aroused great health concerns of the astronauts. However, few studies have been conducted to assess these effects, which are crucial for seeking the possible intervention strategy. Herein, using a random positioning machine (RPM) to simulate microgravity, we investigated the behaviors of cells under simulated microgravity and also evaluated the possible toxicity of titanium dioxide nanoparticles (TiO2 NPs), a multifunctional nanomaterial with potential application in aerospace. Pulmonary epithelial cells A549 were exposed to normal gravity (1 g) and simulated gravity (~10−3 g), respectively. The results showed that simulated microgravity had no significant effect on the viability of A549 cells as compared with normal gravity within 48 h. The effects of TiO2 NPs exposure on cell viability and apoptosis were marginal with only a slightly decrease in cell viability and a subtle increase in apoptosis rate observed at a high concentration of TiO2 NPs (100 μg/mL). However, it was observed that the exposure to simulated microgravity could obviously reduce A549 cell migration compared with normal gravity. The disruption of F-actin network and the deactivation of FAK (Tyr397) might be responsible for the impaired mobility of simulated microgravity-exposed A549 cells. TiO2 NPs exposure inhibited cell migration under two different gravity conditions, but to different degrees, with a milder inhibition under simulated microgravity. Meanwhile, it was found that A549 cells internalized more TiO2 NPs under normal gravity than simulated microgravity, which may account for the lower cytotoxicity and the lighter inhibition of cell migration induced by the same exposure concentration of TiO2 NPs under simulated microgravity at least partially. Our study has provided some tentative information on the effects of TiO2 NPs exposure on cell behaviors under simulated microgravity.
Collapse
|
10
|
Nakaji-Hirabayashi T, Matsumura K, Ishihara R, Ishiguro T, Nasu H, Kanno M, Ichida S, Hatashima T. Enhanced proliferation and differentiation of human mesenchymal stem cells in the gravity-controlled environment. Artif Organs 2022; 46:1760-1770. [PMID: 35403254 DOI: 10.1111/aor.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human bone marrow mesenchymal stem cells (hMSCs) present a promising cell source with a potential to be used for curing various intractable diseases. And it is expected that the development of regenerative medicine employing cell-based therapy would be significantly accelerated when such methods are established. For that, powerful methods for selective growth and differentiation of hMSCs should be developed. METHODS We developed an efficient method for hMSC proliferation and differentiation into osteoblasts and adipocytes using gravity-controlled environments. RESULTS The results indicate that the average doubling time of hMSCs cultured in a regular maintenance medium under microgravity conditions (0.001 G) was 1.5 times shorter than that of cells cultured under natural gravity conditions (1.0 G). Furthermore, 99.2% of cells grown in the microgravity environment showed the expression of hMSC markers, as indicated by flow cytometry analysis. Osteogenic and adipogenic differentiation of hMSCs expanded in the microgravity environment was enhanced under microgravity and hypergravity conditions, respectively, as evidenced by the downregulation of hMSC markers and upregulation of osteoblast and adipocyte markers, respectively. Most cells differentiated into osteoblasts in the microgravity environment after 14 days (~80%) and to adipocytes in the hypergravity environment after 12 days (~90%). CONCLUSIONS Our results indicate that hMSC proliferation and selective differentiation into specific cell lineages could be promoted under microgravity or hypergravity conditions, suggesting that cell culture in the gravity-controlled environment is a useful method to obtain cell preparations for potential clinical applications.
Collapse
Affiliation(s)
- Tadashi Nakaji-Hirabayashi
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan.,Department of Advanced Nano- and Bio-sciences, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan.,Frontier Research Core for Life Sciences, University of Toyama, Toyama, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | - Reiichi Ishihara
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Tatsuya Ishiguro
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Hiromitsu Nasu
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Masatsugu Kanno
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Shunji Ichida
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Toshikatsu Hatashima
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| |
Collapse
|
11
|
The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model. Int J Mol Sci 2022; 23:ijms23063073. [PMID: 35328492 PMCID: PMC8953941 DOI: 10.3390/ijms23063073] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease exhibiting uncontrollable cell growth and spreading to other parts of the organism. It is a heavy, worldwide burden for mankind with high morbidity and mortality. Therefore, groundbreaking research and innovations are necessary. Research in space under microgravity (µg) conditions is a novel approach with the potential to fight cancer and develop future cancer therapies. Space travel is accompanied by adverse effects on our health, and there is a need to counteract these health problems. On the cellular level, studies have shown that real (r-) and simulated (s-) µg impact survival, apoptosis, proliferation, migration, and adhesion as well as the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors in cancer cells. Moreover, the µg-environment induces in vitro 3D tumor models (multicellular spheroids and organoids) with a high potential for preclinical drug targeting, cancer drug development, and studying the processes of cancer progression and metastasis on a molecular level. This review focuses on the effects of r- and s-µg on different types of cells deriving from thyroid, breast, lung, skin, and prostate cancer, as well as tumors of the gastrointestinal tract. In addition, we summarize the current knowledge of the impact of µg on cancerous stem cells. The information demonstrates that µg has become an important new technology for increasing current knowledge of cancer biology.
