1
|
Wang Y, Ju Z, Li L, Zhang S, Wang Z, Yang L. A complementary and integrated strategy for multicomponent characterization and attribution of Danning tablet based on convergence and liquid chromatography combined with mass spectrometry. J Pharm Biomed Anal 2025; 255:116628. [PMID: 39731928 DOI: 10.1016/j.jpba.2024.116628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 12/30/2024]
Abstract
Danning tablet (DNT) is a traditional Chinese medicine (TCM) that contains seven herbal ingredients. It has been clinically used to treat liver and gallbladder diseases in humans. However, the complex composition of TCM prescriptions makes it challenging to fully analyze different polar range compounds. The supercritical fluid chromatography (SFC) method has stronger selectivity for weak polarity and low volatility substances. In contrast, ultra-high performance liquid chromatography (UHPLC) has stronger selectivity for compounds with strong polarity and high boiling points, which offsets the disadvantages of SFC. We aimed to establish a complementary and integrated strategy for multicomponent characterization and attribution of DNT based on ultra-performance convergence chromatography (UPCC) and UHPLC combined with quadrupole-time-of-flight mass spectrometry (QTOF-MS) and identify the potential qualitative indicator. The chemical compounds of DNT were analyzed by matching the self-built databases on the UNIFI platform. Network pharmacology was used to verify the reasonableness of the qualitative indicators with the relevant targets and the enrichment pathways related to the treatment of DNT. A total of 247 compounds were characterized. Specifically, the UPCC-QTOF-MS technology individually characterized 73 compounds. The UHPLC-QTOF-MS technology individually characterized 75 compounds. As a result, the study defined 11 compounds as the potential qualitative indicators. The relevant targets and the enrichment pathways related to the treatment of DNT were constructed. This study completed the comprehensive characterization of the full coverage of the polarity of DNT. The potential qualitative indicators can be extended to improve the accuracy of DNT quality evaluation.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Compound Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhengcai Ju
- Shanghai Jemincare Pharmaceutical Co. Ltd, Shanghai 201203, China
| | - Linnan Li
- Shanghai Key Laboratory of Compound Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Siyu Zhang
- Shanghai Key Laboratory of Compound Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Li Yang
- Shanghai Key Laboratory of Compound Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
2
|
Abdulghani MF, Al-Fayyadh S. Natural products for managing metabolic syndrome: a scoping review. Front Pharmacol 2024; 15:1366946. [PMID: 38746011 PMCID: PMC11091304 DOI: 10.3389/fphar.2024.1366946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Metabolic syndrome comprises a collection of metabolic disorders stemming from factors like genetic predisposition, inadequate nutrition, stress, decreased physical activity, aging, and ethnicity. Although traditional pharmaceutical treatments exist for metabolic syndrome, their limited popularity is attributed to high costs and adverse effects. Consequently, natural products with fewer side effects have been explored for managing this condition. This literature review aims to explore the role of natural products including herbs, botanicals, vitamins, minerals, probiotics, and dietary supplements in managing metabolic syndrome. Methods This scoping review was conducted in five steps, involving the formulation of a research question, the retrieval and extraction of relevant studies, the selection of pertinent studies, the organization of information into tables, and the reporting of results. Data was collected from various databases including Embase, Science Direct, PubMed, Google Scholar, Scopus, and Web of Science, with a focus on studies published from 2010 to the present, available in English and with full-text accessibility. Results We identified 1,259 articles, screened their titles, abstracts, and full texts, ultimately incorporating 169 pertinent articles into this review (comprising 90 review articles, 32 trial articles, 6 in vitro articles, 38 in vivo articles, 1 experimental article and 2 observational articles). The study's outcomes revealed that natural products, encompassing plants and their derivatives, vitamins and supplements, as well as probiotics, can exert a beneficial influence on metabolic syndrome by regulating blood sugar, blood pressure, lipid profiles, obesity, and abnormal cholesterol and triglyceride levels. Conclusion The current study underscores the significance of natural products in addressing metabolic syndrome. Consequently, it is advisable to conduct further extensive research to assess the efficacy of these products, potentially integrating them into treatment regimens for individuals with metabolic syndrome.
Collapse
|
3
|
Abdulghani MF, Al-Fayyadh S. Natural products for managing metabolic syndrome: a scoping review. Front Pharmacol 2024; 15. [DOI: https:/doi.org/10.3389/fphar.2024.1366946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
IntroductionMetabolic syndrome comprises a collection of metabolic disorders stemming from factors like genetic predisposition, inadequate nutrition, stress, decreased physical activity, aging, and ethnicity. Although traditional pharmaceutical treatments exist for metabolic syndrome, their limited popularity is attributed to high costs and adverse effects. Consequently, natural products with fewer side effects have been explored for managing this condition. This literature review aims to explore the role of natural products including herbs, botanicals, vitamins, minerals, probiotics, and dietary supplements in managing metabolic syndrome.MethodsThis scoping review was conducted in five steps, involving the formulation of a research question, the retrieval and extraction of relevant studies, the selection of pertinent studies, the organization of information into tables, and the reporting of results. Data was collected from various databases including Embase, Science Direct, PubMed, Google Scholar, Scopus, and Web of Science, with a focus on studies published from 2010 to the present, available in English and with full-text accessibility.ResultsWe identified 1,259 articles, screened their titles, abstracts, and full texts, ultimately incorporating 169 pertinent articles into this review (comprising 90 review articles, 32 trial articles, 6 in vitro articles, 38 in vivo articles, 1 experimental article and 2 observational articles). The study’s outcomes revealed that natural products, encompassing plants and their derivatives, vitamins and supplements, as well as probiotics, can exert a beneficial influence on metabolic syndrome by regulating blood sugar, blood pressure, lipid profiles, obesity, and abnormal cholesterol and triglyceride levels.ConclusionThe current study underscores the significance of natural products in addressing metabolic syndrome. Consequently, it is advisable to conduct further extensive research to assess the efficacy of these products, potentially integrating them into treatment regimens for individuals with metabolic syndrome.
Collapse
|
4
|
Senthilkumar S, Solan ME, Fernandez-Luna MT, Lavado R. Cannabidiol and Indole-3-carbinol Reduce Intracellular Lipid Droplet
Accumulation in HepaRG, A Human Liver Cell Line, as well as in Human
Adipocytes. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/2210315513666230526100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 01/03/2025]
Abstract
Introduction:
An increase in obesity-related diseases is becoming an alarming worldwide problem. Therefore, new therapeutic methods are constantly sought to prevent, treat, and alleviate symptoms of the diseases associated with obesity.
Method:
This study investigates the effects of two natural compounds (indole-3-carbinol, I3C, a bioactive indolic compound found in cruciferous vegetables; cannabidiol, CBD, the active ingredient derived from the hemp plant) on the fatty acid accumulation in the human liver cell line HepaRG, a well-established model for non-alcoholic fatty liver disease (NAFLD) and in human pre-adipocytes (adipose-derived mesenchymal stem cells, MSC).
Results:
EC50s of each compound were in the high µM range (approximately 30 mg/L), showing the low toxicity of these compounds. Determination of the selected compounds in cell media showed no significant differences during the exposure, suggesting that no significant metabolism or degradation happened during the exposure time. Quantification of the bioaccumulation of lipid droplets on exposed HepaRG revealed a significant reduction and mitigation of fatty acid accumulation when exposed to 1 nM of I3C and 100 nM of CBD.). On MSC cells a significant inhibition of lipogenesis and adipocyte differentiation was observed in cells exposed to 0.1 nM of I3C and 1 nM of CBD.
Conclusion:
This study provides a significant contribution to advancing the understanding of preventative dietary strategies that target adipocyte differentiation and NAFLD.
