1
|
Howell AM, Warrington S, Fonteneau C, Cho YT, Sotiropoulos SN, Murray JD, Anticevic A. The spatial extent of anatomical connections within the thalamus varies across the cortical hierarchy in humans and macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550168. [PMID: 37546767 PMCID: PMC10401924 DOI: 10.1101/2023.07.22.550168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Each cortical area has a distinct pattern of anatomical connections within the thalamus, a central subcortical structure composed of functionally and structurally distinct nuclei. Previous studies have suggested that certain cortical areas may have more extensive anatomical connections that target multiple thalamic nuclei, which potentially allows them to modulate distributed information flow. However, there is a lack of quantitative investigations into anatomical connectivity patterns within the thalamus. Consequently, it remains unknown if cortical areas exhibit systematic differences in the extent of their anatomical connections within the thalamus. To address this knowledge gap, we used diffusion magnetic resonance imaging (dMRI) to perform brain-wide probabilistic tractography for 828 healthy adults from the Human Connectome Project. We then developed a framework to quantify the spatial extent of each cortical area's anatomical connections within the thalamus. Additionally, we leveraged resting-state functional MRI, cortical myelin, and human neural gene expression data to test if the extent of anatomical connections within the thalamus varied along the cortical hierarchy. Our results revealed two distinct corticothalamic tractography motifs: 1) a sensorimotor cortical motif characterized by focal thalamic connections targeting posterolateral thalamus, associated with fast, feed-forward information flow; and 2) an associative cortical motif characterized by diffuse thalamic connections targeting anteromedial thalamus, associated with slow, feed-back information flow. These findings were consistent across human subjects and were also observed in macaques, indicating cross-species generalizability. Overall, our study demonstrates that sensorimotor and association cortical areas exhibit differences in the spatial extent of their anatomical connections within the thalamus, which may support functionally-distinct cortico-thalamic information flow.
Collapse
Affiliation(s)
- Amber M Howell
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Physics, Yale University, New Haven, Connecticut, 06511, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Department of Psychology, Yale University, New Haven, Connecticut, 06511, USA
| |
Collapse
|
2
|
Alterations in functional connectivity and interactions in resting-state networks in female patients with functional constipation. Neurol Sci 2022; 43:6495-6504. [DOI: 10.1007/s10072-022-06275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
|
3
|
Li G, Zhang W, Hu Y, Wang J, Li J, Jia Z, Zhang L, Sun L, von Deneen KM, Duan S, Wang H, Wu K, Fan D, Cui G, Zhang Y, Nie Y. Distinct Basal Brain Functional Activity and Connectivity in the Emotional-Arousal Network and Thalamus in Patients With Functional Constipation Associated With Anxiety and/or Depressive Disorders. Psychosom Med 2021; 83:707-714. [PMID: 34117157 DOI: 10.1097/psy.0000000000000958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Functional constipation (FC) is a common gastrointestinal disorder. Anxiety and/or depressive disorders are common in patients with FC (FCAD). Brain dysfunction may play a role in FC, but the contribution of comorbid anxiety and/or depression in patients with FC is poorly understood. METHODS Sixty-five FC patients and 42 healthy controls (HCs) were recruited, and a hierarchical clustering algorithm was used to classify FC patients into FCAD and patients without anxiety/depressive status (FCNAD) based on neuropsychological assessment. Resting-state functional magnetic resonance imaging measures including fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity were used to investigate brain functional differences. RESULTS Thirty-seven patients were classified as FCAD, and 28 patients were classified as FCNAD; as compared with HC, both groups showed decreased activity (fALFF) in the perigenual anterior cingulate cortex (pACC), dorsomedial prefrontal cortex (DMPFC), and precuneus; enhanced precentral gyrus-thalamus connectivity and attenuated precuneus-thalamus connectivity in FCAD/FCNAD highlighted the thalamus as a critical connectivity node in the brain network (pFWE < .05). In comparison with FCNAD/HC, the FCAD group also had decreased fALFF in the orbitofrontal cortex (OFC) and thalamus, and increased OFC-hippocampus connectivity. In the FCNAD group, brain activities (pACC/DMPFC) and connection (precuneus-thalamus) had correlations only with symptoms; in the FCAD group, brain activities (OFC, pACC/DMPFC) and connectivities (OFC-hippocampus/precentral gyrus-thalamus) showed correlations with both constipation symptoms and anxiety/depressive status ratings. Mediation analysis indicated that the relationship between abdominal distension and OFC activity was completely mediated by anxiety in FCAD. CONCLUSIONS These findings provide evidence of differences in brain activity and functional connectivity between FCAD and FCNAD, potentially providing important clues for improving treatment strategies.
