1
|
Chiarpenello C, Brodmann K. What can the psychoneuroimmunology of yoga teach us about depression's psychopathology? Brain Behav Immun Health 2024; 42:100877. [PMID: 39430877 PMCID: PMC11489066 DOI: 10.1016/j.bbih.2024.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
Depression, the most prevailing mental health condition, remains untreated in over 30% of patients. This cluster presents with sub-clinical inflammation. Investigations trialling anti-inflammatory medications had mixed results. The lack of results may result from inflammation's complexity and targeting only a few of depression's abnormal pathways. Mind-body therapies' biological and neuro-imaging studies offer valuable insights into depression psychopathology. Interestingly, mind-body therapies, like yoga, reverse the aberrant pathways in depression. These aberrant pathways include decreased cognitive function, interoception, neuroplasticity, salience and default mode networks connectivity, parasympathetic tone, increased hypothalamic-pituitary-adrenal (HPA) axis activity, and metabolic hyper/hypofunction. Abundant evidence found yogic techniques improving self-reported depressive symptoms across various populations. Yoga may be more effective in treating depression in conjunction with pharmacological and cognitive therapies. Yoga's psychoneuroimmunology teaches us that reducing allostatic load is crucial in improving depressive symptoms. Mind-body therapies promote parasympathetic tone, downregulate the HPA axis, reduce inflammation and boost immunity. The reduced inflammation promotes neuroplasticity and, subsequently, neurogenesis. Improving interoception resolves the metabolic needs prediction error and restores homeostasis. Additionally, by improving functional connectivity within the salience network, they restore the dynamic switching between the default mode and central executive networks, reducing rumination and mind-wandering. Future investigations should engineer therapies targeting the mechanisms mentioned above. The creation of multi-disciplinary health teams offering a combination of pharmacological, gene, neurofeedback, behavioural, mind-body and psychological therapies may treat treatment-resistant depression.
Collapse
Affiliation(s)
- Carola Chiarpenello
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, United Kingdom
| | - Katja Brodmann
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, United Kingdom
| |
Collapse
|
2
|
Li Z, Lei D, Ting L, Yao R, Jing W, Na M. The impact of mindfulness intervention on negative emotions and quality of life in malignant tumor patients: a systematic review and meta-analysis. Front Psychol 2024; 15:1443516. [PMID: 39359957 PMCID: PMC11445068 DOI: 10.3389/fpsyg.2024.1443516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Objective This study aims to assess the effect of mindfulness intervention on negative emotions (anxiety and depression) and quality of life in malignant tumor patients. Methods The databases, including CNKI, VIP, Wanfang, Chinese Biomedical Literature Database disc (CBMdisc), PubMed, Embase, Cochrane Library, and Web of Science (WoS), were searched from inception to January 2024. Randomized controlled trials examining the effects of mindfulness intervention on negative emotions and quality of life in malignant tumor patients were selected. Meta-analysis was conducted using RevMan 5.1. Results A total of 11 studies involving 993 patients were included. Compared with usual care, mindfulness intervention effectively reduced anxiety [SMD = -0.81, 95% CI (-1.01, -0.60), p < 0.00001], depression [SMD = -0.86, 95% CI (-1.01, -0.70), p < 0.00001], and improved patients' quality of life [SMD = 0.64, 95% CI (0.50, 0.78), p < 0.00001]. Conclusion Mindfulness intervention can effectively alleviate negative emotions such as anxiety and depression in malignant tumor patients and positively impact their quality of life.