Collapse
|
12
|
Singh R, Rajput M, Singh RP. Simulated microgravity triggers DNA damage and mitochondria-mediated apoptosis through ROS generation in human promyelocytic leukemic cells. Mitochondrion 2021; 61:114-124. [PMID: 34571251 DOI: 10.1016/j.mito.2021.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022]
Abstract
The weightlessness or microgravity, a physical factor in space, may adversely affect the health of the space travellers or astronauts. The knowledge about the effect of microgravity on human cancer cells is very limited and poorly understood. Here, we employed rotary cell culture system (RCCS) to induce simulated microgravity (SMG) and examined its effects on human promyelocytic leukemic HL-60 cells. These cells were grown in normal gravity condition (1g) for control purpose. The 72 h exposure of cells to SMG decreased cell proliferation and viability which were accompanied by the reduced expression of PCNA and phosphorylated ERK1/2 and AKT proteins. SMG increased the DNA damage as well as the expression of DNA damage sensing proteins including ATM, ATR, Chk1, Chk2 and γH2A.X. The expression of AP1, XRCC1 and APEX1 regulating BER, XPC regulating NER and MLH1 and PMS2 regulating MMR were downregulated. However, SMG increased the expression of Ku70/80, DNA-PK and Rad51, regulating NHEJ and HR. SMG induced apoptosis and increased the levels of cleaved-poly-(ADP-ribose) polymerase and cleaved-caspase-3. An increase in Bax/Bcl-2 ratio and dissipation of mitochondrial membrane potential were also observed. SMG enhanced reactive oxygen species (ROS) formation which led to the enhanced DNA damage and apoptotic cell death. Overall, SMG induced ROS, DNA damage and differential expression of DNA repair genes, and altered the overall DNA repair capacity which may activate ATM/ATR-Chk1/2 and Ku70/80 and DNA-PK-mediated apoptotic cell death.
Collapse
Affiliation(s)
- Ragini Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohit Rajput
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
13
|
Simulated Microgravity Effects on Human Adenocarcinoma Alveolar Epithelial Cells: Characterization of Morphological, Functional, and Epigenetic Parameters. Int J Mol Sci 2021; 22:ijms22136951. [PMID: 34203322 PMCID: PMC8269359 DOI: 10.3390/ijms22136951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background: In space, the reduction or loss of the gravity vector greatly affects the interaction between cells. Since the beginning of the space age, microgravity has been identified as an informative tool in biomedicine, including cancer research. The A549 cell line is a hypotriploid human alveolar basal epithelial cell line widely used as a model for lung adenocarcinoma. Microgravity has been reported to interfere with mitochondrial activity, energy metabolism, cell vitality and proliferation, chemosensitivity, invasion and morphology of cells and organelles in various biological systems. Concerning lung cancer, several studies have reported the ability of microgravity to modulate the carcinogenic and metastatic process. To investigate these processes, A549 cells were exposed to simulated microgravity (µG) for different time points. Methods: We performed cell cycle and proliferation assays, ultrastructural analysis of mitochondria architecture, as well as a global analysis of miRNA modulated under µG conditions. Results: The exposure of A549 cells to microgravity is accompanied by the generation of polynucleated cells, cell cycle imbalance, growth inhibition, and gross morphological abnormalities, the most evident are highly damaged mitochondria. Global miRNA analysis defined a pool of miRNAs associated with µG solicitation mainly involved in cell cycle regulation, apoptosis, and stress response. To our knowledge, this is the first global miRNA analysis of A549 exposed to microgravity reported. Despite these results, it is not possible to draw any conclusion concerning the ability of µG to interfere with the cancerogenic or the metastatic processes in A549 cells. Conclusions: Our results provide evidence that mitochondria are strongly sensitive to µG. We suggest that mitochondria damage might in turn trigger miRNA modulation related to cell cycle imbalance.
Collapse
|
14
|
Microgravity, Stem Cells, and Cancer: A New Hope for Cancer Treatment. Stem Cells Int 2021; 2021:5566872. [PMID: 34007284 PMCID: PMC8102114 DOI: 10.1155/2021/5566872] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Humans are integrated with the environment where they live. Gravitational force plays an important role in shaping the universe, lives, and even cellular biological processes. Research in the last 40 years has shown how exposure to microgravity changes biological processes. Microgravity has been shown to have significant effects on cellular proliferation, invasion, apoptosis, migration, and gene expression, specifically in tumor cells, and these effects may also exist in stem and cancer stem cells. It has also been shown that microgravity changes the effects of chemotherapeutic drugs. Although studies have been carried out in a simulated microgravity environment in cell culture lines, there are few animal experiments or true microgravity studies. Cancer remains one of the most significant problems worldwide. Despite advances in medical science, no definitive strategies have been found for the prevention of cancer formation or to inform treatment. Thus, the microgravity environment is a potential new therapeutic strategy for future cancer treatment. This review will focus on current knowledge on the impact of the microgravity environment on cancer cells, stem cells, and the biological behavior of cancer stem cells.
