1
|
Lauritzen L, Hegelund ER, Eriksen SE, Niclasen J, Michaelsen KF. Effect of maternal fish oil supplementation during lactation on socioemotional wellbeing and physical activity in 13-year-old children: A randomized clinical trial. Prostaglandins Leukot Essent Fatty Acids 2023; 197:102588. [PMID: 37689008 DOI: 10.1016/j.plefa.2023.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Early dietary long-chain n-3PUFA (n-3LCPUFA) may affect brain development. We investigated if fish oil supplementation of lactating mothers affected socioemotional wellbeing in adolescents in a potentially gender-specific manner. At age 13, we invited 92 children of mothers who completed a randomized trial with 1.5 g/d n-3 LCPUFA or olive oil during the first 4 months of lactation and 48 children of mothers with a high habitual fish intake. Children and parents answered validated questionnaires regarding socioemotional wellbeing and physical activity was monitored by ActiGraph for 7 days. Participation rate was 71%. Univariate correlations between children's and parents' ratings on the individual scales were moderate-strong, but correlations across questionnaires indicated that parents might base their ratings on proxy markers. We found no group differences in self-rated socioemotional outcomes or physical activity. Although the study was small, it was the first follow-up on effects of perinatal n-3LCPUFA supply on socioemotional wellbeing in adolescence.
Collapse
Affiliation(s)
- Lotte Lauritzen
- Department Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
| | | | - Sara E Eriksen
- Department Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | | | - Kim F Michaelsen
- Department Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
2
|
Sherzai D, Moness R, Sherzai S, Sherzai A. A Systematic Review of Omega-3 Fatty Acid Consumption and Cognitive Outcomes in Neurodevelopment. Am J Lifestyle Med 2023; 17:649-685. [PMID: 37711355 PMCID: PMC10498982 DOI: 10.1177/15598276221116052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION This systematic review addresses the effects of n-3 long-chain polyunsaturated fatty acids consumption on human neurodevelopment. It evaluates articles published between 2000 and 2022 investigating the cognitive outcomes during the period of neurodevelopment: from fetal development to adolescence. For the purpose of this review the terms LC PUFA and omega-3 fatty acid will be used interchangeably. METHOD Data were sourced from several major databases including PubMed (MEDLINE), Web of Science, and ProQuest Central. Randomized controlled trials (RCTs), nonrandomized controlled trials, prospective or retrospective cohort studies, and observational studies investigating the effects of omega-3 fatty acid consumption from dietary supplements, multiple-nutrient supplement, or food questionnaire on neurodevelopment were considered. Study population was separated in three developmental phases: (1) in-utero, (2) lactation/infancy, and (3) childhood/adolescence. Each article was evaluated for several key factors such as study type, type/dosage of PUFAs, number of subjects, length of intervention, participant age range, population characteristics, outcome measure (both primary/cognitive and secondary/other), results, conclusion, and confounding variables/limitations. RESULTS A total of 88 articles were included in the review, 69 RCTs and 19 longitudinal or observational studies. The results indicate equivocal effect of intervention, with some short-term benefits observed in the areas of visual attention, working memory, executive function, and communication. Omega-3 supplement might have a short-term positive impact on neurodevelopment in all three phases. Supplementation is recommended throughout life, rather than only during the earliest developmental stage.
Collapse
Affiliation(s)
- Dean Sherzai
- Dept of Neurology, Brain Health and Alzheimer's Prevention Program, Loma Linda University, Loma Linda, CA, USA (AS, DS); Oak Ridge High School, El Dorado Hills, CA, USA (RM); California State University, Los Angeles, CA, USA (SS)
| | - Roman Moness
- Dept of Neurology, Brain Health and Alzheimer's Prevention Program, Loma Linda University, Loma Linda, CA, USA (AS, DS); Oak Ridge High School, El Dorado Hills, CA, USA (RM); California State University, Los Angeles, CA, USA (SS)
| | - Sophia Sherzai
- Dept of Neurology, Brain Health and Alzheimer's Prevention Program, Loma Linda University, Loma Linda, CA, USA (AS, DS); Oak Ridge High School, El Dorado Hills, CA, USA (RM); California State University, Los Angeles, CA, USA (SS)
| | - Ayesha Sherzai
- Dept of Neurology, Brain Health and Alzheimer's Prevention Program, Loma Linda University, Loma Linda, CA, USA (AS, DS); Oak Ridge High School, El Dorado Hills, CA, USA (RM); California State University, Los Angeles, CA, USA (SS)
| |
Collapse
|
3
|
Furse S, Virtue S, Snowden SG, Vidal-Puig A, Stevenson PC, Chiarugi D, Koulman A. Dietary PUFAs drive diverse system-level changes in lipid metabolism. Mol Metab 2022; 59:101457. [PMID: 35150907 PMCID: PMC8894240 DOI: 10.1016/j.molmet.2022.101457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Polyunsaturated fatty acid (PUFA) supplements have been trialled as a treatment for a number of conditions and produced a variety of results. This variety is ascribed to the supplements, that often comprise a mixture of fatty acids, and to different effects in different organs. In this study, we tested the hypothesis that the supplementation of individual PUFAs has system-level effects that are dependent on the molecular structure of the PUFA. METHODS We undertook a network analysis using Lipid Traffic Analysis to identify both local and system-level changes in lipid metabolism using publicly available lipidomics data from a mouse model of supplementation with FA(20:4n-6), FA(20:5n-3), and FA(22:6n-3); arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, respectively. Lipid Traffic Analysis is a new computational/bioinformatics tool that uses the spatial distribution of lipids to pinpoint changes or differences in control of metabolism, thereby suggesting mechanistic reasons for differences in observed lipid metabolism. RESULTS There was strong evidence for changes to lipid metabolism driven by and dependent on the structure of the supplemented PUFA. Phosphatidylcholine and triglycerides showed a change in the variety more than the total number of variables, whereas phosphatidylethanolamine and phosphatidylinositol showed considerable change in both which variables and the number of them, in a highly PUFA-dependent manner. There was also evidence for changes to the endogenous biosynthesis of fatty acids and to both the elongation and desaturation of fatty acids. CONCLUSIONS These results show that the full biological impact of PUFA supplementation is far wider than any single-organ effect and implies that supplementation and dosing with PUFAs require a system-level assessment.