Collapse
Affiliation(s)
- Zhang Li
- The Second Affiliated Hospital of Army Medical University, Xinqiao Hospital, Shapingba, China
| | - Dong Lei
- The Second Affiliated Hospital of Army Medical University, Xinqiao Hospital, Shapingba, China
| | - Li Ting
- The Second Affiliated Hospital of Army Medical University, Xinqiao Hospital, Shapingba, China
| | - Ran Yao
- The Second Affiliated Hospital of Army Medical University, Xinqiao Hospital, Shapingba, China
| | - Wu Jing
- The Second Affiliated Hospital of Army Medical University, Xinqiao Hospital, Shapingba, China
| | - Mi Na
- The Second Affiliated Hospital of Army Medical University, Xinqiao Hospital, Shapingba, China
| |
Collapse
|
3
|
Laplaud N, Perrochon A, Gallou-Guyot M, Moens M, Goudman L, David R, Rigoard P, Billot M. Management of post-traumatic stress disorder symptoms by yoga: an overview. BMC Complement Med Ther 2023; 23:258. [PMID: 37480017 PMCID: PMC10360332 DOI: 10.1186/s12906-023-04074-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) can occur after trauma. While PTSD management strategies include first-line pharmacotherapy and psychotherapy, mind-body therapies, such as yoga, are applied in the PTSD population. This overview aimed to summarize the effectiveness of yoga interventions on PTSD symptoms in adults in a systematic review (SR) including randomized controlled trials (RCTs). METHOD We searched for SR with or without meta-analysis of RCTs involving adults with PTSD diagnosis or trauma history. The search was conducted until April 2022, through six databases (Cochrane Database, MEDLINE (Pubmed), Scopus, Embase, CINHAL and PEDro). The primary outcome was the evolution of PTSD symptoms throughout the intervention. Secondary outcomes included follow-up, safety, adherence, and cost of the intervention. Two authors independently performed the selection, data extraction and risk of bias assessment with the AMSTAR 2 tool and overlap calculation. This overview is a qualitative summary of the results obtained in the selected studies. RESULTS Eleven SRs were analyzed, of which 8 included meta-analyses. The overlap between studies was considered very high (corrected covered area of 21%). Fifty-nine RCTs involving 4434 participants were included. Yoga had a significant small-to-moderate effect-size on PTSD symptom decrease in 7 SRs and non-significant effects in 1 SR with meta-analysis. All SR without meta-analysis found beneficial effects of yoga on PTSD. Secondary outcomes were not sufficiently assessed to provide clear evidence. Results should be interpreted with caution as 1 SR was rated as at moderate risk of bias, 3 as low and 7 as critically low. CONCLUSIONS While yoga therapy seems promising for decreasing PTSD symptoms, future research should standardize yoga therapy duration/frequency/type and consider long-term efficacy to better delineate yoga therapy efficacy in PTSD patients.
Collapse
Affiliation(s)
- Nina Laplaud
- ILFOMER (Institut Limousin de FOrmation Aux Métiers de La Réadaptation), Université de Limoges, Limoges, France
| | - Anaïck Perrochon
- ILFOMER (Institut Limousin de FOrmation Aux Métiers de La Réadaptation), Université de Limoges, Limoges, France
- Laboratoire HAVAE, Université de Limoges, 20217, Limoges, UR, France
| | | | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
- STIMULUS Research Consortium (Research and TeachIng Neuromodulation Uz Brussel), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
- Department of Physiotherapy, Pain in Motion (PAIN) Research Group, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
- STIMULUS Research Consortium (Research and TeachIng Neuromodulation Uz Brussel), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
- Department of Physiotherapy, Pain in Motion (PAIN) Research Group, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Research Foundation-Flanders (FWO), 1090, Brussels, Belgium
| | - Romain David
- Department of Physical and Rehabilitation Medicine, Poitiers University Hospital, University of Poitiers, 86000, Poitiers, France
- PRISMATICS (Predictive Research In Spine/Neurostimulation Management And Thoracic Innovation in Cardiac Surgery), University Hospital of Poitiers, Poitiers, France
| | - Philippe Rigoard
- PRISMATICS (Predictive Research In Spine/Neurostimulation Management And Thoracic Innovation in Cardiac Surgery), University Hospital of Poitiers, Poitiers, France
- Department of Spine Neurosurgery & Neuromodulation, Poitiers University Hospital, 86000, Poitiers, France
- ISAE-ENSMA, Pprime Institute UPR 3346, CNRS, University of Poitiers, 86000, Poitiers, France
| | - Maxime Billot
- PRISMATICS (Predictive Research In Spine/Neurostimulation Management And Thoracic Innovation in Cardiac Surgery), University Hospital of Poitiers, Poitiers, France.
| |
Collapse
|
4
|
Parkinson TD, Smith SD. A cross-sectional analysis of yoga experience on variables associated with psychological well-being. Front Psychol 2023; 13:999130. [PMID: 36743606 PMCID: PMC9889934 DOI: 10.3389/fpsyg.2022.999130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Previous research has identified numerous physical, psychological, and spiritual benefits associated with the practice of yoga. Indeed, yoga has been linked with improved quality of life, reduced stress, and numerous markers of psychological well-being. In the current research, a cross-sectional design was used to examine whether the psychological benefits associated with yoga only apply to long-term practitioners or whether more "casual," intermittent yoga experience could produce positive outcomes. Methods An American population of long-term practitioners (n = 129), intermittent practitioners (n = 161), and non-practitioners (n = 164) completed online self-report measures of emotional regulation, trait mindfulness, self-compassion, interoceptive awareness, and spiritual intelligence variables. Results The results indicated that long-term (LT) practitioners scored higher than intermittent experience (IE) practitioners on measures of mindfulness (MLT = 137.3; MIE = 127.6), interoceptive awareness (MLT = 3.4; MIE = 3.1), self-compassion (MLT = 3.4; MIE = 3.1), and spiritual intelligence (MLT = 63.5; MIE = 55.5; all p-value < 0.05). Intermittent practitioners scored higher than no-experience (NE) group on interoceptive awareness (MIE = 3.1; MNE = 2.7) and spiritual intelligence (MIE = 55.5; MNE = 46.6; both p-value < 0.05). Contrary to our hypotheses, yoga experience had no effect on depression, anxiety, or stress levels. Separate mediation analyses demonstrated that interoceptive awareness, spiritual intelligence, mindfulness, and self-compassion each mediated the relationship between yoga experience and emotion dysregulation. Furthermore, emotion dysregulation mediated the relationship between yoga experience and depression, anxiety, and stress. Discussion Taken together, the results of this study suggest that long-term practitioners experience more benefits compared to intermittent and non-practitioners, and that the mechanisms underlying these benefits are multi-faceted.