Collapse
Affiliation(s)
| | - Megan E. Solan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | | | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
5
|
Ding X, He X, Tang B, Lan T. Integrated traditional Chinese and Western medicine in the prevention and treatment of non-alcoholic fatty liver disease: future directions and strategies. Chin Med 2024; 19:21. [PMID: 38310315 PMCID: PMC10838467 DOI: 10.1186/s13020-024-00894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Traditional Chinese medicine (TCM) has been widely used for several centuries for metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). At present, NAFLD has become the most prevalent form of chronic liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. However, there is still a lack of effective treatment strategies in Western medicine. The development of NAFLD is driven by multiple mechanisms, including genetic factors, insulin resistance, lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, gut microbiota dysbiosis, and adipose tissue dysfunction. Currently, certain drugs, including insulin sensitizers, statins, vitamin E, ursodeoxycholic acid and betaine, are proven to be beneficial for the clinical treatment of NAFLD. Due to its complex pathogenesis, personalized medicine that integrates various mechanisms may provide better benefits to patients with NAFLD. The holistic view and syndrome differentiation of TCM have advantages in treating NAFLD, which are similar to the principles of personalized medicine. In TCM, NAFLD is primarily classified into five types based on clinical experience. It is located in the liver and is closely related to spleen and kidney functions. However, due to the multi-component characteristics of traditional Chinese medicine, its application in the treatment of NAFLD has been considerably limited. In this review, we summarize the advances in the pathogenesis and treatment of NAFLD, drawn from both the Western medicine and TCM perspectives. We highlight that Chinese and Western medicine have complementary advantages and should receive increased attention in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Xu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Bulang Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
- School of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
6
|
Ni Y, Wang X, Wu Q, Yao Y, Xu Y, Li Y, Feng Q, Zhou M, Gou X. Qushi Huayu decoction ameliorates non-alcoholic fatty liver disease in rats by modulating gut microbiota and serum lipids. Front Endocrinol (Lausanne) 2023; 14:1272214. [PMID: 37900123 PMCID: PMC10600383 DOI: 10.3389/fendo.2023.1272214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease. As a clinical empirical prescription of traditional Chinese medicine, Qushi Huayu decoction (QHD) has attracted considerable attention for its advantages in multi-target treatment of NAFLD. However, the intervention mechanism of QHD on abnormal lipid levels and gut microbiota in NAFLD has not been reported. Methods Therefore, we verified the therapeutic effect of QHD on high-fat diet (HFD)-induced NAFLD in rats by physiological parameters and histopathological examination. In addition, studies on gut microbiota and serum lipidomics based on 16S rRNA sequencing and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) were conducted to elucidate the therapeutic mechanism of NAFLD in QHD. Results The changes in gut microbiota in NAFLD rats are mainly reflected in their diversity and composition, while QHD treated rats restored these changes. The genera Blautia, Lactobacillus, Allobaculum, Lachnoclostridium and Bacteroides were predominant in the NAFLD group, whereas, Turicibacter, Blautia, Sporosarcina, Romboutsia, Clostridium_sensu_stricto_1, Allobaculum, and Psychrobacter were predominant in the NAFLD+QHD group. Lipid subclasses, including diacylglycerol (DG), triglycerides (TG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidic acid (PA), phosphatidylserine (PS), lysophosphatidylinositol (LPI), and phosphatidylglycerol (PG), were significantly different between the NAFLD and the control groups, while QHD treatment significantly altered the levels of DG, TG, PA, lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), and platelet activating factor (PAF). Finally, Spearman's correlation analysis showed that NAFLD related differential lipid molecules were mainly associated with the genera of Bacteroides, Blautia, Lachnoclostridium, Clostridium_sensu_stricto_1, and Turicibacter, which were also significantly correlated with the biological parameters of NAFLD. Discussion Taken together, QHD may exert beneficial effects by regulating the gut microbiota and thus intervening in serum lipids.
Collapse
Affiliation(s)
- Yiming Ni
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Wang
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Yichen Yao
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xu
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Qin Feng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Huang YW, Wang LT, Zhang M, Nie Y, Yang JB, Meng WL, Wang XJ, Sheng J. Caffeine can alleviate non-alcoholic fatty liver disease by augmenting LDLR expression via targeting EGFR. Food Funct 2023; 14:3269-3278. [PMID: 36916513 DOI: 10.1039/d2fo02701a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Increasing low-density lipoprotein receptor (LDLR) protein levels represents a key strategy for the prevention and treatment. Berberine can reportedly alleviate non-alcoholic fatty liver disease (NAFLD) by increasing the LDLR expression in an ERK1/2 signaling-dependent manner of NAFLD. Studies have shown that caffeine can inhibit fat deposition in the livers of mice; however, caffeine has not been reported to alleviate NAFLD by augmenting the LDLR expression via targeting EGFR. Here, an MTT assay, western blotting, RT-qPCR, immunohistochemistry, and surface plasmon resonance (SPR) analysis were used to investigate the role of caffeine in low-density lipoprotein cholesterol (LDL-C) clearance both in vitro and in vivo. In vitro, we found that caffeine could activate the EGFR-ERK1/2 signaling pathway in HepG2 cells, leading to increased LDLR mRNA and protein expression, and this effect could be inhibited by cetuximab. The SPR assay results have indicated that caffeine may increase the LDLR expression by directly binding to the EGFR extracellular domain and activating the EGFR-ERK1/2 signaling pathway. In vivo, caffeine markedly improved fatty liver and related blood indices in ApoE KO mice with high-fat-diet-induced NAFLD. Consistent with our in vitro results, we found that caffeine could also activate EGFR-ERK1/2 signaling and promote the LDLR expression in ApoE KO mice. In summary, caffeine can enhance the LDLR expression by directly binding to EGFR and activating the EGFR-ERK1/2 signaling pathway. EGFR signaling may represent a novel target for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Ye-Wei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Li-Tian Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Meng Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yan Nie
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jin-Bo Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Wen-Luer Meng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuan-Jun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China
| |
Collapse
|
8
|
Xu L, Cui H. Yinchenhao Tang alleviates high fat diet induced NAFLD by increasing NR1H4 and APOA1 expression. J Tradit Complement Med 2023. [DOI: 10.1016/j.jtcme.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
9
|
Liu T, Xu G, Liang L, Xiao X, Zhao Y, Bai Z. Pharmacological effects of Chinese medicine modulating NLRP3 inflammasomes in fatty liver treatment. Front Pharmacol 2022; 13:967594. [PMID: 36160411 PMCID: PMC9492967 DOI: 10.3389/fphar.2022.967594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation is a key contributing factor in the pathogenesis of fatty liver diseases (FLD), such as nonalcoholic fatty liver disease (NAFLD) and alcohol-associated liver diseases (ALDs). The NLRP3 inflammasome is widely present in the hepatic parenchymal and non-parenchymal cells, which are assembled and activated by sensing intracellular and extracellular danger signals resulting in the matures of IL-1β/IL-18 and pyroptosis. Moreover, the aberrant activation of the NLRP3 inflammasome is considered the main factor to drives immune outbreaks in relation to hepatic injury, inflammation, steatosis, and fibrosis. Therefore, inhibition of NLRP3 inflammasome may be a promising therapeutic target for FLD. Currently, accumulating evidence has revealed that a number of traditional Chinese medicines (TCM) exert beneficial effects on liver injury via inhibiting the NLRP3 inflammasome activation. Here, we summarized the mechanism of NLRP3 inflammasomes in the progression of FLD, and TCM exerts beneficial effects on FLD via positive modulation of inflammation. We describe that TCM is a promising valuable resource for the prevention and treatment agents against FLD and has the potential to be developed into clinical drugs.
Collapse
Affiliation(s)
- Tingting Liu
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Guizhou, China
| | - Guang Xu
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| | - Longxin Liang
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| | - Zhaofang Bai
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| |
Collapse
|
10
|
Leng J, Tian HJ, Fang Y, Hu YY, Peng JH. Amelioration of Non-Alcoholic Steatohepatitis by Atractylodes macrocephala Polysaccharide, Chlorogenic Acid, and Geniposide Combination Is Associated With Reducing Endotoxin Gut Leakage. Front Cell Infect Microbiol 2022; 12:827516. [PMID: 35865826 PMCID: PMC9294165 DOI: 10.3389/fcimb.2022.827516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/03/2022] [Indexed: 01/01/2023] Open
Abstract
Gut-derived lipopolysaccharide (LPS) leaking through the dysfunctional intestinal barrier contributes to the onset of non-alcoholic steatohepatitis (NASH) by triggering inflammation in the liver. In the present study, a combination consisting of Atractylodes macrocephala polysaccharide (A), chlorogenic acid (C), and geniposide (G) (together, ACG), was shown to ameliorate NASH in mice and reduce hepatic LPS signaling and endotoxemia without decreasing the abundance of identified Gram-negative bacteria through restoring the intestinal tight junctions. Our data indicated that inhibition of LPS gut leakage by the ACG combination contributed to its amelioration of NASH.