Collapse
Affiliation(s)
- Samuel Furse
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK; Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK.
| | - Samuel Virtue
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK
| | - Stuart G Snowden
- Biology Department, Royal Holloway College, University of London, UK; Centro de Investigacion Principe Felipe, 46012 Valencia, Spain
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK
| | - Philip C Stevenson
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK; Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Davide Chiarugi
- Bioinformatics and Biostatistics Core, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK.
| |
Collapse
|
4
|
de Weerth C, Aatsinki AK, Azad MB, Bartol FF, Bode L, Collado MC, Dettmer AM, Field CJ, Guilfoyle M, Hinde K, Korosi A, Lustermans H, Mohd Shukri NH, Moore SE, Pundir S, Rodriguez JM, Slupsky CM, Turner S, van Goudoever JB, Ziomkiewicz A, Beijers R. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit Rev Food Sci Nutr 2022; 63:7945-7982. [PMID: 35352583 DOI: 10.1080/10408398.2022.2053058] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk is a highly complex liquid food tailor-made to match an infant's needs. Beyond documented positive effects of breastfeeding on infant and maternal health, there is increasing evidence that milk constituents also impact child neurodevelopment. Non-nutrient milk bioactives would contribute to the (long-term) development of child cognition and behavior, a process termed 'Lactocrine Programming'. In this review we discuss the current state of the field on human milk composition and its links with child cognitive and behavioral development. To promote state-of-the-art methodologies and designs that facilitate data pooling and meta-analytic endeavors, we present detailed recommendations and best practices for future studies. Finally, we determine important scientific gaps that need to be filled to advance the field, and discuss innovative directions for future research. Unveiling the mechanisms underlying the links between human milk and child cognition and behavior will deepen our understanding of the broad functions of this complex liquid food, as well as provide necessary information for designing future interventions.
Collapse
Affiliation(s)
- Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Anna-Katariina Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Amanda M Dettmer
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, College of Basic and Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Meagan Guilfoyle
- Department of Anthropology, Indiana University, Bloomington, Indiana, USA
| | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| | - Hellen Lustermans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Nurul Husna Mohd Shukri
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sophie E Moore
- Department of Women & Children's Health, King's College London, St Thomas' Hospital, London, UK
- School of Hygiene and Tropical Medicine, Nutrition Theme, MRC Unit The Gambia and the London, Fajara, The GambiaBanjul
| | - Shikha Pundir
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Juan Miguel Rodriguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Carolyn M Slupsky
- Department of Nutrition and Department of Food Science and Technology, University of California, Davis, California, USA
| | - Sarah Turner
- Department of Community Health Sciences, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Anna Ziomkiewicz
- Department of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Roseriet Beijers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
- Department of Social Development, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Gould JF, Anderson PJ, Yelland LN, Gibson RA, Makrides M. The Influence of Prenatal DHA Supplementation on Individual Domains of Behavioral Functioning in School-Aged Children: Follow-Up of a Randomized Controlled Trial. Nutrients 2021; 13:nu13092996. [PMID: 34578873 PMCID: PMC8472059 DOI: 10.3390/nu13092996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Docosahexaenoic acid (DHA) accumulates in the fetal brain during pregnancy and is thought to have a role in supporting neurodevelopment. We conducted a multicenter, double-blind, randomized controlled trial in women with a singleton pregnancy who were <21 weeks’ gestation at trial entry. Women were provided with 800 mg DHA/day or a placebo supplement from trial entry until birth. When children reached seven years of age, we invited parents to complete the Strengths and Difficulties Questionnaire (SDQ), the Behavior Rating Inventory of Executive Function (BRIEF), and the Conners 3rd Edition Attention-Deficit Hyperactivity Disorder (ADHD) Index to assess child behavior and behavioral manifestations of executive dysfunction. There were 543 parent–child pairs (85% of those eligible) that participated in the follow-up. Scores were worse in the DHA group than the placebo group for the BRIEF Global Executive, Behavioral Regulation and Metacognition Indexes, and the Shift, Inhibit, Monitor, Working Memory, and Organization of Materials scales, as well as for the Conners 3 ADHD index, and the SDQ Total Difficulties score, Hyperactivity/Inattention score, and Peer Relationship Problems score. In this healthy, largely term-born sample of children, prenatal DHA supplementation conferred no advantage to childhood behavior, and instead appeared to have an adverse effect on behavioral functioning, as assessed by standardized parental report scales.
Collapse
Affiliation(s)
- Jacqueline F. Gould
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, Adelaide 5006, Australia; (L.N.Y.); (R.A.G.); (M.M.)
- School of Psychology & Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide 5000, Australia
- Correspondence: ; Tel.: +618-128-4423
| | - Peter J. Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne 3800, Australia;
- Clinical Sciences, Murdoch Children’s Research Institute, Melbourne 3052, Australia
| | - Lisa N. Yelland
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, Adelaide 5006, Australia; (L.N.Y.); (R.A.G.); (M.M.)
- School of Public Health, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide 5000, Australia
| | - Robert A. Gibson
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, Adelaide 5006, Australia; (L.N.Y.); (R.A.G.); (M.M.)
- School of Agriculture, Food and Wine, Waite Campus, University of Adelaide, Adelaide 5000, Australia
| | - Maria Makrides
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, Adelaide 5006, Australia; (L.N.Y.); (R.A.G.); (M.M.)
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
6
|
Lehner A, Staub K, Aldakak L, Eppenberger P, Rühli F, Martin RD, Bender N. Impact of omega-3 fatty acid DHA and EPA supplementation in pregnant or breast-feeding women on cognitive performance of children: systematic review and meta-analysis. Nutr Rev 2021; 79:585-598. [PMID: 32918470 DOI: 10.1093/nutrit/nuaa060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION The omega-3 long-chain polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are important for brain development and cognitive performance. Because they are semi-essential fatty acids, they must be obtained from food. However, the dietary reference intakes of DHA and EPA have not yet been established. In women, a low DHA and/or EPA serum level during pregnancy or breastfeeding might negatively affect their children. For this study, we conducted a systematic review and meta-analysis of randomized control trials on the association between the consumption of fish oil supplements in pregnant and/or breastfeeding women and the cognitive performance of their children. METHODS The PubMed, Embase, and Central literature databases were systematically searched. We included and extracted relevant studies in duplicate and assessed study quality. Cognitive outcomes were grouped according to published criteria and according to time elapsed after the intervention. We performed fixed-effects meta-analyses for each cognitive outcome and for birth weight. We assessed potential confounding with meta-regressions and sensitivity analyses. RESULTS A total of 11 trials were included. No significant association was found between DHA/EPA supplementation and any of the assessed cognitive parameters or birth weight. DISCUSSION Our results confirm previous reviews on the studied topic. Reasons for inconclusive results may be small sample sizes for each assessed category, questionable quality of included studies, and the difficulty of reliably measuring cognitive performance in small children. Blood levels of omega-3 long-chain polyunsaturated fatty acids were mostly not comparable. Furthermore, the influence of genetic and environmental factors could not be assessed. Studies in this field should address such shortcomings.