Collapse
Affiliation(s)
- Guanya Li
- From the Center for Brain Imaging, School of Life Science and Technology (G. Li, W. Zhang, Hu, J. Wang, J. Li, Jia, L. Zhang, Deneen, Y. Zhang), Xidian University; and State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases (Sun, Wu, Fan, Nie), Department of Radiology, Tangdu Hospital (Duan, Cui), and Department of Psychiatry, Xijing Hospital (H. Wang), the Fourth Military Medical University, Xi'an, Shaanxi, China. G.L. and W.Z. contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Honnorat N, Saranathan M, Sullivan EV, Pfefferbaum A, Pohl KM, Zahr NM. Performance ramifications of abnormal functional connectivity of ventral posterior lateral thalamus with cerebellum in abstinent individuals with Alcohol Use Disorder. Drug Alcohol Depend 2021; 220:108509. [PMID: 33453503 PMCID: PMC7889734 DOI: 10.1016/j.drugalcdep.2021.108509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
The extant literature supports the involvement of the thalamus in the cognitive and motor impairment associated with chronic alcohol consumption, but clear structure/function relationships remain elusive. Alcohol effects on specific nuclei rather than the entire thalamus may provide the basis for differential cognitive and motor decline in Alcohol Use Disorder (AUD). This functional MRI (fMRI) study was conducted in 23 abstinent individuals with AUD and 27 healthy controls to test the hypothesis that functional connectivity between anterior thalamus and hippocampus would be compromised in those with an AUD diagnosis and related to mnemonic deficits. Functional connectivity between 7 thalamic structures [5 thalamic nuclei: anterior ventral (AV), mediodorsal (MD), pulvinar (Pul), ventral lateral posterior (VLP), and ventral posterior lateral (VPL); ventral thalamus; the entire thalamus] and 14 "functional regions" was evaluated. Relative to controls, the AUD group exhibited different VPL-based functional connectivity: an anticorrelation between VPL and a bilateral middle temporal lobe region observed in controls became a positive correlation in the AUD group; an anticorrelation between the VPL and the cerebellum was stronger in the AUD than control group. AUD-associated altered connectivity between anterior thalamus and hippocampus as a substrate of memory compromise was not supported; instead, connectivity differences from controls selective to VPL and cerebellum demonstrated a relationship with impaired balance. These preliminary findings support substructure-level evaluation in future studies focused on discerning the role of the thalamus in AUD-associated cognitive and motor deficits.
Collapse
Affiliation(s)
- Nicolas Honnorat
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA.
| | - Manojkumar Saranathan
- Department of Medical Imaging, University of Arizona College of Medicine, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA.
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| | - Adolf Pfefferbaum
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| | - Kilian M Pohl
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| | - Natalie M Zahr
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Jakab A, Natalucci G, Koller B, Tuura R, Rüegger C, Hagmann C. Mental development is associated with cortical connectivity of the ventral and nonspecific thalamus of preterm newborns. Brain Behav 2020; 10:e01786. [PMID: 32790242 PMCID: PMC7559616 DOI: 10.1002/brb3.1786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/18/2020] [Accepted: 07/19/2020] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION The thalamus is a key hub for regulating cortical connectivity. Dysmaturation of thalamocortical networks that accompany white matter injury has been hypothesized as neuroanatomical correlate of late life neurocognitive impairment following preterm birth. Our objective was to find a link between thalamocortical connectivity measures at term equivalent age and two-year neurodevelopmental outcome in preterm infants. METHODS Diffusion tensor MRI data of 58 preterm infants (postmenstrual age at birth, mean (SD), 29.71 (1.47) weeks) were used in the study. We utilized probabilistic diffusion tractography to trace connections between the cortex and thalami. Possible associations between connectivity strength, the length of the probabilistic fiber pathways, and developmental scores (Bayley Scales of Infant Development, Second Edition) were analyzed using multivariate linear regression models. RESULTS We found strong correlation between mental developmental index and two complementary measures of thalamocortical networks: Connectivity strength projected to a cortical skeleton and pathway length emerging from thalamic voxels (partial correlation, R = .552 and R = .535, respectively, threshold-free cluster enhancement, corrected p-value < .05), while psychomotor development was not associated with thalamocortical connectivity. Post hoc stepwise linear regression analysis revealed that parental socioeconomic scale, postmenstrual age, and the duration of mechanical ventilation at the intensive care unit contribute to the variability of outcome. CONCLUSIONS Our findings independently validated previous observations in preterm infants, providing additional evidence injury or dysmaturation of tracts emerging from ventral-specific and various nonspecific thalamus projecting to late-maturing cortical regions are predictive of mental, but not psychomotor developmental outcomes.
