1
|
Mjaatveit M, Oldernes H, Gudbrandsen OA. Effects of diets containing fish oils or fish oil concentrates with high cetoleic acid content on the circulating cholesterol concentration in rodents. A systematic review and meta-analysis. Br J Nutr 2024; 131:606-621. [PMID: 37737066 PMCID: PMC10803824 DOI: 10.1017/s0007114523002118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Hypercholesterolaemia is a major risk factor for CVD. Fish intake is associated with lower risk of CVD, whereas supplementation with n-3 long-chain PUFA (LC-PUFA) has little effect on the cholesterol concentration. We therefore investigated if cetoleic acid (CA), a long-chain MUFA (LC-MUFA) found especially in pelagic fish species, could lower the circulating total cholesterol (TC) concentration in rodents. A systematic literature search was performed using the databases PubMed, Web of Science and Embase, structured around the population (rodents), intervention (CA-rich fish oils or concentrates), comparator (diets not containing CA) and the primary outcome (circulating TC). Articles were assessed for risk of bias using the SYRCLE's tool. A meta-analysis was conducted in Review Manager v. 5.4.1 (the Cochrane Collaboration) to determine the effectiveness of consuming diets containing CA-rich fish oils or concentrates on the circulating TC concentration. Twelve articles were included in the systematic review and meta-analysis, with data from 288 rodents. Consumption of CA-rich fish oils and concentrates resulted in a significantly lower circulating TC concentration relative to comparator groups (mean difference -0·65 mmol/l, 95 % CI (-0·93, -0·37), P < 0·00001), with high statistical heterogeneity (I2 = 87 %). The risk of bias is unclear since few of the entries in the SYRCLE's tool were addressed. To conclude, intake of CA-rich fish oils and concentrates prevents high cholesterol concentration in rodents and should be further investigated as functional dietary ingredients or supplements to reduce the risk for developing CVD in humans.
Collapse
Affiliation(s)
- Margrete Mjaatveit
- Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, Bergen, 5021, Norway
| | - Helle Oldernes
- Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, Bergen, 5021, Norway
| | - Oddrun Anita Gudbrandsen
- Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, Bergen, 5021, Norway
| |
Collapse
|
2
|
Wang F, Hu M, Zhu H, Yang C, Xia H, Yang X, Yang L, Sun G. MyD88 determines the protective effects of fish oil and perilla oil against metabolic disorders and inflammation in adipose tissue from mice fed a high-fat diet. Nutr Diabetes 2021; 11:23. [PMID: 34168108 PMCID: PMC8225863 DOI: 10.1038/s41387-021-00159-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The beneficial effects of ω-3 polyunsaturated fatty acids (PUFA) vary between different sources. However, there is a paucity of comparative studies regarding the effects and mechanisms of marine and plant ω-3 PUFA on obesity. OBJECTIVE The aim of this study was to evaluate the effects of fish oil (FO) and perilla oil (PO) on glucolipid metabolism, inflammation, and adipokine in mice fed a high-fat (HF) diet in association with the contribution of toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88) pathway. METHODS C57BL/6J mice and MyD88-/- mice were randomly divided into 4 groups: normal chow diet, HF diet, HF diet accompanied by daily gavage with either FO or PO. After 4 weeks, blood biochemistries, adipocyte histology, mRNA, and protein expression of MyD88-dependent and -independent pathways of TLR4 signaling in epididymal adipose tissue were measured. RESULTS In C57BL/6J mice, there were no statistical differences between FO and PO in decreasing body weight, glucose, insulin, triglyceride, total cholesterol, interleukin-6, and increasing adipocyte counts. FO and PO decreased mRNA and protein expression of TLR4, MyD88, tumor necrosis factor receptor-associated factor 6, inhibitor of nuclear factor kappa B kinase beta and nuclear factor-kappa B p65. In MyD88-/- mice, the beneficial effects of FO and PO on HF diet-induced metabolism abnormalities and inflammation were abolished. FO and PO had no impacts on mRNA and protein expression of receptor-interacting protein-1, interferon regulate factor 3, and nuclear factor-kappa B p65. CONCLUSION FO and PO exhibit similar protective effects on metabolic disorders and inflammation through inhibiting TLR4 signaling in a manner dependent on MyD88. These findings highlight plant ω-3 PUFA as an attractive alternative source of marine ω-3 PUFA and reveal a mechanistic insight for preventive benefits of ω-3 PUFA in obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Mingyuan Hu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- Wannan Medical College, Wuhu, China
| | - Hangju Zhu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- Jiangsu Cancer Hospital, Nanjing, China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Xian Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Schots PC, Pedersen AM, Eilertsen KE, Olsen RL, Larsen TS. Possible Health Effects of a Wax Ester Rich Marine Oil. Front Pharmacol 2020; 11:961. [PMID: 32676029 PMCID: PMC7333527 DOI: 10.3389/fphar.2020.00961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
The consumption of seafood and the use of fish oil for the production of nutraceuticals and fish feed have increased over the past decades due the high content of long-chain polyunsaturated omega-3 fatty acids. This increase has put pressure on the sustainability of fisheries. One way to overcome the limited supply of fish oil is to harvest lower in the marine food web. Calanus finmarchicus, feeding on phytoplankton, is a small copepod constituting a considerable biomass in the North Atlantic and is a novel source of omega-3 fatty acids. The oil is, however, different from other commercial marine oils in terms of chemistry and, possibly, bioactivity since it contains wax esters. Wax esters are fatty acids that are esterified with alcohols. In addition to the long-chain polyunsaturated omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the oil is also rich in stearidonic acid (SDA), long-chain monounsaturated fatty acids, and the long-chain fatty alcohols eicosenol and docosenol. Recent animal studies have indicated anti-inflammatory and anti-obesogenic actions of this copepod oil beyond that provided by EPA and DHA. This review will discuss potential mechanisms behind these beneficial effects of the oil, focusing on the impact of the various components of the oil. The health effects of EPA and DHA are well recognized, whereas long-chain monounsaturated fatty acids and long-chain fatty alcohols have to a large degree been overlooked in relation to human health. Recently, however the fatty alcohols have received interest as potential targets for improved health via conversion to their corresponding fatty acids. Together, the different lipid components of the oil from C. finmarchicus may have potential as nutraceuticals for reducing obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Pauke Carlijn Schots
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Karl-Erik Eilertsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ragnar Ludvig Olsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Terje Steinar Larsen