Collapse
Affiliation(s)
- A Lehner
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - K Staub
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - L Aldakak
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - P Eppenberger
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - F Rühli
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Robert D Martin
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Integrative Research Center, The Field Museum, Chicago, Illinois, USA
| | - N Bender
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Sass L, Bjarnadóttir E, Stokholm J, Chawes B, Vinding RK, Mora-Jensen ARC, Thorsen J, Noergaard S, Ebdrup BH, Jepsen JRM, Fagerlund B, Bønnelykke K, Lauritzen L, Bisgaard H. Fish Oil Supplementation in Pregnancy and Neurodevelopment in Childhood-A Randomized Clinical Trial. Child Dev 2021; 92:1624-1635. [PMID: 33506965 DOI: 10.1111/cdev.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A double-blind randomized controlled trial of n-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) supplementation or matching placebo during third trimester of pregnancy was conducted within the COPSAC2010 mother-child cohort consisting of 736 women and their children. The objective was to determine if maternal n-3 LCPUFA pregnancy supplementation affects offspring neurodevelopment until 6 years. Neurodevelopment was evaluated in 654 children assessing age of motor milestone achievement, language development, cognitive development, general neurodevelopment, and emotional and behavioral problems. Maternal n-3 LCPUFA supplementation during pregnancy improved early language development and reduced the impact of emotional and behavioral problems. The n-3 LCPUFA supplementation was in boys associated with the earlier achievement of gross motor milestones, improved cognitive development, and a reduced impact of emotional and behavioral problems.
Collapse
|
8
|
Gould JF, Roberts RM, Makrides M. The Influence of Omega-3 Long-Chain Polyunsaturated Fatty Acid, Docosahexaenoic Acid, on Child Behavioral Functioning: A Review of Randomized Controlled Trials of DHA Supplementation in Pregnancy, the Neonatal Period and Infancy. Nutrients 2021; 13:415. [PMID: 33525526 PMCID: PMC7911027 DOI: 10.3390/nu13020415] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
This is a review of randomized controlled trials using docosahexaenoic acid (DHA) interventions in the first 1000 days of life with assessments of behavioral functioning in childhood. Electronic databases were searched for trials with a DHA intervention (compared with a placebo group that received no or less DHA) at any time to either women or infants during the first 1000 days, with a subsequent assessment of child behavior. There were 25 trials involving 10,320 mother-child pairs, and 71 assessments of behavior in 6867 of the children (66.5% of those originally enrolled). From the 71 assessments administered, there were 401 comparisons between a DHA group and a control group, with most reporting a null effect. There were no findings of a positive effect of DHA, and 23 instances where the DHA group had worse scores compared with the control group. There was limited evidence that DHA supplementation had any effect on behavioral development, although two of the largest trials with behavioral measures detected adverse effects. Future trials, and future follow-ups of existing trials, should make an effort to evaluate the effect of DHA intervention on behavioral functioning.
Collapse
Affiliation(s)
- Jacqueline F. Gould
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, 5006 Adelaide, Australia;
- School of Psychology and Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, 5005 Adelaide, Australia
| | - Rachel M. Roberts
- School of Psychology, Faculty of Health and Medical Sciences, The University of Adelaide, 5005 Adelaide, Australia;
| | - Maria Makrides
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, 5006 Adelaide, Australia;
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, 5005 Adelaide, Australia
| |
Collapse
|
9
|
Campoy C, Azaryah H, Torres-Espínola FJ, Martínez-Zaldívar C, García-Santos JA, Demmelmair H, Haile G, Rzehak P, Koletzko B, Györei E, Décsi T, Ramírez-Tortosa MDC, Reischl E, Molloy AM, Luna JDD, Pérez-García M. Long-Chain Polyunsaturated Fatty Acids, Homocysteine at Birth and Fatty Acid Desaturase Gene Cluster Polymorphisms are Associated with Children's Processing Speed up to Age 9 Years. Nutrients 2020; 13:E131. [PMID: 33396458 PMCID: PMC7824114 DOI: 10.3390/nu13010131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 01/26/2023] Open
Abstract
Both pre- and early postnatal supplementation with docosahexaenoic acid (DHA), arachidonic acid (AA) and folate have been related to neural development, but their long-term effects on later neural function remain unclear. We evaluated the long-term effects of maternal prenatal supplementation with fish-oil (FO), 5-methyltetrahydrofolate (5-MTHF), placebo or FO + 5-MTHF, as well as the role of fatty acid desaturase (FADS) gene cluster polymorphisms, on their offspring's processing speed at later school age. This study was conducted in NUHEAL children at 7.5 (n = 143) and 9 years of age (n = 127). Processing speed tasks were assessed using Symbol Digit Modalities Test (SDMT), Children Color Trails Test (CCTT) and Stroop Color and Word Test (SCWT). Long-chain polyunsaturated fatty acids, folate and total homocysteine (tHcy) levels were determined at delivery from maternal and cord blood samples. FADS and methylenetetrahydrofolate reductase (MTHFR) 677 C > T genetic polymorphisms were analyzed. Mixed models (linear and logistic) were performed. There were significant differences in processing speed performance among children at different ages (p < 0.001). The type of prenatal supplementation had no effect on processing speed in children up to 9 years. Secondary exploratory analyses indicated that children born to mothers with higher AA/DHA ratio at delivery (p < 0.001) and heterozygotes for FADS1 rs174556 (p < 0.05) showed better performance in processing speed at 9 years. Negative associations between processing speed scores and maternal tHcy levels at delivery were found. Our findings suggest speed processing development in children up to 9 years could be related to maternal factors, including AA/DHA and tHcy levels, and their genetic background, mainly FADS polymorphism. These considerations support that maternal prenatal supplementation should be quantitatively adequate and individualized to obtain better brain development and mental performance in the offspring.
Collapse
Affiliation(s)
- Cristina Campoy
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 180016 Granada, Spain; (H.A.); (F.J.T.-E.); (C.M.-Z.); (J.A.G.-S.)
- Department of Paediatrics, School of Medicine, University of Granada, Avda, Investigación 11, 180016 Granada, Spain
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada’s Node, Institute of Health Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs-GRANADA), Health Sciences Technological Park, 18012 Granada, Spain
- Instituto de Neurociencias “Doctor Olóriz”, Health Sciences Technological Park, 18012 Granada, Spain
| | - Hatim Azaryah
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 180016 Granada, Spain; (H.A.); (F.J.T.-E.); (C.M.-Z.); (J.A.G.-S.)
- Department of Paediatrics, School of Medicine, University of Granada, Avda, Investigación 11, 180016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs-GRANADA), Health Sciences Technological Park, 18012 Granada, Spain
| | - Francisco J. Torres-Espínola
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 180016 Granada, Spain; (H.A.); (F.J.T.-E.); (C.M.-Z.); (J.A.G.-S.)
- Department of Paediatrics, School of Medicine, University of Granada, Avda, Investigación 11, 180016 Granada, Spain
- Instituto de Neurociencias “Doctor Olóriz”, Health Sciences Technological Park, 18012 Granada, Spain
| | - Cristina Martínez-Zaldívar
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 180016 Granada, Spain; (H.A.); (F.J.T.-E.); (C.M.-Z.); (J.A.G.-S.)
- Department of Paediatrics, School of Medicine, University of Granada, Avda, Investigación 11, 180016 Granada, Spain
| | - José Antonio García-Santos
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 180016 Granada, Spain; (H.A.); (F.J.T.-E.); (C.M.-Z.); (J.A.G.-S.)
