1
|
Silva BN, Cadavez V, Caleja C, Pereira E, Calhelha RC, Molina AK, Finimundy T, Kostić M, Soković M, Teixeira JA, Barros L, Gonzales-Barron U. Chemical profiles and bioactivities of polyphenolic extracts of Lavandula stoechas L., Artemisia dracunculus L. and Ocimum basilicum L. Food Chem 2024; 451:139308. [PMID: 38688095 DOI: 10.1016/j.foodchem.2024.139308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
This study assessed the chemical profiles and bioactivities of the infusions, decoctions and hydroethanolic extracts of tarragon, basil and French lavender. The extracts were chemically characterised (HPLC-DAD-ESI/MS) and their bioactivities were evaluated in vitro. All extracts revealed antimicrobial, antifungal and antioxidant properties. French lavender extracts showed higher total phenolic content, regardless of the extraction method used, and antioxidant and antitumour capacities, but no anti-inflammatory action. All basil and two of the tarragon extracts revealed anti-inflammatory power. Thus, tarragon, basil and French lavender extracts may be considered for inclusion in foods, as preservatives or functional ingredients. Nonetheless, further studies must be conducted to evaluate the pharmacokinetic parameters of the bioactive compounds.
Collapse
Affiliation(s)
- Beatriz Nunes Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Adriana K Molina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Tiane Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Marina Kostić
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga, Portugal.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
2
|
Bölek S, Tosya F, Göksu F. Effects of Artemisia dracunculus powder on dough rheology and quality properties as a novel ingredient in bread formulation. FOOD SCI TECHNOL INT 2024:10820132241248483. [PMID: 38651275 DOI: 10.1177/10820132241248483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tarragon has a great potential to be a healthy functional food ingredient thanks to its rich antioxidant, phenolic compounds, and nutrient content. The possibility of enriching bread with tarragon was investigated. For this aim, tarragon powder was used at the rates of 0, 2, 4 and 6% instead of wheat flour. In this study, the effects of substitution on the rheological properties of bread dough and color, total phenolic content, antioxidant activity, texture, sensory, and Fourier transform infrared (FT-IR) analysis of bread samples were performed. The composition of tarragon powder showed significant protein (23.16%), crude fiber (7.4%), antioxidant (48.22 ± 0.11%), and total phenolic content (511.66 ± 1.56 mg GAE/100 g). Bread samples with increased fiber and protein content were obtained by adding tarragon powder to the bread formulation. The major differences in the FT-IR absorbance spectra for the bread samples were not observed. Additionally, tarragon powder significantly increased the antioxidative properties of breads (p < 0.05). Adding up to 4% tarragon powder to the bread formulation increased the sensory scores of the breads.
Collapse
Affiliation(s)
- Sibel Bölek
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul, Turkey
| | - Feyza Tosya
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul, Turkey
| | - Feriha Göksu
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul, Turkey
| |
Collapse
|
3
|
Jaradat N, Dwikat M, Amer J, Ghanim M, Hawash M, Hussein F, Issa L, Ishtawe S, Salah S, Nasser S. Total phenolic contents, cytotoxic, free radicals, porcine pancreatic α-amylase, and lipase suppressant activities of Artemisia dracunculus plant from Palestine. Front Pharmacol 2024; 15:1351743. [PMID: 38515857 PMCID: PMC10955573 DOI: 10.3389/fphar.2024.1351743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Artemisia dracunculus: L. (A. dracunculus) is a popular vegetable and spice cultivated across many Middle Eastern countries. The herb's aqueous extract has significant folkloric medicinal importance for treating various disorders. Hence, the present investigation aimed to investigate A. dracunculus hydrophilic extract phytochemical constituents and pleiotropic biological potentials, as no previous studies have investigated the antilipase and anti-α-amylase effects of the A. dracunculus plant. Total phenol content and phytochemical screening assays were performed utilizing standard analytical methods. While the α-amylase inhibition, free radical-scavenging, antilipase, and cytotoxic activities were determined using dinitrosalicylic acid (DNSA), DPPH, p-nitrophenyl butyrate (PNPB), and MTS assays, respectively. The standard phytochemical analysis of A. dracunculus aqueous extract shows that this extract contains only a phenolic group. The total phenol content was 0.146 ± 0.012 mg GAE/g of the plant dry extract. The A. dracunculus aqueous extract exhibited potent DPPH free radical inhibitory (IC50 dose of 10.71 ± 0.01 μg/mL) and anti-lipase activities (IC50 dose of 60.25 ± 0.33 μg/mL) compared with Trolox (IC50 = 5.7 ± 0.92 μg/mL) and Orlistat (IC50 = 12.3 ± 0.35 μg/mL), respectively. However, it showed a weak anti-α-amylase effect (IC50 value > 1,000 μg/mL) compared with Acarbose (IC50 = 28.18 ± 1.27 μg/mL). A. dracunculus has a cytotoxic effect against the HeLa cancer cell line compared with the chemotherapeutic agent Doxorubicin. The extract has the same percent of inhibition as Doxorubicin (99.9%) at 10 mg/mL. Overall, these results pointed out for the first time the importance of considering A. dracunculus effects as a favorite candidate for preventing and treating metabolic disorders. Also, our results confirm the findings of previous reports on the role of A. dracunculus in the management of cancer and disorders resulting from the accumulation of harmful free radicals. On the contrary, the current study concluded that the antidiabetic role of A. dracunculus could be minimal. Further in-depth investigations are urgently warranted to explore the importance of A. dracunculus in pharmaceutical production.
Collapse
Affiliation(s)
- Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Majdi Dwikat
- Department of Allied Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Johnny Amer
- Department of Allied Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mustafa Ghanim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Fatima Hussein
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Linda Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Salsabeel Ishtawe
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Shahd Salah
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sara Nasser
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
4
|
Forouzanfar F, Moshirian Farahi SM, Rakhshandeh H, Memar B, Rashidi R, Mahdipour R, Riahi-Zanjani B. Immunomodulation Induced in BALB/c Mice after Subacute Exposure to Hydroalcoholic Extract of Artimisia Dracunculus. Curr Drug Discov Technol 2024; 21:e240124226142. [PMID: 38279720 DOI: 10.2174/0115701638279953231222062644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Tarragon, with the scientific name of Artemisia dracunculus, is a perennial herbaceous plant with a wide spectrum of pharmacologic properties. In the current investigation, BALB/c mice were used to examine the immunomodulatory effects of hydroalcoholic extract of tarragon (HET). METHODS Mice were treated with hydroalcoholic extract of Artimisia dracunculus (HET) at two doses (250 and 500 mg/kg) for 14 days. The host hematological parameters, spleen cellularity histopathology, hemagglutination titer assay (HA), delayed-type hypersensitivity (DTH) responses, IFN-γ and IL-4 levels produced by spelenocytes, and the proliferation of lymphocytes were assayed. RESULTS HET at a high dose significantly could increase the number of white blood cells and lymphocytes compared to the control group. The lymphocyte proliferation in exposure to PHA significantly increased in the HET group at both doses compared to the control group, whilst this index in the presence of LPS increased significantly for the 500 mg/kg-HET group only. Moreover, in the HA and DTH tests, HET significantly increased the proliferation of lymphocytes as compared with the control group. Furthermore, HET significantly increased the amount of IFN-γ parallel to a decrease in the level of IL-4 in compared to the control group. CONCLUSION Based on our findings, HET has potent immunostimulant characteristics. More investigation into tarragon's potential to be used in the treatment of disorders caused by a weakened immune response should be conducted.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Faculty of Medicine, Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Mahdipour
- Department of Anatomical Sciences and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Nikitin E, Fitsev I, Egorova A, Logvinenko L, Terenzhev D, Bekmuratova F, Rakhmaeva A, Shumatbaev G, Gatiyatullina A, Shevchuk O, Kalinnikova T. Five Different Artemisia L. Species Ethanol Extracts' Phytochemical Composition and Their Antimicrobial and Nematocide Activity. Int J Mol Sci 2023; 24:14372. [PMID: 37762675 PMCID: PMC10532408 DOI: 10.3390/ijms241814372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Among the plants that exhibit significant or established pharmacological activity, the genus Artemisia L. deserves special attention. This genus comprises over 500 species belonging to the largest Asteraceae family. Our study aimed at providing a comprehensive evaluation of the phytochemical composition of the ethanol extracts of five different Artemisia L. species (collected from the southwest of the Russian Federation) and their antimicrobial and nematocide activity as follows: A. annua cv. Novichok., A. dracunculus cv. Smaragd, A. santonica cv. Citral, A. abrotanum cv. Euxin, and A. scoparia cv. Tavrida. The study of the ethanol extracts of the five different Artemisia L. species using the methods of gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-MS/MS) allowed establishing their phytochemical profile. The obtained data on the of five different Artemisia L. species ethanol extracts' phytochemical composition were used to predict the antibacterial and antifungal activity against phytopathogenic microorganisms and nematocidal activity against the free-living soil nematode Caenorhabditis elegans. The major compounds found in the composition of the Artemisia L. ethanol extracts were monoterpenes, sesquiterpenes, flavonoids, flavonoid glycosides, coumarins, and phenolic acids. The antibacterial and antifungal activity of the extracts began to manifest at a concentration of 150 µg/mL. The A. dracunculus cv. Smaragd extract had a selective effect against Gram-positive R. iranicus and B. subtilis bacteria, whereas the A. scoparia cv. Tavrida extract had a selective effect against Gram-negative A. tumefaciens and X. arboricola bacteria and A. solani, R. solani and F. graminearum fungi. The A. annua cv. Novichok, A. dracunculus cv. Smaragd, and A. santonica cv. Citral extracts in the concentration range of 31.3-1000 µg/mL caused the death of nematodes. It was established that A. annua cv. Novichok affects the UNC-63 protein, the molecular target of which is the nicotine receptor of the N-subtype.