Collapse
Affiliation(s)
| | - Stephen D. Smith
- Department of Psychology, University of Manitoba, Winnipeg, MB, Canada,Department of Psychology, University of Winnipeg, Winnipeg, MB, Canada,*Correspondence: Stephen D. Smith, ✉
| |
Collapse
|
5
|
Zhou H, Yao Y, Geng F, Chen F, Hu Y. Right Fusiform Gray Matter Volume in Children with Long-Term Abacus Training Positively Correlates with Arithmetic Ability. Neuroscience 2022; 507:28-35. [PMID: 36400323 DOI: 10.1016/j.neuroscience.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
Abacus-based mental calculation (AMC) training has a positive effect on number-related cognitive abilities. While visuospatial strategy may distinguish AMC from conventional calculation method, the underlying neural mechanism is still elusive. The current study aimed to address this question by examining the plasticity of fusiform induced by AMC training and whether this training affects the association between the volume of fusiform and behavioral performance in numerical cognitive tasks using voxel-based morphometry analysis. The results showed that gray matter volumes of bilateral fusiform were significantly smaller in the AMC group relative to the control group. In addition, the volume of right fusiform was positively correlated with digit memory span and negatively correlated with reaction time of an arithmetic operation task only within the AMC group. These results indicate that bilateral fusiform may be the essential neural substrate for AMC experts to recognize and reconstruct abacus-based representations for numbers. These results may advance our understanding of the neural mechanisms of AMC and shield some lights to potential interactions between brain development and cognitive training in children.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310007, China
| | - Yuan Yao
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China; Department of Psychology, Suzhou University of Science and Technology, Suzhou, China
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, College of Education, Zhejiang University, Hangzhou 310007, China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310007, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China.
| |
Collapse
|
6
|
Stoliker D, Egan GF, Friston KJ, Razi A. Neural Mechanisms and Psychology of Psychedelic Ego Dissolution. Pharmacol Rev 2022; 74:876-917. [PMID: 36786290 DOI: 10.1124/pharmrev.121.000508] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies of psychedelics have advanced our understanding of hierarchical brain organization and the mechanisms underlying their subjective and therapeutic effects. The primary mechanism of action of classic psychedelics is binding to serotonergic 5-HT2A receptors. Agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy that can have a profound effect on hierarchical message-passing in the brain. Here, we review the cognitive and neuroimaging evidence for the effects of psychedelics: in particular, their influence on selfhood and subject-object boundaries-known as ego dissolution-surmised to underwrite their subjective and therapeutic effects. Agonism of 5-HT2A receptors, located at the apex of the cortical hierarchy, may have a particularly powerful effect on sentience and consciousness. These effects can endure well after the pharmacological half-life, suggesting that psychedelics may have effects on neural plasticity that may play a role in their therapeutic efficacy. Psychologically, this may be accompanied by a disarming of ego resistance that increases the repertoire of perceptual hypotheses and affords alternate pathways for thought and behavior, including those that undergird selfhood. We consider the interaction between serotonergic neuromodulation and sentience through the lens of hierarchical predictive coding, which speaks to the value of psychedelics in understanding how we make sense of the world and specific predictions about effective connectivity in cortical hierarchies that can be tested using functional neuroimaging. SIGNIFICANCE STATEMENT: Classic psychedelics bind to serotonergic 5-HT2A receptors. Their agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy, resulting in a profound effect on information processing in the brain. Here, we synthesize an abundance of brain imaging research with pharmacological and psychological interpretations informed by the framework of predictive coding. Moreover, predictive coding is suggested to offer more sophisticated interpretations of neuroimaging findings by bridging the role between the 5-HT2A receptors and large-scale brain networks.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Gary F Egan
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Karl J Friston
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Adeel Razi
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| |
Collapse
|
7
|
Caetano I, Amorim L, Castanho TC, Coelho A, Ferreira S, Portugal-Nunes C, Soares JM, Gonçalves N, Sousa R, Reis J, Lima C, Marques P, Moreira PS, Rodrigues AJ, Santos NC, Morgado P, Esteves M, Magalhães R, Picó-Pérez M, Sousa N. Association of amygdala size with stress perception: Findings of a transversal study across the lifespan. Eur J Neurosci 2022; 56:5287-5298. [PMID: 36017669 DOI: 10.1111/ejn.15809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022]
Abstract
Daily routines are getting increasingly stressful. Interestingly, associations between stress perception and amygdala volume, a brain region implicated in emotional behaviour, have been observed in both younger and older adults. Life stress, on the other hand, has become pervasive and is no longer restricted to a specific age group or life stage. As a result, it is vital to consider stress as a continuum across the lifespan. In this study, we investigated the relationship between perceived stress and amygdala size in 272 healthy participants with a broad age range. Participants were submitted to a structural magnetic resonance imaging (MRI) to extract amygdala volume, and the Perceived Stress Scale (PSS) scores were used as the independent variable in volumetric regressions. We found that perceived stress is positively associated with the right amygdala volume throughout life.