- Department of Paediatrics, School of Medicine, University of Granada, Avda, Investigación 11, 180016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs-GRANADA), Health Sciences Technological Park, 18012 Granada, Spain
| | - Hans Demmelmair
- Ludwig-Maximilians-Universität München, Department of Paediatrics, Paediatrics, Dr. von Hauner Children’s Hospital, University of Munich Hospitals, 80337 Munich, Germany; (H.D.); (G.H.); (P.R.); (B.K.)
| | - Gudrun Haile
- Ludwig-Maximilians-Universität München, Department of Paediatrics, Paediatrics, Dr. von Hauner Children’s Hospital, University of Munich Hospitals, 80337 Munich, Germany; (H.D.); (G.H.); (P.R.); (B.K.)
| | - Peter Rzehak
- Ludwig-Maximilians-Universität München, Department of Paediatrics, Paediatrics, Dr. von Hauner Children’s Hospital, University of Munich Hospitals, 80337 Munich, Germany; (H.D.); (G.H.); (P.R.); (B.K.)
| | - Berthold Koletzko
- Ludwig-Maximilians-Universität München, Department of Paediatrics, Paediatrics, Dr. von Hauner Children’s Hospital, University of Munich Hospitals, 80337 Munich, Germany; (H.D.); (G.H.); (P.R.); (B.K.)
| | - Eszter Györei
- Department of Paediatrics, University of Pécs, 7623 Pécs, József Attila u. 7, 7623 Pécs, Hungary; (E.G.); (T.D.)
| | - Tamas Décsi
- Department of Paediatrics, University of Pécs, 7623 Pécs, József Attila u. 7, 7623 Pécs, Hungary; (E.G.); (T.D.)
| | - María del Carmen Ramírez-Tortosa
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Center, University of Granada, 18100 Granada, Spain;
| | - Eva Reischl
- Helmholtz Zentrum Munchen, Research Unit of Molecular Epidemiology, D-85764 Neuherberg, Germany;
| | - Anne M. Molloy
- School of Medicine, Trinity College, 152–160 Pearse Street, D02 Dublin 2, Ireland;
| | - Juan de Dios Luna
- Department of Biostatistics, School of Medicine, University of Granada, 18016 Granada, Spain;
| | - Miguel Pérez-García
- Mind, Brain and Behaviour International Research Centre (CIMCYC), University of Granada, 18011 Granada, Spain;
- Spanish Network of Biomedical Research Centre on Mental Health (CIBERSAM), Granada’s Node, Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Azaryah H, Verdejo-Román J, Martin-Pérez C, García-Santos JA, Martínez-Zaldívar C, Torres-Espínola FJ, Campos D, Koletzko B, Pérez-García M, Catena A, Campoy C. Effects of Maternal Fish Oil and/or 5-Methyl-Tetrahydrofolate Supplementation during Pregnancy on Offspring Brain Resting-State at 10 Years Old: A Follow-Up Study from the NUHEAL Randomized Controlled Trial. Nutrients 2020; 12:E2701. [PMID: 32899673 PMCID: PMC7551257 DOI: 10.3390/nu12092701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023] Open
Abstract
Recent studies have shown that maternal supplementation with folate and long-chain polyunsaturated fatty acids (LC-PUFAs) during pregnancy may affect children's brain development. We aimed at examining the potential long-term effect of maternal supplementation with fish oil (FO) and/or 5-methyl-tetrahydrofolate (5-MTHF) on the brain functionality of offspring at the age of 9.5-10 years. The current study was conducted as a follow-up of the Spanish participants belonging to the Nutraceuticals for a Healthier Life (NUHEAL) project; 57 children were divided into groups according to mother's supplementation and assessed through functional magnetic resonance imaging (fMRI) scanning and neurodevelopment testing. Independent component analysis and double regression methods were implemented to investigate plausible associations. Children born to mothers supplemented with FO (FO and FO + 5-MTHF groups, n = 33) showed weaker functional connectivity in the default mode (DM) (angular gyrus), the sensorimotor (SM) (motor and somatosensory cortices) and the fronto-parietal (FP) (angular gyrus) networks compared to the No-FO group (placebo and 5-MTHF groups, n = 24) (PFWE < 0.05). Furthermore, no differences were found regarding the neuropsychological tests, except for a trend of better results in an object recall (memory) test. Considering the No-FO group, the aforementioned networks were associated negatively with attention and speed-processing functions. Mother's FO supplementation during pregnancy seems to be able to shape resting-state network functioning in their children at school age and appears to produce long-term effects on children´s cognitive processing.
Collapse
Affiliation(s)
- Hatim Azaryah
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (H.A.); (J.A.G.-S.); (C.M.-Z.); (F.J.T.-E.); (D.C.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
| | - Juan Verdejo-Román
- Mind, Brain and Behaviour International Research Centre (CIMCYC), University of Granada, 18011 Granada, Spain; (J.V.-R.); (C.M.-P.); (M.P.-G.); (A.C.)
| | - Cristina Martin-Pérez
- Mind, Brain and Behaviour International Research Centre (CIMCYC), University of Granada, 18011 Granada, Spain; (J.V.-R.); (C.M.-P.); (M.P.-G.); (A.C.)
| | - José Antonio García-Santos
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (H.A.); (J.A.G.-S.); (C.M.-Z.); (F.J.T.-E.); (D.C.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs-GRANADA), Health Sciences Technological Park, 18012 Granada, Spain
| | - Cristina Martínez-Zaldívar
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (H.A.); (J.A.G.-S.); (C.M.-Z.); (F.J.T.-E.); (D.C.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
| | - Francisco J. Torres-Espínola
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (H.A.); (J.A.G.-S.); (C.M.-Z.); (F.J.T.-E.); (D.C.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
| | - Daniel Campos
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (H.A.); (J.A.G.-S.); (C.M.-Z.); (F.J.T.-E.); (D.C.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
| | - Berthold Koletzko
- Ludwig-Maximiliams-Universität München, Dr. von Hauner Children’s Hospital, University of Munich Hospitals, 80337 Munich, Germany;
| | - Miguel Pérez-García
- Mind, Brain and Behaviour International Research Centre (CIMCYC), University of Granada, 18011 Granada, Spain; (J.V.-R.); (C.M.-P.); (M.P.-G.); (A.C.)
| | - Andrés Catena
- Mind, Brain and Behaviour International Research Centre (CIMCYC), University of Granada, 18011 Granada, Spain; (J.V.-R.); (C.M.-P.); (M.P.-G.); (A.C.)