Collapse
Affiliation(s)
- Jing Leng
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua-jie Tian
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yi Fang
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yi-yang Hu
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jing-hua Peng, ; Yi-yang Hu,
| | - Jing-hua Peng
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- *Correspondence: Jing-hua Peng, ; Yi-yang Hu,
| |
Collapse
|
11
|
Zhao Z, Wang J, Ren W, Bian Y, Wang Y, Wang L, Guo L, Lei J, Jia J, Miao J. Effect of Jiangan-Jiangzhi Pill on Gut Microbiota and Chronic Inflammatory Response in Rats with Non-Alcoholic Fatty Liver. Chem Biodivers 2022; 19:e202100987. [PMID: 35324083 DOI: 10.1002/cbdv.202100987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with high rates of occurrence. Research has found that NAFLD patients experience varying degrees of intestinal flora imbalance. There is evidence that traditional Chinese medicine (TCM) positively regulates imbalances in the gut microbiota caused by liver diseases. Jiangan-Jiangzhi pill (JGJZ) is a common Chinese remedy that can treat NAFLD clinically. This article investigates how JGJZ affects NAFLD and assesses related changes in the intestinal flora. We established a NAFLD rat model by feeding them a high-fat diet (HFD) and gave different interventions. After twelve weeks, the results revealed that JGJZ decreased the total cholesterol, triglyceride, alanine aminotransferase, and aspartate aminotransferase in the serum of NAFLD rats. Histopathological staining demonstrated that JGJZ relieved cellular fat accumulation in the liver. Inflammatory cytokine levels (IL-6, IL-1β, and TNF-α) were down-regulated. Analysis of 16S rRNA demonstrated that JGJZ changed the community compositional structure of gut microbiota, characterized by a decrease in the Firmicutes-to-Bacteroidetes ratio, and increased gut microbiota diversity and the abundance of dominant groups. Accordingly, our study illustrated that JGJZ exerted a better effect in treating HFD-induced NAFLD, which may be closely related to ameliorating gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Zeyu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyanghu Road, Town West Area, Jinghai District, Tianjin, 301617, China
| | - Jing Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Nankai District, Tianjin, 300192, China
| | - Wei Ren
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Nankai District, Tianjin, 300192, China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyanghu Road, Town West Area, Jinghai District, Tianjin, 301617, China
| | - Yixi Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyanghu Road, Town West Area, Jinghai District, Tianjin, 301617, China
| | - Li Wang
- Department of Pharmacy, Tianjin Second People's Hospital, No. 7, Sudi Nan Road, Naikai District, Tianjin, 300192, China
| | - Liying Guo
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Nankai District, Tianjin, 300192, China
| | - Jinyan Lei
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Nankai District, Tianjin, 300192, China
| | - Jianwei Jia
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Nankai District, Tianjin, 300192, China
| | - Jing Miao
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Nankai District, Tianjin, 300192, China
| |
Collapse
|
12
|
Zhou Z, Zhang J, You L, Wang T, Wang K, Wang L, Kong X, Gao Y, Sun X. Application of herbs and active ingredients ameliorate non-alcoholic fatty liver disease under the guidance of traditional Chinese medicine. Front Endocrinol (Lausanne) 2022; 13:1000727. [PMID: 36204095 PMCID: PMC9530134 DOI: 10.3389/fendo.2022.1000727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global health problem, and its prevalence has been on the rise in recent years. Traditional Chinese Medicine (TCM) contains a wealth of therapeutic resources and has been in use for thousands of years regarding the prevention of liver disease and has been shown to be effective in the treatment of NAFLD in China. but the molecular mechanisms behind it have not been elucidated. In this article, we have updated and summarized the research and evidence concerning herbs and their active ingredients for the treatment in vivo and vitro models of NAFLD or NASH, by searching PubMed, Web of Science and SciFinder databases. In particular, we have found that most of the herbs and active ingredients reported so far have the effect of clearing heat and dispelling dampness, which is consistent with the concept of dampness-heat syndrome, in TCM theory. we have attempted to establish the TCM theory and modern pharmacological mechanisms links between herbs and monomers according to their TCM efficacy, experiment models, targets of modulation and amelioration of NAFLD pathology. Thus, we provide ideas and perspectives for further exploration of the pathogenesis of NAFLD and herbal therapy, helping to further the scientific connotation of TCM theories and promote the modernization of TCM.
Collapse
Affiliation(s)
- Zhijia Zhou
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaixia Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Infection, Oriental Hospital Affiliated to Tongji University, Shanghai, China
| | - Lingtai Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| | - Yueqiu Gao
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| | - Xuehua Sun
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| |
Collapse
|
13
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Zhu K, Guo Y, Zhao C, Kang S, Li J, Wang J, Tang Z, Lin B, Li W. Etiology Exploration of Non-alcoholic Fatty Liver Disease From Traditional Chinese Medicine Constitution Perspective: A Cross-Sectional Study. Front Public Health 2021; 9:635818. [PMID: 34055713 PMCID: PMC8149586 DOI: 10.3389/fpubh.2021.635818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: From the traditional Chinese medicine (TCM) constitution theory perspective, the phlegm-dampness constitution is thought to be closely related to the occurrence of non-alcoholic fatty liver disease (NAFLD). However, this viewpoint still lacks rigorous statistical evidence. This study aimed to test the association between the phlegm-dampness constitution and NAFLD. Methods: We conducted a cross-sectional study. Participants were residents living in Chengdu, China, undergoing health checkups at the health management center of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine between December 2018 and September 2020. TCM constitution type was diagnosed by DAOSH four examinations instrument, NAFLD was diagnosed according to the liver ultrasonography and medical history. Multivariate logistic regression and propensity score matching (PSM) were used to analyze a total of 1,677 qualified data. Results: 1,037 participants had biased constitution(s), 67.8% of which had mixed constitutions (with at least two constitutions). Among 1,677 participants, the phlegm-dampness constitution was associated with the yang-deficiency, yin-deficiency, dampness-heat, qi-depression, and blood-stasis constitutions. The correlation coefficients were 0.11, 0.32, 0.42, 0.20, 0.14, respectively. Between the phlegm-dampness constitution and NAFLD, the odds ratio (OR) and the 95% confidence interval (CI) was 2.05 (1.57-2.69) in the crude model. After adjusting for age, gender, Body mass index (BMI), other biased constitutions, smoking, high blood pressure, diabetes, and dyslipidemia, the OR reduced to 1.51 (1.04-2.18). The associations of seven other biased TCM constitutions and NAFLD were not statistically significant in the fully adjusted model. The PSM analysis showed consistent results with the logistic regression. Conclusions: Among eight biased TCM constitutions, the phlegm-dampness constitution is independently associated with NAFLD. We speculate the phlegm-dampness constitution is a risk factor of NAFLD. Longitudinal studies are needed to confirm this causal relationship in the future. In addition, inconsistent with some TCM practitioners' experience, we disagree that the blood-stasis constitution is associated with NAFLD.
Collapse
Affiliation(s)
- Ke Zhu
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongsong Guo
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chenghao Zhao
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shixin Kang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jialiang Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiexin Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaohui Tang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bing Lin
- Health Management Center, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Lan Q, Ren Z, Chen Y, Cui G, Choi IC, Ung COL, Yu HH, Lee SMY. Hepatoprotective effect of Qushihuayu formula on non-alcoholic steatohepatitis induced by MCD diet in rat. Chin Med 2021; 16:27. [PMID: 33726778 PMCID: PMC7962269 DOI: 10.1186/s13020-021-00434-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH) is an advanced form of non-alcoholic fatty liver disease (NAFLD) for which there is yet any standard pharmacotherapy. Traditional Chinese medicine formula such as Qushihuayu (QSHY) composing of multiple bioactive compounds has been used to treat NAFLD and NASH and shows beneficial effects over single compound treatment. This study aimed to investigate the mechanism of hepatoprotective effect of QSHY formula using a rat model. Methods Six-weeks old male Wistar rats were given methionine/choline supplemented (MCS) diet for 8 weeks and used as the blank control. Another 7 rats, which received methionine/choline deficient (MCD) diet in the first 6 weeks and a MCS&MCD (1:1) mixture diet in the last 2 weeks, were used as the model group. The groups of QSHY pre-treatment, low dosage, medium dosage and high dosage were given the same diet as the model group. Except for pre-treatment group (1 week in advanced of other groups), all QSHY treatment groups received QSHY formula by gavage every day since the MCD diet started. Results In the MCD diet group, the QSHY formula decreased the serum ALT and AST levels, lipid droplets, inflammation foci, FAS and α-SMA protein expression than MCD diet group. MAPK pathways phospharylation were markedly depressed by the QSHY formula. Moreover, QSHY formula enhanced PPAR-γ and p-p65 translocating into nucleus. The administration of QSHY increased hepatic mRNA levels of Transcription Factor 1 alpha (HNF1A), Hepatocyte Nuclear Factor 4 alpha (HNF4A) and Forkhead box protein A3 (FOXA3) which play a pivotal role in Hepatic stellate cell (HSCs) reprogramming. Conclusion These findings suggest that QSHY formula exerts a hepatoprotective effect against steatosis and fibrosis presumably via depressed MAPK pathways phosphorylation, reinforcement of PPAR-γ and p-p65 translocating into nucleus and enhanced HSCs reprogramming. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00434-1.