Collapse
Affiliation(s)
- Inês Caetano
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Liliana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), Braga, Portugal
| | - Teresa Costa Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), Braga, Portugal
| | - Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Carlos Portugal-Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,CECAV-Veterinary and Animal Science Research Centre, Vila Real, Portugal
| | - José Miguel Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Nuno Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Rui Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | - Joana Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Catarina Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Nadine Correia Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), Braga, Portugal
| |
Collapse
|
8
|
Sars D. PE augmented mindfulness: A neurocognitive framework for research and future healthcare. Front Hum Neurosci 2022; 16:899988. [PMID: 36082227 PMCID: PMC9446465 DOI: 10.3389/fnhum.2022.899988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Various well-controlled studies have suggested that practitioners in mindfulness can be prone to patient drop-out (e.g., due to chronic stress, pathology, cognitive reactivity), despite researchers having identified the underlying mechanisms that link mindfulness to mental health. In this article, a framework for physical exercise (PE) augmented mindfulness is proposed, which posits that consistently practiced PE before meditation can support (early-stage) mindfulness. Neurocognitive research shows PE (aerobic exercises or yoga) and mindfulness to impact similar pathways of stress regulation that involve cognitive control and stress regulation, thereby supporting the proposed synergistic potential of PE augmented mindfulness. Research focused on the psychophysiological impact of PE, showed its practice to promote short-term neurocognitive changes that can promote both cognitive control and the attainment of mindful awareness (MA). In order to chart dose responses required for protocol development, further research will be presented. Together these findings are discussed in light of future research on this multidisciplinary topic, protocol development, mindful walking, and further application in healthcare and beyond.
Collapse
Affiliation(s)
- David Sars
- Mettaminds.org, Mindfulness Based Projects, Amsterdam, Netherlands
- Centre for Integral Rehabilitation (CIR), Amsterdam, Netherlands
| |
Collapse
|
9
|
Nourollahimoghadam E, Gorji S, Gorji A, Khaleghi Ghadiri M. Therapeutic role of yoga in neuropsychological disorders. World J Psychiatry 2021; 11:754-773. [PMID: 34733640 PMCID: PMC8546763 DOI: 10.5498/wjp.v11.i10.754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/28/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Yoga is considered a widely-used approach for health conservation and can be adopted as a treatment modality for a plethora of medical conditions, including neurological and psychological disorders. Hence, we reviewed relevant articles entailing various neurological and psychological disorders and gathered data on how yoga exerts positive impacts on patients with a diverse range of disorders, including its modulatory effects on brain bioelectrical activities, neurotransmitters, and synaptic plasticity. The role of yoga practice as an element of the treatment of several neuropsychological diseases was evaluated based on these findings.
Collapse
Affiliation(s)
| | - Shaghayegh Gorji
- Epilepsy Research Center, Münster University, Münster 48149, Germany
| | - Ali Gorji
- Epilepsy Research Center, Münster University, Münster 48149, Germany
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | | |
Collapse
|
10
|
Calvetti D, Johnson B, Pascarella A, Pitolli F, Somersalo E, Vantaggi B. Mining the Mind: Linear Discriminant Analysis of MEG Source Reconstruction Time Series Supports Dynamic Changes in Deep Brain Regions During Meditation Sessions. Brain Topogr 2021; 34:840-862. [PMID: 34652578 PMCID: PMC8556220 DOI: 10.1007/s10548-021-00874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/27/2021] [Indexed: 10/25/2022]
Abstract
Meditation practices have been claimed to have a positive effect on the regulation of mood and emotions for quite some time by practitioners, and in recent times there has been a sustained effort to provide a more precise description of the influence of meditation on the human brain. Longitudinal studies have reported morphological changes in cortical thickness and volume in selected brain regions due to meditation practice, which is interpreted as an evidence its effectiveness beyond the subjective self reporting. Using magnetoencephalography (MEG) or electroencephalography to quantify the changes in brain activity during meditation practice represents a challenge, as no clear hypothesis about the spatial or temporal pattern of such changes is available to date. In this article we consider MEG data collected during meditation sessions of experienced Buddhist monks practicing focused attention (Samatha) and open monitoring (Vipassana) meditation, contrasted by resting state with eyes closed. The MEG data are first mapped to time series of brain activity averaged over brain regions corresponding to a standard Destrieux brain atlas. Next, by bootstrapping and spectral analysis, the data are mapped to matrices representing random samples of power spectral densities in [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] frequency bands. We use linear discriminant analysis to demonstrate that the samples corresponding to different meditative or resting states contain enough fingerprints of the brain state to allow a separation between different states, and we identify the brain regions that appear to contribute to the separation. Our findings suggest that the cingulate cortex, insular cortex and some of the internal structures, most notably the accumbens, the caudate and the putamen nuclei, the thalamus and the amygdalae stand out as separating regions, which seems to correlate well with earlier findings based on longitudinal studies.