Collapse
|
15
|
Przystupski D, Górska A, Michel O, Podwin A, Śniadek P, Łapczyński R, Saczko J, Kulbacka J. Testing Lab-on-a-Chip Technology for Culturing Human Melanoma Cells under Simulated Microgravity. Cancers (Basel) 2021; 13:402. [PMID: 33499085 PMCID: PMC7866167 DOI: 10.3390/cancers13030402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 01/31/2023] Open
Abstract
The dynamic development of the space industry makes space flights more accessible and opens up new opportunities for biological research to better understand cell physiology under real microgravity. Whereas specialized studies in space remain out of our reach, preliminary experiments can be performed on Earth under simulated microgravity (sµg). Based on this concept, we used a 3D-clinostat (3D-C) to analyze the effect of short exposure to sµg on human keratinocytes HaCaT and melanoma cells A375 cultured on all-glass Lab-on-a-Chip (LOC). Our preliminary studies included viability evaluation, mitochondrial and caspase activity, and proliferation assay, enabling us to determine the effect of sµg on human cells. By comparing the results concerning cells cultured on LOCs and standard culture dishes, we were able to confirm the biocompatibility of all-glass LOCs and their potential application in microgravity research on selected human cell lines. Our studies revealed that HaCaT and A375 cells are susceptible to simulated microgravity; however, we observed an increased caspase activity and a decrease of proliferation in cancer cells cultured on LOCs in comparison to standard cell cultures. These results are an excellent basis to conduct further research on the possible application of LOCs systems in cancer research in space.
Collapse
Affiliation(s)
- Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| | - Agata Górska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| | - Agnieszka Podwin
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (A.P.); (P.Ś.)
| | - Patrycja Śniadek
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (A.P.); (P.Ś.)
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| |
Collapse
|
16
|
Nassef MZ, Melnik D, Kopp S, Sahana J, Infanger M, Lützenberg R, Relja B, Wehland M, Grimm D, Krüger M. Breast Cancer Cells in Microgravity: New Aspects for Cancer Research. Int J Mol Sci 2020; 21:ijms21197345. [PMID: 33027908 PMCID: PMC7582256 DOI: 10.3390/ijms21197345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is the leading cause of cancer death in females. The incidence has risen dramatically during recent decades. Dismissed as an "unsolved problem of the last century", breast cancer still represents a health burden with no effective solution identified so far. Microgravity (µg) research might be an unusual method to combat the disease, but cancer biologists decided to harness the power of µg as an exceptional method to increase efficacy and precision of future breast cancer therapies. Numerous studies have indicated that µg has a great impact on cancer cells; by influencing proliferation, survival, and migration, it shifts breast cancer cells toward a less aggressive phenotype. In addition, through the de novo generation of tumor spheroids, µg research provides a reliable in vitro 3D tumor model for preclinical cancer drug development and to study various processes of cancer progression. In summary, µg has become an important tool in understanding and influencing breast cancer biology.
Collapse
Affiliation(s)
- Mohamed Zakaria Nassef
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
| | - Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
| | - Sascha Kopp
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark;
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Ronald Lützenberg
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, 39120 Magdeburg, Germany;
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark;
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6757471
| |
Collapse
|
17
|
Prasanth D, Suresh S, Prathivadhi-Bhayankaram S, Mimlitz M, Zetocha N, Lee B, Ekpenyong A. Microgravity Modulates Effects of Chemotherapeutic Drugs on Cancer Cell Migration. Life (Basel) 2020; 10:E162. [PMID: 32846924 PMCID: PMC7555236 DOI: 10.3390/life10090162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Microgravity or the condition of apparent weightlessness causes bone, muscular and immune system dysfunctions in astronauts following spaceflights. These organ and system-level dysfunctions correlate with changes induced at the single cell level both by simulated microgravity on earth as well as microgravity conditions in outer space (as in the international space station). Reported changes in single bone cells, muscle cells and white blood cells include structural/morphological abnormalities, changes in gene expression, protein expression, metabolic pathways and signaling pathways, suggesting that cells mount some response or adjustment to microgravity. However, the implications of such adjustments on many cellular functions and responses are not clear largely because the primary mechanism of gravity sensing in animal cells is unknown. Here, we used a rotary cell culture system developed by NASA to subject leukemic and erythroleukemic cancer cells to microgravity for 48 h and then quantified their innate immune response to common anti-cancer drugs using biophysical parameters and our recently developed quantum-dot-based fluorescence spectroscopy. We found that leukemic cancer cells treated with daunorubicin show increased chemotactic migration (p < 0.01) following simulated microgravity (µg) compared to normal gravity on earth (1 g). However, cells treated with doxorubicin showed enhanced migration both in 1 g and following µg. Our results show that microgravity modulates cancer cell response to chemotherapy in a drug-dependent manner. These results suggest using simulated microgravity as an immunomodulatory tool for the development of new immunotherapies for both space and terrestrial medicine.
Collapse
Affiliation(s)
- Devika Prasanth
- Biology Department, Creighton University, Omaha, NE 68178, USA;
| | - Sindhuja Suresh
- Computer Science Department, Creighton University, Omaha, NE 68187, USA;
| | | | - Michael Mimlitz
- Physics Department, Creighton University, Omaha, NE 68178, USA; (S.P.-B.); (M.M.); (N.Z.); (B.L.)
| | - Noah Zetocha
- Physics Department, Creighton University, Omaha, NE 68178, USA; (S.P.-B.); (M.M.); (N.Z.); (B.L.)
| | - Bong Lee
- Physics Department, Creighton University, Omaha, NE 68178, USA; (S.P.-B.); (M.M.); (N.Z.); (B.L.)