Collapse
Affiliation(s)
- Evgeny Nikitin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia; (E.N.)
| | - Igor Fitsev
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia
| | - Anastasia Egorova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya Str. 28, 420087 Kazan, Russia
| | - Lidia Logvinenko
- Nikitsky Botanic Gardens, National Scientific Center of Russian Academy of Sciences, 298648 Yalta, Russia (O.S.)
| | - Dmitriy Terenzhev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia; (E.N.)
| | - Feruzakhon Bekmuratova
- Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological Safety», Nauchny Gorodok-2, 420075 Kazan, Russia;
| | - Adelya Rakhmaeva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia; (E.N.)
| | - Georgiy Shumatbaev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia; (E.N.)
| | - Alsu Gatiyatullina
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya Str. 28, 420087 Kazan, Russia
| | - Oksana Shevchuk
- Nikitsky Botanic Gardens, National Scientific Center of Russian Academy of Sciences, 298648 Yalta, Russia (O.S.)
| | - Tatiana Kalinnikova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya Str. 28, 420087 Kazan, Russia
| |
Collapse
|
6
|
Can Gerçek Y, Kutlu N, Çelik S, Gıdık B, Bayram S, Bayram NE. Extraction of Functional Compounds from Tarragon (Artemisia dracunculus L.) by Deep Eutectic Solvents at Different Properties. Chem Biodivers 2023; 20:e202300417. [PMID: 37574459 DOI: 10.1002/cbdv.202300417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
In this study, it was aimed to examine the capacity of deep eutectic solvents (DESs) with different contents to extract bioactive compounds from tarragon (Artemisia dracunculus L.) plant. For this reason, the total phenolic-flavonoid content, total proanthocyanidin content and antioxidant/antimicrobial activities of the prepared DES extracts were investigated, as well as the individual phenolic and individual amino acid profiles. According to the results, DES10 had the highest efficiency in terms of its capacity to extract individual phenolics (approximately 59 mg/100 g) and individual amino acids (approximately 2500 mg/kg), and also gave a higher yield compared to ethanol (approximately 44 mg/100 g for individual phenolics and about 19810 mg/kg for individual amino acids) and methanol (approximately 58 mg/100 g for individual phenolics and approximately 21430 mg/kg for individual amino acids). However, the total phenolic content, total flavonoid content and antioxidant activity values of DES extracts were determined between 59.09-77.50 mg GAE/100 g, 28.68-45.55 mg GAE/100 g and 42.96-146.86 mg TE/100 g, respectively. Therefore, it can be recommended to use these green solvents, which are known as environmentally friendly, as an alternative to organic solvents in the process of preparing extracts of this important medicinal plant in different areas.
Collapse
Affiliation(s)
- Yusuf Can Gerçek
- Department of Biology, Faculty of Science, Istanbul University, 34116, Istanbul, Turkey
- Center for Plant and Herbal Products Research-Development, 34134, Istanbul, Turkey
| | - Naciye Kutlu
- Department of Food Processing, Aydıntepe Vocational College, Bayburt University, 69500, Bayburt, Turkey
| | - Saffet Çelik
- Technology Research and Development Application and Research Center, Trakya University, 22100, Edirne, Turkey
| | - Betül Gıdık
- Department of Organic Farming Management, Faculty of Applied Science, Bayburt University, 69000, Bayburt, Turkey
| | - Sinan Bayram
- Department of Medical Services and Techniques, Vocational School of Health Services, Bayburt University, 69000, Bayburt, Turkey
| | - Nesrin Ecem Bayram
- Department of Food Processing, Aydıntepe Vocational College, Bayburt University, 69500, Bayburt, Turkey
| |
Collapse
|
7
|
Jalil Sarghaleh S, Alizadeh Behbahani B, Hojjati M, Vasiee A, Noshad M. Evaluation of the constituent compounds, antioxidant, anticancer, and antimicrobial potential of Prangos ferulacea plant extract and its effect on Listeria monocytogenes virulence gene expression. Front Microbiol 2023; 14:1202228. [PMID: 37492261 PMCID: PMC10364450 DOI: 10.3389/fmicb.2023.1202228] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Prangos ferulacea plant is very popular in Iran due to its unique properties in treating diseases and its special flavor. To check the characteristics of this plant, first, its extract was extracted using the maceration method. Its chemical composition was investigated using high-performance liquid chromatography (HPLC) that p-coumaric was identified as its main compound, and Fourier-transform infrared spectroscopy (FTIR) showed the presence of functional groups related to phenolic, flavonoid, tannins, and carboxylic acids such as caffeic acid and coumaric acid composition. Total phenol content (TPC), total flavonoid content (TFC), and beta-carotene were equal to 202.04 ± 5.46 mg gallic acid equivalent (GAE)/g dry weight, 1,909.46 ± 13 μg quercetin (QE)/g of dry weight, and 2.91 mg/100 g. The antioxidant property of the extract was evaluated using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS) free radical scavenging and ferric reducing antioxidant power assay (FRAP). According to the IC50 obtained for DDPH (274 ± 7.2 μg/mL) and ABTS (120.45 ± 9.6 μg/mL) and FRAP values [1.92 ± 0.05 μg ascorbic acid equivalent (AAE)/g of extract], this extract had high antioxidant properties. Cytotoxicity was evaluated against the survival of HT 29 cells that IC50 was 82.15 ± 0.02 μg/mL. The antimicrobial property of the extract was calculated using disk diffusion agar (DDA), well diffusion agar (WDA), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Listeria monocytogenes has the highest sensitivity to this extract and inhibition zone based on DDA and WDA method and with an MIC and MBC equal to 16 and 128 mg/mL has the least resistance. The morphology change of L. monocytogenes strain was proved through scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM). The extract caused a significant reduction in the transcription of genes involved in the film formation ability of L. monocytogenes. The obtained results fully prove the very practical and pragmatic characteristics of P. ferulacea.
Collapse
Affiliation(s)
- Shahab Jalil Sarghaleh
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Mohammad Hojjati
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Alireza Vasiee
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Noshad
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
8
|
Umam K, Feng CS, Yang G, Tu PC, Lin CY, Yang MT, Kuo TF, Yang WC, Tran Nguyen Minh H. Phytochemistry, Pharmacology and Mode of Action of the Anti-Bacterial Artemisia Plants. Bioengineering (Basel) 2023; 10:633. [PMID: 37370564 DOI: 10.3390/bioengineering10060633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Over 70,000 people die of bacterial infections worldwide annually. Antibiotics have been liberally used to treat these diseases and, consequently, antibiotic resistance and drug ineffectiveness has been generated. In this environment, new anti-bacterial compounds are being urgently sought. Around 500 Artemisia species have been identified worldwide. Most species of this genus are aromatic and have multiple functions. Research into the Artemisia plants has expanded rapidly in recent years. Herein, we aim to update and summarize recent information about the phytochemistry, pharmacology and toxicology of the Artemisia plants. A literature search of articles published between 2003 to 2022 in PubMed, Google Scholar, Web of Science databases, and KNApSAcK metabolomics databases revealed that 20 Artemisia species and 75 compounds have been documented to possess anti-bacterial functions and multiple modes of action. We focus and discuss the progress in understanding the chemistry (structure and plant species source), anti-bacterial activities, and possible mechanisms of these phytochemicals. Mechanistic studies show that terpenoids, flavonoids, coumarins and others (miscellaneous group) were able to destroy cell walls and membranes in bacteria and interfere with DNA, proteins, enzymes and so on in bacteria. An overview of new anti-bacterial strategies using plant compounds and extracts is also provided.