Collapse
Affiliation(s)
- Qingping Lan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhitao Ren
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yan Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guozhen Cui
- Zun Yi Medical University- Zhuhai Campus, Zhuhai, China
| | - I Cheong Choi
- Department of Gastroenterology, Kiang Wu Hospital, Macao, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hon Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macao, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China. .,Institute of Chinese Medical Sciences, University of Macau, Room 7003, N22 Building, Avenide da Universidade, Taipa, Macau, China.
| |
Collapse
|
16
|
Cai Y, Zheng Q, Sun R, Wu J, Li X, Liu R. Recent progress in the study of Artemisiae Scopariae Herba (Yin Chen), a promising medicinal herb for liver diseases. Biomed Pharmacother 2020; 130:110513. [DOI: 10.1016/j.biopha.2020.110513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
|
17
|
Izadi F, Farrokhzad A, Tamizifar B, Tarrahi MJ, Entezari MH. Effect of sour tea supplementation on liver enzymes, lipid profile, blood pressure, and antioxidant status in patients with non-alcoholic fatty liver disease: A double-blind randomized controlled clinical trial. Phytother Res 2020; 35:477-485. [PMID: 32909326 DOI: 10.1002/ptr.6826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
The aim of this study was to evaluate the efficacy of sour tea supplementation in patients with nonalcoholic fatty liver disease (NAFLD). Seventy NAFLD patients were enrolled in this randomized, double-blind, placebo-controlled clinical trial. Participants received sour tea in the form of a 450 mg capsule or a placebo capsule daily for 8 weeks. Anthropometric indices, liver enzymes, lipid profile, blood pressure, and antioxidant status were evaluated at the baseline and at the end of the study. Sixty-one participants completed the study. After 8 weeks, sour tea administration significantly decreased serum triglyceride (TG) (p = .03), alanine aminotransferase (ALT) (p = .01), and aspartate aminotransferase (AST) (p = .004) levels compared with the placebo. In addition, sour tea supplementation resulted in a significant reduction in systolic blood pressure (SBP) (p = .03) and diastolic blood pressure (DBP) (p = .04), and a significant increase in serum total antioxidant capacity (TAC) levels (p ˂ .001) compared with the placebo. However, no significant changes in anthropometric measures, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) levels were observed after sour tea supplementation compared with the placebo (p > .05). Sour tea supplementation may be effective in improving serum TG, liver enzymes, and blood pressure in patients diagnosed with NAFLD. Further studies are needed to address the exact mechanism of action of these effects.
Collapse
Affiliation(s)
- Fatemeh Izadi
- Food Security Research Center and Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Babak Tamizifar
- Isfahan Gastroenterology and Hepatology Research Center (lGHRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Javad Tarrahi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hassan Entezari
- Food Security Research Center and Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Si-Wu-Tang Alleviates Nonalcoholic Fatty Liver Disease via Blocking TLR4-JNK and Caspase-8-GSDMD Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8786424. [PMID: 32849904 PMCID: PMC7439165 DOI: 10.1155/2020/8786424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) has high global prevalence; however, the treatments of NAFLD are limited due to lack of approved drugs. Methods Mice were randomly assigned into three groups: Control group, NAFLD group, NAFLD plus Si-Wu-Tang group. A NAFLD mice model was established by feeding with a methionine- and choline-deficient (MCD) diet for four weeks. Si-Wu-Tang was given orally by gastric gavage at the beginning of 3rd week, and it lasted for two weeks. The treatment effects of Si-Wu-Tang were confirmed by examining the change of body weight, serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels, Oil Red O staining, and hematoxylin and eosin (H&E) staining of the liver samples and accompanied by steatosis grade scores. The expression and activation of the possible signaling proteins involved in the pathogenesis of NAFLD were determined by western blotting. Results Mice fed with four weeks of MCD diet displayed elevated serum levels of ALT and AST, while there was decreased body weight. The hepatic Oil Red O staining and H&E staining showed severe liver steatosis with high steatosis grade scores. All these can be improved by treating with Si-Wu-Tang for two weeks. Mechanistically, the increased hepatic TLR4 expression and its downstream JNK phosphorylation induced by MCD diet were suppressed by Si-Wu-Tang. Moreover, the upregulations of Caspase-8, gasdermin D (GSDMD), and cleaved-GSDMD in liver mediated by MCD diet were all inhibited by Si-Wu-Tang. Conclusions Treatment with Si-Wu-Tang improves MCD diet-induced NAFLD in part via blocking TLR4-JNK and Caspase-8-GSDMD signaling pathways, suggesting that Si-Wu-Tang has potential for clinical application in treating NAFLD.
Collapse
|
19
|
Zhang H, Yang L, Wang Y, Huang W, Li Y, Chen S, Song G, Ren L. Oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in non-alcoholic fatty liver disease. Life Sci 2020; 257:118090. [PMID: 32679144 DOI: 10.1016/j.lfs.2020.118090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
AIMS This study aimed to investigate oxymatrine via regulating miR-182 improved the hepatic lipid accumulation in non-alcoholic fatty liver disease (NAFLD) model. MATERIALS AND METHODS Wistar rats were fed high-fat and high-fructose diet (HFDHFr group) for 4 weeks and HepG2 cells were treated with palmitic acid (PA group), and then were given oxymatrine intervention. The expression profiles of miRNAs were accessed by RNA sequencing (RNA-Seq). Hematoxylin-eosin (HE) staining and Oil Red O staining were used to observe the inflammation and lipid accumulation in liver. The levels of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty-acid synthase (FAS) and carnitine palmitoyltransferase 1A (CPT-1A) were detected by RT-qPCR and Western blotting, respectively. Cell viability was detected by Cell Counting Kit-8 (CCK-8). KEY FINDINGS miR-182 was down-regulated in the HFDHFr group and PA group. Oxymatrine reduced body weight, and improved glucose tolerance and insulin resistance in the HFDHFr + OMT group compared with HFDHFr group. In addition, oxymatrine reduced the ratio (liver weight/body weight), the content of triglycerides (TG), hepatic lipid accumulation and steatosis. The levels of SREBP-1c, ACC, and FAS were significantly decreased, while the CPT-1A level was obviously elevated after oxymatrine intervention (P < 0.05). In vivo, miR-182 knockdown increased the levels of SREBP-1c, ACC and FAS, while reduced the CPT-1A level. Additionally, oxymatrine attenuated the effects of miR-182 inhibitor on lipid accumulation. SIGNIFICANCE We presented a possible mechanism that oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in NAFLD model.
Collapse
Affiliation(s)
- He Zhang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Liying Yang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Yichao Wang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Wenli Huang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Yang Li
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Guangyao Song
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China.
| |
Collapse
|
20
|
Li S, Xu Y, Guo W, Chen F, Zhang C, Tan HY, Wang N, Feng Y. The Impacts of Herbal Medicines and Natural Products on Regulating the Hepatic Lipid Metabolism. Front Pharmacol 2020; 11:351. [PMID: 32265720 PMCID: PMC7105674 DOI: 10.3389/fphar.2020.00351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The dysregulation of hepatic lipid metabolism is one of the hallmarks in many liver diseases including alcoholic liver diseases (ALD) and non-alcoholic fatty liver diseases (NAFLD). Hepatic inflammation, lipoperoxidative stress as well as the imbalance between lipid availability and lipid disposal, are direct causes of liver steatosis. The application of herbal medicines with anti-oxidative stress and lipid-balancing properties has been extensively attempted as pharmaceutical intervention for liver disorders in experimental and clinical studies. Although the molecular mechanisms underlying their hepatoprotective effects warrant further exploration, increasing evidence demonstrated that many herbal medicines are involved in regulating lipid accumulation processes including hepatic lipolytic and lipogenic pathways, such as mitochondrial and peroxisomal β-oxidation, the secretion of very low density lipoprotein (VLDL), the non-esterified fatty acid (NEFA) uptake, and some vital hepatic lipogenic enzymes. Therefore, in this review, the pathways or crucial mediators participated in the dysregulation of hepatic lipid metabolism are systematically summarized, followed by the current evidences and advances in the positive impacts of herbal medicines and natural products on the lipid metabolism pathways are detailed. Furthermore, several herbal formulas, herbs or herbal derivatives, such as Erchen Dection, Danshen, resveratrol, and berberine, which have been extensively studied for their promising potential in mediating lipid metabolism, are particularly highlighted in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
21
|
Meng Y, Liu Y, Fang N, Guo Y. Hepatoprotective effects of Cassia semen ethanol extract on non-alcoholic fatty liver disease in experimental rat. PHARMACEUTICAL BIOLOGY 2019; 57:98-104. [PMID: 30757944 PMCID: PMC6374930 DOI: 10.1080/13880209.2019.1568509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Cassia semen (Cs), a seed of Cassia obtusifolia L. (Leguminosae), is a popular functional beverage. Previous studies reported that Cs displayed antioxidant, antifungal and strong liver protective effects. OBJECTIVE This study evaluates the hepatoprotective effects of Cs on non-alcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS Seventy-two male Wistar rats raised with high-fat diet (HFD) were randomly allotted into model, metformin (0.2 g/kg) and Cs (0.5, 1, and 2 g/kg)-treated groups. Another 12 rats were raised with normal feed as control group; all the rats were orally administrated with drugs and vehicle for 6 weeks. Alanine transferase (ALT), aspartate transaminase (AST), triglycerides (TG), total cholesterol (TC), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-8 and low density lipoprotein receptor (LDL-R) mRNA levels were measured at the end of the experiment. RESULTS Twelve weeks of HFD administration significantly increased the levels of AST, ALT, TG, TC, TNF-α, IL-6, IL-8 and MDA, decreased SOD (199.42 vs. 137.70 U/mg protein) and GSH (9.76 vs. 4.55 mg/g protein) contents, compared to control group. Cs administration group significantly decreased the elevated biomarkers with the ED50 = 1.2 g/kg for NAFLD rats. Cs treatment also prevents the decreased expression of LDL-R mRNA, and improved the histopathological changes compared to model group. CONCLUSIONS The hepatoprotective effect of Cs on NAFLD may possibly be due to its antioxidant effect. Cs may become a potent hepatoprotective agent in clinical therapy in the future.