Collapse
Affiliation(s)
- Andras Jakab
- Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Giancarlo Natalucci
- Department of Neonatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Brigitte Koller
- Department of Neonatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Ruth Tuura
- Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christoph Rüegger
- Department of Neonatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Cornelia Hagmann
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.,Child Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Xi C, Liu ZN, Yang J, Zhang W, Deng MJ, Pan YZ, Cheng YQ, Pu WD. Schizophrenia patients and their healthy siblings share decreased prefronto-thalamic connectivity but not increased sensorimotor-thalamic connectivity. Schizophr Res 2020; 222:354-361. [PMID: 32507372 DOI: 10.1016/j.schres.2020.04.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/12/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
The pattern of decreased prefronto-thalamic connectivity and increased sensorimotor-thalamic connectivity has been consistently documented in schizophrenia. However, whether this thalamo-cortical abnormality pattern is of genetic predisposition remains unknown. The present study for the first time aimed to investigate the common and distinct characteristics of this circuit in schizophrenia patients and their unaffected siblings who share half of the patient's genotype. Totally 293 participants were recruited into this study including 94 patients with schizophrenia, 96 their healthy siblings, and 103 healthy controls scanned using gradient-echo echo-planar imaging at rest. By using a fine-grained atlas of thalamus with 16 sub-regions, we mapped the thalamocortical network in three groups. Decreased thalamo-prefronto-cerebellar connectivity was shared between schizophrenia and their healthy siblings, but increased sensorimotor-thalamic connectivity was only found in schizophrenia. The shared thalamo-prefronto-cerebellar dysconnectivity showed an impressively gradient reduction pattern in patients and siblings comparing to controls: higher in the controls, lower in the patients and intermediate in the siblings. Anatomically, the decreased thalamic connectivity mostly centered on the pre-frontal thalamic subregions locating at the mediodorsal nucleus, while the increased functional connectivity with sensorimotor cortices was only observed in the caudal temporal thalamic subregion anchoring at the dorsal and ventral lateral nuclei. Moreover, both decreased thalamo-prefronto-cerebellar connectivity and increased sensorimotor-thalamic connectivity were related to clinical symptoms in patients. Our findings extend the evidence that the decreased thalamo-prefronto-cerebellar connectivity may be related to the high genetic risk in schizophrenia, while increased sensorimotor-thalamic connectivity potentially represents a neural biomarker for this severe mental disorder.
Collapse
Affiliation(s)
- Chang Xi
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Zhe-Ning Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Jie Yang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Wen Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Meng-Jie Deng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Yun-Zhi Pan
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Yu-Qi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei-Dan Pu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China.
| |
Collapse
|
7
|
Caplan R. Epilepsy, language, and social skills. BRAIN AND LANGUAGE 2019; 193:18-30. [PMID: 28987707 DOI: 10.1016/j.bandl.2017.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 08/10/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
Language and social skills are essential for intrapersonal and interpersonal functioning and quality of life. Since epilepsy impacts these important domains of individuals' functioning, understanding the psychosocial and biological factors involved in the relationship among epilepsy, language, and social skills has important theoretical and clinical implications. This review first describes the psychosocial and biological factors involved in the association between language and social behavior in children and in adults and their relevance for epilepsy. It reviews the findings of studies of social skills and the few studies conducted on the inter-relationship of language and social skills in pediatric and adult epilepsy. The paper concludes with suggested future research and clinical directions that will enhance early identification and treatment of epilepsy patients at risk for impaired language and social skills.
Collapse
Affiliation(s)
- Rochelle Caplan
- UCLA David Geffen School of Medicine, Department of Psychiatry, United States.
| |
Collapse
|
8
|
Jin Q, Duan S, Li G, Sun L, Hu Y, Hu C, Zhao J, von Deneen KM, Qian L, Wang H, Ji G, Wu K, Fan D, Cui G, Nie Y, Zhang Y. Sex-related differences in resting-state brain activity and connectivity in the orbital frontal cortex and insula in patients with functional constipation. Neurogastroenterol Motil 2019; 31:e13566. [PMID: 30729624 DOI: 10.1111/nmo.13566] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/28/2018] [Accepted: 01/13/2019] [Indexed: 02/06/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has been used to investigate sex-related differences in brain abnormalities in patients with irritable bowel syndrome (IBS). Like IBS, women with functional constipation (FC) are 2.1 times as many as men. No study has been performed yet to examine sex-related differences in brain activity and connectivity in patients with FC. Here, we employed resting-state fMRI with amplitude of low-frequency fluctuation (ALFF) to investigate brain functional differences in 51 patients with FC (34 females) and 52 healthy controls (34 females). Results showed abdominal pain and abdominal distension correlated with trait (TAI) and state (SAI) anxiety ratings in the female FC group, and abdominal distension correlated with sensation of incomplete evacuation in the male FC group. Two-way ANOVA revealed sex effects on ALFF in precentral gyrus, thalamus, insula (INS), and orbital frontal cortex (OFC, PFWE < 0.05). Post hoc test showed that the female FC group had lower ALFF than males in these brain regions (P < 0.01), and ALFF in INS and OFC was correlated with abdominal pain and difficulty of defecation, respectively. Seed voxel correlation analysis showed that the female FC group had weaker connectivity than males between INS and lateral OFC (lOFC). INS-lOFC connectivity was negatively correlated with the anxiety score in the female FC group and was negatively correlated with abdominal distension in the male FC group. These findings provide the first insight into sex-related differences in patients with FC and highlight that INS and OFC play an important role in modulating the intrinsic functional connectivity of the resting brain network showing that this role is influenced by sex.