| | - Andrew Ekpenyong
- Physics Department, Creighton University, Omaha, NE 68178, USA; (S.P.-B.); (M.M.); (N.Z.); (B.L.)
| |
Collapse
|
18
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
19
|
Chen ZY, Jiang N, Guo S, Li BB, Yang JQ, Chai SB, Yan HF, Sun PM, Zhang T, Sun HW, Yang HM, Zhou JL, Cui Y. Effect of simulated microgravity on metabolism of HGC-27 gastric cancer cells. Oncol Lett 2020; 19:3439-3450. [PMID: 32269617 PMCID: PMC7115135 DOI: 10.3892/ol.2020.11451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
The understanding into the pathogenesis and treatment of gastric cancer has improved in recent years; however, a number of limitations have delayed the development of effective treatment. Cancer cells can undergo glycolysis and inhibit oxidative phosphorylation in the presence of oxygen (Warburg effect). Previous studies have demonstrated that a rotary cell culture system (RCCS) can induce glycolytic metabolism. In addition, the potential of regulating cancer cells by targeting their metabolites has led to the rapid development of metabolomics. In the present study, human HGC-27 gastric cancer cells were cultured in a RCCS bioreactor, simulating weightlessness. Subsequently, liquid chromatography-mass spectrometry was used to examine the effects of simulated microgravity (SMG) on the metabolism of HGC-27 cells. A total of 67 differentially regulated metabolites were identified, including upregulated and downregulated metabolites. Compared with the normal gravity group, phosphatidyl ethanolamine, phosphatidyl choline, arachidonic acid and sphinganine were significantly upregulated in SMG conditions, whereas sphingomyelin, phosphatidyl serine, phosphatidic acid, L-proline, creatine, pantothenic acid, oxidized glutathione, adenosine diphosphate and adenosine triphosphate were significantly downregulated. The Human Metabolome Database compound analysis revealed that lipids and lipid-like metabolites were primarily affected in an SMG environment in the present study. Overall, the findings of the present study may aid our understanding of gastric cancer by identifying the underlying mechanisms of metabolism of the disease under SMG.
Collapse
Affiliation(s)
- Zheng-Yang Chen
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China
| | - Nan Jiang
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Song Guo
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Bin-Bin Li
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Clinical Hospital of Anhui Medical University, Beijing 100101, P.R. China
| | - Jia-Qi Yang
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Shao-Bin Chai
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Hong-Feng Yan
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Pei-Ming Sun
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Tao Zhang
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Hong-Wei Sun
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - He-Ming Yang
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Jin-Lian Zhou
- Department of Pathology, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Yan Cui
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| |
Collapse
|
20
|
Ivanova K, Hemmersbach R. Guanylyl Cyclase-cGMP Signaling Pathway in Melanocytes: Differential Effects of Altered Gravity in Non-Metastatic and Metastatic Cells. Int J Mol Sci 2020; 21:ijms21031139. [PMID: 32046325 PMCID: PMC7037284 DOI: 10.3390/ijms21031139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Abstract
Human epidermal melanocytes as melanin producing skin cells represent a crucial barrier against UV-radiation and oxidative stress. It was shown that the intracellular signaling molecule cyclic guanosine-3′,5′-monophosphate (cGMP), generated by the guanylyl cyclases (GCs), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) and the natriuretic peptide-activated particulate GC (GC-A/GC-B), plays a role in the melanocyte response to environmental stress. Importantly, cGMP is involved in NO-induced perturbation of melanocyte–extracellular matrix interactions and in addition, increased NO production during inflammation may lead to loss of melanocytes and support melanoma metastasis. Further, the NO-sensitive sGC is expressed predominantly in human melanocytes and non-metastatic melanoma cells, whereas absence of functional sGC but up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are detected in metastatic cells. Thus, suppression of sGC expression as well as up-regulated expression of GC-A/GC-B/iNOS appears to correlate with tumor aggressiveness. As the cGMP pathway plays important roles in melanocyte (patho)physiology, we present an overview on the differential effects of altered gravity (hypergravity/simulated microgravity) on the cGMP signaling pathway in melanocytes and melanoma cells with different metastatic potential. We believe that future experiments in real microgravity may benefit from considering cGMP signaling as a possible factor for melanocyte transformation and in medication.
Collapse
|
21
|
Ahn CB, Lee JH, Han DG, Kang HW, Lee SH, Lee JI, Son KH, Lee JW. Simulated microgravity with floating environment promotes migration of non-small cell lung cancers. Sci Rep 2019; 9:14553. [PMID: 31601869 PMCID: PMC6787256 DOI: 10.1038/s41598-019-50736-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/06/2019] [Indexed: 11/09/2022] Open
Abstract
A migration of cancer is one of the most important factors affecting cancer therapy. Particularly, a cancer migration study in a microgravity environment has gained attention as a tool for developing cancer therapy. In this study, we evaluated the proliferation and migration of two types (adenocarcinoma A549, squamous cell carcinoma H1703) of non-small cell lung cancers (NSCLC) in a floating environment with microgravity. When we measured proliferation of two NSCLCs in the microgravity (MG) and ground-gravity (CONT), although initial cell adhesion in MG was low, a normalized proliferation rate of A549 in MG was higher than that in CONT. Wound healing results of A549 and H1703 showed rapid recovery in MG; particularly, the migration rate of A549 was faster than that of H1703 both the normal and low proliferating conditions. Gene expression results showed that the microgravity accelerated the migration of NSCLC. Both A549 and H1703 in MG highly expressed the migration-related genes MMP-2, MMP-9, TIMP-1, and TIMP-2 compared to CONT at 24 h. Furthermore, analysis of MMP-2 protein synthesis revealed weaker metastatic performance of H1703 than that of A549. Therefore, the simulated microgravity based cancer culture environment will be a potential for migration and metastasis studies of lung cancers.