Collapse
Affiliation(s)
- Yuanyuan Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Shandong, Jinan, People's Republic of China
| | - Yong Liu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Shandong, Jinan, People's Republic of China
| | - Ningning Fang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Shandong, Jinan, People's Republic of China
| | - Yongmin Guo
- Department of Anesthesiology, Qilu Hospital of Shandong University, Shandong, Jinan, People's Republic of China
- CONTACT Yongmin Guo Department of Anesthesiology, Qilu Hospital of Shandong University, 107, Wenhua Xi Road, Shandong, Jinan250012, People's Republic of China
| |
Collapse
|
22
|
Meng XL, Zhu ZX, Lu RH, Li S, Hu WP, Qin CB, Yan X, Yang GK, Nie GX. Regulation of growth performance and lipid metabolism in juvenile grass carp (Ctenopharyngodon idella) with honeysuckle (Lonicera japonica) extract. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1563-1573. [PMID: 31102099 DOI: 10.1007/s10695-019-00644-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the effects of honeysuckle extract (Lonicera japonica, HE) on the growth performance and lipid metabolism of juvenile grass carp (Ctenopharyngodon idella). HE at doses of 10 g kg-1 (LHE), 20 g kg-1 (MHE), and 40 g kg-1 (HHE) were individually mixed with the basal diet and fed to grass carp for 10 weeks, and ginseng extract (20 g kg-1, GSE) was used as a positive control. The results showed that HE administration exerted no effect on growth performance, but the hepatosomatic index (HSI) and muscle and liver lipid contents were significantly decreased in the LHE and MHE groups. The serum levels of LDL-c, total triglyceride (TG) and total cholesterol (TC) also declined in the HE-treated groups. Moreover, the disordered vacuolization and nucleus migration in the liver were alleviated in the MHE and HHE groups, and mRNA expressions of lipogenesis-related genes, such as acc1, fas, srebp1, and pparγ decreased. Similarly, the expression of genes related to lipolysis, such as cpt1, atgl, lpl, and pparα, was found to be significantly increased in the MHE and HHE groups compared with the control. Taken together, HE can effectively improve the lipid metabolism and ameliorate the lipid deposition of grass carp and thus may be a promising feed additive in aquaculture.
Collapse
Affiliation(s)
- Xiao-Lin Meng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Zhen-Xiang Zhu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Rong-Hua Lu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Shuai Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Wen-Pan Hu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Chao-Bin Qin
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiao Yan
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Guo-Kun Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China.
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| |
Collapse
|
23
|
Taghipour YD, Hajialyani M, Naseri R, Hesari M, Mohammadi P, Stefanucci A, Mollica A, Farzaei MH, Abdollahi M. Nanoformulations of natural products for management of metabolic syndrome. Int J Nanomedicine 2019; 14:5303-5321. [PMID: 31406461 PMCID: PMC6642644 DOI: 10.2147/ijn.s213831] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome is a common metabolic disorder which has become a public health challenge worldwide. There has been growing interest in medications including natural products as complementary or alternative choices for common chemical therapeutics regarding their limited side effects and ease of access. Nanosizing these compounds may help to increase their solubility, bioavailability, and promisingly enhance their efficacy. This study, for the first time, provides a comprehensive overview of the application of natural-products-based nanoformulations in the management of metabolic syndrome. Different phytochemicals including curcumin, berberine, Capsicum oleoresin, naringenin, emodin, gymnemic acid, resveratrol, quercetin, scutellarin, stevioside, silybin, baicalin, and others have been nanosized hitherto, and their nanosizing method and effect in treatment and alleviating metabolic syndrome have been reviewed and discussed in this study. It has been discovered that there are several pathways or molecular targets relevant to metabolic disorders which are affected by these compounds. Various natural-based nanoformulations have shown promising effect in treatment of metabolic syndrome, and therefore can be considered as future candidates instead of or in conjunction with pharmaceutical drugs if they pass clinical trials successfully.
Collapse
Affiliation(s)
- Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Phytopharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rozita Naseri
- Internal Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azzurra Stefanucci
- Department of Pharmacy, G. d’Annunzio University of Chieti-pescara, Chieti66100, Italy
| | - Adriano Mollica
- Department of Pharmacy, G. d’Annunzio University of Chieti-pescara, Chieti66100, Italy
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, the Institute of Pharmaceutical Sciences (TIPS) and Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
24
|
Gegen Qinlian Decoction Attenuates High-Fat Diet-Induced Steatohepatitis in Rats via Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7370891. [PMID: 30671129 PMCID: PMC6323455 DOI: 10.1155/2018/7370891] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/25/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022]
Abstract
Gut microbiota play an important role in modulating energy contribution, metabolism, and inflammation, and disruption of the microbiome population is closely associated with chronic metabolic diseases, such as nonalcoholic fatty liver disease (NAFLD). Gegen Qinlian decoction (GGQLD), a well-known traditional Chinese herbal medicine (CHM), was previously found to regulate lipid metabolism and attenuate inflammation during NAFLD pathogenesis. However, the underlying mechanism of this process, as well as how the gut microbiome is involved, remains largely unknown. In this study, we investigated the effect of varying doses of GGQLD on the total amount and distribution of gut bacteria in rats fed a high-fat diet (HFD) for 8 weeks. Our analysis indicates that Oscillibacter and Ruminococcaceae_g_unclassified are the dominant families in the HFD group. Further, HFD-dependent differences at the phylum, class, and genus levels appear to lead to dysbiosis, characterized by an increase in the Firmicutes/Bacteroidetes ratio and a dramatic increase in the Oscillibacter genus compared to the control group. Treatment with GGQLD, especially the GGQLL dose, improved these HFD-induced changes in intestinal flora, leading to increased levels of Firmicutes, Clostridia, Lactobacillus, bacilli, and Erysipelotrichales that were similar to the controls. Taken together, our data highlight the efficacy of GGQLD in treating NAFLD and support its clinical use as a treatment for NAFLD/NASH patients.
Collapse
|
25
|
Yinchenhao Decoction Alleviates Liver Fibrosis by Regulating Bile Acid Metabolism and TGF-β/Smad/ERK Signalling Pathway. Sci Rep 2018; 8:15367. [PMID: 30337590 PMCID: PMC6194075 DOI: 10.1038/s41598-018-33669-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Yinchenhao decoction (YCHD), comprising Yinchenhao (Artemisiae Scopariae Herba), Zhizi (Gardeniae Fructus) and Dahuang (Radix Rhei et Rhizoma), is widely used for treating various diseases. We aimed to investigate the bile acid metabolic mechanism of YCHD in dimethylnitrosamine (DMN)-induced liver fibrosis model. Rats received DMN (10 mg/kg, intraperitoneally) for four successive weeks for liver fibrosis induction and were treated with YCHD for the last 2 weeks. Histopathological analysis showed that YCHD prevented DMN-induced histopathological changes in liver tissues. Serum liver function in YCHD group improved. Ultraperformance liquid chromatography-mass spectrometry analysis showed that YCHD significantly restored both free and conjugated bile acid levels increased by DMN, to normal levels. RT-qPCR results showed that YCHD treatment upregulated the expression of genes related to bile acid synthesis, reabsorption, and excretion. Western blotting analysis showed that YCHD downregulated α-SMA, TGF-β1, p-Smad3, and p-ERK1/2 expression in chenodeoxycholic acid (CDCA)-activated hepatic stellate cells (HSCs). The viability of CDCA-activated HSCs significantly increased after treatment with YCHD and PD98059 (an ERK inhibitor) compared to YCHD treatment alone. Our findings suggest that YCHD alleviated DMN-induced liver fibrosis by regulating enzymes responsible for bile acid metabolism. Additionally, it inhibits CDCA-induced HSC proliferation and activation via TGF-β1/Smad/ERK signalling pathway.