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Zhu L, Sha L, Li K, Wang Z, Wang T, Li Y, Liu P, Dong X, Dong Y, Zhang X, Wang H. Dietary flaxseed oil rich in omega-3 suppresses severity of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in rats. Lipids Health Dis 2020; 19:20. [PMID: 32028957 PMCID: PMC7006389 DOI: 10.1186/s12944-019-1167-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is closely associated with hyperglycemia, abnormal lipid profiles, chronic low-grade inflammation and gut dysbiosis. Dietary intervention plays a crucial role in the control of diabetes. Flaxseed oil (FO), a plant-derived omega-3 (ω-3) polyunsaturated fatty acids (PUFAs), is rich in α-linolenic acid (ALA) which has been proved to benefit for chronic metabolic disease. However, the exact effects of dietary FO on T2DM remains largely unclear. METHODS In the present study, SD rats were randomly allocated into four groups: pair-fed (PF) with corn oil (CO) group (PF/CO); DM with CO group (DM/CO); PF with FO group (PF/FO); DM with FO group (DM/FO). A diabetic rat model was generated by a single intraperitoneal injection of streptozotocin-nicotinamide (STZ-NA). After 5 weeks of intervention, rats were euthanized and associated indications were investigated. RESULTS Dietary FO significantly reduced fasting blood glucose (FBG), glycated hemoglobin (GHb), blood lipid, plasma lipopolysaccharide (LPS), interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-17A and malondialdehyde (MDA), compared to control group, respectively. Moreover, body mass (BM) and superoxide dismutase (SOD) in DM/FO group were dramatically increased respectively, compared with those in DM/CO group. But insulin (INS) and homeostasis model assessment of insulin resistance (HOMA-IR) remained no significant difference between DM/CO group and DM/FO group. Sequencing analysis of gut microbiota showed a reduction in the relative abundance of Firmicutes and Blautia, as well as a reduction in the ratio of Bacteroidetes-Firmicutes in DM/FO group compared to DM/CO group. An elevation in the relative abundance of Bacteroidetes and Alistipes were detected in DM/FO group. Acetic acid, propionic acid and butyric acid belonging to short chain fatty acids (SCFAs) as gut microbiota metabolites, were dramatically increased after FO intervention. Correlation analysis revealed that the relative abundance of Firmicutes and Blautia were positively correlated with IL-1β, TNF-α, IL-6, IL-17A or LPS, respectively. Additionally, Bacteroidetes and Alistipes were negatively correlated with LPS. CONCLUSIONS Taken together, dietary FO ameliorated T2DM via suppressing inflammation and modulating gut microbiota, which may potentially contribute to dietary control of diabetes.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Liping Sha
- Endocrinology Department, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ke Li
- Endocrinology Department, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, Ningxia, China
| | - Zhen Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ting Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yiwei Li
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ping Liu
- Endocrinology Department, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoying Dong
- Endocrinology Department, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Youping Dong
- Endocrinology Department, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
5
|
The long-chain monounsaturated cetoleic acid improves the efficiency of the n-3 fatty acid metabolic pathway in Atlantic salmon and human HepG2 cells. Br J Nutr 2019; 122:755-768. [PMID: 31288871 DOI: 10.1017/s0007114519001478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study aimed to determine if the long-chain MUFA cetoleic acid (22 : 1n-11) can improve the capacity to synthesise the health-promoting n-3 fatty acids EPA and DHA in human and fish models. Human hepatocytes (HepG2) and salmon primary hepatocytes were first enriched with cetoleic acid, and thereafter their capacities to convert radio-labelled 18 : 3n-3 (α-linolenic acid, ALA) to EPA and DHA were measured. Increased endogenous levels of cetoleic acid led to increased production of radio-labelled EPA + DHA in HepG2 by 40 % and EPA in salmon hepatocytes by 12 %. In order to verify if dietary intake of a fish oil rich in cetoleic acid would have the same beneficial effects on the n-3 fatty acid metabolic pathway in vivo as found in vitro, Atlantic salmon were fed four diets supplemented with either sardine oil low in cetoleic acid or herring oil high in cetoleic acid at two inclusion levels (Low or High). The diets were balanced for EPA + DHA content within the Low and within the High groups. The salmon were fed these diets from 110 to 242 g. The level of EPA + DHA in liver and whole-body retention of docosapentaenoic acid and EPA + DHA relative to what was eaten, increased with increased dietary cetoleic acid levels. Thus, it is concluded that cetoleic acid stimulated the synthesis of EPA and DHA from ALA in human HepG2 and of EPA in salmon hepatocytes in vitro and increased whole-body retention of EPA + DHA in salmon by 15 % points after dietary intake of cetoleic acid.
Collapse
|
6
|
Senarath S, Beppu F, Yoshinaga K, Nagai T, Yoshida A, Gotoh N. Comparison of the Effects of Long-chain Monounsaturated Fatty Acid Positional Isomers on Lipid Metabolism in 3T3-L1 Cells. J Oleo Sci 2019; 68:379-387. [PMID: 30867386 DOI: 10.5650/jos.ess18223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long chain monounsaturated fatty acids (LC-MUFAs) have shown beneficial health effects in previous studies. They occur as mixtures of positional isomers (PIs) in food. The functionalities of LC-MUFA PIs have not been studied extensively. Common LC-MUFA PIs, namely cis-octadecenoic acid (c-18:1), cis-eicosenoic acid (c-20:1), and cis-docosenoic acid (c-22:1), were screened based on their effects on lipid accumulation. We selected nine fatty acids (FAs) to assess their effects on cellular lipid metabolism using 3T3-L1 preadipocytes. Lipid accumulation was found to be higher in cells treated with LC-MUFAs than in the non-treated cells. When comparing the influence of chain length of LC-MUFAs, TG levels tended to be higher in cells treated with c-22:1 group than that of the c18:1 and c-20:1 groups. Among the c-22:1 group, c9-22:1 treatment showed higher lipid accumulation, and was accompanied with elevated expression of transcription factors related to adipogenesis and lipogenesis, such as PPARγ and C/EBPα, and SREBP-1, respectively. In contrast, the effects of c-20:1 FAs were less pronounced than those of c-18:1 and c-22:1. Levels of accumulated lipid in cells treated with c15-20:1 were the same as in non-treated control. PPARγ, C/EBPα, and SREBP-1 were expressed at lower levels with c15-20:1 FA. Furthermore, mRNA levels of SCD-1 and FAS were lowered more by c15- and c11-20:1 than by other MUFAs. These results revealed that differences in the effects of LC-MUFAs on lipid metabolism depend on their chain lengths and on the position of the double bond.