Collapse
Affiliation(s)
- Chi Bum Ahn
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Ji-Hyun Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Dae Geun Han
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sung-Ho Lee
- Department of Thoracic and Cardiovascular Surgery, Korea University Medical College, Korea University, Seoul, Republic of Korea
| | - Jae-Ik Lee
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, School of Medicine, Gachon University, Incheon, Republic of Korea.
| | - Jin Woo Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Republic of Korea. .,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
22
|
Dietz C, Infanger M, Romswinkel A, Strube F, Kraus A. Apoptosis Induction and Alteration of Cell Adherence in Human Lung Cancer Cells under Simulated Microgravity. Int J Mol Sci 2019; 20:E3601. [PMID: 31340547 PMCID: PMC6678991 DOI: 10.3390/ijms20143601] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lung cancer cells are known to change proliferation and migration under simulated microgravity. In this study, we sought to evaluate cell adherence, apoptosis, cytoskeleton arrangement, and gene expression under simulated microgravity. METHODS Human lung cancer cells were exposed to simulated microgravity in a random-positioning machine (RPM). Cell morphology and adherence were observed under phase-contrast microscopy, cytoskeleton staining was performed, apoptosis rate was determined, and changes in gene and protein expression were detected by real-time PCR with western blot confirmation. RESULTS Three-dimensional (3D)-spheroid formation was observed under simulated microgravity. Cell viability was not impaired. Actin filaments showed a shift in alignment from longitudinal to spherical. Apoptosis rate was significantly increased in the spheroids compared to the control. TP53, CDKN2A, PTEN, and RB1 gene expression was significantly upregulated in the adherent cells under simulated microgravity with an increase in corresponding protein production for p14 and RB1. SOX2 expression was significantly upregulated in the adherent cells, but protein was not. Gene expressions of AKT3, PIK3CA, and NFE2L2 remained unaltered. CONCLUSION Simulated microgravity induces alteration in cell adherence, increases apoptosis rate, and leads to upregulation of tumor suppressor genes in human lung cancer cells.
Collapse
Affiliation(s)
- Carlo Dietz
- Department of Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | - Manfred Infanger
- Department of Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | - Alexander Romswinkel
- Department of Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | - Florian Strube
- Department of Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | - Armin Kraus
- Department of Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
23
|
Krüger M, Melnik D, Kopp S, Buken C, Sahana J, Bauer J, Wehland M, Hemmersbach R, Corydon TJ, Infanger M, Grimm D. Fighting Thyroid Cancer with Microgravity Research. Int J Mol Sci 2019; 20:ijms20102553. [PMID: 31137658 PMCID: PMC6566201 DOI: 10.3390/ijms20102553] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
Microgravity in space or simulated by special ground-based devices provides an unusual but unique environment to study and influence tumour cell processes. By investigating thyroid cancer cells in microgravity for nearly 20 years, researchers got insights into tumour biology that had not been possible under normal laboratory conditions: adherently growing cancer cells detach from their surface and form three-dimensional structures. The cells included in these multicellular spheroids (MCS) were not only altered but behave also differently to those grown in flat sheets in normal gravity, more closely mimicking the conditions in the human body. Therefore, MCS became an invaluable model for studying metastasis and developing new cancer treatment strategies via drug targeting. Microgravity intervenes deeply in processes such as apoptosis and in structural changes involving the cytoskeleton and the extracellular matrix, which influence cell growth. Most interestingly, follicular thyroid cancer cells grown under microgravity conditions were shifted towards a less-malignant phenotype. Results from microgravity research can be used to rethink conventional cancer research and may help to pinpoint the cellular changes that cause cancer. This in turn could lead to novel therapies that will enhance the quality of life for patients or potentially develop new preventive countermeasures.
Collapse
Affiliation(s)
- Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Daniela Melnik
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Christoph Buken
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Johann Bauer
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Ruth Hemmersbach
- Institute of Aerospace Medicine, Gravitational Biology, German Aerospace Center (DLR), Linder Höhe, 51147 Cologne, Germany.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
- Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto von Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
24
|
Effect of Weightlessness on the 3D Structure Formation and Physiologic Function of Human Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4894083. [PMID: 31073526 PMCID: PMC6470427 DOI: 10.1155/2019/4894083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/27/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
With the rapid development of modern medical technology and the deterioration of living environments, cancer, the most important disease that threatens human health, has attracted increasing concerns. Although remarkable achievements have been made in tumor research during the past several decades, a series of problems such as tumor metastasis and drug resistance still need to be solved. Recently, relevant physiological changes during space exploration have attracted much attention. Thus, space exploration might provide some inspiration for cancer research. Using on ground different methods in order to simulate microgravity, structure and function of cancer cells undergo many unique changes, such as cell aggregation to form 3D spheroids, cell-cycle inhibition, and changes in migration ability and apoptosis. Although numerous better experiments have been conducted on this subject, the results are not consistent. The reason might be that different methods for simulation have been used, including clinostats, random positioning machine (RPM) and rotating wall vessel (RWV) and so on. Therefore, we review the relevant research and try to explain novel mechanisms underlying tumor cell changes under weightlessness.