Collapse
Affiliation(s)
- Daniela Calvetti
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Brian Johnson
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Annalisa Pascarella
- Istituto per le Applicazioni del Calcolo "Mauro Picone" - CNR, Via dei Taurini 19, 00185, Rome, Italy
| | - Francesca Pitolli
- Department of Basic and Applied Sciences for Engineering, University of Rome "La Sapienza", Via Scarpa 16, 00161, Rome, Italy.
| | - Erkki Somersalo
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Barbara Vantaggi
- Department MEMOTEF, University of Rome "La Sapienza", Via del Castro Laurenziano 9, 00161, Rome, Italy
| |
Collapse
|
11
|
Cornforth E, Schramm K. Physical therapist's beliefs, practice patterns and barriers to the incorporation of mindfulness meditation into management of individuals with chronic dizziness. Complement Ther Clin Pract 2021; 43:101387. [PMID: 33892386 DOI: 10.1016/j.ctcp.2021.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The purpose of this study was to assess physical therapist's beliefs, practice patterns, and barriers of incorporation of mindfulness meditation into the management of individuals with chronic dizziness. METHODS An electronic survey was sent to physical therapists with experience treating individuals with dizziness and vestibular disorders. Descriptive statistics and chi-square analysis were conducted. RESULTS The majority of respondents agree that anxiety limits functional and participation outcomes with individuals with chronic dizziness and adoption of a mindfulness meditation practice could be helpful to address this. However, a much smaller percentage of respondents reported currently using these techniques a majority of time during their clinical practice. CONCLUSION Barriers exist that prevent the widespread implementation of meditation and mindfulness in physical therapy practice. Potential limiting factors highlight that further research is needed to explore these barriers and evaluate the outcomes of patients with chronic dizziness when meditation is applied in practice.
Collapse
Affiliation(s)
- Elizabeth Cornforth
- MGH Institute of Health Professions, Boston, MA, USA; Spaulding Rehabilitation Hospital, Boston, MA, USA.
| | | |
Collapse
|
12
|
Tanner JJ, Johnson AJ, Terry EL, Cardoso J, Garvan C, Staud R, Deutsch G, Deshpande H, Lai S, Addison A, Redden D, Goodin BR, Price CC, Fillingim RB, Sibille KT. Resilience, pain, and the brain: Relationships differ by sociodemographics. J Neurosci Res 2021; 99:1207-1235. [PMID: 33606287 DOI: 10.1002/jnr.24790] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/23/2020] [Accepted: 01/03/2021] [Indexed: 12/22/2022]
Abstract
Chronic musculoskeletal (MSK) pain is disabling to individuals and burdensome to society. A relationship between telomere length and resilience was reported in individuals with consideration for chronic pain intensity. While chronic pain associates with brain changes, little is known regarding the neurobiological interface of resilience. In a group of individuals with chronic MSK pain, we examined the relationships between a previously investigated resilience index, clinical pain and functioning measures, and pain-related brain structures, with consideration for sex and ethnicity/race. A cross-sectional analysis of 166 non-Hispanic Black and non-Hispanic White adults, 45-85 years of age with pain ≥ 1 body site (s) over the past 3 months was completed. Measures of clinical pain and functioning, biobehavioral and psychosocial resilience, and structural MRI were completed. Our findings indicate higher levels of resilience associate with lower levels of clinical pain and functional limitations. Significant associations between resilience, ethnicity/race, and/or sex, and pain-related brain gray matter structure were demonstrated in the right amygdaloid complex, bilateral thalamus, and postcentral gyrus. Our findings provide compelling evidence that in order to decipher the neurobiological code of chronic pain and related protective factors, it will be important to improve how chronic pain is phenotyped; to include an equal representation of females in studies including analyses stratifying by sex, and to consider other sociodemographic factors.