Collapse
|
26
|
Effect of Dachaihu decoction on non-alcoholic fatty liver disease model rats induced by a high-fat high-sugar diet. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
27
|
Miao Z, Hu Y, Zhang X, Yang X, Tang Y, Kang A, Zhu D. Screening and identification of ligand-protein interactions using functionalized heat shock protein 90-fluorescent mesoporous silica-indium phosphide/zinc sulfide quantum dot nanocomposites. J Chromatogr A 2018; 1562:1-11. [DOI: 10.1016/j.chroma.2018.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/06/2023]
|
28
|
Liver-specific metabolomics characterizes the hepatoprotective effect of saponin-enriched Celosiae Semen extract on mice with nonalcoholic fatty liver disease. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Zhong H, Chen K, Feng M, Shao W, Wu J, Chen K, Liang T, Liu C. Genipin alleviates high-fat diet-induced hyperlipidemia and hepatic lipid accumulation in mice via miR-142a-5p/SREBP-1c axis. FEBS J 2017; 285:501-517. [PMID: 29197188 DOI: 10.1111/febs.14349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/07/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
Hyperlipidemia is a chronic disorder which plays an important role in the development of cardiovascular diseases, type 2 diabetes, atherosclerosis, hypertension, and nonalcoholic fatty liver disease. Genipin (GNP) is a metabolite from genipioside, which is an active component of the traditional Chinese medicine Gardenia jasminoides Ellis, and has been recognized as a beneficial compound against metabolic disorders. However, whether it can correct overnutrition-induced dyslipidemia is still unknown. In this study, the effects of GNP on attenuating hyperlipidemia and hepatic lipid accumulation were investigated using normal and obese mice induced with a high-fat diet (HFD) and primary hepatocytes treated with free fatty acids. We also sought to identify potential targets of GNP to mediate its effects in the liver. We found that obese mice treated with GNP showed a decrease in the body weight, serum lipid levels, as well as hepatic lipid accumulation. Besides, GNP regulated hepatic expression levels of lipid metabolic genes, which are important in maintaining systemic lipid homeostasis. At the molecular level, GNP increased the expression levels of miR-142a-5p, which bound to 3' untranslated region of Srebp-1c, an important regulator of lipogenesis, which thus led to the inhibition of lipogenesis. Collectively, our data demonstrated that GNP effectively antagonized HFD-induced hyperlipidemia and hepatic lipid accumulation in mice. Such effects were achieved by regulating miR-142a-5p/SREBP-1c axis.
Collapse
Affiliation(s)
- Hong Zhong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, China
| | - Ke Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, China
| | - Mengyang Feng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, China
| | - Wei Shao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, China
| | - Jun Wu
- Department of Geriatric Cardiology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, China
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Shaofu Zhuyu decoction ameliorates obesity-mediated hepatic steatosis and systemic inflammation by regulating metabolic pathways. PLoS One 2017; 12:e0178514. [PMID: 28570676 PMCID: PMC5453538 DOI: 10.1371/journal.pone.0178514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 05/15/2017] [Indexed: 01/07/2023] Open
Abstract
Shaofu Zhuyu decoction (SFZYD, also known as Sobokchugeo-tang), a classical prescription drug in traditional East Asian medicine, has been used to treat blood stasis syndrome (BSS). Hepatic steatosis is the result of excess caloric intake, and its pathogenesis involves internal retention of phlegm and dampness, blood stasis, and liver Qi stagnation. To evaluate the effects of treatment with SFZYD on obesity-induced inflammation and hepatic steatosis, we fed male C57BL/6N mice a high fat diet (HFD) for 8 weeks and then treated them with SFZYD by oral gavage for an additional 4 weeks. The results of histological and biochemical examinations indicated that SFZYD treatment ameliorates systemic inflammation and hepatic steatosis. A partial least squares-discriminant analysis (PLS-DA) scores plot of serum metabolites showed that HFD mice began to produce metabolites similar to those of normal chow (NC) mice after SFZYD administration. We noted significant alterations in the levels of twenty-seven metabolites, alterations indicating that SFZYD regulates the TCA cycle, the pentose phosphate pathway and aromatic amino acid metabolism. Increases in the levels of TCA cycle intermediate metabolites, such as 2-oxoglutaric acid, isocitric acid, and malic acid, in the serum of obese mice were significantly reversed after SFZYD treatment. In addition to inducing changes in the above metabolites, treatment with SFZYD also recovered the expression of genes related to hepatic mitochondrial dysfunction, including Ucp2, Cpt1α, and Ppargc1α, as well as the expression of genes involved in lipid metabolism and inflammation, without affecting glucose uptake or insulin signaling. Taken together, these findings suggest that treatment with SFZYD ameliorated obesity-induced systemic inflammation and hepatic steatosis by regulating inflammatory cytokine and adipokine levels in the circulation and various tissues. Moreover, treatment with SFZYD also reversed alterations in the levels of metabolites of the TCA cycle, the pentose phosphate pathway and aromatic amino acid metabolism.
Collapse
|
31
|
Huanming X, Junmin J, Yubao X, Meijie S, Guangjun T, Pengtao Z, Chaozhen Z, Huijun C, Chanyuan X, Xiaoling C. Colon hydrotherapy plus Traditional Chinese Medicine to treat non-alcoholic fatty liver disease: a pilot study. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30076-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Yao H, Sun Y, Song S, Qi Y, Tao X, Xu L, Yin L, Han X, Xu Y, Li H, Sun H, Peng J. Protective Effects of Dioscin against Lipopolysaccharide-Induced Acute Lung Injury through Inhibition of Oxidative Stress and Inflammation. Front Pharmacol 2017; 8:120. [PMID: 28377715 PMCID: PMC5359219 DOI: 10.3389/fphar.2017.00120] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 01/01/2023] Open
Abstract
The protective effects of dioscin, a natural steroidal saponin from some medicinal plants including Dioscorea nipponica Makino, against lipopolysaccharide (LPS)- induced acute liver and renal damages have been reported in our previous works. However, the actions of dioscin against LPS-induced acute lung injury (ALI) is still unknown. In the present study, we investigated the effects and mechanisms of dioscin against LPS-induced ALI in vitro and in vivo. The results showed that dioscin obviously inhibited cell proliferation and markedly decreased reactive oxidative species level in 16HBE cells treated by LPS. In addition, dioscin significantly protected LPS-induced histological changes, inhibited the infiltration of inflammatory cells, as well as decreased the levels of MDA, SOD, NO and iNOS in mice and rats (p < 0.05). Mechanistically, dioscin significantly decreased the protein levels of TLR4, MyD88, TRAF6, TKB1, TRAF3, phosphorylation levels of PI3K, Akt, IκBα, NF-κB, and the mRNA levels of IL-1β, IL-6, and TNF-α against oxidative stress and inflammation (p < 0.05). Dioscin significantly reduced the overexpression of TLR4, and obviously down-regulated the levels of MyD88, TRAF6, TKB1, TRAF3, p-PI3K, p-Akt, p-IκBα, and p-NF-κB. These findings provide new perspectives for the study of ALI. Dioscin has protective effects on LPS-induced ALI via adjusting TLR4/MyD88- mediated oxidative stress and inflammation, which should be a potent drug in the treatment of ALI.
Collapse
Affiliation(s)
- Hong Yao
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Yiping Sun
- Lab of Medical Function, College of Basic Medical Sciences, Dalian Medical University, Dalian China
| | - Shasha Song
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Hua Li
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian China
| |
Collapse
|
33
|
Jiang W, Guo MH, Hai X. Hepatoprotective and antioxidant effects of lycopene on non-alcoholic fatty liver disease in rat. World J Gastroenterol 2016; 22:10180-10188. [PMID: 28028366 PMCID: PMC5155177 DOI: 10.3748/wjg.v22.i46.10180] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/15/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023] Open
Abstract
AIM To evaluate the hepatoprotective effect of lycopene (Ly) on non-alcoholic fatty liver disease (NAFLD) in rat.
METHODS A rat model of NAFLD was first established by feeding a high-fat diet for 14 wk. Sixty-five rats were randomly divided into normal group, model group and Ly treatment groups. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol (TC) in serum and low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), free fatty acid (FFA), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) in liver tissue were evaluated, respectively. While the hepatoprotective effect was also confirmed by histopathological analysis, the expression levels of TNF-α and cytochrome P450 (CYP) 2E1 in rat liver were determined by immunohistochemistry analysis.
RESULTS A significant decrease was observed in the levels of serum AST (2.07-fold), ALT (2.95-fold), and the blood lipid TG (2.34-fold) and TC (1.66-fold) in the dose of 20 mg/kg Ly-treated rats (P < 0.01), compared to the model group. Pretreatment with 5, 10 and 20 mg/kg of Ly significantly raised the levels of antioxidant enzyme SOD in a dose-dependent manner, to 90.95 ± 9.56, 109.52 ± 11.34 and 121.25 ± 10.68 (P < 0.05, P < 0.01), as compared with the model group. Similarly, the levels of GSH were significantly increased (P < 0.05, P < 0.01) after the Ly treatment. Meanwhile, pretreatment with 5, 10 and 20 mg/kg of Ly significantly reduced MDA amount by 30.87, 45.51 and 54.49% in the liver homogenates, respectively (P < 0.01). The Ly treatment group showed significantly decreased levels of lipid products LDL-C (P < 0.05, P < 0.01), improved HDL-C level and significantly decreased content of FFA, compared to the model group (P < 0.05, P < 0.01). Furthermore, the Ly-treated group also exhibited a down-regulated TNF-α and CYP2E1 expression, decreased infiltration of liver fats and reversed histopathological changes, all in a dose-dependent manner (P < 0.05, P < 0.01).
CONCLUSION This study suggests that Ly has a protective effect on NAFLD, down-regulates expression of TNF-α, and that CYP2E1 may be one of the action mechanisms for Ly.