Collapse
Affiliation(s)
- Khotibul Umam
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung 40227, Taiwan
- Faculty of Life Science and Technology, Biotechnology Department, Sumbawa University of Technology, Sumbawa Besar 84371, NTB, Indonesia
| | - Ching-Shan Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Greta Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ping-Chen Tu
- Sun Ten Pharmaceutical Co., Ltd., New Taipei City 23143, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Ting Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tien-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Chung-Hsing University, Taichung 40227, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
| | | |
Collapse
|
9
|
Predoi D, Iconaru SL, Ciobanu CS, Raita MS, Ghegoiu L, Trusca R, Badea ML, Cimpeanu C. Studies of the Tarragon Essential Oil Effects on the Characteristics of Doped Hydroxyapatite/Chitosan Biocomposites. Polymers (Basel) 2023; 15:polym15081908. [PMID: 37112055 PMCID: PMC10142985 DOI: 10.3390/polym15081908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Due to the emergence of antibiotic-resistant pathogens, the need to find new, efficient antimicrobial agents is rapidly increasing. Therefore, in this study, we report the development of new biocomposites based on zinc-doped hydroxyapatite/chitosan enriched with essential oil of Artemisia dracunculus L. with good antimicrobial activity. Techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR) were used in order to evaluate their physico-chemical properties. Our studies revealed that biocomposite materials with nanometric dimension and homogeneous composition could be obtained through an economic and cost-effective synthesis method. The biological assays demonstrated that ZnHA (zinc-doped hydroxyapatite), ZnHACh (zinc-doped hydroxyapatite/chitosan) and ZnHAChT (zinc-doped hydroxyapatite/chitosan enriched with essential oil of Artemisia dracunculus L.) did not exhibit a toxic effect on the cell viability and proliferation of the primary osteoblast culture (hFOB 1.19). Moreover, the cytotoxic assay also highlighted that the cell morphology of the hFOB 1.19 was not altered in the presence of ZnHA, ZnHACh or ZnHAChT. Furthermore, the in vitro antimicrobial studies emphasized that the samples exhibited strong antimicrobial properties against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Candida albicans ATCC 10231 microbial strains. These results are encouraging for the following development of new composite materials with enhanced biological properties that could promote the osteogenic process of bone healing and also exhibit good antimicrobial properties.
Collapse
Affiliation(s)
- Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Carmen Steluta Ciobanu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Mariana Stefania Raita
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, District 5, 050097 Bucharest, Romania
| | - Liliana Ghegoiu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Roxana Trusca
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Monica Luminita Badea
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Carmen Cimpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, 011464 Bucharest, Romania
| |
Collapse
|
10
|
Mohammadi H, Khoshi N, Hazrati S, Aghaee A, Falakian M, Ghorbanpour M. Interaction of NaCl salinity and light intensity affect growth, physiological traits and essential oil constituents in Artemisia dracunculus L. (tarragon). BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Li H, Yang Y, Hai L. Chemical components, antimicrobial and antioxidant activities of essential oil from Artemisia kanashiroi in Northwest China. JOURNAL OF ESSENTIAL OIL RESEARCH 2023. [DOI: 10.1080/10412905.2023.2167881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hailiang Li
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Yang Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Long Hai
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Costantini E, Masciarelli E, Casorri L, Di Luigi M, Reale M. Medicinal herbs and multiple sclerosis: Overview on the hard balance between new therapeutic strategy and occupational health risk. Front Cell Neurosci 2022; 16:985943. [PMID: 36439198 PMCID: PMC9688751 DOI: 10.3389/fncel.2022.985943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination and axonal loss of the central nervous system (CNS). Despite its spread throughout the world, the mechanisms that determine its onset are still to be defined. Immunological, genetic, viral, and environmental factors and exposure to chemicals may trigger MS. Many studies have highlighted the anti-inflammatory and anti-oxidant effects of medicinal herbs, which make them a natural and complementary treatment for neurodegenerative diseases. A severe reduction of several MS symptoms occurs with herbal therapy. Thus, the request for medicinal plants with potential beneficial effects, for MS patients, is constantly increasing. Consequently, a production increase needs. Unfortunately, many medicinal herbs were untested and their action mechanism, possible adverse effects, contraindications, or interactions with other drugs, are poorly or not investigated. Keeping in mind the pathological mechanisms of MS and the oxidative damages and mitochondrial dysfunctions induced by pesticides, it is important to understand if pesticides used to increase agricultural productivity and their residues in medicinal plants, may increase the risk of developing MS in both workers and consumers. Studies providing some indication about the relationship between environmental exposure to pesticides and MS disease incidence are few, fragmentary, and discordant. The aim of this article is to provide a glance at the therapeutic potential of medicinal plants and at the risk for MS onset of pesticides used by medicinal plant growers and present in medicinal herbs.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Science of Aging, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
| | - Eva Masciarelli
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Rome, Italy
| | - Laura Casorri
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Rome, Italy
| | - Marco Di Luigi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research Center, National Institute for Insurance Against Accidents at Work, Rome, Italy
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
- *Correspondence: Marcella Reale,
| |
Collapse
|
13
|
Ekiert H, Klimek-Szczykutowicz M, Rzepiela A, Klin P, Szopa A. Artemisia Species with High Biological Values as a Potential Source of Medicinal and Cosmetic Raw Materials. Molecules 2022; 27:6427. [PMID: 36234965 PMCID: PMC9571683 DOI: 10.3390/molecules27196427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 01/19/2023] Open
Abstract
Artemisia species play a vital role in traditional and contemporary medicine. Among them, Artemisia abrotanum, Artemisia absinthium, Artemisia annua, Artemisia dracunculus, and Artemisia vulgaris are the most popular. The chemical composition and bioactivity of these species have been extensively studied. Studies on these species have confirmed their traditional applications and documented new pharmacological directions and their valuable and potential applications in cosmetology. Artemisia ssp. primarily contain sesquiterpenoid lactones, coumarins, flavonoids, and phenolic acids. Essential oils obtained from these species are of great biological importance. Extracts from Artemisia ssp. have been scientifically proven to exhibit, among others, hepatoprotective, neuroprotective, antidepressant, cytotoxic, and digestion-stimulating activities. In addition, their application in cosmetic products is currently the subject of several studies. Essential oils or extracts from different parts of Artemisia ssp. have been characterized by antibacterial, antifungal, and antioxidant activities. Products with Artemisia extracts, essential oils, or individual compounds can be used on skin, hair, and nails. Artemisia products are also used as ingredients in skincare cosmetics, such as creams, shampoos, essences, serums, masks, lotions, and tonics. This review focuses especially on elucidating the importance of the most popular/important species of the Artemisia genus in the cosmetic industry.
Collapse
Affiliation(s)
- Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Marta Klimek-Szczykutowicz
- Department of Dermatology, Cosmetology and Aesthetic Surgery, The Institute of Medical Sciences, Medical College, Jan Kochanowski University, IX Wieków Kielc 19a, 25-516 Kielce, Poland
| | - Agnieszka Rzepiela
- Museum of Pharmacy, Medical College, Jagiellonian University, Floriańska 25, 31-019 Kraków, Poland
| | - Paweł Klin
- US Army Health Clinic, Urlas Kaserne, Building 8156, 91522 Ansbach, Germany
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
14
|
Sharifi-Rad J, Herrera-Bravo J, Semwal P, Painuli S, Badoni H, Ezzat SM, Farid MM, Merghany RM, Aborehab NM, Salem MA, Sen S, Acharya K, Lapava N, Martorell M, Tynybekov B, Calina D, Cho WC. Artemisia spp.: An Update on Its Chemical Composition, Pharmacological and Toxicological Profiles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5628601. [PMID: 36105486 PMCID: PMC9467740 DOI: 10.1155/2022/5628601] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022]
Abstract
Artemisia plants are traditional and ethnopharmacologically used to treat several diseases and in addition in food, spices, and beverages. The genus is widely distributed in all continents except the Antarctica, and traditional medicine has been used as antimalarial, antioxidant, anticancer, antinociceptive, anti-inflammatory, and antiviral agents. This review is aimed at systematizing scientific data on the geographical distribution, chemical composition, and pharmacological and toxicological profiles of the Artemisia genus. Data from the literature on Artemisia plants were taken using electronic databases such as PubMed/MEDLINE, Scopus, and Web of Science. Selected papers for this updated study included data about phytochemicals, preclinical pharmacological experimental studies with molecular mechanisms included, clinical studies, and toxicological and safety data. In addition, ancient texts and books were consulted. The essential oils and phytochemicals of the Artemisia genus have reported important biological activities, among them the artemisinin, a sesquiterpene lactone, with antimalarial activity. Artemisia absinthium L. is one of the most famous Artemisia spp. due to its use in the production of the absinthe drink which is restricted in most countries because of neurotoxicity. The analyzed studies confirmed that Artemisia plants have many traditional and pharmacological applications. However, scientific data are limited to clinical and toxicological research. Therefore, further research is needed on these aspects to understand the full therapeutic potential and molecular pharmacological mechanisms of this medicinal species.