Collapse
Affiliation(s)
- Jared J Tanner
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Alisa J Johnson
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Ellen L Terry
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
| | - Josue Cardoso
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Cynthia Garvan
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roland Staud
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg Deutsch
- Department of Radiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA
| | - Hrishikesh Deshpande
- Department of Radiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA.,Department of Anesthesiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA
| | - Song Lai
- Department of Radiation Oncology & CTSI Human Imaging Core, University of Florida, Gainesville, FL, USA
| | - Adriana Addison
- Department of Anesthesiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA.,Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Redden
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Burel R Goodin
- Department of Anesthesiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA.,Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Catherine C Price
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.,Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roger B Fillingim
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Kimberly T Sibille
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Aging and Geriatric Research, College of Medicine, UF Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
A brain-inspired cognitive support model for stress reduction based on an adaptive network model. COGN SYST RES 2021. [DOI: 10.1016/j.cogsys.2020.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Brief Mindfulness Meditation Induces Gray Matter Changes in a Brain Hub. Neural Plast 2020; 2020:8830005. [PMID: 33299395 PMCID: PMC7704181 DOI: 10.1155/2020/8830005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/11/2020] [Accepted: 10/30/2020] [Indexed: 01/03/2023] Open
Abstract
Previous studies suggest that the practice of long-term (months to years) mindfulness meditation induces structural plasticity in gray matter. However, it remains unknown whether short-term (<30 days) mindfulness meditation in novices could induce similar structural changes. Our previous randomized controlled trials (RCTs) identified white matter changes surrounding the anterior cingulate cortex (ACC) and the posterior cingulate cortex (PCC) within 2 to 4 weeks, following 5-10 h of mindfulness training. Furthermore, these changes were correlated with emotional states in healthy adults. The PCC is a key hub in the functional anatomy implicated in meditation and other perspectival processes. In this longitudinal study using a randomized design, we therefore examined the effect of a 10 h of mindfulness training, the Integrative Body-Mind Training (IBMT) on gray matter volume of the PCC compared to an active control-relaxation training (RT). We found that brief IBMT increased ventral PCC volume and that baseline temperamental trait-an index of individual differences was associated with a reduction in training-induced gray matter increases. Our findings indicate that brief mindfulness meditation induces gray matter plasticity, suggesting that structural changes in ventral PCC-a key hub associated with self-awareness, emotion, cognition, and aging-may have important implications for protecting against mood-related disorders and aging-related cognitive declines.
Collapse
|
15
|
Yuan JP, Connolly CG, Henje E, Sugrue LP, Yang TT, Xu D, Tymofiyeva O. Gray Matter Changes in Adolescents Participating in a Meditation Training. Front Hum Neurosci 2020; 14:319. [PMID: 32922278 PMCID: PMC7456888 DOI: 10.3389/fnhum.2020.00319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Meditation has shown to benefit a wide range of conditions and symptoms, but the neural mechanisms underlying the practice remain unclear. Magnetic resonance imaging (MRI) studies have investigated the structural brain changes due to the practice by examining volume, density, or cortical thickness changes. However, these studies have focused on adults; meditation’s structural effects on the adolescent brain remain understudied. In this study, we investigated how meditation training affects the structure of the adolescent brain by scanning a group of 38 adolescents (16.48 ± 1.29 years) before and after participating in a 12-week meditation training. Subjects underwent Training for Awareness, Resilience, and Action (TARA), a program that mainly incorporates elements from mindfulness meditation and yoga-based practices. A subset of the adolescents also received an additional control scan 12 weeks before TARA. We conducted voxel-based morphometry (VBM) to assess gray matter volume changes pre- to post-training and during the control period. Subjects showed significant gray matter (GM) volume decreases in the left posterior insula and to a lesser extent in the left thalamus and left putamen after meditation training. There were no significant changes during the control period. Our results support previous findings that meditation affects regions associated with physical and emotional awareness. However, our results are different from previous morphometric studies in which meditation was associated with structural increases. We posit that this discrepancy may be due to the differences between the adolescent brain and the adult brain.