Collapse
Affiliation(s)
- Qingchao Jin
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Shijun Duan
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Lijuan Sun
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Chunxin Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Jizheng Zhao
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China.,College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Long Qian
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
9
|
Variability and anatomical specificity of the orbitofrontothalamic fibers of passage in the ventral capsule/ventral striatum (VC/VS): precision care for patient-specific tractography-guided targeting of deep brain stimulation (DBS) in obsessive compulsive disorder (OCD). Brain Imaging Behav 2017; 10:1054-1067. [PMID: 26518214 DOI: 10.1007/s11682-015-9462-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deep Brain Stimulation (DBS) is a neurosurgical procedure that can reduce symptoms in medically intractable obsessive-compulsive disorder (OCD). Conceptually, DBS of the ventral capsule/ventral striatum (VC/VS) region targets reciprocal excitatory connections between the orbitofrontal cortex (OFC) and thalamus, decreasing abnormal reverberant activity within the OFC-caudate-pallidal-thalamic circuit. In this study, we investigated these connections using diffusion magnetic resonance imaging (dMRI) on human connectome datasets of twenty-nine healthy young-adult volunteers with two-tensor unscented Kalman filter based tractography. We studied the morphology of the lateral and medial orbitofrontothalamic connections and estimated their topographic variability within the VC/VS region. Our results showed that the morphology of the individual orbitofrontothalamic fibers of passage in the VC/VS region is complex and inter-individual variability in their topography is high. We applied this method to an example OCD patient case who underwent DBS surgery, formulating an initial proof of concept for a tractography-guided patient-specific approach in DBS for medically intractable OCD. This may improve on current surgical practice, which involves implanting all patients at identical stereotactic coordinates within the VC/VS region.
Collapse
|
10
|
Cobia DJ, Smith MJ, Salinas I, Ng C, Gado M, Csernansky JG, Wang L. Progressive deterioration of thalamic nuclei relates to cortical network decline in schizophrenia. Schizophr Res 2017; 180:21-27. [PMID: 27613507 PMCID: PMC5263051 DOI: 10.1016/j.schres.2016.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 01/28/2023]
Abstract
Thalamic abnormalities are considered part of the complex pathophysiology of schizophrenia, particularly the involvement of specific thalamic nuclei. The goals of this study were to: introduce a novel atlas-based parcellation scheme for defining various thalamic nuclei; compare their integrity in a schizophrenia sample against healthy individuals at baseline and follow-up time points, as well as rates of change over time; examine relationships between the nuclei and abnormalities in known connected cortical regions; and finally, to determine if schizophrenia-related thalamic nuclei changes relate to cognitive functioning and clinical symptoms. Subjects were from a larger longitudinal 2-year follow-up study, schizophrenia (n=20) and healthy individuals (n=20) were group-matched for age, gender, and recent-alcohol use. We used high-dimensional brain mapping to obtain thalamic morphology, and applied a novel atlas-based method for delineating anterior, mediodorsal, and pulvinar nuclei. Results from cross sectional GLMs revealed group differences in bilateral mediodorsal and anterior nuclei, while longitudinal models revealed significant group-by-time interactions for the mediodorsal and pulvinar nuclei. Cortical correlations were the strongest for the pulvinar in frontal, temporal and parietal regions, followed by the mediodorsal nucleus in frontal regions, but none in the anterior nucleus. Thalamic measures did not correlate with cognitive and clinical scores at any time point or longitudinally. Overall, findings revealed a pattern of persistent progressive abnormalities in thalamic nuclei that relate to advancing cortical decline in schizophrenia, but not with measures of behavior.