Collapse
Affiliation(s)
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed To Be University, Dehradun, 248002, Uttarakhand, India
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Prem Nagar, Dehradun, 248007 Uttarakhand, India
| | - Himani Badoni
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Prem Nagar, Dehradun, 248007, Uttarakhand, India
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Mai M. Farid
- Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, P. O. 12622, Giza, Egypt
| | - Rana M. Merghany
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Bohouth street, Dokki, Giza, Egypt
| | - Nora M. Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Mohamed A. Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin El Kom, 32511 Menoufia, Egypt
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Natallia Lapava
- Medicine Standardization Department, Vitebsk State Medical University, Belarus
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, And Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico (UDT), 4070386 Concepción, Chile
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
15
|
Transglutaminase-Induced Free-Fat Yogurt Gels Supplemented with Tarragon Essential Oil-Loaded Nanoemulsions: Development, Optimization, Characterization, Bioactivity, and Storability. Gels 2022; 8:gels8090551. [PMID: 36135262 PMCID: PMC9498499 DOI: 10.3390/gels8090551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
There is a high demand for designing healthy-functional dairy gels with a newly structured protein network in the food industry. Non-fat yogurt gels enriched with stable tarragon essential oil-nanoemulsions (TEO-NEs) using crosslinking of microbial transglutaminase (MTGase) were developed. The gas chromatography-mass spectrometry analysis showed that methyl chavicol (85.66%) was the major component in TEO extracted by the hydrodistillation process. The storage-dependent droplet size and physicochemical stability data of samples at room temperature for 30 days revealed that the TEO-NE containing 0.5% tween-80 and 1:2 TEO/sunflower oil had the lowest peroxide value and droplet growth ratio. The response surface methodology-based formulation optimization of free-fat yogurt gels using MTGase (0.15–0.85 U/g) and the best TEO-NE (0.5–3.02%) using the fitted second-order polynomial models proved that the combination of 0.87% TEO-NE and 0.70 U/g MTGase led to the desired pH (4.569) and acidity (88.3% lactic acid), minimum syneresis (27.03 mL/100 g), and maximum viscosity (6.93 Pa s) and firmness (0.207 N) responses. Scanning electron microscopy images visualized that the MTGase-induced crosslinks improved the gel structure to increase the firmness and viscosity with a reduction in the syneresis rate. The optimal yogurt gel as a nutritious diet not only provided the highest organoleptic scores but also maintained its storage-related quality with the lowest mold/yeast growth and free-radical oxidation changes.
Collapse
|
16
|
Coskun Y, Taslidere F. Influence of biotic and abiotic elicitors on artemisinin, quercetin, caffeic acid and essential oil production in
Artemisia dracunculus
L. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yasemin Coskun
- Faculty of Arts and Sciences, Department of Biology Suleyman Demirel University Isparta Turkey
| | - Feride Taslidere
- Faculty of Arts and Sciences, Department of Biology Suleyman Demirel University Isparta Turkey
| |
Collapse
|
17
|
Sabahi S, Abbasi A, Ali Mortazavi S. Characterization of cinnamon essential oil and its application in
Malva sylvestris
seed mucilage edible coating to the enhancement of the microbiological, physicochemical, and sensory properties of lamb meat during storage. J Appl Microbiol 2022; 133:488-502. [DOI: 10.1111/jam.15578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Sahar Sabahi
- Department of Food Science and Technology Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| | - Amin Abbasi
- Department of Food Science and Technology National Nutrition and Food Technology Research Institute Faculty of Nutrition Science and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Seyed Ali Mortazavi
- Department of Food Science and Technology Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
18
|
Marc (Vlaic) RA, Mureșan V, Mureșan AE, Mureșan CC, Tanislav AE, Pușcaș A, Marţiș (Petruţ) GS, Ungur RA. Spicy and Aromatic Plants for Meat and Meat Analogues Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070960. [PMID: 35406940 PMCID: PMC9002745 DOI: 10.3390/plants11070960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 05/15/2023]
Abstract
Aromatic and spicy plants are an important factor that contributes not only to improving the taste of meat, meat products, and meat analogues, but also to increasing the nutritional value of the products to which they are added. The aim of this paper is to present the latest information on the bioactive antioxidant and antimicrobial properties of the most commonly used herbs and spices (parsley, dill, basil, oregano, sage, coriander, rosemary, marjoram, tarragon, bay, thyme, and mint) used in the meat and meat analogues industry, or proposed to be used for meat analogues.
Collapse
Affiliation(s)
- Romina Alina Marc (Vlaic)
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Vlad Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
- Correspondence: (V.M.); (A.E.M.)
| | - Andruţa E. Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
- Correspondence: (V.M.); (A.E.M.)
| | - Crina Carmen Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Anda E. Tanislav
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Andreea Pușcaș
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Georgiana Smaranda Marţiș (Petruţ)
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Rodica Ana Ungur
- Department of Rehabilitation Iuliu-Haţieganu, Faculty of General Medicine, University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
19
|
Naderi F, Orojloo M, Kamali S, Jannesar R, Amani S. Synthesis, Structural Characterization, in Vitro Biological Activity, and Computational Quantum Chemical Studies of New Cobalt (II), Nickel (II), and Copper (II) Complexes Based on an Azo-Azomethine Ligand. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2049325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatemeh Naderi
- Chemistry Department, Faculty of Sciences, Arak University, Arak, Iran
| | - Masoumeh Orojloo
- Chemistry Department, Faculty of Sciences, Arak University, Arak, Iran
| | - Shirin Kamali
- Chemistry Department, Faculty of Sciences, Arak University, Arak, Iran
| | - Ramin Jannesar
- Department of Pathology, Yasuj University of Medical Sciences, Yasuj, Iran
- Department of Biotechnology and Microbial Nanotechnology, Dena Pathobiology Laboratory, Yasuj, Iran
| | - Saeid Amani
- Chemistry Department, Faculty of Sciences, Arak University, Arak, Iran
| |
Collapse
|
20
|
Mousavi SA, Nateghi L, Javanmard Dakheli M, Ramezan Y, Piravi‐Vanak Z. Maceration and ultrasound‐assisted methods used for extraction of phenolic compounds and antioxidant activity from
Ferulago angulata. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Seyedeh Akram Mousavi
- Department of Food Science and Technology Faculty of Pharmacy Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Laila Nateghi
- Department of Food Science and Technology Faculty of Agriculture, Varamin‐Pishva Branch Islamic Azad University Varamin Iran
| | - Majid Javanmard Dakheli
- Food Technologies Group, Department of Chemical Engineering Iranian Research Organization for Science & Technology (IROST) Tehran Iran
| | - Yousef Ramezan
- Department of Food Science and Technology Faculty of Pharmacy Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Zahra Piravi‐Vanak
- Food, Halal and Agricultural Products Research Group, Food Technology and Agricultural Products Research Center Standard Research Institute (SRI) Karaj Iran
| |
Collapse
|
21
|
Efficiency of chemical composition of some essential oils against Botrytis cinerea, the pathogen of post-harvest strawberry fruits. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Chemical structure and ACE inhibitory activity of polysaccharide from Artemisia vulgaris L. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Wu W, Jiang S, Liu M, Tian S. Simultaneous process optimization of ultrasound-assisted extraction of polyphenols and ellagic acid from pomegranate (Punica granatum L.) flowers and its biological activities. ULTRASONICS SONOCHEMISTRY 2021; 80:105833. [PMID: 34798525 PMCID: PMC8605316 DOI: 10.1016/j.ultsonch.2021.105833] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 05/02/2023]
Abstract
This study was designed to optimize the extraction rate of total polyphenols and ellagic acid from pomegranate flowers. Single factors were investigated for liquid-to-material ratio (5-25), ethanol concentration (20%-60%), sonication time (5-60 min), and sonication power (150-500 W). The level range of the Box-Bokhen design was determined with respect to the single-factor results. The components of each index were normalized using the entropy weighting method for obtaining the comprehensive evaluation value. Under the actual conditions, the final optimization results were 17 for liquid-to-material ratio, 43% for ethanol concentration, 10 min for ultrasonic time, and 300 W for ultrasonic power. The extracts obtained under optimal conditions were tested for the inhibition of Streptococcus mutans and its biofilm, and results showed that pomegranate flowers exerted some inhibitory effects on the bacterium. Phosphomolybdenum and FRAP assays were used, and DPPH, ABTS, and O2- radical scavenging tests were conducted, indicating that pomegranate flower extracts have good antioxidant capacity.
Collapse
Affiliation(s)
- Wenxia Wu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Shan Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Mengmeng Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Shuge Tian
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China.
| |
Collapse
|
24
|
Radović Jakovljević M, Stanković M, Vuković N, Vukić M, Grujičić D, Milošević-Djordjević O. Comparative study of the genotoxic activity of Artemisia vulgaris L. and Artemisia alba Turra extracts in vitro. Drug Chem Toxicol 2021; 45:1915-1922. [PMID: 34844486 DOI: 10.1080/01480545.2021.2007025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, the genotoxic activity of acetone and aqueous extracts of two species of genus Artemisia (Artemisia vulgaris L. and Artemisia alba Turra), and possible role of their polyphenolic composition in the observed activities were investigated. Polyphenolic contents were evaluated by high-performance liquid chromatography (HPLC-PDA), while the genotoxic activity was tested using cytokinesis block micronucleus (CBMN) assay on human peripheral blood lymphocytes (PBLs) in vitro. HPLC-PDA showed that both A. alba extracts were richer in polyphenolic contents than A. vulgaris extracts. The acetone A. alba extract was the richest of polyphenolic content where we detected six phenolic acids and two flavonoids. CBMN assay showed that aqueous extract of A. vulgaris significantly increased micronucleus (MN) frequency in the PBLs treated with all tested concentrations (10, 50, 100, and 250 µg/mL), while A. alba did not significantly affect the mean MN frequency. Further, both acetone extracts were genotoxic in all tested concentrations, except the lowest tested (10 µg/mL) of A. alba. All tested extracts affected the nuclear division index (NDI) except the aqueous A. alba extract (p < 0.05). Based on our results, we can conclude that both acetone and aqueous A. vulgaris extracts and A. alba acetone extract were genotoxic in PBLs in vitro. A. alba aqueous extract was not genotoxic and cytotoxic in tested concentrations. We suggest that the aqueous extract of A. alba can be used in treatment, which has been confirmed by traditional medicine, but with a high dose of caution and not in high concentrations.