Collapse
|
25
|
Zhao T, Li R, Tan X, Zhang J, Fan C, Zhao Q, Deng Y, Xu A, Lukong KE, Genth H, Xiang J. Simulated Microgravity Reduces Focal Adhesions and Alters Cytoskeleton and Nuclear Positioning Leading to Enhanced Apoptosis via Suppressing FAK/RhoA-Mediated mTORC1/NF-κB and ERK1/2 Pathways. Int J Mol Sci 2018; 19:ijms19071994. [PMID: 29986550 PMCID: PMC6073227 DOI: 10.3390/ijms19071994] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/16/2022] Open
Abstract
Simulated-microgravity (SMG) promotes cell-apoptosis. We demonstrated that SMG inhibited cell proliferation/metastasis via FAK/RhoA-regulated mTORC1 pathway. Since mTORC1, NF-κB, and ERK1/2 signaling are important in cell apoptosis, we examined whether SMG-enhanced apoptosis is regulated via these signals controlled by FAK/RhoA in BL6-10 melanoma cells under clinostat-modelled SMG-condition. We show that SMG promotes cell-apoptosis, alters cytoskeleton, reduces focal adhesions (FAs), and suppresses FAK/RhoA signaling. SMG down-regulates expression of mTORC1-related Raptor, pS6K, pEIF4E, pNF-κB, and pNF-κB-regulated Bcl2, and induces relocalization of pNF-κB from the nucleus to the cytoplasm. In addition, SMG also inhibits expression of nuclear envelope proteins (NEPs) lamin-A, emerin, sun1, and nesprin-3, which control nuclear positioning, and suppresses nuclear positioning-regulated pERK1/2 signaling. Moreover, rapamycin, the mTORC1 inhibitor, also enhances apoptosis in cells under 1 g condition via suppressing the mTORC1/NF-κB pathway. Furthermore, the FAK/RhoA activator, toxin cytotoxic necrotizing factor-1 (CNF1), reduces cell apoptosis, restores the cytoskeleton, FAs, NEPs, and nuclear positioning, and converts all of the above SMG-induced changes in molecular signaling in cells under SMG. Therefore, our data demonstrate that SMG reduces FAs and alters the cytoskeleton and nuclear positioning, leading to enhanced cell apoptosis via suppressing the FAK/RhoA-regulated mTORC1/NF-κB and ERK1/2 pathways. The FAK/RhoA regulatory network may, thus, become a new target for the development of novel therapeutics for humans under spaceflight conditions with stressed physiological challenges, and for other human diseases.
Collapse
Affiliation(s)
- Tuo Zhao
- School of Life Sciences, Beijing Institute of Technology, Beijing 10081, China.
| | - Rong Li
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada.
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Xin Tan
- School of Life Sciences, Beijing Institute of Technology, Beijing 10081, China.
| | - Jun Zhang
- School of Life Sciences, Beijing Institute of Technology, Beijing 10081, China.
| | - Cuihong Fan
- School of Life Sciences, Beijing Institute of Technology, Beijing 10081, China.
| | - Qin Zhao
- School of Life Sciences, Beijing Institute of Technology, Beijing 10081, China.
| | - Yulin Deng
- School of Life Sciences, Beijing Institute of Technology, Beijing 10081, China.
| | - Aizhang Xu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada.
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Kiven Erique Lukong
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Harald Genth
- Institute of Toxicology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Jim Xiang
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada.
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
26
|
Ying Y, Luo J. Salidroside promotes human periodontal ligament cell proliferation and osteocalcin secretion via ERK1/2 and PI3K/Akt signaling pathways. Exp Ther Med 2018; 15:5041-5045. [PMID: 29805528 PMCID: PMC5952094 DOI: 10.3892/etm.2018.6006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/21/2017] [Indexed: 01/01/2023] Open
Abstract
Salidroside modulates cell proliferation and serves as an anti-inflammatory and anti-apoptotic agent with efficacy against various diseases. The objective of the present study was to investigate the efficacy of salidroside in enhancing the proliferation of human periodontal ligament cells (hPDLCs). hPDLCs were isolated and the effects of salidroside on cell viability, soluble osteocalcin levels and activation of proliferation-associated signaling pathways were determined using a CCK-8 assay, ELISA and Western blotting, respectively. The results indicated that salidroside induced proliferation of hPDLCs, increased secretion of soluble osteocalcin and enhanced activation of extracellular signal-regulated kinase (ERK)1/2 and phosphoinositide-3 kinase (PI3K)/Akt signaling pathways. These factors were upregulated by salidroside in a dose-dependent manner. The results of the present study suggested that salidroside mediated hPDLC proliferation via the ERK1/2 and PI3K/Akt signaling pathways, as well as osteocalcin secretion. Salidroside may therefore be used as a novel therapeutic agent in the treatment of the tooth-supporting apparatus, progressive tooth destruction or periodontitis.