Collapse
Affiliation(s)
- Derin J. Cobia
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611 USA
| | - Matthew J. Smith
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611 USA
| | - Ilse Salinas
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611 USA
| | - Charlene Ng
- Virginia Commonwealth University, Chesterfield Family Practice Center, 2500 Pocoshock Place, Suite 202, Richmond, VA 23235 USA
| | - Mohktar Gado
- Department of Radiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - John G. Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611 USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611 USA,Department of Radiology, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611 USA
| |
Collapse
|
11
|
Transcranial focused ultrasound stimulation of human primary visual cortex. Sci Rep 2016; 6:34026. [PMID: 27658372 PMCID: PMC5034307 DOI: 10.1038/srep34026] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022] Open
Abstract
Transcranial focused ultrasound (FUS) is making progress as a new non-invasive mode of regional brain stimulation. Current evidence of FUS-mediated neurostimulation for humans has been limited to the observation of subjective sensory manifestations and electrophysiological responses, thus warranting the identification of stimulated brain regions. Here, we report FUS sonication of the primary visual cortex (V1) in humans, resulting in elicited activation not only from the sonicated brain area, but also from the network of regions involved in visual and higher-order cognitive processes (as revealed by simultaneous acquisition of blood-oxygenation-level-dependent functional magnetic resonance imaging). Accompanying phosphene perception was also reported. The electroencephalo graphic (EEG) responses showed distinct peaks associated with the stimulation. None of the participants showed any adverse effects from the sonication based on neuroimaging and neurological examinations. Retrospective numerical simulation of the acoustic profile showed the presence of individual variability in terms of the location and intensity of the acoustic focus. With exquisite spatial selectivity and capability for depth penetration, FUS may confer a unique utility in providing non-invasive stimulation of region-specific brain circuits for neuroscientific and therapeutic applications.
Collapse
|
12
|
Flexible Use of Predictive Cues beyond the Orbitofrontal Cortex: Role of the Submedius Thalamic Nucleus. J Neurosci 2015; 35:13183-93. [PMID: 26400947 DOI: 10.1523/jneurosci.1237-15.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The orbitofrontal cortex (OFC) is known to play a crucial role in learning the consequences of specific events. However, the contribution of OFC thalamic inputs to these processes is largely unknown. Using a tract-tracing approach, we first demonstrated that the submedius nucleus (Sub) shares extensive reciprocal connections with the OFC. We then compared the effects of excitotoxic lesions of the Sub or the OFC on the ability of rats to use outcome identity to direct responding. We found that neither OFC nor Sub lesions interfered with the basic differential outcomes effect. However, more specific tests revealed that OFC rats, but not Sub rats, were disproportionally relying on the outcome, rather than on the discriminative stimulus, to guide behavior, which is consistent with the view that the OFC integrates information about predictive cues. In subsequent experiments using a Pavlovian contingency degradation procedure, we found that both OFC and Sub lesions produced a severe deficit in the ability to update Pavlovian associations. Altogether, the submedius therefore appears as a functionally relevant thalamic component in a circuit dedicated to the integration of predictive cues to guide behavior, previously conceived as essentially dependent on orbitofrontal functions. Significance statement: In the present study, we identify a largely unknown thalamic region, the submedius nucleus, as a new functionally relevant component in a circuit supporting the flexible use of predictive cues. Such abilities were previously conceived as largely dependent on the orbitofrontal cortex. Interestingly, this echoes recent findings in the field showing, in research involving an instrumental setup, an additional involvement of another thalamic nuclei, the parafascicular nucleus, when correct responding requires an element of flexibility (Bradfield et al., 2013a). Therefore, the present contribution supports the emerging view that limbic thalamic nuclei may contribute critically to adaptive responding when an element of flexibility is required after the establishment of initial learning.
Collapse
|
13
|
Connections of the dorsolateral prefrontal cortex with the thalamus: a probabilistic tractography study. Surg Radiol Anat 2015; 38:705-10. [DOI: 10.1007/s00276-015-1603-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/05/2015] [Indexed: 01/30/2023]
|
14
|
Konova AB, Moeller SJ, Tomasi D, Goldstein RZ. Effects of chronic and acute stimulants on brain functional connectivity hubs. Brain Res 2015; 1628:147-56. [PMID: 25721787 DOI: 10.1016/j.brainres.2015.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/16/2022]
Abstract
The spatial distribution and strength of information processing 'hubs' are essential features of the brain׳s network topology, and may thus be particularly susceptible to neuropsychiatric disease. Despite growing evidence that drug addiction alters functioning and connectivity of discrete brain regions, little is known about whether chronic drug use is associated with abnormalities in this network-level organization, and if such abnormalities could be targeted for intervention. We used functional connectivity density (FCD) mapping to evaluate how chronic and acute stimulants affect brain hubs (i.e., regions with many short-range or long-range functional connections). Nineteen individuals with cocaine use disorders (CUD) and 15 healthy controls completed resting-state fMRI scans following a randomly assigned dose of methylphenidate (MPH; 20mg) or placebo. Short-range and long-range FCD maps were computed for each participant and medication condition. CUD participants had increased short-range and long-range FCD in the ventromedial prefrontal cortex, posterior cingulate/precuneus, and putamen/amygdala, which in areas of the default mode network correlated with years of use. Across participants, MPH decreased short-range FCD in the thalamus/putamen, and decreased long-range FCD in the supplementary motor area and postcentral gyrus. Increased density of short-range and long-range functional connections to default mode hubs in CUD suggests an overrepresentation of these resource-expensive hubs. While the effects of MPH on FCD were only partly overlapping with those of CUD, MPH-induced reduction in the density of short-range connections to the putamen/thalamus, a network of core relevance to habit formation and addiction, suggests that some FCD abnormalities could be targeted for intervention.