Collapse
Affiliation(s)
| | - Milan Stanković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Nenad Vuković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Milena Vukić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Darko Grujičić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Olivera Milošević-Djordjević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia.,Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
25
|
Gadouche L, Zidane A, Zerrouki K, Azouni K, Bouinoune S. Cytotoxic effect of Myrtus communis, Aristolochia longa, and Calycotome spinosa on human erythrocyte cells. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-379-386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Myrtus communis, Aristolochia longa, and Calycotome spinosa are medicinal plants frequently used in Algeria. Some plants can cause a fragility of the erythrocyte membrane and lead to hemolysis. Therefore, we aimed to study the cytotoxicity of aqueous extracts from the aerial part of these species against red blood cells.
Study objects and methods. The hemolytic effect was determined spectrophotometrically by incubating an erythrocyte solution with different concentrations of the aqueous extracts (25, 50, 100, and 200 mg/mL) at 37°C during one hour. In addition, we performed phytochemical screening and measured the contents of polyphenols and flavonoids.
Results and discussion. After one hour of incubation of human red blood cells with the aqueous extracts at different concentrations, the hemolysis percentage showed a significant leak of hemoglobin with A. longa (68.75 ± 6.11%; 200 mg/mL), the most toxic extract followed by C. spinosa (34.86 ± 5.06%; 200 mg/mL). In contrast, M. communis showed very low cytotoxicity (20.13 ± 3.11%; 200 mg/mL).
Conclusion. These plants are sources of a wide range of bioactive compounds but their use in traditional medicine must be adapted to avoid any toxic effect.
Collapse
|
26
|
Valková V, Ďúranová H, Galovičová L, Štefániková J, Vukovic N, Kačániová M. The Citrus reticulata essential oil: evaluation of antifungal activity against penicillium species related to bakery products spoilage. POTRAVINARSTVO 2021. [DOI: 10.5219/1695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fungal food spoilage plays a key role in the deterioration of food products, and finding a suitable natural preservative can solve this problem. Therefore, antifungal activity of green mandarin (Citrus reticulata) essential oil (GMEO) in the vapor phase against the growth of Penicillium (P.) expansum and P. chrysogenum inoculated on wheat bread (in situ experiment) was investigated in the current research. The volatile compounds of the GMEO were analyzed by a gas chromatograph coupled to a mass spectrometer (GC–MS), and its antioxidant activity was determined by testing free radical-scavenging capacity (DPPH assay). Moreover, the disc diffusion method was used to analyze the antifungal activity of GMEO in in vitro conditions. The results demonstrate that the Citrus reticulata EO consisted of α-limonene as the most abundant component (71.5%), followed by γ-terpinene (13.9%), and β-pinene (3.5%), and it displayed the weak antioxidant activity with the value of inhibition 5.6 ±0.7%, which corresponds to 103.0 ±6.4 µg TEAC.mL-1. The findings from the GMEO antifungal activity determination revealed that values for the inhibition zone with disc diffusion method ranged from 0.00 ±0.00 (no antifungal effectiveness) to 5.67 ±0.58 mm (moderate antifungal activity). Finally, exposure of Penicillium strains growing on bread to GMEO in vapor phase led to the finding that 250 μL.L-1 of GMEO exhibited the lowest value for mycelial growth inhibition (MGI) of P. expansum (-51.37 ±3.01%) whose negative value reflects even supportive effect of the EO on the microscopic fungus growth. On the other hand, GMEO at this concentration (250 μL.L-1) resulted in the strongest inhibitory action (MGI: 54.15 ±1.15%) against growth of P. chrysogenum. Based on the findings it can be concluded that GMEO in the vapor phase is not an effective antifungal agent against the growth of P. expansum inoculated on bread; however, its antifungal potential manifested against P. chrysogenum suggests GMEO to be an appropriate alternative to the use of chemical inhibitors for bread preservation.
Collapse
|
27
|
Phytochemical Composition, Antibacterial, and Antibiofilm Activity of Malva sylvestris Against Human Pathogenic Bacteria. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.114164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Considering the increased rate of microbial resistance to antibiotics and chemical side effects of antibiotics, there is a need for an alternative antimicrobial agent with fewer complications. Medicinal plants are rich resources of phytochemical compounds with antibacterial activity that could fight off this problem. Objectives: The aim of this research was to investigate the chemical composition, antimicrobial, and antibiofilm properties of Malva sylvestris on some pathogenic bacteria. Methods: Antibacterial effect of the extract was assessed by the well diffusion and broth microdilution methods against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. The anti-biofilm property of the extract was also examined using the crystal violet assay. Finally, the chemical constituents and total phenols of the extract were determined by gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC), respectively. Results: The methanolic extract of M. sylvestris showed antimicrobial activity against all tested Gram-negative and Gram-positive strains by the agar well diffusion method. The minimum inhibitory concentration (MIC) of the extract ranged from 21.9 ± 0.1 to 51.9 ± 0.5 mg/mL against the tested microorganisms. In addition, the minimum bactericidal concentration (MBC) spanned from 43.7 ± 0.1 to 85.8 ± 0.3 mg/mL. The biofilm inhibitory concentration (BIC50) of the extract was found to be 40 - 87 mg/mL against the tested bacteria. Analysis of the extract by GC-MS indicated that the most abundant compounds were 1-heptacosanol (38.41%), 17-Pentatriacontene (19.78%), and 6,9,12,15-docosatetraenoic acid, methyl ester (8.08%). High-performance liquid chromatography confirmed the presence of apigenin (6.84 ppm) and salicylic acid (1.5 ppm) as phenolic compounds in M. sylvestris methanolic extract. Conclusions: The results of this study represent the high potency of M. sylvestris extract as a source of biologically-active compounds for the development of future phytotherapeutic products with antibacterial and antibiofilm activity.
Collapse
|
28
|
In vitro and in vivo assessments of Artemisia argyi fermented with Lactobacillus plantarum WLPL01 as an alternative anti-Salmonella agent. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Muñoz-Tebar N, González-Navarro EJ, López-Díaz TM, Santos JA, de Elguea-Culebras GO, García-Martínez MM, Molina A, Carmona M, Berruga MI. Biological Activity of Extracts from Aromatic Plants as Control Agents against Spoilage Molds Isolated from Sheep Cheese. Foods 2021; 10:1576. [PMID: 34359446 PMCID: PMC8303263 DOI: 10.3390/foods10071576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to assess the antifungal and antioxidant activity of essential oils and ethanolic extracts from distilled solid by-products from aromatic plants (Artemisia dracunculus, Hyssopus officinalis, Lavandula stoechas, Origanum vulgare and Satureja montana) against 14 fungi strains isolated from sheep cheese and identified at species level using DNA barcoding based on β-tubulin sequence analysis. In addition, capacity of fungi to produce ochratoxin A, patulin, cyclopiazonic acid and sterigmatocystin was analyzed. Of the isolates, 85.7% belonged to Penicillium (P. commune/biforme, P. crustosum) and 14.3% to Aspergillus (A. puulaauensis and A. jensenii), the first time that these Aspergillus species have been found in sheep's cheese. All P. commune isolates were producers of cyclopiazonic acid, and the two Aspergillus strains produced sterigmatocystin, but the others did not produce any tested mycotoxin. Among the essential oils tested, oregano, savory and tarragon had a significant antifungal activity against all the isolated strains, but no ethanolic extract showed antifungal activity. By contrast, ethanolic extracts showed great potential as antioxidants. The identification of new molds in cheese will help the dairy industry to know more about those molds affecting the sector, and the use of aromatic plants in the control of fungal spoilage could be a suitable alternative to chemical preservatives used in the agri-food industry.