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (H.A.); (J.A.G.-S.); (C.M.-Z.); (F.J.T.-E.); (D.C.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs-GRANADA), Health Sciences Technological Park, 18012 Granada, Spain
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada’s Node, Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
Do infants of breast-feeding mothers benefit from additional long-chain PUFA from fish oil? A 6-year follow-up. Br J Nutr 2020; 124:701-708. [PMID: 32312337 DOI: 10.1017/s000711452000135x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fish-oil supplements are marketed as enhancing intelligence and cognitive performance. However, empirical data concerning the utility of these products in healthy term infants are mixed, particularly with respect to lasting effects into childhood. We evaluated whether fish-oil supplementation during infancy leads to better neurocognitive/behavioural development at 6 years. We conducted a double-blind randomised controlled trial of supplementation with n-3 long-chain PUFA in 420 healthy term infants. Infants received either fish oil (containing at least 250 mg DHA and at least 60 mg EPA) or placebo (olive oil) daily from birth to 6 months of age. Neurodevelopmental follow-up was conducted at a mean age of 6 years (sd 7 months), whereby 335 children were assessed for language, executive functioning, global intelligence quotient and behaviour. No significant differences were observed between the groups for the main neurocognitive outcomes. However in parent-report questionnaire, fish-oil supplementation was associated with negative externalising (P = 0·035, d = 0·24) and oppositional/defiant behaviour (P = 0·006, d = 0·31), particularly in boys (P = 0·01, d = 0·45; P = 0·004, d = 0·40). Our results provide evidence that fish-oil supplementation to predominantly breast-fed infants confers no significant cognitive or behavioural benefit to children at 6 years.
Collapse
|
12
|
Middleton P, Gomersall JC, Gould JF, Shepherd E, Olsen SF, Makrides M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev 2018; 11:CD003402. [PMID: 30480773 PMCID: PMC6516961 DOI: 10.1002/14651858.cd003402.pub3] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Higher intakes of foods containing omega-3 long-chain polyunsaturated fatty acids (LCPUFA), such as fish, during pregnancy have been associated with longer gestations and improved perinatal outcomes. This is an update of a review that was first published in 2006. OBJECTIVES To assess the effects of omega-3 LCPUFA, as supplements or as dietary additions, during pregnancy on maternal, perinatal, and neonatal outcomes and longer-term outcomes for mother and child. SEARCH METHODS For this update, we searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (16 August 2018), and reference lists of retrieved studies. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing omega-3 fatty acids (as supplements or as foods, stand-alone interventions, or with a co-intervention) during pregnancy with placebo or no omega-3, and studies or study arms directly comparing omega-3 LCPUFA doses or types. Trials published in abstract form were eligible for inclusion. DATA COLLECTION AND ANALYSIS Two review authors independently assessed study eligibility, extracted data, assessed risk of bias in trials and assessed quality of evidence for prespecified birth/infant, maternal, child/adult and health service outcomes using the GRADE approach. MAIN RESULTS In this update, we included 70 RCTs (involving 19,927 women at low, mixed or high risk of poor pregnancy outcomes) which compared omega-3 LCPUFA interventions (supplements and food) compared with placebo or no omega-3. Overall study-level risk of bias was mixed, with selection and performance bias mostly at low risk, but there was high risk of attrition bias in some trials. Most trials were conducted in upper-middle or high-income countries; and nearly half the trials included women at increased/high risk for factors which might increase the risk of adverse maternal and birth outcomes.Preterm birth < 37 weeks (13.4% versus 11.9%; risk ratio (RR) 0.89, 95% confidence interval (CI) 0.81 to 0.97; 26 RCTs, 10,304 participants; high-quality evidence) and early preterm birth < 34 weeks (4.6% versus 2.7%; RR 0.58, 95% CI 0.44 to 0.77; 9 RCTs, 5204 participants; high-quality evidence) were both lower in women who received omega-3 LCPUFA compared with no omega-3. Prolonged gestation > 42 weeks was probably increased from 1.6% to 2.6% in women who received omega-3 LCPUFA compared with no omega-3 (RR 1.61 95% CI 1.11 to 2.33; 5141 participants; 6 RCTs; moderate-quality evidence).For infants, there was a possibly reduced risk of perinatal death (RR 0.75, 95% CI 0.54 to 1.03; 10 RCTs, 7416 participants; moderate-quality evidence: 62/3715 versus 83/3701 infants) and possibly fewer neonatal care admissions (RR 0.92, 95% CI 0.83 to 1.03; 9 RCTs, 6920 participants; moderate-quality evidence - 483/3475 infants versus 519/3445 infants). There was a reduced risk of low birthweight (LBW) babies (15.6% versus 14%; RR 0.90, 95% CI 0.82 to 0.99; 15 trials, 8449 participants; high-quality evidence); but a possible small increase in large-for-gestational age (LGA) babies (RR 1.15, 95% CI 0.97 to 1.36; 6 RCTs, 3722 participants; moderate-quality evidence, for omega-3 LCPUFA compared with no omega-3. Little or no difference in small-for-gestational age or intrauterine growth restriction (RR 1.01, 95% CI 0.90 to 1.13; 8 RCTs, 6907 participants; moderate-quality evidence) was seen.For the maternal outcomes, there is insufficient evidence to determine the effects of omega-3 on induction post-term (average RR 0.82, 95% CI 0.22 to 2.98; 3 trials, 2900 participants; low-quality evidence), maternal serious adverse events (RR 1.04, 95% CI 0.40 to 2.72; 2 trials, 2690 participants; low-quality evidence), maternal admission to intensive care (RR 0.56, 95% CI 0.12 to 2.63; 2 trials, 2458 participants; low-quality evidence), or postnatal depression (average RR 0.99, 95% CI 0.56 to 1.77; 2 trials, 2431 participants; low-quality evidence). Mean gestational length was greater in women who received omega-3 LCPUFA (mean difference (MD) 1.67 days, 95% CI 0.95 to 2.39; 41 trials, 12,517 participants; moderate-quality evidence), and pre-eclampsia may possibly be reduced with omega-3 LCPUFA (RR 0.84, 95% CI 0.69 to 1.01; 20 trials, 8306 participants; low-quality evidence).For the child/adult outcomes, very few differences between antenatal omega-3 LCPUFA supplementation and no omega-3 were observed in cognition, IQ, vision, other neurodevelopment and growth outcomes, language and behaviour (mostly low-quality to very low-quality evidence). The effect of omega-3 LCPUFA on body mass index at 19 years (MD 0, 95% CI -0.83 to 0.83; 1 trial, 243 participants; very low-quality evidence) was uncertain. No data were reported for development of diabetes in the children of study participants. AUTHORS' CONCLUSIONS In the overall analysis, preterm birth < 37 weeks and early preterm birth < 34 weeks were reduced in women receiving omega-3 LCPUFA compared with no omega-3. There was a possibly reduced risk of perinatal death and of neonatal care admission, a reduced risk of LBW babies; and possibly a small increased risk of LGA babies with omega-3 LCPUFA.For our GRADE quality assessments, we assessed most of the important perinatal outcomes as high-quality (e.g. preterm birth) or moderate-quality evidence (e.g. perinatal death). For the other outcome domains (maternal, child/adult and health service outcomes) GRADE ratings ranged from moderate to very low, with over half rated as low. Reasons for downgrading across the domain were mostly due to design limitations and imprecision.Omega-3 LCPUFA supplementation during pregnancy is an effective strategy for reducing the incidence of preterm birth, although it probably increases the incidence of post-term pregnancies. More studies comparing omega-3 LCPUFA and placebo (to establish causality in relation to preterm birth) are not needed at this stage. A further 23 ongoing trials are still to report on over 5000 women, so no more RCTs are needed that compare omega-3 LCPUFA against placebo or no intervention. However, further follow-up of completed trials is needed to assess longer-term outcomes for mother and child, to improve understanding of metabolic, growth and neurodevelopment pathways in particular, and to establish if, and how, outcomes vary by different types of omega-3 LCPUFA, timing and doses; or by characteristics of women.