Collapse
Affiliation(s)
- Anna B Konova
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Scott J Moeller
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Rita Z Goldstein
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
15
|
Nakamae T, Sakai Y, Abe Y, Nishida S, Fukui K, Yamada K, Kubota M, Denys D, Narumoto J. Altered fronto-striatal fiber topography and connectivity in obsessive-compulsive disorder. PLoS One 2014; 9:e112075. [PMID: 25375933 PMCID: PMC4222976 DOI: 10.1371/journal.pone.0112075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/13/2014] [Indexed: 11/22/2022] Open
Abstract
Fronto-striatal circuits are hypothesized to be involved in the pathophysiology of obsessive-compulsive disorder (OCD). Within this circuitry, ventral frontal regions project fibers to the ventral striatum (VS) and dorsal frontal regions to the dorsal striatum. Resting state fMRI research has shown higher functional connectivity between the orbitofrontal cortex (OFC) and the dorsal part of the VS in OCD patients compared to healthy controls (HC). Therefore, we hypothesized that in OCD the OFC predominantly project fibers to the more dorsal part of the VS, and that the structural connectivity between the OFC and VS is higher compared to HC. A total of 20 non-medicated OCD patients and 20 HC underwent diffusion-weighted imaging. Connectivity-based parcellation analyses were performed with the striatum as seed region and the OFC, dorsolateral prefrontal cortex, and dorsal anterior cingulate cortex as target regions. Obtained connectivity maps for each frontal region of interest (ROI) were normalized into standard space, and Z-component (dorsal–ventral) coordinate of center-of-gravity (COG) were compared between two groups. Probabilistic tractography was performed to investigate diffusion indices of fibers between the striatum and frontal ROIs. COG Z-component coordinates of connectivity maps for OFC ROI were located in the more dorsal part of the VS in OCD patients compared to HC. Fractional anisotropy of fibers between the OFC and the striatum was higher in OCD patients compared to HC. Part of the pathophysiology of OCD might be understood by altered topography and structural connectivity of fibers between the OFC and the striatum.
Collapse
Affiliation(s)
- Takashi Nakamae
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
- * E-mail:
| | - Yuki Sakai
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Yoshinari Abe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seiji Nishida
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Fukui
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Manabu Kubota
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Damiaan Denys
- Department of Neuropsychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- The Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| |
Collapse
|
16
|
Sexually dimorphic functional connectivity in response to high vs. low energy-dense food cues in obese humans: an fMRI study. Neuroimage 2014; 100:405-13. [PMID: 24862077 DOI: 10.1016/j.neuroimage.2014.05.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/19/2014] [Accepted: 05/17/2014] [Indexed: 12/11/2022] Open
Abstract
Sexually-dimorphic behavioral and biological aspects of human eating have been described. Using psychophysiological interaction (PPI) analysis, we investigated sex-based differences in functional connectivity with a key emotion-processing region (amygdala, AMG) and a key reward-processing area (ventral striatum, VS) in response to high vs. low energy-dense (ED) food images using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in obese persons in fasted and fed states. When fed, in response to high vs. low-ED food cues, obese men (vs. women) had greater functional connectivity with AMG in right subgenual anterior cingulate, whereas obese women had greater functional connectivity with AMG in left angular gyrus and right primary motor areas. In addition, when fed, AMG functional connectivity with pre/post-central gyrus was more associated with BMI in women (vs. men). When fasted, obese men (vs. women) had greater functional connectivity with AMG in bilateral supplementary frontal and primary motor areas, left precuneus, and right cuneus, whereas obese women had greater functional connectivity with AMG in left inferior frontal gyrus, right thalamus, and dorsomedial prefrontal cortex. When fed, greater functional connectivity with VS was observed in men in bilateral supplementary and primary motor areas, left postcentral gyrus, and left precuneus. These sex-based differences in functional connectivity in response to visual food cues may help partly explain differential eating behavior, pathology prevalence, and outcomes in men and women.