Collapse
Affiliation(s)
- Nuria Muñoz-Tebar
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| | - Emilio J. González-Navarro
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| | - Teresa María López-Díaz
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (T.M.L.-D.); (J.A.S.)
| | - Jesús A. Santos
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (T.M.L.-D.); (J.A.S.)
| | | | - M. Mercedes García-Martínez
- Catedra de Química Agrícola, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain;
| | - Ana Molina
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| | - Manuel Carmona
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| | - María Isabel Berruga
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| |
Collapse
|
30
|
Khezri S, Khezerlou A, Dehghan P. Antibacterial activity of
Artemisia persica Boiss
essential oil against
Escherichia coli O157
:
H7
and
Listeria monocytogenes
in probiotic Doogh. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sima Khezri
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Parvin Dehghan
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
31
|
Ekiert H, Świątkowska J, Knut E, Klin P, Rzepiela A, Tomczyk M, Szopa A. Artemisia dracunculus (Tarragon): A Review of Its Traditional Uses, Phytochemistry and Pharmacology. Front Pharmacol 2021; 12:653993. [PMID: 33927629 PMCID: PMC8076785 DOI: 10.3389/fphar.2021.653993] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 01/20/2023] Open
Abstract
Artemisia dracunculus L. (tarragon), Asteraceae, is a species that has long been used in traditional Asian medicine, mainly in Iran, Pakistan, Azerbaijan and India. It is known as a spice species in Asia, Europe and the Americas. The raw materials obtained from this species are herb and leaf. The presence of essential oil with a highly variable composition, as well as flavonoids, phenolic acids, coumarins and alkamides, determines the medicinal and/or spice properties of the plant. In traditional Asian medicine, this species is used, for example, in the treatment of digestive system diseases, as an analgesic, hypnotic, antiepileptic, anti-inflammatory and antipyretic agent, and as an effective remedy in the treatment of helminthiasis. Nowadays, A. dracunculus is the subject of professional phytochemical and pharmacological researches. Pharmacological studies have confirmed its anti-inflammatory and analgesic effects known from traditional uses; they have also proved very important new findings regarding its biological activity, such as antioxidant, immunomodulating and anti-tumour activities, as well as hepatoprotective and hypoglycaemic effects. A. dracunculus has long-held an established position in the food industry as a spice. And its use is growing in the cosmetics industry. Moreover, it is the subject of biotechnological research focused mainly on the development of micro-propagation protocols.
Collapse
Affiliation(s)
- Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| | - Joanna Świątkowska
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| | - Ewa Knut
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| | - Paweł Klin
- Family Medicine Clinic, Medizinisches Versorgungszentrum (MVZ) Burgbernheim GmbH, Burgbernheim, Germany
| | - Agnieszka Rzepiela
- Museum of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
32
|
Azizkhani M, Jafari Kiasari F, Tooryan F, Shahavi MH, Partovi R. Preparation and evaluation of food-grade nanoemulsion of tarragon ( Artemisia dracunculus L.) essential oil: antioxidant and antibacterial properties. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:1341-1348. [PMID: 33746262 PMCID: PMC7925736 DOI: 10.1007/s13197-020-04645-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
This study aimed at to formulate a food-grade nanoemulsion of tarragon essential oil (NEO) and investigate its antioxidant and antimicrobial properties. Oil in water NEO was formed by blending 10% of tarragon EO (TEO), 85% water, and a mixture of 5% surfactants, then antioxidant and antimicrobial activities were evaluated. The main components of TEO were estragole, beta-cis-ocimene, beta-trans-ocimene, and l-limonene. NEO droplet had a diameter of 50 nm and a zeta potential of - 30 mV. Results of free radical DPPH scavenging activity revealed that hydrogen donating capacity of the nanoemulsion was significantly higher than TEO and at 2.5 µg/mL concentration it showed complete inhibitory activity against DPPH. The ferric reducing potential was almost similar for TEO and NEO. NEO showed higher antibacterial potential against Staphylococcus aureus and Listeria monocytogenes and Shigella dysenteriae. The results of this work indicated that NEO had higher antioxidant and antimicrobial activity compared with free TEO.
Collapse
Affiliation(s)
- Maryam Azizkhani
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Aftab 24 St., Haraz Av., P.O. 46186-49767, Amol, Iran
| | - Freshteh Jafari Kiasari
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Haraz St. Aftab 24 Av., Amol, Iran
| | - Fahimeh Tooryan
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Aftab 24 St., Haraz Av., P.O. 46186-49767, Amol, Iran
| | - Mohammad Hassan Shahavi
- Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Abazar 35 Alley, Taleghani Av., Amol, Mazandaran Province Iran
| | - Razieh Partovi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Aftab 24 St., Haraz Av., P.O. 46186-49767, Amol, Iran
| |
Collapse
|
33
|
Yilmaz MT, İspirli H, Taylan O, Dertli E. A green nano-biosynthesis of selenium nanoparticles with Tarragon extract: Structural, thermal, and antimicrobial characterization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110969] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Chemical Profile and Bioactivities of Extracts from Edible Plants Readily Available in Portugal. Foods 2021; 10:foods10030673. [PMID: 33809865 PMCID: PMC8004287 DOI: 10.3390/foods10030673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Plant extracts have been proposed as alternative biocides and antioxidants to be included in a variety of food products. In this work, to assess the potential of rosemary, lemon balm, basil, tarragon, sage, and spearmint to be used as food additives, the chemical profiles and bioactivities of such plant extracts were studied. Furthermore, to evaluate the influence of extraction methods and solvents on the chemical characteristics and bioactivities of the plant extracts, two extraction methods (solid-liquid and Soxhlet extraction) and two solvents (water and ethanol 70% (v/v)) were tested for each plant. Groupwise summary statistics were calculated by plant, extraction method, and solvent, and linear models were built to assess the main effects of those terms and their interactions on the chemical characteristics and bioactivities of the extracts. The results revealed that all factors-type of plant, extraction method and solvent-have influence on the chemical profile and antioxidant activity of the resultant extracts. Interactions between factors were also observed. Hydroethanolic Soxhlet extracts presented the least potential as biopreservatives due to their low phenolic content and reduced antioxidant capacity. Oppositely, aqueous Soxhlet extracts and hydroethanolic solid-liquid extracts showed high contents in phenolic compounds and high antioxidant activities. In particular, the hydroethanolic solid-liquid extracts of lemon balm, spearmint, and sage presented the highest phenolic and flavonoid contents, accompanied by a high antioxidant activity, and they revealed antimicrobial activity against four pathogens (S. enterica ser. Typhimurium, E. coli, L. monocytogenes and S. aureus). These results demonstrate the potential of these natural resources to be incorporated as bioactive preservatives in foods or their packaging.
Collapse
|
35
|
Effects of Tarragon Powder on Glucose Metabolic Changes, Lipid Profile and Antioxidant Enzyme Levels in Type 2 Patients with Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The antioxidant and anti-inflammatory properties of tarragon make it known as an antidiabetic plant. Diabetes mellitus, an endocrine, metabolic disease, is a leading global health emergency and associated with serious complications. Objectives: This study aimed to assess the effects of tarragon powder supplementation on glucose metabolism, lipid profile, and antioxidant status in the diabetic population. Methods: Patient screening and selection for this clinical trial lasted one month. Tarragon supplement consumption by patients lasted 2 months (8 weeks); meanwhile, they were followed up. Sixty male and female patients with type 2 diabetes were randomly assigned to the tarragon receiver group (n = 30) and placebo receiver group (n = 30). The intervention group received a tarragon capsule (500 mg) 3 times a day, and the control group received placebo capsules. Fasting blood glucose (FBG), two-hour postprandial glucose (2-hpp), glycated hemoglobin (HbA1c), insulin, lipid, and antioxidant profile were evaluated at the start and the end of the research. Results: In the tarragon receiver group, FBG, 2-hpp, HbA1c%, insulin resistance, lipid, and antioxidant profile significantly improved, compared to the placebo group, after adjuvant therapy with tarragon (P < 0.05). Conclusions: Supplementation with tarragon powder in type II patients with diabetes for 2 months exerts a beneficial effect on improving the glycemic profile, lipid profile, and antioxidant status.
Collapse
|
36
|
González Mera IF, López Hernández OD, Morera Córdova V. Phytochemical screening and in vitro anti-inflammatory activity of ethanolic extract of Epidendrum coryophorum leaves. BIONATURA 2020. [DOI: 10.21931/rb/2020.05.04.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Epidendrum coryophorum belongs to the Orchidaceae family. Traditional uses of some species for this genus include infusions of the leaves used for kidney problems, treat influenza, conjunctivitis, liver pain, relieve kidney symptoms, and hypoglycemic effect. This work's objective was to determine the phytochemical profile of the ethanolic extract of Epidendrum coryophorum leaves and to evaluate the potential anti-inflammatory activity in vitro of the extract employing the erythrocyte membrane stabilization method. The phytochemical screening carried out in this work suggested phenols, coumarins, flavonoids, tannins, steroids, and sterols in the ethanolic extract of Epidendrum coryophorum leaves. Cardiotonic glycosides and carbohydrates were also found. The ethanolic extract's UV-Vis spectrum showed absorption maxima at 268 nm and 332 nm, which could correspond to flavonoids of the flavonoid classes, 3-OH substituted flavonols, or isoflavones. The quantitative determination of total phenols of the ethanolic extract was carried out using the Folin-Ciocalteu method. The total phenolic content expressed as mg Gallic acid equivalent (G.A.E.) per gram of extract was found to be 19,96 mgGAE/g of Epidendrum coryophorum. The ethanolic extract of Epidendrum coryophorum leaves showed hemolysis inhibition values of 18,19% at 1,0 mg/mL, 38,98% at 1,5 mg/mL and 40,94% at 2,5 mg/mL compared with aspirin (positive control) giving values of 65,33% at 1,0 mg/mL, 72,26% at 1,5 mg/mL and 73,75% at 2,5 mg/mL. The values obtained for inhibition of hemolysis with ethanolic extract, compared with the values obtained with a pure anti-inflammatory, are significant and demonstrate anti-inflammatory activity in Epidendrum coryophorum.