Collapse
Affiliation(s)
- Justin P Yuan
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.,Department of Psychology, Stanford University, Stanford, CA, United States
| | - Colm G Connolly
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Eva Henje
- Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.,Department of Clinical Science/Child and Adolescent Psychiatry, Umeå University, Umeå, Sweden
| | - Leo P Sugrue
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Tony T Yang
- Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Duan Xu
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Olga Tymofiyeva
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
16
|
van Aalst J, Ceccarini J, Demyttenaere K, Sunaert S, Van Laere K. What Has Neuroimaging Taught Us on the Neurobiology of Yoga? A Review. Front Integr Neurosci 2020; 14:34. [PMID: 32733213 PMCID: PMC7362763 DOI: 10.3389/fnint.2020.00034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Yoga is becoming increasingly popular worldwide, with several implicated physical and mental benefits. Here we provide a comprehensive and critical review of the research generated from the existing neuroimaging literature in studies of yoga practitioners. We reviewed 34 international peer-reviewed neuroimaging studies of yoga using magnetic resonance imaging (MRI), positron emission tomography (PET), or single-photon emission computed tomography (SPECT): 11 morphological and 26 functional studies, including three studies that were classified as both morphological and functional. Consistent findings include increased gray matter volume in the insula and hippocampus, increased activation of prefrontal cortical regions, and functional connectivity changes mainly within the default mode network. There is quite some variability in the neuroimaging findings that partially reflects different yoga styles and approaches, as well as sample size limitations. Direct comparator groups such as physical activity are scarcely used so far. Finally, hypotheses on the underlying neurobiology derived from the imaging findings are discussed in the light of the potential beneficial effects of yoga.
Collapse
Affiliation(s)
- June van Aalst
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, UZ/KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, UZ/KU Leuven, Leuven, Belgium
| | - Koen Demyttenaere
- Research Group Psychiatry, Department of Neuroscience, University Psychiatry Center KU Leuven, Leuven, Belgium.,Adult Psychiatry, UZ Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Radiology, UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, UZ/KU Leuven, Leuven, Belgium.,Division of Nuclear Medicine, UZ Leuven, Leuven, Belgium
| |
Collapse
|
17
|
van Aalst J, Ceccarini J, Schramm G, Van Weehaeghe D, Rezaei A, Demyttenaere K, Sunaert S, Van Laere K. Long-term Ashtanga yoga practice decreases medial temporal and brainstem glucose metabolism in relation to years of experience. EJNMMI Res 2020; 10:50. [PMID: 32410000 PMCID: PMC7225240 DOI: 10.1186/s13550-020-00636-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background Yoga is increasingly popular worldwide with several physical and mental benefits, but the underlying neurobiology remains unclear. Whereas many studies have focused on pure meditational aspects, the triad of yoga includes meditation, postures, and breathing. We conducted a cross-sectional study comparing experienced yoga practitioners to yoga-naive healthy subjects using a multiparametric 2 × 2 design with simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging. Methods 18F-FDG PET, morphometric and diffusion tensor imaging, resting state fMRI, and MR spectroscopy were acquired in 10 experienced (4.8 ± 2.3 years of regular yoga experience) yoga practitioners and 15 matched controls in rest and after a single practice (yoga practice and physical exercise, respectively). Results In rest, decreased regional glucose metabolism in the medial temporal cortex, striatum, and brainstem was observed in yoga practitioners compared to controls (p < 0.0001), with a significant inverse correlation of resting parahippocampal and brainstem metabolism with years of regular yoga practice (ρ < − 0.63, p < 0.05). A single yoga practice resulted in significant hypermetabolism in the cerebellum (p < 0.0001). None of the MR measures differed, both at rest and after intervention. Conclusions Experienced yoga practitioners show regional long-term decreases in glucose metabolism related to years of practice. To elucidate a potential causality, a prospective longitudinal study in yoga-naive individuals is warranted.
Collapse
Affiliation(s)
- June van Aalst
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Georg Schramm
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Donatienne Van Weehaeghe
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ahmadreza Rezaei
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Koen Demyttenaere
- Research Group Psychiatry, Neurosciences, University Psychiatric Center KU Leuven, Leuven, Belgium.,Adult Psychiatry, UZ Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Imaging and Pathology, KU Leuven, Leuven, Belgium.,Radiology, UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Nuclear Medicine, UZ Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Mathersul DC, Eising CM, DeSouza DD, Spiegel D, Bayley PJ. Brain and Physiological Markers of Autonomic Function Are Associated With Treatment-Related Improvements in Self-Reported Autonomic Dysfunction in Veterans With Gulf War Illness: An Exploratory Pilot Study. Glob Adv Health Med 2020; 9:2164956120922812. [PMID: 32426178 PMCID: PMC7218338 DOI: 10.1177/2164956120922812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Gulf War Illness (GWI) is a poorly understood condition characterized by a constellation of mood, cognitive, and physical symptoms. A growing body of evidence demonstrates autonomic nervous system (ANS) dysfunction. Few published treatment studies exist for GWI. METHOD We recently completed a randomized controlled trial comparing a 10-week group yoga intervention to 10-week group cognitive behavioral therapy (CBT) for veterans with GWI. Here, we present exploratory data on ANS biomarkers of treatment response from a small pilot exploratory neurophysiological add-on study (n = 13) within that larger study. RESULTS Findings suggest that veterans with GWI receiving either yoga or CBT for pain improved following treatment and that changes in biological ANS-especially for the yoga group-moved in the direction of healthy profiles: lower heart rate, higher square root of the mean squared differences between successive R-R intervals (RMSSD), greater parasympathetic activation/dominance (increased high-frequency heart rate variability [HF-HRV], decreased low-frequency/high-frequency [LF/HF] ratio), reduced right amygdala volume, and stronger amygdala-default mode/amygdala-salience network connectivity, both immediately posttreatment and at 6-month follow-up. Biological mechanisms of CBT appeared to underlie improvements in more psychologically loaded symptoms such as self-reported fatigue and energy. Higher tonic arousal and/or more sympathetic dominance (higher skin conductance, lower RMSSD, lower HF-HRV, higher LF/HF ratio) pretreatment predicted greater treatment-related improvements in self-reported ANS for both the yoga and CBT group. CONCLUSION These exploratory pilot data provide preliminary support for the suggestion that treatment (yoga, CBT) is associated with improvements in both biological and self-reported ANS dysfunctions in GWI. The major limitation for these findings is the small sample size. Larger and more controlled studies are needed to replicate these findings and directly compare biomarkers of yoga versus CBT.