Collapse
|
17
|
Wang Y, Li D, Bao F, Ma S, Guo C, Jin C, Zhang M. Thalamic metabolic alterations with cognitive dysfunction in idiopathic trigeminal neuralgia: a multivoxel spectroscopy study. Neuroradiology 2014; 56:685-93. [PMID: 24820951 DOI: 10.1007/s00234-014-1376-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/01/2014] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Although abnormalities in metabolite compositions in the thalamus are well described in patients with idiopathic trigeminal neuralgia (ITN), differences in distinct thalamic subregions have not been measured with proton magnetic resonance spectroscopy ((1)H-MRS), and whether there are correlations between thalamic metabolites and cognitive function still remain unknown. METHODS Multivoxel MRS was recorded to investigate the metabolic alterations in the thalamic subregions of patients with ITN. The regions of interest were localized in the anterior thalamus (A-Th), intralaminar portion of the thalamus (IL-Th), posterior lateral thalamus (PL-Th), posterior medial thalamus (PM-Th), and medial and lateral pulvinar of the thalamus (PuM-Th and PuL-Th). The N-acetylaspartate to creatine (NAA/Cr) and choline to creatine (Cho/Cr) ratios were measured in the ITN and control groups. Scores of the visual analogue scale (VAS) and the Montreal Cognitive Assessment (MoCA) were analyzed to correlate with the neuroradiological findings. RESULTS The NAA/Cr ratio in the affected side of PM-Th and PL-Th in ITN patients was statistically lower than that in the corresponding regions of the thalamus in controls. The NAA/Cr ratio in the affected PM-Th was negatively associated with VAS and disease duration. Furthermore, decreases of NAA/Cr and Cho/Cr were detected in the affected side of IL-Th, and lower Cho/Cr was positively correlated with MoCA values in the ITN group. CONCLUSIONS Our result of low level of NAA/Cr in the affected PM-Th probably serves as a marker of the pain-rating index, and decreased Cho/Cr in IL-Th may be an indicator of cognitive disorder in patients with ITN.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Lin JJ, Siddarth P, Riley JD, Gurbani SG, Ly R, Yee VW, Levitt JG, Toga AW, Caplan R. Neurobehavioral comorbidities of pediatric epilepsies are linked to thalamic structural abnormalities. Epilepsia 2013; 54:2116-24. [PMID: 24304435 DOI: 10.1111/epi.12428] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2013] [Indexed: 12/13/2022]
Abstract
PURPOSE Neurobehavioral comorbidities are common in pediatric epilepsy with enduring adverse effects on functioning, but their neuroanatomic underpinning is unclear. Striatal and thalamic abnormalities have been associated with childhood-onset epilepsies, suggesting that epilepsy-related changes in the subcortical circuit might be associated with the comorbidities of children with epilepsy. We aimed to compare subcortical volumes and their relationship with age in children with complex partial seizures (CPS), childhood absence epilepsy (CAE), and healthy controls (HC). We examined the shared versus unique structural-functional relationships of these volumes with behavior problems, intelligence, language, peer interaction, and epilepsy variables in these two epilepsy syndromes. METHODS We investigated volumetric differences of caudate, putamen, pallidum, and thalamus in children with CPS (N = 21), CAE (N = 20), and HC (N = 27). Study subjects underwent structural magnetic resonance imaging (MRI), intelligence, and language testing. Parent-completed Child Behavior Checklists provided behavior problem and peer interaction scores. We examined the association of age, intelligence quotient (IQ), language, behavioral problems, and epilepsy variables with subcortical volumes that were significantly different between the children with epilepsy and HC. KEY FINDINGS Both children with CPS and CAE exhibited significantly smaller left thalamic volume compared to HC. In terms of developmental trajectory, greater thalamic volume was significantly correlated with increasing age in children with CPS and CAE but not in HC. With regard to the comorbidities, reduced left thalamic volumes were related to more social problems in children with CPS and CAE. Smaller left thalamic volumes in children with CPS were also associated with poor attention, lower IQ and language scores, and impaired peer interaction. SIGNIFICANCE Our study is the first to directly compare and detect shared thalamic structural abnormalities in children with CPS and CAE. These findings highlight the vulnerability of the thalamus and provide important new insights on its possible role in the neurobehavioral comorbidities of childhood-onset epilepsy.
Collapse
Affiliation(s)
- Jack J Lin
- Department of Neurology, University of California Irvine, Irvine, California, U.S.A
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Neural changes with tactile learning reflect decision-level reweighting of perceptual readout. J Neurosci 2013; 33:5387-98. [PMID: 23516304 DOI: 10.1523/jneurosci.3482-12.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite considerable work, the neural basis of perceptual learning remains uncertain. For visual learning, although some studies suggested that changes in early sensory representations are responsible, other studies point to decision-level reweighting of perceptual readout. These competing possibilities have not been examined in other sensory systems, investigating which could help resolve the issue. Here we report a study of human tactile microspatial learning in which participants achieved >six-fold decline in acuity threshold after multiple training sessions. Functional magnetic resonance imaging was performed during performance of the tactile microspatial task and a control, tactile temporal task. Effective connectivity between relevant brain regions was estimated using multivariate, autoregressive models of hidden neuronal variables obtained by deconvolution of the hemodynamic response. Training-specific increases in task-selective activation assessed using the task × session interaction and associated changes in effective connectivity primarily involved subcortical and anterior neocortical regions implicated in motor and/or decision processes, rather than somatosensory cortical regions. A control group of participants tested twice, without intervening training, exhibited neither threshold improvement nor increases in task-selective activation. Our observations argue that neuroplasticity mediating perceptual learning occurs at the stage of perceptual readout by decision networks. This is consonant with the growing shift away from strictly modular conceptualization of the brain toward the idea that complex network interactions underlie even simple tasks. The convergence of our findings on tactile learning with recent studies of visual learning reconciles earlier discrepancies in the literature on perceptual learning.