Collapse
Affiliation(s)
- Yukang Ying
- Department of Stomatology, Taizhou Central Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Jun Luo
- Department of Stomatology, Taizhou Central Hospital, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
27
|
Simulated microgravity inhibits cell focal adhesions leading to reduced melanoma cell proliferation and metastasis via FAK/RhoA-regulated mTORC1 and AMPK pathways. Sci Rep 2018; 8:3769. [PMID: 29491429 PMCID: PMC5830577 DOI: 10.1038/s41598-018-20459-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/18/2018] [Indexed: 12/25/2022] Open
Abstract
Simulated microgravity (SMG) was reported to affect tumor cell proliferation and metastasis. However, the underlying mechanism is elusive. In this study, we demonstrate that clinostat-modelled SMG reduces BL6-10 melanoma cell proliferation, adhesion and invasiveness in vitro and decreases tumor lung metastasis in vivo. It down-regulates metastasis-related integrin α6β4, MMP9 and Met72 molecules. SMG significantly reduces formation of focal adhesions and activation of focal adhesion kinase (FAK) and Rho family proteins (RhoA, Rac1 and Cdc42) and of mTORC1 kinase, but activates AMPK and ULK1 kinases. We demonstrate that SMG inhibits NADH induction and glycolysis, but induces mitochondrial biogenesis. Interestingly, administration of a RhoA activator, the cytotoxic necrotizing factor-1 (CNF1) effectively converts SMG-triggered alterations and effects on mitochondria biogenesis or glycolysis. CNF1 also converts the SMG-altered cell proliferation and tumor metastasis. In contrast, mTORC inhibitor, rapamycin, produces opposite responses and mimics SMG-induced effects in cells at normal gravity. Taken together, our observations indicate that SMG inhibits focal adhesions, leading to inhibition of signaling FAK and RhoA, and the mTORC1 pathway, which results in activation of the AMPK pathway and reduced melanoma cell proliferation and metastasis. Overall, our findings shed a new light on effects of microgravity on cell biology and human health.
Collapse
|
28
|
Li J, Chen J, Li X, Qian Y. Vaccination efficacy with marrow mesenchymal stem cell against cancer was enhanced under simulated microgravity. Biochem Biophys Res Commun 2017; 485:606-613. [PMID: 28238782 DOI: 10.1016/j.bbrc.2017.01.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
Abstract
Stem cell vaccination can induce consistent and strong anti-tumor immunity against cancer in mice model. The antigenic similarity between tumors and embryos has been appreciated for many years and reflects the expression of embryonic gene products by cancer cells and/or cancer-initiating stem cells. Taking advantage of this similarity, we have tested a prophylactic lung cancer vaccine composed of allogeneic murine MSCs. Based on this conception, we first compared their tumor vaccines intervention effects of adult MSCs and MSCs under simulated microgravity (MSC/SMG). In this study, BALB/c mice were vaccinated with MSCs or MSC/SMG, compared with mice vaccinated with phosphate buffered saline (PBS) as negative controls. We then subcutaneously implanted the A549 human lung cancer cell line into vaccinated mice and monitored tumor growth potential in vivo. The smaller tumor size and less tumor weight were observed in mice vaccinated with MSCs or MSC/SMG, compared with that of the Control group. Particularly, it was much more significant in the group of MSC/SMG than that group of the MSCs. Vaccination with SMG treated MSCs inhibited proliferation and promoted apoptosis of tumor tissue. SMG/MSC vaccination induced bothTh1-mediated cytokine response; CD8-dependent cytotoxic response which reduced the proportion of Treg cells. Furthermore, SMG/MSC vaccination significantly increased MHC1 and HSPs proteins expression. In conclusion, we demonstrated the SMG could improve tumor-suppressive activity of MSC. The enhanced anti-tumor immune response of MSCs/SMG was strongly associated with the higher expression of MHC class I molecule on DCs, and the abundance of HSPs in the SMG treated MSCs may make antigens in the MSC more cross-presentable to the host DCs for generating protective antitumor activity. This study gains an insight into the mechanism of MSCs anti-tumor efficacy and gives a new strategy for cancer therapies in the future.
Collapse
Affiliation(s)
- Jing Li
- The TCM Department of Navy General Hospital, Fuchengmen Road No. 6, 100048, Beijing, China.
| | - Jun Chen
- The Department of Acupuncture and Manipulation of Shaanxi University of Chinese Medicine, Shiji Road, 712046, Xi'an, China
| | - Xiuyu Li
- The TCM Department of Navy General Hospital, Fuchengmen Road No. 6, 100048, Beijing, China
| | - Yanfang Qian
- The TCM Department of Navy General Hospital, Fuchengmen Road No. 6, 100048, Beijing, China
| |
Collapse
|
29
|
Bauer J, Bussen M, Wise P, Wehland M, Schneider S, Grimm D. Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells. Expert Rev Proteomics 2016; 13:697-705. [DOI: 10.1080/14789450.2016.1197775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Johann Bauer
- Informationsvermittlung, Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Markus Bussen
- Lifescience, Elsevier Information System GmbH, Frankfurt am Main, Germany
| | - Petra Wise
- Hematology/Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sabine Schneider
- Informationsvermittlung, Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Institute of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
30
|
Shi ZX, Rao W, Wang H, Wang ND, Si JW, Zhao J, Li JC, Wang ZR. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry. Biochem Biophys Res Commun 2015; 457:378-84. [PMID: 25580009 DOI: 10.1016/j.bbrc.2014.12.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/31/2014] [Indexed: 10/24/2022]
Abstract
Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future.