Collapse
Affiliation(s)
- Philippa Middleton
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | - Judith C Gomersall
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | - Jacqueline F Gould
- The University of AdelaideSchool of PsychologyNorth Terrace, AdelaideAdelaideSouth AustraliaAustralia5001
| | - Emily Shepherd
- The University of AdelaideARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and GynaecologyAdelaideSouth AustraliaAustralia5006
| | - Sjurdur F Olsen
- Statens Serum InstitutCentre for Fetal Programming, Department of EpidemiologyCopenhagenDenmark
| | - Maria Makrides
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
- The University of AdelaideSchool of Paediatrics and Reproductive HealthAdelaideAustraliaAustralia
- Women's and Children's Health Research InstituteNorth AdelaideAustralia
| | | |
Collapse
|
13
|
Rey C, Nadjar A, Joffre F, Amadieu C, Aubert A, Vaysse C, Pallet V, Layé S, Joffre C. Maternal n-3 polyunsaturated fatty acid dietary supply modulates microglia lipid content in the offspring. Prostaglandins Leukot Essent Fatty Acids 2018; 133:1-7. [PMID: 29789127 DOI: 10.1016/j.plefa.2018.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
Abstract
The brain is highly enriched in long chain polyunsaturated fatty acids (LC-PUFAs) that are esterified into phospholipids, the major components of cell membranes. They accumulate during the perinatal period when the brain is rapidly developing. Hence, the levels of LC-PUFAs in the brains of the offspring greatly depend on maternal dietary intake. Perinatal n-3 PUFA consumption has been suggested to modulate the activity of microglial cells, the brain's innate immune cells which contribute to the shaping of neuronal network during development. However, the impact of maternal n-3 PUFA intake on microglial lipid composition in the offspring has never been studied. To investigate the impact of maternal dietary n-3 PUFA supply on microglia lipid composition, pregnant mice were fed with n-3 PUFA deficient, n-3 PUFA balanced or n-3 PUFA supplemented diets during gestation and lactation. At weaning, microglia were isolated from the pup's brains to analyze their fatty acid composition and phospholipid class levels. We here report that post-natal microglial cells displayed a distinctive lipid profile as they contained high levels of eicosapentaenoic acid (EPA), more EPA than docosahexaenoic acid (DHA) and large amount of phosphatidylinositol (PI) / phosphatidylserine (PS). Maternal n-3 PUFA supply increased DHA levels and decreased n-6 docosapentaenoic acid (DPA) levels whereas the PI/PS membrane content was inversely correlated to the quantity of PUFAs in the diet. These results raise the possibility of modulating microglial lipid profile and their subsequent activity in the developing brain.
Collapse
Affiliation(s)
- Charlotte Rey
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; ITERG, Institut des corps gras, Canéjan 33610, France
| | - Agnès Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | | | - Camille Amadieu
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | - Agnès Aubert
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | - Carole Vaysse
- ITERG, Institut des corps gras, Canéjan 33610, France
| | - Véronique Pallet
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | - Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France.
| |
Collapse
|
14
|
Miyake Y, Tanaka K, Okubo H, Sasaki S, Arakawa M. Maternal fat intake during pregnancy and behavioral problems in 5-y-old Japanese children. Nutrition 2018; 50:91-96. [DOI: 10.1016/j.nut.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/28/2017] [Accepted: 12/13/2017] [Indexed: 11/29/2022]
|
15
|
Ghasemi Fard S, Wang F, Sinclair AJ, Elliott G, Turchini GM. How does high DHA fish oil affect health? A systematic review of evidence. Crit Rev Food Sci Nutr 2018; 59:1684-1727. [PMID: 29494205 DOI: 10.1080/10408398.2018.1425978] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The health benefits of fish oil, and its omega-3 long chain polyunsaturated fatty acid content, have attracted much scientific attention in the last four decades. Fish oils that contain higher amounts of eicosapentaenoic acid (EPA; 20:5n-3) than docosahexaenoic acid (DHA; 22:6n-3), in a distinctive ratio of 18/12, are typically the most abundantly available and are commonly studied. Although the two fatty acids have traditionally been considered together, as though they were one entity, different physiological effects of EPA and DHA have recently been reported. New oils containing a higher quantity of DHA compared with EPA, such as fractionated and concentrated fish oil, tuna oil, calamari oil and microalgae oil, are increasingly becoming available on the market, and other oils, including those extracted from genetically modified oilseed crops, soon to come. This systematic review focuses on the effects of high DHA fish oils on various human health conditions, such as the heart and cardiovascular system, the brain and visual function, inflammation and immune function and growth/Body Mass Index. Although inconclusive results were reported in several instances, and inconsistent outcomes observed in others, current data provides substantiated evidence in support of DHA being a beneficial bioactive compound for heart, cardiovascular and brain function, with different, and at times complementary, effects compared with EPA. DHA has also been reported to be effective in slowing the rate of cognitive decline, while its possible effects on depression disorders are still unclear. Interestingly, gender- and age- specific divergent roles for DHA have also been reported. This review provides a comprehensive collection of evidence and a critical summary of the documented physiological effects of high DHA fish oils for human health.
Collapse
Affiliation(s)
- Samaneh Ghasemi Fard
- a School of Medicine, Deakin University , Geelong , Australia.,b Nu-Mega Ingredients Pty Ltd , Altona North , Melbourne , Australia
| | - Fenglei Wang
- c Department of Food Science and Nutrition , Zhejiang University , Hangzhou , China
| | - Andrew J Sinclair
- a School of Medicine, Deakin University , Geelong , Australia.,e Department of Nutrition , Dietetics and Food, Monash University , Clayton , Australia
| | - Glenn Elliott
- b Nu-Mega Ingredients Pty Ltd , Altona North , Melbourne , Australia
| | - Giovanni M Turchini
- d School of Life and Environmental Sciences , Deakin University , Geelong , Australia
| |
Collapse
|
16
|
Sheppard KW, Cheatham CL. Executive functions and the ω-6-to-ω-3 fatty acid ratio: a cross-sectional study. Am J Clin Nutr 2017; 105:32-41. [PMID: 27852615 PMCID: PMC5183732 DOI: 10.3945/ajcn.116.141390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/18/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The ω-6 (n-6) to ω-3 (n-3) fatty acid (FA) ratio (n-6:n-3 ratio) was previously shown to be a predictor of executive function performance in children aged 7-9 y. OBJECTIVE We aimed to replicate and extend previous findings by exploring the role of the n-6:n-3 ratio in executive function performance. We hypothesized that there would be an interaction between n-3 and the n-6:n-3 ratio, with children with low n-3 performing best with a low ratio, and those with high n-3 performing best with a high ratio. DESIGN Children were recruited on the basis of their consumption of n-6 and n-3 FAs. The executive function performance of 78 children aged 7-12 y was tested with the use of the Cambridge Neuropsychological Test Automated Battery and a planning task. Participants provided blood for plasma FA quantification, and the caregiver completed demographic and activity questionnaires. We investigated the role of the n-6:n-3 ratio in the entire sample and separately in children aged 7-9 y (n = 41) and 10-12 y (n = 37). RESULTS Dietary and plasma n-6:n-3 ratio and n-3 predicted performance on working memory and planning tasks in children 7-12 y old. The interaction between dietary n-6:n-3 ratio and n-3 predicted the number of moves required to solve the most difficult planning problems in children aged 7-9 y and those aged 10-12 y, similar to results from the previous study. There was also an interaction between the plasma n-6:n-3 ratio and n-3 predicting time spent thinking through the difficult 5-move planning problems. The n-6:n-3 ratio and n-3 predicted executive function performance differently in children aged 7-9 y and in those aged 10-12 y, indicating different optimal FA balances across development. CONCLUSIONS The n-6:n-3 ratio is an important consideration in the role of FAs in cognitive function, and the optimal balance of n-6 and n-3 FAs depends on the cognitive function and developmental period studied. This trial was registered at clinicaltrials.gov as NCT02199808.