Collapse
|
20
|
Jakab A, Emri M, Spisak T, Szeman-Nagy A, Beres M, Kis SA, Molnar P, Berenyi E. Autistic traits in neurotypical adults: correlates of graph theoretical functional network topology and white matter anisotropy patterns. PLoS One 2013; 8:e60982. [PMID: 23593367 PMCID: PMC3618514 DOI: 10.1371/journal.pone.0060982] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 03/05/2013] [Indexed: 12/27/2022] Open
Abstract
Attempts to explicate the neural abnormalities behind autism spectrum disorders frequently revealed impaired brain connectivity, yet our knowledge is limited about the alterations linked with autistic traits in the non-clinical population. In our study, we aimed at exploring the neural correlates of dimensional autistic traits using a dual approach of diffusion tensor imaging (DTI) and graph theoretical analysis of resting state functional MRI data. Subjects were sampled from a public neuroimaging dataset of healthy volunteers. Inclusion criteria were adult age (age: 18-65), availability of DTI and resting state functional acquisitions and psychological evaluation including the Social Responsiveness Scale (SRS) and Autistic Spectrum Screening Questionnaire (ASSQ). The final subject cohort consisted of 127 neurotypicals. Global brain network structure was described by graph theoretical parameters: global and average local efficiency. Regional topology was characterized by degree and efficiency. We provided measurements for diffusion anisotropy. The association between autistic traits and the neuroimaging findings was studied using a general linear model analysis, controlling for the effects of age, gender and IQ profile. Significant negative correlation was found between the degree and efficiency of the right posterior cingulate cortex and autistic traits, measured by the combination of ASSQ and SRS scores. Autistic phenotype was associated with the decrease of whole-brain local efficiency. Reduction of diffusion anisotropy was found bilaterally in the temporal fusiform and parahippocampal gyri. Numerous models describe the autistic brain connectome to be dominated by reduced long-range connections and excessive short-range fibers. Our finding of decreased efficiency supports this hypothesis although the only prominent effect was seen in the posterior limbic lobe, which is known to act as a connector hub. The neural correlates of the autistic trait in neurotypicals showed only limited similarities to the reported findings in clinical populations with low functioning autism.
Collapse
Affiliation(s)
- Andras Jakab
- Department of Biomedical Laboratory and Imaging Science, University of Debrecen Medical and Health Science Center, Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Xu H, Ding S, Hu X, Yang K, Xiao C, Zou Y, Chen Y, Tao L, Liu H, Qian Z. Reduced efficiency of functional brain network underlying intellectual decline in patients with low-grade glioma. Neurosci Lett 2013; 543:27-31. [PMID: 23562503 DOI: 10.1016/j.neulet.2013.02.062] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/08/2013] [Accepted: 02/25/2013] [Indexed: 11/26/2022]
Abstract
Low-grade glioma (LGG) patients are typically accompanied by varying degrees of intellectual impairments. However, the neural mechanisms underlying intellectual decline have not yet been well understood. The aim of this study is to investigate the relationship between possibly altered functional brain network properties and intellectual decline in LGG patients. Chinese revised Wechsler adult intelligence scale (WAIS-RC) was used to assess the intelligence of 21 LGG patients and 20 healthy controls, matched in age, gender and education. Resting-state functional magnetic resonance imaging (fMRI) was performed for all the subjects to analyze functional network characteristics with graph theory. The LGG patients showed significantly poor performance on intelligence test than controls (P<0.05). Compared with controls, the patients displayed disturbed small-world manner (increased characteristic path length L and normalized characteristic path length λ) and decreased global efficiency Eglob. Specially, we found that Eglob was positively correlated with intelligence quotient (IQ) test scores in LGG group. Furthermore, network hubs, which could significantly affect the network efficiency, were in the right insula and right posterior cingulate cortex in controls, while in the right thalamus and right posterior cingulate cortex in the patients. From the perspective of brain network, our results provided evidence of reduced global efficiency for poorer intellectual performance in LGG patients, which contributed to understanding the basis of intellectual impairments.
Collapse
Affiliation(s)
- Huazhong Xu
- Department of Neurosurgery, Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Road, Nanjing 210000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|