Collapse
Affiliation(s)
- Zi-xuan Shi
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Wei Rao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Huan Wang
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Nan-ding Wang
- Department of Cardiology, Xi'an Traditional Chinese Medicine Hospital, Xi'an, 710032, PR China
| | - Jing-wen Si
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Jiao Zhao
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Jun-chang Li
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zong-ren Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
31
|
Rocca A, Marino A, Rocca V, Moscato S, de Vito G, Piazza V, Mazzolai B, Mattoli V, Ngo-Anh TJ, Ciofani G. Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. Int J Nanomedicine 2015; 10:433-45. [PMID: 25609955 PMCID: PMC4294648 DOI: 10.2147/ijn.s76329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Enhancement of the osteogenic potential of mesenchymal stem cells (MSCs) is highly desirable in the field of bone regeneration. This paper proposes a new approach for the improvement of osteogenesis combining hypergravity with osteoinductive nanoparticles (NPs). Materials and methods In this study, we aimed to investigate the combined effects of hypergravity and barium titanate NPs (BTNPs) on the osteogenic differentiation of rat MSCs, and the hypergravity effects on NP internalization. To obtain the hypergravity condition, we used a large-diameter centrifuge in the presence of a BTNP-doped culture medium. We analyzed cell morphology and NP internalization with immunofluorescent staining and coherent anti-Stokes Raman scattering, respectively. Moreover, cell differentiation was evaluated both at the gene level with quantitative real-time reverse-transcription polymerase chain reaction and at the protein level with Western blotting. Results Following a 20 g treatment, we found alterations in cytoskeleton conformation, cellular shape and morphology, as well as a significant increment of expression of osteoblastic markers both at the gene and protein levels, jointly pointing to a substantial increment of NP uptake. Taken together, our findings suggest a synergistic effect of hypergravity and BTNPs in the enhancement of the osteogenic differentiation of MSCs. Conclusion The obtained results could become useful in the design of new approaches in bone-tissue engineering, as well as for in vitro drug-delivery strategies where an increment of nanocarrier internalization could result in a higher drug uptake by cell and/or tissue constructs.
Collapse
Affiliation(s)
- Antonella Rocca
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy ; Scuola Superiore Sant'Anna, The BioRobotics Institute, Pontedera, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy ; Scuola Superiore Sant'Anna, The BioRobotics Institute, Pontedera, Italy
| | - Veronica Rocca
- Università di Pisa, Dipartimento di Ingegneria dell'Informazione, Pisa, Italy, Noordwijk, the Netherlands
| | - Stefania Moscato
- Università di Pisa, Dipartimento di Medicina Clinica e Sperimentale, Pisa, Italy
| | - Giuseppe de Vito
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Pisa, Italy ; Scuola Normale Superiore, NEST, Pisa, Italy
| | - Vincenzo Piazza
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Pisa, Italy
| | - Barbara Mazzolai
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy
| | - Thu Jennifer Ngo-Anh
- Directorate of Human Spaceflight and Operations, European Space Agency, Noordwijk, the Netherlands
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy
| |
Collapse
|
32
|
Girardi C, De Pittà C, Casara S, Calura E, Romualdi C, Celotti L, Mognato M. Integration analysis of microRNA and mRNA expression profiles in human peripheral blood lymphocytes cultured in modeled microgravity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:296747. [PMID: 25045661 PMCID: PMC4090438 DOI: 10.1155/2014/296747] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 01/07/2023]
Abstract
We analyzed miRNA and mRNA expression profiles in human peripheral blood lymphocytes (PBLs) incubated in microgravity condition, simulated by a ground-based rotating wall vessel (RWV) bioreactor. Our results show that 42 miRNAs were differentially expressed in MMG-incubated PBLs compared with 1 g incubated ones. Among these, miR-9-5p, miR-9-3p, miR-155-5p, miR-150-3p, and miR-378-3p were the most dysregulated. To improve the detection of functional miRNA-mRNA pairs, we performed gene expression profiles on the same samples assayed for miRNA profiling and we integrated miRNA and mRNA expression data. The functional classification of miRNA-correlated genes evidenced significant enrichment in the biological processes of immune/inflammatory response, signal transduction, regulation of response to stress, regulation of programmed cell death, and regulation of cell proliferation. We identified the correlation of miR-9-3p, miR-155-5p, miR-150-3p, and miR-378-3p expression with that of genes involved in immune/inflammatory response (e.g., IFNG and IL17F), apoptosis (e.g., PDCD4 and PTEN), and cell proliferation (e.g., NKX3-1 and GADD45A). Experimental assays of cell viability and apoptosis induction validated the results obtained by bioinformatics analyses demonstrating that in human PBLs the exposure to reduced gravitational force increases the frequency of apoptosis and decreases cell proliferation.
Collapse
Affiliation(s)
- C. Girardi
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - C. De Pittà
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - S. Casara
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - E. Calura
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - C. Romualdi
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - L. Celotti
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Laboratori Nazionali di Legnaro, INFN, Viale dell'Università 2, Legnaro, 35020 Padova, Italy
| | - M. Mognato
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|