Collapse
Affiliation(s)
- Kelly W Sheppard
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC;,Center for Biobehavioral Health, The Research Institute at Nationwide Children’s Hospital, Columbus, OH; and
| | - Carol L Cheatham
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC; .,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
| |
Collapse
|
17
|
Gispert-Llaurado M, Perez-Garcia M, Escribano J, Closa-Monasterolo R, Luque V, Grote V, Weber M, Torres-Espínola F, Czech-Kowalska J, Verduci E, Martin F, Piqueras M, Koletzko B, Decsi T, Campoy C, Emmett P, Goyens P, Carlier C, Hoyos J, Poncelet P, Dain E, Martin F, Xhonneux A, Langhendries JP, Van Hees JN, Rousseaux D, Closa-Monasterolo R, Escribano J, Luque V, Mendez G, Ferre N, Zaragoza-Jordana M, Giovannini M, Riva E, Agostoni C, Scaglioni S, Verduci E, Vecchi F, Dionigi AR, Arrizza C, Mariani B, Socha J, Socha P, Stolarczyk A, Szott K, Dobrzańska A, Gruszfeld D, Kowalik A, Janas R, Pietraszek E, Perrin E, von Kries R, Groebe H, Reith A, Hofmann R, Koletzko B, Grote V, Weber M, Rzehak P, Schiess S, Beyer J, Fritsch M, Handel U, Pawellek I, Verwied-Jorky S, Hannibal I, Demmelmair H, Haile G, Kirchberg F, Akopjan L, Campoy (PI) C, Pérez M, Catena A, Torres-Espínola FJ, Cristina Martínez-Zaldívar M, Brandi P, Victoria Escolano-Margarit M, Koletzko B, Demmelmair H, Gudrun H, Krauss-Estchmann S, Décsi T, Csábi G, Györey E. Fish consumption in mid-childhood and its relationship to neuropsychological outcomes measured in 7–9 year old children using a NUTRIMENTHE neuropsychological battery. Clin Nutr 2016; 35:1301-1307. [DOI: 10.1016/j.clnu.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
18
|
Schindler T, Sinn JKH, Osborn DA. Polyunsaturated fatty acid supplementation in infancy for the prevention of allergy. Cochrane Database Syst Rev 2016; 10:CD010112. [PMID: 27788565 PMCID: PMC6464137 DOI: 10.1002/14651858.cd010112.pub2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Early dietary intakes may influence the development of allergic disease. It is important to determine if dietary polyunsaturated fatty acids (PUFAs) given as supplements or added to infant formula prevent the development of allergy. OBJECTIVES To determine the effect of higher PUFA intake during infancy to prevent allergic disease. SEARCH METHODS We used the standard search strategy of the Cochrane Neonatal Review group to search the Cochrane Central Register of Controlled Trials (CENTRAL 2015, Issue 9), MEDLINE (1966 to 14 September 2015), EMBASE (1980 to 14 September 2015) and CINAHL (1982 to 14 September 2015). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA Randomised and quasi-randomised controlled trials that compared the use of a PUFA with no PUFA in infants for the prevention of allergy. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials, assessed trial quality and extracted data from the included studies. We used fixed-effect analyses. The treatment effects were expressed as risk ratio (RR) with 95% confidence intervals (CI). We used the GRADE approach to assess the quality of evidence. MAIN RESULTS The search found 17 studies that assessed the effect of higher versus lower intake of PUFAs on allergic outcomes in infants. Only nine studies enrolling 2704 infants reported allergy outcomes that could be used in meta-analyses. Of these, there were methodological concerns for eight.In infants up to two years of age, meta-analyses found no difference in incidence of all allergy (1 study, 323 infants; RR 0.96, 95% CI 0.73 to 1.26; risk difference (RD) -0.02, 95% CI -0.12 to 0.09; heterogeneity not applicable), asthma (3 studies, 1162 infants; RR 1.04, 95% CI 0.80 to 1.35, I2 = 0%; RD 0.01, 95% CI -0.04 to 0.05, I2 = 0%), dermatitis/eczema (7 studies, 1906 infants; RR 0.93, 95% CI 0.82 to 1.06, I2 = 0%; RD -0.02, 95% CI -0.06 to 0.02, I2 = 0%) or food allergy (3 studies, 915 infants; RR 0.81, 95% CI 0.56 to 1.19, I2 = 63%; RD -0.02, 95% CI -0.06 to 0.02, I2 = 74%). There was a reduction in allergic rhinitis (2 studies, 594 infants; RR 0.47, 95% CI 0.23 to 0.96, I2 = 6%; RD -0.04, 95% CI -0.08 to -0.00, I2 = 54%; number needed to treat for an additional beneficial outcome (NNTB) 25, 95% CI 13 to ∞).In children aged two to five years, meta-analysis found no difference in incidence of all allergic disease (2 studies, 154 infants; RR 0.69, 95% CI 0.47 to 1.02, I2 = 43%; RD -0.16, 95% CI -0.31 to -0.00, I2 = 63%; NNTB 6, 95% CI 3 to ∞), asthma (1 study, 89 infants; RR 0.45, 95% CI 0.20 to 1.02; RD -0.20, 95% CI -0.37 to -0.02; heterogeneity not applicable; NNTB 5, 95% CI 3 to 50), dermatitis/eczema (2 studies, 154 infants; RR 0.65, 95% CI 0.34 to 1.24, I2 = 0%; RD -0.09 95% CI -0.22 to 0.04, I2 = 24%) or food allergy (1 study, 65 infants; RR 2.27, 95% CI 0.25 to 20.68; RD 0.05, 95% CI -0.07 to 0.16; heterogeneity not applicable).In children aged two to five years, meta-analysis found no difference in prevalence of all allergic disease (2 studies, 633 infants; RR 0.98, 95% CI 0.81 to 1.19, I2 = 36%; RD -0.01, 95% CI -0.08 to 0.07, I2 = 0%), asthma (2 studies, 635 infants; RR 1.12, 95% CI 0.82 to 1.53, I2 = 0%; RD 0.02, 95% CI -0.04 to 0.09, I2 = 0%), dermatitis/eczema (2 studies, 635 infants; RR 0.81, 95% CI 0.59 to 1.09, I2 = 0%; RD -0.04 95% CI -0.11 to 0.02, I2 = 0%), allergic rhinitis (2 studies, 635 infants; RR 1.02, 95% CI 0.83 to 1.25, I2 = 0%; RD 0.01, 95% CI -0.06 to 0.08, I2 = 0%) or food allergy (1 study, 119 infants; RR 0.27, 95% CI 0.06 to 1.19; RD -0.10, 95% CI -0.20 to -0.00; heterogeneity not applicable; NNTB 10, 95% CI 5 to ∞). AUTHORS' CONCLUSIONS There is no evidence that PUFA supplementation in infancy has an effect on infant or childhood allergy, asthma, dermatitis/eczema or food allergy. However, the quality of evidence was very low. There was insufficient evidence to determine an effect on allergic rhinitis.