Collapse
Affiliation(s)
- Samanthika Senarath
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology.,Department of Food Science and Technology, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka
| | - Fumiaki Beppu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | | | | | | | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
7
|
Wang F, Zhu H, Hu M, Wang J, Xia H, Yang X, Yang L, Sun G. Perilla Oil Supplementation Improves Hypertriglyceridemia and Gut Dysbiosis in Diabetic KKAy Mice. Mol Nutr Food Res 2018; 62:e1800299. [PMID: 30358922 PMCID: PMC6646911 DOI: 10.1002/mnfr.201800299] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/13/2018] [Indexed: 12/18/2022]
Abstract
SCOPE The aim of this study is to examine whether perilla oil supplementation improves glucolipid metabolism and modulates gut microbiota in diabetic KKAy mice. METHODS AND RESULTS The successfully established diabetic KKAy mice are randomized into four groups: diabetic model (DM), low-dose perilla oil (LPO), middle-dose perilla oil (MPO), and high-dose perilla oil (HPO). C57BL/6J mice are fed a chow diet as normal control (NC). At the end of 12 weeks, mice are euthanized and glucolipid indications are analyzed. Gut microbiota analysis is carried out based on the sequencing results on V4 region of 16S rRNA. Although serum glucose, insulin, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, abundance-based coverage estimator, and shannon are unchanged, serum triglyceride significantly decreases in LPO compared with DM. The histopathological changes of hepatocellular macrovesicular steatosis and adipocyte hypertrophy are ameliorated by perilla oil supplementation. Blautia is significantly decreased in LPO, MPO, and HPO, compared with DM. Nonmetric multidimensional scaling analysis shows NC and LPO are relatively coherent. CONCLUSION These findings indicate that dietary supplementation with perilla oil can improve hypertriglyceridemia and gut dysbiosis in diabetic KKAy mice, which can be associated with potential benefits to human health.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
- Tianjin Institute of Environmental and Operational MedicineTianjinChina
| | - Hangju Zhu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
- Jiangsu Cancer HospitalNanjingChina
| | - Mingyuan Hu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Jing Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Xian Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| |
Collapse
|
8
|
Ribeiro PVM, Silva A, Almeida AP, Hermsdorff HH, Alfenas RC. Effect of chronic consumption of pistachios (Pistacia vera L.) on glucose metabolism in pre-diabetics and type 2 diabetics: A systematic review. Crit Rev Food Sci Nutr 2017; 59:1115-1123. [DOI: 10.1080/10408398.2017.1392290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- P. V. M. Ribeiro
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - A. Silva
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - A. P. Almeida
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - H. H. Hermsdorff
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - R. C. Alfenas
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
9
|
Xu YY, Xu YS, Wang Y, Wu Q, Lu YF, Liu J, Shi JS. Dendrobium nobile Lindl. alkaloids regulate metabolism gene expression in livers of mice. J Pharm Pharmacol 2017; 69:1409-1417. [DOI: 10.1111/jphp.12778] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
In our previous studies, Dendrobium nobile Lindl. alkaloids (DNLA) has been shown to have glucose-lowering and antihyperlipidaemia effects in diabetic rats, in rats fed with high-fat diets, and in mice challenged with adrenaline. This study aimed to examine the effects of DNLA on the expression of glucose and lipid metabolism genes in livers of mice.
Methods
Mice were given DNLA at doses of 10–80 mg/kg, po for 8 days, and livers were removed for total RNA and protein isolation to perform real-time RT-PCR and Western blot analysis.
Key findings
Dendrobium nobile Lindl. alkaloids increased PGC1α at mRNA and protein levels and increased glucose metabolism gene Glut2 and FoxO1 expression. DNLA also increased the expression of fatty acid β-oxidation genes Acox1 and Cpt1a. The lipid synthesis regulator Srebp1 (sterol regulatory element-binding protein-1) was decreased, while the lipolysis gene ATGL was increased. Interestingly, DNLA increased the expression of antioxidant gene metallothionein-1 and NADPH quinone oxidoreductase-1 (Nqo1) in livers of mice. Western blot on selected proteins confirmed these changes including the increased expression of GLUT4 and PPARα.
Conclusions
DNLA has beneficial effects on liver glucose and lipid metabolism gene expressions, and enhances the Nrf2-antioxidant pathway gene expressions, which could play integrated roles in regulating metabolic disorders.