Collapse
Affiliation(s)
- Danielle C Mathersul
- War Related Illness and Injury Study Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Carla M Eising
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
- Department of Clinical Psychology Science, Maastricht University, Maastricht, the Netherlands
| | - Danielle D DeSouza
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - David Spiegel
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Peter J Bayley
- War Related Illness and Injury Study Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
19
|
Schnaubelt S, Hammer A, Koller L, Niederdoeckl J, Kazem N, Spiel A, Niessner A, Sulzgruber P. Expert Opinion: Meditation and Cardiovascular Health: What is the Link? Eur Cardiol 2020; 14:161-164. [PMID: 31933684 PMCID: PMC6950207 DOI: 10.15420/ecr.2019.21.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 10/02/2019] [Indexed: 01/29/2023] Open
Abstract
Meditation as a form of body–mind interaction for primary and secondary prevention in cardiovascular disease has been discussed critically in the past. However, data that aimed to link this intervention to a reduction of various aspects of cardiovascular disease, rendering it a potential part of a cost-effective treatment approach in patients at risk, remain scarce and inconclusive. This article aims to provide an overview of currently available evidence in the literature and the potential impact of meditation on cardiovascular health. However, the data highlighted in this article cannot render with certainty directly reproducible effects of meditation on patients’ cardiovascular disease profiles. Meditation may be suggested only as an additional link in the chain of primary and secondary prevention until future research provides sufficient data on this topic.
Collapse
Affiliation(s)
| | - Andreas Hammer
- Department of Medicine II, Division of Cardiology, Medical University of Vienna Austria
| | - Lorenz Koller
- Department of Medicine II, Division of Cardiology, Medical University of Vienna Austria
| | - Jan Niederdoeckl
- Department of Emergency Medicine, Medical University of Vienna Austria
| | - Niema Kazem
- Department of Medicine II, Division of Cardiology, Medical University of Vienna Austria
| | - Alexander Spiel
- Department of Emergency Medicine, Medical University of Vienna Austria
| | - Alexander Niessner
- Department of Medicine II, Division of Cardiology, Medical University of Vienna Austria
| | - Patrick Sulzgruber
- Department of Medicine II, Division of Cardiology, Medical University of Vienna Austria
| |
Collapse
|
20
|
Liu Y, Yan T, Chu JMT, Chen Y, Dunnett S, Ho YS, Wong GTC, Chang RCC. The beneficial effects of physical exercise in the brain and related pathophysiological mechanisms in neurodegenerative diseases. J Transl Med 2019; 99:943-957. [PMID: 30808929 DOI: 10.1038/s41374-019-0232-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Growing evidence has shown the beneficial influence of exercise on humans. Apart from classic cardioprotection, numerous studies have demonstrated that different exercise regimes provide a substantial improvement in various brain functions. Although the underlying mechanism is yet to be determined, emerging evidence for neuroprotection has been established in both humans and experimental animals, with most of the valuable findings in the field of mental health, neurodegenerative diseases, and acquired brain injuries. This review will discuss the recent findings of how exercise could ameliorate brain function in neuropathological states, demonstrated by either clinical or laboratory animal studies. Simultaneously, state-of-the-art molecular mechanisms underlying the exercise-induced neuroprotective effects and comparison between different types of exercise will be discussed in detail. A majority of reports show that physical exercise is associated with enhanced cognition throughout different populations and remains as a fascinating area in scientific research because of its universal protective effects in different brain domain functions. This article is to review what we know about how physical exercise modulates the pathophysiological mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Yan Liu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.,Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Tim Yan
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - John Man-Tak Chu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.,Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Ying Chen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.,Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Sophie Dunnett
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yuen-Shan Ho
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR.
| |
Collapse
|