Keywords: Epidendrum coryophorum, total phenolic content, microencapsulation, anti-inflammatory activity
Collapse
Affiliation(s)
- Irina Francesca González Mera
- Yachay Experimental Technology Research University. School of Chemical Sciences and Engineering. San Miguel de Urcuquí. Hacienda San José s/n. Imbabura, Ecuador
| | - Orestes Darío López Hernández
- Technical University of Ambato. Faculty of Food Science and Engineering. Biochemical Engineering Career. Ambato, Ecuador
| | - Vivian Morera Córdova
- Yachay Experimental Technology Research University. School of Chemical Sciences and Engineering. San Miguel de Urcuquí. Hacienda San José s/n. Imbabura, Ecuador
| |
Collapse
|
37
|
Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020; 25:molecules25204711. [PMID: 33066611 PMCID: PMC7587387 DOI: 10.3390/molecules25204711] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The interest in using natural antimicrobials instead of chemical preservatives in food products has been increasing in recent years. In regard to this, essential oils-natural and liquid secondary plant metabolites-are gaining importance for their use in the protection of foods, since they are accepted as safe and healthy. Although research studies indicate that the antibacterial and antioxidant activities of essential oils (EOs) are more common compared to other biological activities, specific concerns have led scientists to investigate the areas that are still in need of research. To the best of our knowledge, there is no review paper in which antifungal and especially antimycotoxigenic effects are compiled. Further, the low stability of essential oils under environmental conditions such as temperature and light has forced scientists to develop and use recent approaches such as encapsulation, coating, use in edible films, etc. This review provides an overview of the current literature on essential oils mainly on antifungal and antimycotoxigenic but also their antibacterial and antioxidant activities. Additionally, the recent applications of EOs including encapsulation, edible coatings, and active packaging are outlined.
Collapse
|
38
|
Çorapcı B, Köstekli B, Eyüboğlu A, Kocatepe D. The effect of different application methods of sumac (
Rhus coriaria
) and tarragon (
Artemisia dracunculus
) on some quality properties of marinated sea bream (
Sparus aurata
L., 1758). J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bengünur Çorapcı
- Fishery Faculty Department of Fish Processing Technology Sinop University Sinop Turkey
| | - Bayram Köstekli
- Fishery Faculty Department of Fish Processing Technology Sinop University Sinop Turkey
| | - Asiye Eyüboğlu
- Fishery Faculty Department of Fish Processing Technology Sinop University Sinop Turkey
| | - Demet Kocatepe
- Fishery Faculty Department of Fish Processing Technology Sinop University Sinop Turkey
| |
Collapse
|
39
|
Socaciu MI, Fogarasi M, Semeniuc CA, Socaci SA, Rotar MA, Mureşan V, Pop OL, Vodnar DC. Formulation and Characterization of Antimicrobial Edible Films Based on Whey Protein Isolate and Tarragon Essential Oil. Polymers (Basel) 2020; 12:polym12081748. [PMID: 32764387 PMCID: PMC7464654 DOI: 10.3390/polym12081748] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 02/01/2023] Open
Abstract
The effects of heat treatment and the addition of tarragon essential oil on physical and mechanical properties of films prepared with 5% whey protein isolate (WPI) and 5% glycerol were investigated in this study. Heat treatment of the film-forming solution caused increases in thickness, moisture content, swelling degree, water vapor permeability (WVP), b*-value, ΔE*-value, transmittance values in the 200-300-nm region, transparency, and puncture resistance of the film, but decreases in water solubility, L*-value, a*-value, transmittance values in the 350-800-nm region, and puncture deformation. When incorporated with tarragon essential oil, heat-treated films have the potential to be used as antimicrobial food packaging. The addition of tarragon essential oil in film-forming solution caused increases in moisture content, solubility in water, WVP, a*-value, b*-value, ΔE*-value, and transparency of the film; decreases in transmittance values in the range of 600-800 nm; and variations in swelling degree, L*-value, transmittance values in the range of 300-550 nm, puncture resistance, and puncture deformation. Nevertheless, different tendencies were noticed in UNT (untreated) and HT (heat-treated) films with regards to transparency, light transmittance, puncture resistance, and puncture deformation. Based on these findings, HT films show improved physical and mechanical properties and, therefore, are more suitable for food-packaging applications.
Collapse
Affiliation(s)
- Maria-Ioana Socaciu
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.-I.S.); (S.A.S.); (M.A.R.); (O.L.P.)
| | - Melinda Fogarasi
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (V.M.)
| | - Cristina Anamaria Semeniuc
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (V.M.)
- Correspondence: (C.A.S.); (D.C.V.); Tel.: +40-264-596-384 (C.A.S. & D.C.V.)
| | - Sonia Ancuţa Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.-I.S.); (S.A.S.); (M.A.R.); (O.L.P.)
| | - Mihaela Ancuţa Rotar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.-I.S.); (S.A.S.); (M.A.R.); (O.L.P.)
| | - Vlad Mureşan
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (V.M.)
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.-I.S.); (S.A.S.); (M.A.R.); (O.L.P.)
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.-I.S.); (S.A.S.); (M.A.R.); (O.L.P.)
- Correspondence: (C.A.S.); (D.C.V.); Tel.: +40-264-596-384 (C.A.S. & D.C.V.)
| |
Collapse
|
40
|
Zhang H, Liang Y, Li X, Kang H. Effect of chitosan-gelatin coating containing nano-encapsulated tarragon essential oil on the preservation of pork slices. Meat Sci 2020; 166:108137. [DOI: 10.1016/j.meatsci.2020.108137] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/28/2023]
|
41
|
Jiang M, Yan L, Li KA, Ji ZH, Tian SG. Evaluation of total phenol and flavonoid content and antimicrobial and antibiofilm activities of Trollius chinensis Bunge extracts on Streptococcus mutans. Microsc Res Tech 2020; 83:1471-1479. [PMID: 32666669 DOI: 10.1002/jemt.23540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Dental caries is a chronic disease with multiple bacterial infections, Streptococcus mutans is the main cariogenic bacteria. Trollius chinensis Bunge is a common folk medicine in the Xinjiang area of China. In this study, we investigated the total flavonoid content and total phenol content in four types of T. chinensis Bunge extracts and the inhibitory effects of these extracts on S. mutans. Agar diffusion method was used to measure the inhibition zone diameters, and the minimum inhibitory concentration and minimum bactericidal concentration were determined by the twofold dilution method. Water extracts from T. chinensis Bunge and ethanol (30, 60, and 90%) extracts at different concentrations could significantly inhibit the growth of S. mutans. Among them, 30% ethanol extract exhibited the best antibacterial and antibiofilms effect. Biofilm research (crystal violet staining and CLSM) showed that 30% ethanol extract of T. chinensis Bunge plays an important role in inhibiting S. mutans growth and the number of biofilms. The results indicate that T. chinensis Bunge extract has good antibacterial and anti-biofilm activity on S. mutans. It has the potential to be developed for the treatment of caries in clinical application.
Collapse
Affiliation(s)
- Min Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Li Yan
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Ke-Ao Li
- Xinjiang Qimu Medical Research Institute, Urumqi, China
| | - Zhi-Hong Ji
- Xinjiang Qimu Medical Research Institute, Urumqi, China
| | - Shu-Ge Tian
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
42
|
Barzegar H, Alizadeh Behbahani B, Mehrnia MA. Quality retention and shelf life extension of fresh beef using Lepidium sativum seed mucilage-based edible coating containing Heracleum lasiopetalum essential oil: an experimental and modeling study. Food Sci Biotechnol 2020; 29:717-728. [PMID: 32419970 PMCID: PMC7221043 DOI: 10.1007/s10068-019-00715-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/22/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022] Open
Abstract
The instability and strong flavor or odor of essential oils (EO) limit their direct incorporation into food products. In this study, the antioxidant and antimicrobial Heracleum lasiopetalum essential oil (HLEO) was added to Lepidium sativum seed mucilage (LSSM) solution at four concentrations (0, 0.5, 1, and 1.5%) to develop a novel edible coating and expand its food application. HLEO-loaded LSSM coating was then used to improve the shelf life and quality of beef as a model food system. The coated and control beef samples were periodically analyzed for physicochemical analysis, microbiological, and sensory characteristics over a period of 9 days at 4 °C. The HLEO-enriched LSSM coating, particularly 1.5% loaded one resulted in a significant (p < 0.05) increase in oxidative and microbiological stability and overall acceptance of the beef samples, compared to the control counterpart. HLEO-loaded LSSM coating, therefore, provides a promising alternative to preserve the meat products under cold storage.