Collapse
Affiliation(s)
- Yun-Yan Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ya-Sha Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuan-Fu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
10
|
Wang F, Wang Y, Zhu Y, Liu X, Xia H, Yang X, Sun G. Treatment for 6 months with fish oil-derived n-3 polyunsaturated fatty acids has neutral effects on glycemic control but improves dyslipidemia in type 2 diabetic patients with abdominal obesity: a randomized, double-blind, placebo-controlled trial. Eur J Nutr 2016; 56:2415-2422. [DOI: 10.1007/s00394-016-1352-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/27/2016] [Indexed: 12/22/2022]
|
11
|
Yang ZH, Emma-Okon B, Remaley AT. Dietary marine-derived long-chain monounsaturated fatty acids and cardiovascular disease risk: a mini review. Lipids Health Dis 2016; 15:201. [PMID: 27876051 PMCID: PMC5120510 DOI: 10.1186/s12944-016-0366-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/09/2016] [Indexed: 01/29/2023] Open
Abstract
Regular fish/fish oil consumption is widely recommended for protection against cardiovascular diseases (CVD). Fish and other marine life are rich sources of the cardioprotective long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) eicosapentaenoic acid (C20:5 n-3; EPA) and docosahexaenoic acid (C22:6 n-3; DHA). The lipid content and fatty acid profile of fish, however, vary greatly among different fish species. In addition to n-3 PUFA, certain fish, such as saury, pollock, and herring, also contain high levels of long-chain monounsaturated fatty acids (LCMUFA), with aliphatic tails longer than 18 C atoms (i.e., C20:1 and C22:1 isomers). Compared with well-studied n-3 PUFA, limited information, however, is available on the health benefits of marine-derived LCMUFA, particularly in regard to CVD. Our objective in this review is to summarize the current knowledge and provide perspective on the potential therapeutic value of dietary LCMUFA-rich marine oil for improving CVD risk factors. We will also review the possible mechanisms of LCMUFA action on target tissues. Finally, we describe the epidemiologic data and small-scaled clinical studies that have been done on marine oils enriched in LCMUFA. Although there are still many unanswered questions about LCMUFA, this appears to be promising new area of research that may lead to new insights into the health benefits of a different component of fish oils besides n-3 PUFA.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892-1666, USA.,Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha, 32-3 Nanakuni 1 Chome Hachioji, Tokyo, 192-0991, Japan
| | - Beatrice Emma-Okon
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892-1666, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892-1666, USA.
| |
Collapse
|
12
|
Keapai W, Apichai S, Amornlerdpison D, Lailerd N. Evaluation of fish oil-rich in MUFAs for anti-diabetic and anti-inflammation potential in experimental type 2 diabetic rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:581-593. [PMID: 27847435 PMCID: PMC5106392 DOI: 10.4196/kjpp.2016.20.6.581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/03/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022]
Abstract
The advantages of monounsaturated fatty acids (MUFAs) on insulin resistance and type 2 diabetes mellitus (T2DM) have been well established. However, the molecular mechanisms of the anti-diabetic action of MUFAs remain unclear. This study examined the anti-hyperglycemic effect and explored the molecular mechanisms involved in the actions of fish oil- rich in MUFAs that had been acquired from hybrid catfish (Pangasius larnaudii×Pangasianodon hypophthalmus) among experimental type 2 diabetic rats. Diabetic rats that were fed with fish oil (500 and 1,000 mg/kg BW) for 12 weeks significantly reduced the fasting plasma glucose levels without increasing the plasma insulin levels. The diminishing levels of plasma lipids and the muscle triglyceride accumulation as well as the plasma leptin levels were identified in T2DM rats, which had been administrated with fish oil. Notably, the plasma adiponectin levels increased among these rats. The fish oil supplementation also improved glucose tolerance, insulin sensitivity and pancreatic histological changes. Moreover, the supplementation of fish oil improved insulin signaling (p-AktSer473 and p-PKC-ζ/λThr410/403), p-AMPKThr172 and membrane GLUT4 protein expressions, whereas the protein expressions of pro-inflammatory cytokines (TNF-α and nuclear NF-κB) as well as p-PKC-θThr538 were down regulated in the skeletal muscle. These data indicate that the effects of fish oil-rich in MUFAs in these T2DM rats were partly due to the attenuation of insulin resistance and an improvement in the adipokine imbalance. The mechanisms of the anti-hyperglycemic effect are involved in the improvement of insulin signaling, AMPK activation, GLUT4 translocation and suppression of pro-inflammatory cytokine protein expressions.
Collapse
Affiliation(s)
- Waranya Keapai
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sopida Apichai
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Doungporn Amornlerdpison
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Yang ZH, Bando M, Sakurai T, Chen Y, Emma-Okon B, Wilhite B, Fukuda D, Vaisman B, Pryor M, Wakabayashi Y, Sampson M, Yu ZX, Sakurai A, Zarzour A, Miyahara H, Takeo J, Sakaue H, Sata M, Remaley AT. Long-chain monounsaturated fatty acid-rich fish oil attenuates the development of atherosclerosis in mouse models. Mol Nutr Food Res 2016; 60:2208-2218. [PMID: 27273599 DOI: 10.1002/mnfr.201600142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 01/11/2023]
Abstract
SCOPE Fish oil-derived long-chain monounsaturated fatty acids (LCMUFA) containing chain lengths longer than 18 were previously shown to improve cardiovascular disease risk factors in mice. However, it is not known if LCMUFA also exerts anti-atherogenic effects. The main objective of the present study was to investigate the effect of LCMUFA on the development of atherosclerosis in mouse models. METHODS AND RESULTS LDLR-KO mice were fed Western diet supplemented with 2% (w/w) of either LCMUFA concentrate, olive oil, or not (control) for 12 wk. LCMUFA, but not olive oil, significantly suppressed the development of atherosclerotic lesions and several plasma inflammatory cytokine levels, although there were no major differences in plasma lipids between the three groups. At higher doses 5% (w/w) LCMUFA supplementation was observed to reduce pro-atherogenic plasma lipoproteins and to also reduce atherosclerosis in ApoE-KO mice fed a Western diet. RNA sequencing and subsequent qPCR analyses revealed that LCMUFA upregulated PPAR signaling pathways in liver. In cell culture studies, apoB-depleted plasma from LDLR-K mice fed LCMUFA showed greater cholesterol efflux from macrophage-like THP-1 cells and ABCA1-overexpressing BHK cells. CONCLUSION Our research showed for the first time that LCMUFA consumption protects against diet-induced atherosclerosis, possibly by upregulating the PPAR signaling pathway.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Masahiro Bando