Collapse
|
34
|
Wu YY, Zha Y, Liu J, Wang F, Xu J, Chen ZP, Ding HY, Sheng L, Han XJ. Effect of berberine on the ratio of high-molecular weight adiponectin to total adiponectin and adiponectin receptors expressions in high-fat diet fed rats. Chin J Integr Med 2016:10.1007/s11655-016-2518-x. [PMID: 27896586 DOI: 10.1007/s11655-016-2518-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To assess the effects of berberine (BBR) on high-molecular weight (HMW) adiponectin and adiponectin receptors (adipoR1/adipoR2) expressions in high-fat (HF) diet fed rats. METHODS Forty Wistar male rats were randomly assigned into a normal diet fed group and three HF diet (fat for 45% calories) fed groups (n=10 for each group). All rats underwent 12 weeks of feeding. After 4 weeks feeding, rats in the two of three HF diet fed groups were treated with 150 mg·kg-1·day-1 BBR (HF+LBBR group) and 380 mg·kg-1·day-1 BBR (HF+HBBR group) by gavage once a day respectively for the next 8 weeks while the rats in other groups treated with vehicle (NF+Veh and HF+Veh). Body weight and food intake were observed and recorded on daily basis. At the end of 12 weeks, the blood, liver, epididymal fat tissues and quadriceps femoris muscles were collected. Fasting insulin, plasma fasting glucose, serum free fatty acid (FFA), total adiponectin and HMW adiponectin levels were measured by enzyme linked immunosorbent assay method. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to determine the insulinsensitizing. Meanwhile the homeostasis model assessment (HOMA) method was used to determine insulin resistance (HOMA-IR). The expressions of adipoR1, adipoR2 and adenosine monophophate activated protein kinase (AMPK) phosphorylation level in skeletal muscle and liver tissue were detected by Western blot. Liver and kidney toxicity were evaluated during treatment. RESULTS The body weight of rats in high- or low-dose BBR group reduced as well as HOMA-IR, FFA concentrations and fasting insulin levels decreased compared with HF+Veh group (P<0.05). BBR also increased the ratio of HMW to total adiponectin in high fat-fed rats compared with rats in the HF+Veh group. High- and low-dose BBR increased adipoR1 expression in skeletal muscle by over 6- and 2-fold (P<0.05), respectively, and high-dose BBR also increased adipoR2 expression in liver tissue by over 2-fold (P<0.05). BBR significantly increased AMPK phosphorylation in HF diet rats compared with normal diet rats (P<0.05). The ratio of HMW to total adiponectin was inversely correlated with HOMA-IR (r=-0.52, P=0.001). Meantime, no liver and kidney toxicity was found in high fat-fed rats that treated by BBR. CONCLUSION Berberine may improve insulin resistance by increasing the expression of adiponectin receptors and the ratio of HMW to total adiponectin.
Collapse
Affiliation(s)
- Yue-Yue Wu
- Department of Endocrinology, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai, 200240, China
| | - Ying Zha
- Department of Endocrinology, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai, 200240, China
- Department of Science and Education, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai, 200240, China
| | - Jun Liu
- Department of Endocrinology, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai, 200240, China.
| | - Fang Wang
- Department of Endocrinology, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai, 200240, China
| | - Jiong Xu
- Department of Endocrinology, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai, 200240, China
| | - Zao-Ping Chen
- Department of Endocrinology, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai, 200240, China
| | - He-Yuan Ding
- Department of Endocrinology, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai, 200240, China
| | - Li Sheng
- Department of Endocrinology, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai, 200240, China
| | - Xiao-Jie Han
- Department of Science and Education, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai, 200240, China
| |
Collapse
|
35
|
Abstract
NAFLD is now the most common cause of liver disease in Western countries. This Review explores the links between NAFLD, the metabolic syndrome, dysbiosis, poor diet and gut health. Animal studies in which the gut microbiota are manipulated, and observational studies in patients with NAFLD, have provided considerable evidence that dysbiosis contributes to the pathogenesis of NAFLD. Dysbiosis increases gut permeability to bacterial products and increases hepatic exposure to injurious substances that increase hepatic inflammation and fibrosis. Dysbiosis, combined with poor diet, also changes luminal metabolism of food substrates, such as increased production of certain short-chain fatty acids and alcohol, and depletion of choline. Changes to the microbiome can also cause dysmotility, gut inflammation and other immunological changes in the gut that might contribute to liver injury. Evidence also suggests that certain food components and lifestyle factors, which are known to influence the severity of NAFLD, do so at least in part by changing the gut microbiota. Improved methods of analysis of the gut microbiome, and greater understanding of interactions between dysbiosis, diet, environmental factors and their effects on the gut-liver axis should improve the treatment of this common liver disease and its associated disorders.
Collapse
Affiliation(s)
- Christopher Leung
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Melbourne, VIC 3084, Australia.,Department of Gastroenterology and Hepatology, Austin Health, Austin Hospital, Heidelberg, Melbourne, VIC 3084, Australia
| | - Leni Rivera
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC 3216, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Peter W Angus
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Melbourne, VIC 3084, Australia.,Department of Gastroenterology and Hepatology, Austin Health, Austin Hospital, Heidelberg, Melbourne, VIC 3084, Australia
| |
Collapse
|
36
|
Yao H, Hu C, Yin L, Tao X, Xu L, Qi Y, Han X, Xu Y, Zhao Y, Wang C, Peng J. Dioscin reduces lipopolysaccharide-induced inflammatory liver injury via regulating TLR4/MyD88 signal pathway. Int Immunopharmacol 2016; 36:132-141. [DOI: 10.1016/j.intimp.2016.04.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/30/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
|
37
|
Waltenberger B, Mocan A, Šmejkal K, Heiss EH, Atanasov AG. Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders. Molecules 2016; 21:807. [PMID: 27338339 PMCID: PMC4928700 DOI: 10.3390/molecules21060807] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an "opening" of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic;
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| |
Collapse
|
38
|
Untargeted Metabolomics Reveals Intervention Effects of Total Turmeric Extract in a Rat Model of Nonalcoholic Fatty Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8495953. [PMID: 27366193 PMCID: PMC4904104 DOI: 10.1155/2016/8495953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver disease. Currently, there are no recognized medical therapies effective for NAFLD. Previous studies have demonstrated the effects of total turmeric extract on rats with NAFLD induced by high-fat diet. In this study, serum metabolomics was employed using UHPLC-Q-TOF-MS to elucidate the underlying mechanisms of HFD-induced NAFLD and the therapeutic effects of TE. Supervised orthogonal partial least-squares-discriminant analysis was used to discover differentiating metabolites, and pathway enrichment analysis suggested that TE had powerful combined effects of regulating lipid metabolism by affecting glycerophospholipid metabolism, glycerolipid metabolism, and steroid hormone biosynthesis signaling pathways. In addition, the significant changes in glycerophospholipid metabolism proteins also indicated that glycerophospholipid metabolism might be involved in the therapeutic effect of TE on NAFLD. Our findings not only supply systematic insight into the mechanisms of NAFLD but also provide a theoretical basis for the prevention or treatment of NAFLD.
Collapse
|
39
|
Lipid deposition in liver cells: The influence of short form augmenter of liver regeneration. Clin Res Hepatol Gastroenterol 2016; 40:186-94. [PMID: 26476698 DOI: 10.1016/j.clinre.2015.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/11/2015] [Accepted: 07/15/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE The short form augmenter of liver regeneration (sfALR) is a novel human hepatotrophic growth factor. The aim of this study was to investigate the potential role of sfALR in NAFLD. METHODS The free fatty acids (FFA) induced lipid accumulation in mouse liver parenchymal cells was examined by Oil Red O staining and triglyceride level determination. The cell cycle was determined by flow cytometry and the proliferation was assessed by CCK8. The expression levels of gfer, miR-122, srebp-1c, fas, dgat2, acc1 and Lrp1B were assessed by quantitative real-time PCR. Furthermore, the MAPK pathway was detected by western blot. RESULTS The results showed that sfALR could alleviate the lipid accumulation in mice both in vivo and in vitro. sfALR relieved the proliferation inhibition and G2 arrest of mouse liver parenchymal cells induced by FFAs. Free fatty acids affected gfer expression in a time-and dose-dependent way. And sfALR suppressed JNK activation, increased miR-122 level and reduced fatty acid synthesis-related gene expression. CONCLUSION These findings suggested that sfALR could alleviate the severity of fatty liver in mice.
Collapse
|
40
|
Psoralea corylifolia L. Seed Extract Attenuates Nonalcoholic Fatty Liver Disease in High-Fat Diet-Induced Obese Mice. Nutrients 2016; 8:83. [PMID: 26861390 PMCID: PMC4772046 DOI: 10.3390/nu8020083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/04/2016] [Indexed: 12/30/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), along with obesity, is increasing world-wide and is one of the major causes of chronic hepatic disease. The present study evaluated the ameliorative effect of extract of Psoralea corylifolia L. seed (PCS) on high fat diet-induced NAFLD in C57BL/6 mice after daily administration at 300 or 500 mg/kg for 12 weeks. Treatment with PCS extract significantly reduced body weight and blood glucose levels and improved glucose tolerance and insulin sensitivity. In addition, PCS extract treatment significantly attenuated lipid accumulation in liver and adipose tissue and reduced serum lipid and hepatic triglyceride levels. Furthermore, the expression of lipogenic genes and inflammatory genes were reduced, and the expression of fat oxidation-related genes was increased in the liver of PCS extract-treated mice compared with control mice. Our study suggests the therapeutic potential of PCS extract for NAFLD by inhibiting lipid accumulation and inflammation in liver.