Collapse
Affiliation(s)
- Hassan Barzegar
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Mohammad Amin Mehrnia
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
43
|
Mohammadi MM, Saeb M, Nazifi S. Experimental hypothyroidism in adult male rats: the effects of Artemisia dracunculus aqueous extract on serum thyroid hormones, lipid profile, leptin, adiponectin, and antioxidant factors. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s00580-019-03080-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Behbahani BA, Noshad M, Falah F. Study of chemical structure, antimicrobial, cytotoxic and mechanism of action of Syzygium aromaticum essential oil on foodborne pathogens. POTRAVINARSTVO 2019. [DOI: 10.5219/1226] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, chemical composition (gas chromatography-mass spectroscopy), chemical structure (fourier transform infrared spectroscopy) and antioxidant potential (β-carotene bleaching assay and DPPH/ABTS-radical scavenging activity tests) of Syzygium aromaticum essential oil (SAEO) were evaluated. Eugenol (75.11%) was found to be the major compound of SAEO. Eugenol, as the main chemical constituent of SAEO, showed its signature peaks in the wavenumber range of 720 – 1250 cm-1, ascribing to the C=C region. The antimicrobial activity of SAEO on Escherichia coli, Staphylococcus aureus, Listeria innocua and Pseudomonas aeruginosa were evaluated. The scanning electron microscopy (SEM) was then applied to unravel the antibacterial mechanism of SAEO on E. coli as the most resistant strain and L. innocua as the most sensitive strain. The MTT assay was also used to investigate the cytotoxicity effect of SAEO on human colonic cancer cell lines (HT29 cell line) and the highest cytotoxic effect was observed at 200 mg.mL-1 concentration of SAEO. The SEM micrographs revealed that the SAEO treatment was able to manifestly increase the cell permeabilization and membrane integrity disruption. This means that the entirety of the cell membranes was remarkably affected by the essential oil, which could lead to cytoplasm secretion and subsequent cell death. The data strongly suggest that SAEO had a potential antioxidant, antimicrobial and cytotoxicity activity.
Collapse
|
45
|
Safari H, Anani Sarab G, Naseri M. Artemisia dracunculus L . modulates the immune system in a multiple sclerosis mouse model. Nutr Neurosci 2019; 24:843-849. [PMID: 31665978 DOI: 10.1080/1028415x.2019.1681742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Multiple sclerosis along with its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic inflammatory and degenerative diseases of the central nervous system (CNS). Due to the unknown cause of the disease, the most common treatments of MS are targeted for the reduction of inflammation and the repairment of CNS tissue damage, especially myelin restoration. Due to the immune protective nature of herbs, it may be useful to evaluate the impact of herbs in the diet regimen of MS patients along with their immune-mediated effects. The purpose of this study was to investigate the effect of an aqueous extract of Artemisia dracunculus (Tarragon) on the treatment of EAE in C57BL/6 mice.Methods: In this experimental study, mice were divided into the following control, untreated EAE, and A. dracunculus treated EAE groups. EAE was induced by myelin oligodendrocyte glycoprotein (MOG35-55) in female C57BL/6 mice. The symptoms of the disease and the weight of the mice were recorded daily. On day 33 after EAE induction, the mice were sacrificed and the specimens were collected. Cell proliferation and cytokine release (TGF-β, IL-17 and IL-23) from mice cultured spleen cells was measured by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and ELISA respectively.Results: Administration of the extract of A. dracunculus mitigated EAE symptoms (P < 0.05). Furthermore, there was a reduction in the levels of inflammatory cytokines including IL-17 (P = 0.009) and IL-23 (P = 0.012) and confirmed increased serum antioxidant levels in A. dracunculus treated EAE mice (P = 0.008).Conclusions: These observations indicate that A. dracunculus extracts could reduce inflammatory cytokines and attenuate certain signs of EAE, suggesting the potential of a useful adjuvant therapy for MS.
Collapse
Affiliation(s)
- Hamidreza Safari
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| | - Gholamreza Anani Sarab
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
46
|
Alizadeh Behbahani B, Noshad M, Falah F. Cumin essential oil: Phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microb Pathog 2019; 136:103716. [PMID: 31494297 DOI: 10.1016/j.micpath.2019.103716] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
Abstract
In this study, the antimicrobial effects of cumin essential oil (CEO) and its mechanism of action through scanning electron microscopy (SEM) against Escherichia coli and Listeria innocua were investigated. The SEM images were taken at 0, 12 and 24 h at the minimum inhibitory concentration (MIC). The chemical composition of CEO was identified through gas chromatography/mass spectrometry (GC-MS). The antimicrobial effects of CEO were evaluated by the methods of Kirby-Bauer, well diffusion agar, microdilution broth and minimum bactericidal/fungicidal concentration (MBC/MFC). Antioxidant activity was examined by the methods of β-carotene/linoleic acid inhibition and 2,2-diphenyl-1-picrylhydrazyl. Total phenol content (TPC) was measured by Folin-Ciocalteu method. The subsequent analysis of CEO through GC-MS revealed that cuminal (28.28%) was the major compound of CEO. CEO showed a high TPC of 89.45 ± 0.78 mg GAE/g. The free radical scavenging activity of CEO (based on IC50) was equal to 9.10 ± 0.63 μg mL-1. In addition, CEO showed a remarkably high inhibitory effect (63%) on β-carotene bleaching via neutralizing hydroperoxides, which are responsible for the oxidation of highly unsaturated β-carotene. The antimicrobial effect increased as a function of essential oil concentration. However, there were no inhibitory effects on E. coli at 5 mg mL-1. The electron micrographs demonstrated that CEO caused an increase in the permeabilization of the cells and disrupted the membrane integrity.
Collapse
Affiliation(s)
- Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
| | - Mohammad Noshad
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Fereshteh Falah
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
47
|
Bandeira Reidel RV, Nardoni S, Mancianti F, Anedda C, El Gendy AENG, Omer EA, Pistelli L. Chemical composition and antifungal activity of essential oils from four Asteraceae plants grown in Egypt. ACTA ACUST UNITED AC 2019; 73:313-318. [PMID: 29768252 DOI: 10.1515/znc-2017-0219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/16/2018] [Indexed: 11/15/2022]
Abstract
The objective of the present paper was the assessment of the chemical composition of the essential oils from four Asteraceae species with a considerable food, medicinal, and agricultural value, collected in Egypt, together with their in vitro inhibitory activity against molds and yeasts. The essential oil of Launaea cornuta flowers was also evaluated for the first time, but because of its very low yield (<0.01%), no antifungal test was performed.
Collapse
Affiliation(s)
| | - Simona Nardoni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Francesca Mancianti
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Claudia Anedda
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Abd El-Nasser G El Gendy
- Department of Medicinal and Aromatic Plants Research, National Research Center, 33 El Bohouth st., Dokki, Giza 12622, Egypt
| | - Elsayed A Omer
- Department of Medicinal and Aromatic Plants Research, National Research Center, 33 El Bohouth st., Dokki, Giza 12622, Egypt
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
48
|
Optimization of gamma-aminobutyric acid production in a model system containing soy protein and inulin by Lactobacillus brevis fermentation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00183-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Raeisi M, Ghorbani Bidkorpeh F, Hashemi M, Tepe B, Moghaddam Z, Aman Mohammadi M, Noori SMA. Chemical Composition and Antibacterial and Antioxidant Properties of Essential Oils of Zataria multiflora, Artemisia deracunculus and Mentha piperita. MEDICAL LABORATORY JOURNAL 2019. [DOI: 10.29252/mlj.13.2.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
50
|
Ali SS, El-Zawawy NA, Al-Tohamy R, El-Sapagh S, Mustafa AM, Sun J. Lycium shawii Roem. & Schult.: A new bioactive antimicrobial and antioxidant agent to combat multi-drug/pan-drug resistant pathogens of wound burn infections. J Tradit Complement Med 2019; 10:13-25. [PMID: 31956554 PMCID: PMC6957848 DOI: 10.1016/j.jtcme.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 01/02/2023] Open
Abstract
The Multidrug Drug Resistance (MDR) and Pan-Drug Resistance (PDR) remain an intractable challenge issue in public health, worldwide. Plant extracts-based biological macromolecules containing a diverse array of secondary metabolites could be potentially used as alternative approaches to control or limit MDR/PDR infections. Plants of the Solanaceae family exhibit a wide variety of secondary metabolites with antioxidant and antimicrobial properties, which render them a significant role in food and pharmaceutical applications. To our knowledge, this is the first report on phytochemical constituents, antioxidant, antimicrobial activities and in vivo toxicological safety of Lycium shawii leaf extracts. Results revealed that phenolics and flavonoids were found to be the most abundant compounds in all extracts. Antioxidant activity of extracts was measured using DPPH• and ABTS•+ assays and the methanol extract displayed superior scavenging activity (IC50 = 0.06 and 0.007 mg/mL for DPPH• and ABTS•+, respectively). Results of the GC-MS analysis revealed the identity of 10 compounds. Moreover, in vivo toxicological assessment can confirm the safety of L. shawii for use. Overall, L. shawii leaves are a promising natural source for the development of novel antimicrobial and antioxidant agents that could potentially combat clinical MDR/PDR pathogens. The drug resistance remains an intractable challenge in public health. Phenolics and flavonoids were the most abundant compounds in all extracts. Methanol extract was the most antioxidant and antimicrobial agent. p-coumaric acid, apigenin, and fisetin are the major identified compounds. In vivo toxicological assessment can confirm the safety of L. shawii for use.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.,Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nessma A El-Zawawy
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shimaa El-Sapagh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ahmed M Mustafa
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|