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshihiro Sakurai
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ye Chen
- Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Beatrice Emma-Okon
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bree Wilhite
- Section on Nutritional Neurosciences, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Daiju Fukuda
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Boris Vaisman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Milton Pryor
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Maureen Sampson
- Clinical Center, Department of Laboratory Medicine, NIH, Bethesda, MD, USA
| | - Zu-Xi Yu
- Pathology Core, NHLBI, NIH, Bethesda, MD, USA
| | - Akiko Sakurai
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Abdalrahman Zarzour
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hiroko Miyahara
- Central Research Laboratory, Nippon Suisan Kaisha, Tokyo, Japan
| | - Jiro Takeo
- Central Research Laboratory, Nippon Suisan Kaisha, Tokyo, Japan
| | - Hiroshi Sakaue
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masataka Sata
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
14
|
Yang ZH, Inoue S, Taniguchi Y, Miyahara H, Iwasaki Y, Takeo J, Sakaue H, Nakaya Y. Long-term dietary supplementation with saury oil attenuates metabolic abnormalities in mice fed a high-fat diet: combined beneficial effect of omega-3 fatty acids and long-chain monounsaturated fatty acids. Lipids Health Dis 2015; 14:155. [PMID: 26627187 PMCID: PMC4666194 DOI: 10.1186/s12944-015-0161-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022] Open
Abstract
Background Pacific saury is a common dietary component in East Asia. Saury oil contains considerable levels of n-3 unsaturated fatty acids (PUFA) and long-chain monounsaturated fatty acids (LCMUFA) with aliphatic tails longer than 18 carbons. In our previous study, consumption of saury oil for 4 to 6 wk improved insulin sensitivity and the plasma lipid profile in mice. However, the long-term effects of saury oil on metabolic syndrome (MetS) risk factors remain to be demonstrated. In the current study, we examined the long-term effects of saury oil on mice fed a high-fat diet, and compared the effect of n-3 PUFA EPA and LCMUFA on MetS risk factor in diet-induced obese mice. Methods and Results In Experiment 1, male C57BL/6 J mice were fed either a 32 % lard diet (control) or a diet containing 22 % lard plus 10 % saury oil (saury oil group) for 18 weeks. Although no differences were found in body weight and energy expenditure between the control and saury oil groups, the saury oil diet decreased plasma insulin, non–HDL cholesterol, hepatic steatosis, and adipocyte size, and altered levels of mRNA transcribed from genes involved in insulin signaling and inflammation in adipose tissue. Organ and plasma fatty acid profile analysis revealed that consumption of saury oil increased n-3 PUFA and LCMUFA (especially n-11 LCMUFA) levels in multiple organs, and decreased the fatty acid desaturation index (C16:1/C16:0; C18:1/C18:0) in liver and adipose tissue. In Experiment 2, male C57BL/6 J mice were fed a 32 % lard diet (control), a diet containing 28 % lard plus 4 % EPA (EPA group), or a diet containing 20 % lard plus 12 % LCMUFA concentrate (LCMUFA group) for 8 weeks. EPA or LCMUFA intake increased organ levels of EPA and LCMUFA, respectively. Consumption of EPA reduced plasma lipid levels and hepatic lipid deposition, and decreased the fatty acid desaturation index in liver and adipose tissue. Consumption of LCMUFA decreased plasma non–HDL cholesterol, improved hyperinsulinemia, and decreased the fatty acid desaturation index in adipose tissue. EPA accumulated mainly in liver, and LCMUFA (especially n-11 LCMUFA) accumulated mainly in white adipose tissue, suggesting their possible individual biological effects for improving MetS. Conclusion Our results suggest that saury oil-mediated improvement of metabolic syndrome in diet-induced obese mice may possibly be due to a combined effect of n-3 PUFA and LCMUFA. Electronic supplementary material The online version of this article (doi:10.1186/s12944-015-0161-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Central Research Laboratory, Nippon Suisan Kaisha, 32-3 Nanakuni 1 Chome, Hachioji, Tokyo, 192-0991, Japan. .,Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Seika Inoue
- Department of Nutrition and Metabolism, University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
| | - Yasuko Taniguchi
- Department of Nutrition and Metabolism, University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
| | - Hiroko Miyahara
- Central Research Laboratory, Nippon Suisan Kaisha, 32-3 Nanakuni 1 Chome, Hachioji, Tokyo, 192-0991, Japan.
| | - Yusuke Iwasaki
- Central Research Laboratory, Nippon Suisan Kaisha, 32-3 Nanakuni 1 Chome, Hachioji, Tokyo, 192-0991, Japan.
| | - Jiro Takeo
- Central Research Laboratory, Nippon Suisan Kaisha, 32-3 Nanakuni 1 Chome, Hachioji, Tokyo, 192-0991, Japan.
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
| | - Yutaka Nakaya
- Department of Nutrition and Metabolism, University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
| |
Collapse
|
15
|
Furutani A, Ikeda Y, Itokawa M, Nagahama H, Ohtsu T, Furutani N, Kamagata M, Yang ZH, Hirasawa A, Tahara Y, Shibata S. Fish Oil Accelerates Diet-Induced Entrainment of the Mouse Peripheral Clock via GPR120. PLoS One 2015; 10:e0132472. [PMID: 26161796 PMCID: PMC4498928 DOI: 10.1371/journal.pone.0132472] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/15/2015] [Indexed: 12/29/2022] Open
Abstract
The circadian peripheral clock is entrained by restricted feeding (RF) at a fixed time of day, and insulin secretion regulates RF-induced entrainment of the peripheral clock in mice. Thus, carbohydrate-rich food may be ideal for facilitating RF-induced entrainment, although the role of dietary oils in insulin secretion and RF-induced entrainment has not been described. The soybean oil component of standard mouse chow was substituted with fish or soybean oil containing docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). Tuna oil (high DHA/EPA), menhaden oil (standard), and DHA/EPA dissolved in soybean oil increased insulin secretion and facilitated RF-induced phase shifts of the liver clock as represented by the bioluminescence rhythms of PER2::LUCIFERASE knock-in mice. In this model, insulin depletion blocked the effect of tuna oil and fish oil had no effect on mice deficient for GPR120, a polyunsaturated fatty acid receptor. These results suggest food containing fish oil or DHA/EPA is ideal for adjusting the peripheral clock.