Collapse
|
41
|
Kim SW, Park TJ, Chaudhari HN, Choi JH, Choi JY, Kim YJ, Choi MS, Yun JW. Hepatic proteome and its network response to supplementation of an anti-obesity herbal mixture in diet-induced obese mice. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0258-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Dong D, Qi Y, Xu L, Yin L, Xu Y, Han X, Zhao Y, Peng J. Total saponins from Rosa laevigata Michx fruit attenuates hepatic steatosis induced by high-fat diet in rats. Food Funct 2015; 5:3065-3075. [PMID: 25310017 DOI: 10.1039/c4fo00491d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protective effects of total saponins from Rosa laevigata Michx fruit (RLTS) in high-fat diet (HFD)-induced rats were investigated. The results showed that oral administration of RLTS attenuated hepatic steatosis, significantly reduced the levels of body weight, alanine transaminase, aspartate transaminase, total cholesterol, total triglyceride, free fatty acids, low density lipoprotein, blood glucose, insulin and malondialdehyde, and increased high density lipoprotein and glutathione levels compared with the model group. Further investigations showed that RLTS affected fatty acid synthesis, fatty acid β-oxidation, fatty acid ω-oxidation, total cholesterol and triglyceride metabolism and synthesis. Moreover, the extract obviously suppressed HFD-induced oxidative stress and inflammation. These results suggest that RLTS should be developed to be one functional food or health product against non-alcoholic fatty liver disease (NAFLD) in the future.
Collapse
Affiliation(s)
- Deshi Dong
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China and Research Institute of Integrated Traditional and Western Medicine of Dalian Medical University, Dalian 116011, China. and The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | - Yanyan Zhao
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China and Research Institute of Integrated Traditional and Western Medicine of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
43
|
Zhang X, Xu Y, Qi Y, Han X, Yin L, Xu L, Liu K, Peng J. Potent effects of dioscin against thioacetamide-induced liver fibrosis through attenuating oxidative stress in turn inhibiting inflammation, TGF-β/Smad and MAPK signaling pathways. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
44
|
LIN JIAYAO, ZHANG YU, WANG XINQING, WANG WENWEN. Lycium ruthenicum extract alleviates high-fat diet-induced nonalcoholic fatty liver disease via enhancing the AMPK signaling pathway. Mol Med Rep 2015; 12:3835-3840. [DOI: 10.3892/mmr.2015.3840] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
|
45
|
Abstract
We previously reported the promising effects of dioscin against liver injury, but its effect on liver fibrosis remains unknown. The present work investigated the activities of dioscin against liver fibrosis and the underlying molecular mechanisms. Dioscin effectively inhibited the cell viabilities of HSC-T6, LX-2 and primary rat hepatic stellate cells (HSCs), but not hepatocytes. Furthermore, dioscin markedly increased peroxisome proliferator activated receptor-γ (PPAR-γ) expression and significantly reduced a-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), collagen α1 (I) (COL1A1) and collagen α1 (III) (COL3A1) levels in vitro. Notably, dioscin inhibited HSCs activation and induced apoptosis in activated HSCs. In vivo, dioscin significantly improved body weight and hydroxylproline, laminin, α-SMA, TGF-β1, COL1A1 and COL3A1 levels, which were confirmed by histopathological assays. Dioscin facilitated matrix degradation, and exhibited hepatoprotective effects through the attenuation of oxidative stress and inflammation, in addition to exerting anti-fibrotic effects through the modulation of the TGF-β1/Smad, Wnt/β-catenin, mitogen-activated protein kinase (MAPK) and mitochondrial signaling pathways, which triggered the senescence of activated HSCs. In conclusion, dioscin exhibited potent effects against liver fibrosis through the modulation of multiple targets and signaling pathways and should be developed as a novel candidate for the treatment of liver fibrosis in the future.
Collapse
|
46
|
Liu P, Jin X, Lv H, Li J, Xu W, Qian HH, Yin Z. Icaritin ameliorates carbon tetrachloride-induced acute liver injury mainly because of the antioxidative function through estrogen-like effects. In Vitro Cell Dev Biol Anim 2014; 50:899-908. [DOI: 10.1007/s11626-014-9792-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/19/2014] [Indexed: 12/16/2022]
|
47
|
Chen X, Meng Q, Wang C, Liu Q, Sun H, Huo X, Sun P, Yang X, Peng J, Liu K. Protective Effects of Calycosin Against CCl4-Induced Liver Injury with Activation of FXR and STAT3 in Mice. Pharm Res 2014; 32:538-48. [DOI: 10.1007/s11095-014-1483-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/15/2014] [Indexed: 12/18/2022]
|
48
|
Peng Q, Zhang Q, Xiao W, Shao M, Fan Q, Zhang H, Zou Y, Li X, Xu W, Mo Z, Cai H. Protective effects of Sapindus mukorossi Gaertn against fatty liver disease induced by high fat diet in rats. Biochem Biophys Res Commun 2014; 450:685-91. [DOI: 10.1016/j.bbrc.2014.06.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/08/2014] [Indexed: 02/07/2023]
|
49
|
Xiao J, Fai So K, Liong EC, Tipoe GL. Recent advances in the herbal treatment of non-alcoholic Fatty liver disease. J Tradit Complement Med 2014; 3:88-94. [PMID: 24716162 PMCID: PMC3924972 DOI: 10.4103/2225-4110.110411] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver injury across the world. It is also strongly related to other pathological conditions, including obesity, diabetes, cardiovascular diseases, and symptoms of metabolic syndrome. Pathogenesis of NAFLD remains not fully characterized but is generally attributed to the occurrence of insulin resistance, lipid metabolism dysfunction,0 oxidative stress, inflammation, and necro-apoptosis. Every potential therapeutic strategy should target one or some of these pathological events in the liver. Over the past decades, application of herbal treatment for NAFLD has received increasing attention due to its wide availability, low side effects, and proven therapeutic mechanisms and benefits. In recent years, some monomers and certain functional mixtures of herbs have been extensively examined for their potential uses in NAFLD treatment. In the present review, we selected several herbal derivatives under intense basic and/or clinical investigations by carrying out a PubMed search of English language articles relevant to herbal derivatives and NAFLD, such as polysaccharide portion of wolfberry, garlic-derived monomers, red grape-derived resveratrol, and milk thistle-derived substances. They have been shown to target the pathological events during NAFLD initiation and progression both in pre-clinical studies and clinical trials. Although more detailed mechanistic researches and long-term clinical evaluations are needed for their future applications, they offer unanticipated and great health benefits without obvious adverse effects in NAFLD therapy.
Collapse
Affiliation(s)
- Jia Xiao
- Center for Gene and Cell Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. ; Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kwok Fai So
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. ; Brain Hormone Healthy Aging Centre, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. ; State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, Hong Kong SAR, China
| | - Emily C Liong
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - George L Tipoe
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. ; Brain Hormone Healthy Aging Centre, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
50
|
Jiao tai wan attenuates hepatic lipid accumulation in type 2 diabetes mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:567045. [PMID: 24319477 PMCID: PMC3844214 DOI: 10.1155/2013/567045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/08/2013] [Indexed: 12/30/2022]
Abstract
Jiao Tai Wan (JTW), a Chinese herbal formula containing Rhizoma Coptidis and Cortex Cinnamomi, has been used for diabetic treatment for many years. The aim of this study was to determine the main components in JTW and to investigate the effects of JTW on hepatic lipid accumulation in diabetic rats and humans. JTW extract was prepared and the main components were assayed by HPLC. An animal model of diabetes mellitus was established and JTW was administered intragastrically. In the clinical study, diabetic patients with poor glycemic control were treated with JTW. Blood glucose and lipid parameters, liver histology, hepatic triglyceride content and lipogenic gene expression were examined. Our data demonstrated that JTW significantly improved hyperglycemia, hyperlipidemia and hepatic lipid accumulation in diabetic rats. This was accompanied by the down-regulation of acetyl coenzyme A carboxylase (ACC) and fatty acid synthase (FAS) protein expressions, and the up-regulation of AMP-activated protein kinase (AMPK) and phosphorylated-ACC (pACC) protein expressions in the liver tissues. Diabetic patients also exhibited decreases in their hepatic triglyceride content. The results suggest that JTW attenuates hepatic lipid accumulation in diabetic rats and humans. These beneficial effects are possibly associated with the inhibition of lipogenic gene expression in the liver.
Collapse
|