Collapse
Affiliation(s)
- Akiko Furutani
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Yuko Ikeda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Misa Itokawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Nagahama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Teiji Ohtsu
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Naoki Furutani
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Mayo Kamagata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Zhi-Hong Yang
- Central Research Laboratory, Nippon Suisan Kaisha Ltd., Nanakuni 1-32-3, Hachioji, Tokyo, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Sciences, Kyoto University, 46–29, Yoshida, Sakyo-ku, Kyoto, Japan
- Institute for Integrated Medical Sciences, Tokyo Women’s Medical University, Kawada-cho 8–1, Shinjuku-ku, Tokyo, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
16
|
Should the pharmacological actions of dietary fatty acids in cardiometabolic disorders be classified based on biological or chemical function? Prog Lipid Res 2015. [DOI: 10.1016/j.plipres.2015.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Martino G, Mugnai C, Compagnone D, Grotta L, Del Carlo M, Sarti F. Comparison of Performance, Meat Lipids and Oxidative Status of Pigs from Commercial Breed and Organic Crossbreed. Animals (Basel) 2014; 4:348-60. [PMID: 26480044 PMCID: PMC4494374 DOI: 10.3390/ani4020348] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In recent years, the development of alternative rearing methods, capable of satisfying requests regarding product quality, yet also taking animal welfare and environmental protection into consideration, is becoming an increasingly important consumer demand. When pigs are reared in free range and organic systems, outdoor access is given to pigs; and such rearing conditions increases energy demand for activity and thermoregulation, which reduces growth rate, but improves some meat quality characteristics, such as leaner meat with lower C14:0 and higher C20:1n9, and oxidative stability. Abstract The aim of this research was to determine the effect of rearing systems for pig production, as concerns performance, meat lipid content, the fatty acid profile, histidinic antioxidants, coenzyme Q10, and TBARs. One hundred pigs were assigned to one of three treatments: intensively reared commercial hybrid pig (I), free range commercial hybrid pig (FR) or organically reared crossbred pig (O), according to organic EU Regulations. I pigs showed the best productive performance, but FR and O increased: C20:1n9, Δ9-desaturase (C18) and thioesterase indices in meat. Lipid, dipeptides and CoQ10 appeared correlated to glycolytic and oxidative metabolic pathways. We can conclude that all studied parameters were influenced by the rearing system used, and that differences were particularly evident in the O system, which produced leaner meat with higher oxidative stability. In this respect, the organic pig rearing system promotes and enhances biodiversity, environmental sustainability and food quality.
Collapse
Affiliation(s)
- Giuseppe Martino
- Faculty of Biosciences and Agro-Food Technologies and Environmental, University of Teramo, via C. Lerici 1, 64023, Mosciano S.A., Italy.
| | - Cecilia Mugnai
- Faculty of Biosciences and Agro-Food Technologies and Environmental, University of Teramo, via C. Lerici 1, 64023, Mosciano S.A., Italy.
| | - Dario Compagnone
- Faculty of Biosciences and Agro-Food Technologies and Environmental, University of Teramo, via C. Lerici 1, 64023, Mosciano S.A., Italy.
| | - Lisa Grotta
- Faculty of Biosciences and Agro-Food Technologies and Environmental, University of Teramo, via C. Lerici 1, 64023, Mosciano S.A., Italy.
| | - Michele Del Carlo
- Faculty of Biosciences and Agro-Food Technologies and Environmental, University of Teramo, via C. Lerici 1, 64023, Mosciano S.A., Italy.
| | - Francesca Sarti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy.
| |
Collapse
|
18
|
Jacometo CB, Schmitt E, Pfeifer LFM, Schneider A, Bado F, da Rosa FT, Halfen S, Del Pino FAB, Loor JJ, Corrêa MN, Dionello NJL. Linoleic and α-linolenic fatty acid consumption over three generations exert cumulative regulation of hepatic expression of genes related to lipid metabolism. GENES AND NUTRITION 2014; 9:405. [PMID: 24842071 DOI: 10.1007/s12263-014-0405-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/05/2014] [Indexed: 12/20/2022]
Abstract
The essential fatty acids, omega-3 and omega-6, consumed during pregnancy can benefit maternal and offspring health. For instance, they could activate a network of genes related to the nuclear receptor peroxisome proliferator-activated receptor α (Ppara) and sterol regulatory element binding transcription factor 1 (Srebf1), which play a role in fatty acid oxidation and lipogenesis. The present study aimed to investigate the effects of diets with different omega-3/omega-6 ratio consumed over three generations on blood biochemical parameters and hepatic expression of Ppara- and Srebf1-related genes. During three consecutive generations adult Wistar rats were evaluated in the postpartum period (21 days after parturition). Regardless of prenatal dietary omega-3/omega-6 ratio, an upregulation in liver tissue was observed for Rxra, Lxra and Srebf1 and a downregulation for Fasn in all the evaluated generations. The diet with higher omega-3/omega-6 ratio decreased triacylglycerol serum levels and resulted in a constant non-esterified fatty acid level. Our results indicated that the PUFAs effect on the modulation of genes related to fatty acid oxidation and lipogenesis is cumulative through generations.
Collapse
Affiliation(s)
- Carolina B Jacometo
- Department of Animal Science, Agronomy College, Federal University of Pelotas, Campus Universitário, Pelotas, RS, CEP 96010-900, Brazil,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Höper AC, Salma W, Sollie SJ, Hafstad AD, Lund J, Khalid AM, Raa J, Aasum E, Larsen TS. Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice. J Nutr 2014; 144:164-9. [PMID: 24285691 DOI: 10.3945/jn.113.182501] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We showed previously that dietary supplementation with oil from the marine zooplankton Calanus finmarchicus (Calanus oil) attenuates obesity, inflammation, and glucose intolerance in mice. More than 80% of Calanus oil consists of wax esters, i.e., long-chain fatty alcohols linked to long-chain fatty acids. In the present study, we compared the metabolic effects of Calanus oil-derived wax esters (WE) with those of purified eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) ethyl esters (E/D) in a mouse model of diet-induced obesity. C57BL/6J mice received a high-fat diet (HFD; 45% energy from fat). After 7 wk, the diet was supplemented with either 1% (wt:wt) WE or 0.2% (wt:wt) E/D. The amount of EPA + DHA in the E/D diet was matched to the total amount of n-3 (ω-3) polyunsaturated fatty acids (PUFAs) in the WE diet. A third group was given an unsupplemented HFD throughout the entire 27-wk feeding period. WE reduced body weight gain, abdominal fat, and liver triacylglycerol by 21%, 34%, and 52%, respectively, and significantly improved glucose tolerance and aerobic capacity. In abdominal fat depots, WE reduced macrophage infiltration by 74% and downregulated expression of proinflammatory genes (tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1), whereas adiponectin expression was significantly upregulated. By comparison, E/D primarily suppressed the expression of proinflammatory genes but had less influence on glucose tolerance than WE. E/D affected obesity parameters, aerobic capacity, or adiponectin expression by <10%. These results show that the wax ester component of Calanus oil can account for the biologic effects shown previously for the crude oil. However, these effects cannot exclusively be ascribed to the content of n-3 PUFAs in the wax ester fraction.
Collapse
Affiliation(s)
- Anje C Höper
- Cardiovascular Research Group, Institute of Medical Biology, Faculty of Health Sciences
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hou YC, Chang YL, Kuo SC, Chiang CF, Chiang CY, Lin YF, Weng PC, Hu FC, Wu JH, Lai CH. Serum hyperglycemia might be not related to fat composition of diet and vegetable composition of diet might improve sugar control in taiwanese diabetic subjects. Int J Med Sci 2014; 11:515-21. [PMID: 24688317 PMCID: PMC3970106 DOI: 10.7150/ijms.8158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/11/2014] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE This is an Asian study, which was designed to examine the correlations between biochemical data and food composition of diabetic patients in Taiwan. METHODS One hundred and seventy Taiwanese diabetic patients were enrolled. The correlations between biochemical data and diet composition (from 24-hour recall of intake food) of these patients were explored (Spearman correlation, p < 0.05). Diet components were also correlated with each other to show diet characteristics of diabetic patients in Taiwan. Linear regression was also performed for the significantly correlated groups to estimate possible impacts from diet composition to biochemical data. RESULTS Postprandial serum glucose level was negatively correlated with fat percentage of diet, intake amount of polyunsaturated fatty acid and fiber diet composition. Hemoglobin A1c was negatively correlated with fat diet, polyunsaturated fatty acid and vegetable diet. Fat composition, calorie percentage accounted by polyunsaturated fatty acid and monounsaturated fatty acid in diet seemed to be negatively correlated with sugar percentage of diet and positively correlated with vegetable and fiber composition of diet. Linear regression showed that intake amount of polyunsaturated fatty acid, calorie percentage accounted by polyunsaturated fatty acid, fat percentage of diet, vegetable composition of diet would predict lower hemoglobin A1c and postprandial blood sugar. Besides, higher percentage of fat diet composition could predict higher percentage of vegetable diet composition in Taiwanese diabetic patients. CONCLUSION Fat diet might not elevate serum glucose. Vegetable diet and polyunsaturated fatty acid diet composition might be correlated with better sugar control in Taiwanese diabetic patients.
Collapse
Affiliation(s)
- Yi-Cheng Hou
- 1. Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ya-Lin Chang
- 1. Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Shi-Ching Kuo
- 1. Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chih-Fan Chiang
- 1. Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Cheng-Yang Chiang
- 1. Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yu-Fang Lin
- 1. Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Pei-Chen Weng
- 1. Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Fang-Ching Hu
- 1. Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Jing-Hui Wu
- 1. Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chien-Han Lai
- 2. Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Oliva ME, Ferreira MR, Chicco A, Lombardo YB. Dietary Salba (Salvia hispanica L) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats. Prostaglandins Leukot Essent Fatty Acids 2013; 89:279-89. [PMID: 24120122 DOI: 10.1016/j.plefa.2013.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/06/2013] [Accepted: 09/18/2013] [Indexed: 11/28/2022]
Abstract
This work reports the effect of dietary Salba (chia) seed rich in n-3 α-linolenic acid on the morphological and metabolic aspects involved in adipose tissue dysfunction and the mechanisms underlying the impaired glucose and lipid metabolism in the skeletal muscle of rats fed a sucrose-rich diet (SRD). Rats were fed a SRD for 3 months. Thereafter, half the rats continued with SRD while in the other half, corn oil (CO) was replaced by chia seed for 3 months (SRD+chia). In control group, corn starch replaced sucrose. The replacement of CO by chia seed in the SRD reduced adipocyte hypertrophy, cell volume and size distribution, improved lipogenic enzyme activities, lipolysis and the anti-lipolytic action of insulin. In the skeletal muscle lipid storage, glucose phosphorylation and oxidation were normalized. Chia seed reversed the impaired insulin stimulated glycogen synthase activity, glycogen, glucose-6-phosphate and GLUT-4 protein levels as well as insulin resistance and dyslipidemia.
Collapse
Affiliation(s)
- M E Oliva
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria Paraje El Pozo, CC 242, 3000 Santa Fe, Argentina
| | | | | | | |
Collapse
|
22
|
Influence of genotype on the modulation of gene and protein expression by n-3 LC-PUFA in rats. GENES AND NUTRITION 2013; 8:589-600. [PMID: 23744008 DOI: 10.1007/s12263-013-0349-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 05/22/2013] [Indexed: 01/22/2023]
Abstract
It is becoming increasingly apparent that responsiveness to dietary fat composition is heterogeneous and dependent on the genetic make-up of the individual. The aim of this study was to evidence a genotype-related differential effect of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on the modulation of hepatic genes involved in cholesterol metabolism. Fourteen spontaneously hypertensive (SH) rats, which present a naturally occurring variation in the gene encoding for sterol responsive element binding protein 1 (SREBP-1), contributing to their inherited variation in lipid metabolism, and 14 Wistar-Kyoto (WK) rats were fed a control diet or an n-3 LC-PUFA enriched diet for 90 days. Plasma lipid profile, total lipid fatty acid composition in plasma and liver, and the expression of SREBP-1 and 2, 3-hydroxy-3-methyl-glutaryl-CoA reductase, low-density lipoprotein receptor, and acyl-CoA:cholesterol acyltransferase 2 encoding genes and proteins were determined. The positive effect of the enriched diet on the serum lipid profile, particularly on total cholesterol and triglyceride level, was clearly evidenced in both WK and SH rats, but n-3 LC-PUFA acted through a different modulation of gene and protein expression that appeared related to the genetic background. Our study evidences a different transcriptional effect of specific nutrients related to genetic variants.
Collapse
|
23
|
Bonet ML, Oliver P, Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:969-85. [DOI: 10.1016/j.bbalip.2012.12.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
|
24
|
Yang ZH, Miyahara H, Iwasaki Y, Takeo J, Katayama M. Dietary supplementation with long-chain monounsaturated fatty acids attenuates obesity-related metabolic dysfunction and increases expression of PPAR gamma in adipose tissue in type 2 diabetic KK-Ay mice. Nutr Metab (Lond) 2013; 10:16. [PMID: 23360495 PMCID: PMC3570324 DOI: 10.1186/1743-7075-10-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/27/2013] [Indexed: 12/31/2022] Open
Abstract
The objective of present study was to examine the effect of long-chain monounsaturated fatty acids (LC-MUFAs) with chain lengths longer than 18 (i.e., C20:1 and C22:1 isomers combined) on obesity-related metabolic dysfunction and its molecular mechanisms. Type-2 diabetic KK-Ay mice (n = 20) were randomly assigned to the 7% soybean oil-diet group (control group) and 4% LC-MUFA concentrate-supplemented-diet group (LC-MUFA group). At 8 weeks on the diet, the results showed that plasma, liver and adipose tissue levels of C20:1 and C22:1 isomers increased significantly with LC-MUFA treatment. Supplementation with LC-MUFAs markedly reduced white fat pad weight as well as adipocyte size in the mice. The levels of plasma free fatty acids, insulin, and leptin concentration in the obese diabetic mice of the LC-MUFA group were also decreased as compared with the mice in the soybean oil-diet control group. Dietary LC-MUFAs significantly increased the mRNA expression of peroxisome proliferator-activated receptor gamma (Pparg), lipoprotein lipase (Lpl), fatty acid transport protein (Fatp), fatty acid translocase/CD36 (Cd36), as well as mRNA expression of genes involved in lipid oxidation such as carnitine palmitoyltransferase-1A (Cpt1a) and citrate synthase (Cs), and decreased the mRNA expression of inflammatory marker serum amyloid A 3 (Saa3) in the adipose tissues of diabetic mice. The results suggest that LC-MUFAs may ameliorate obesity-related metabolic dysfunction partly through increased expression of Pparg as well as its target genes, and decreased inflammatory marker expression in white adipose tissue.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha, Ltd,, 32-3 Nanakuni 1 Chome Hachioji, Tokyo, 192-0991, Japan.
| | | | | | | | | |
Collapse
|
25
|
Ingestion of a single serving of saury alters postprandial levels of plasma n-3 polyunsaturated fatty acids and long-chain monounsaturated fatty acids in healthy human adults. Lipids Health Dis 2012; 11:95. [PMID: 22846384 PMCID: PMC3485116 DOI: 10.1186/1476-511x-11-95] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 07/24/2012] [Indexed: 12/02/2022] Open
Abstract
Background Saury oil contains considerable amounts of n-3 polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA) with long aliphatic tails (>18C atoms). Ingestion of saury oil reduces the risk of developing metabolic syndrome concomitant with increases in n-3 PUFA and long-chain MUFA in plasma and organs of mice. We therefore evaluated changes in postprandial plasma fatty acid levels and plasma parameters in healthy human subjects after ingestion of a single meal of saury. Findings Five healthy human adults ingested 150 g of grilled saury. Blood was collected before the meal and at 2, 6, and 24 hr after the meal, and plasma was prepared. Plasma levels of eicosapentaenoic acid, docosahexaenoic acid, and long-chain MUFA (C20:1 and C22:1 isomers combined) increased significantly throughout the postprandial period compared with the pre-meal baseline. Postprandial plasma insulin concentration increased notably, and plasma levels of glucose and free fatty acids decreased significantly and subsequently returned to the pre-meal levels. Conclusions Our study suggests that a single saury meal may alter the postprandial plasma levels of n-3 PUFA and long-chain MUFA in healthy human subjects.
Collapse
|
26
|
Chemical–Physical Changes in Cell Membrane Microdomains of Breast Cancer Cells After Omega-3 PUFA Incorporation. Cell Biochem Biophys 2012; 64:45-59. [DOI: 10.1007/s12013-012-9365-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Yang ZH, Miyahara H, Mori T, Doisaki N, Hatanaka A. Beneficial effects of dietary fish-oil-derived monounsaturated fatty acids on metabolic syndrome risk factors and insulin resistance in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7482-7489. [PMID: 21627145 DOI: 10.1021/jf201496h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The aim of this study was to elucidate the effect of fish-oil-derived monounsaturated fatty acids (MUFAs) containing large amounts of C20:1 and C22:1 isomers on metabolic disorders in mice. Male C57BL/6J mice were fed a 32% lard diet (control) or a 27% lard plus 5% saury-oil-derived MUFA diet for 6 weeks. Dietary MUFA improved insulin resistance and alleviated metabolic syndrome risk factors by reducing blood glucose and lipids. These favorable changes may be attributed to an improved adipocytokine profile. MUFA ingestion resulted in favorable changes in mRNA expression of genes involved in glucose/lipid metabolism (SCD-1, CPT1a, UCPs, and CS) as well as inflammation (MAC1, MMP3, and SAA3) and alterations in fatty acid composition. Our data suggest that marine MUFA improved glucose/lipid homeostasis and hindered the development of metabolic syndrome in obese mice.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha, Ltd., Tokyo 192-0991, Japan.
| | | | | | | | | |
Collapse
|