Collapse
Affiliation(s)
- Tim Schindler
- Royal Hospital for WomenDepartment of Newborn CareBarker StreetRandwickNSWAustralia2031
| | - John KH Sinn
- Royal North Shore Hospital, The University of SydneyDepartment of NeonatologySt. Leonard'sSydneyNew South WalesAustralia2065
| | - David A Osborn
- University of SydneyCentral Clinical School, Discipline of Obstetrics, Gynaecology and NeonatologySydneyNSWAustralia2050
| | | |
Collapse
|
19
|
Omega-3 polyunsaturated fatty acid supplementation during the pre and post-natal period: A meta-analysis and systematic review of randomized and semi-randomized controlled trials. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2016. [DOI: 10.1016/j.jnim.2016.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Carlson SE, Colombo J. Docosahexaenoic Acid and Arachidonic Acid Nutrition in Early Development. Adv Pediatr 2016; 63:453-71. [PMID: 27426911 PMCID: PMC5207030 DOI: 10.1016/j.yapd.2016.04.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, MS 4013, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | - John Colombo
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Psychology, Life Span Institute, 1000 Sunnyside Avenue, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
21
|
van der Wurff ISM, Bakker EC, Hornstra G, Kirschner PA, Gielen M, Godschalk RWL, Kremers S, Zeegers MP, de Groot RHM. Association between prenatal and current exposure to selected LCPUFAs and school performance at age 7. Prostaglandins Leukot Essent Fatty Acids 2016; 108:22-9. [PMID: 27154361 DOI: 10.1016/j.plefa.2016.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Long-chain polyunsaturated fatty acids (LCPUFAs) are important for brain functioning and might, thus, influence cognition and school performance. However, research investigating LCPUFAs relationships with school performance is limited. The objective of this study was to determine the association between levels of the LCPUFAs docosahexaenoic acid (DHA), arachidonic acid (AA), eicosapentaenoic acid (EPA) and n-6 docosapentaenoic acid (Osbond acid, ObA) at study entry, 22 weeks of pregnancy, 32 weeks of pregnancy, at partus, in umbilical cord plasma and child's plasma at age 7 and school performance scores at age 7. METHODS Data from the Maastricht Essential Fatty Acid Birth cohort (MEFAB) were used for this study. Fatty acid levels of plasma phospholipids were measured in maternal blood plasma at study entry, 22 weeks of pregnancy, 32 weeks of pregnancy and partus. Childs fatty acid levels of plasma phospholipids were measured a in umbilical cord blood plasma, and in blood plasma of the child at age 7. Scores on national standardised tests for spelling, reading and arithmetic at age 7 were obtained via the school (scores were available for 149, 159 and 155 children, respectively). Associations between LCPUFA levels and school performance scores were analysed with categorical regression analyses with correction for covariates (smoking, maternal education, sex, breastfeeding, maternal intelligence, birth weight and BMI at age 7). RESULTS Significant (p<0.001) associations between DHA level at age 7 and both reading (β=0.158) and spelling (β=0.146) were found. Consistent significant negative associations were observed between all maternal DHA plasma levels and arithmetic scores at age 7 (all p<0.001, all β<-0.019). Additional significant negative associations were observed between maternal LCPUFA plasma levels at study entry and both reading and spelling scores at age 7; these associations were less consistent. CONCLUSION Plasma DHA levels at age 7 were positively associated with reading and spelling scores at age 7. Consistent significant negative associations between maternal plasma DHA levels and arithmetic scores of the child at age 7 were found. Although this is an observational study, which cannot proof causality, the consistent negative associations observed between maternal plasma DHA levels and the arithmetic scores of the children at age 7 calls upon prudence when considering DHA supplementation during pregnancy.
Collapse
Affiliation(s)
- I S M van der Wurff
- Faculty of Psychology and Educational Sciences, Welten Institute, Open University of the Netherlands, Heerlen, The Netherlands.
| | - E C Bakker
- Faculty of Psychology and Educational Sciences, Open University of the Netherlands, Heerlen, The Netherlands
| | - G Hornstra
- Maastricht University (retired) and Nutrisearch, Gronsveld, The Netherlands
| | - P A Kirschner
- Faculty of Psychology and Educational Sciences, Welten Institute, Open University of the Netherlands, Heerlen, The Netherlands
| | - M Gielen
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - R W L Godschalk
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - S Kremers
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - M P Zeegers
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; CAPHRI School for Public Health and Primary Care Maastricht University, Maastricht, The Netherlands
| | - R H M de Groot
- Faculty of Psychology and Educational Sciences, Welten Institute, Open University of the Netherlands, Heerlen, The Netherlands; NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This article examines the evidence for and against establishing a target level of docosahexaenoic acid (DHA) in breast milk. RECENT FINDINGS Two target levels for milk DHA have been recently proposed. One (∼0.3% of milk fatty acids) was based on milk DHA levels achieved in women consuming the amount of DHA recommended by the American Academy of Pediatrics for pregnant and lactating women (at least 200 mg DHA/day). Another (∼1.0%) was based on biomarker studies of populations with differing lifelong intakes of fish. Populations or research cohorts with milk DHA levels of 1.0% are associated with intakes that allow both the mother and infant to maintain relatively high DHA levels throughout lactation. Lower milk DHA levels may signal suboptimal maternal stores and possibly suboptimal infant intakes. SUMMARY Based on the current data, a reasonable milk DHA target appears to be approximately 0.3%, which is about the worldwide average. Although this may not be the 'optimal' level (which remains to be defined), it is clearly an improvement over the currently low milk DHA levels (∼0.2%) seen in many Western populations.
Collapse
Affiliation(s)
- Kristina Harris Jackson
- aOmegaQuant Analytics, LLC bSanford School of Medicine - University of South Dakota, Sioux Falls, South Dakota, USA
| | | |
Collapse
|
23
|
Effects of prenatal and/or postnatal supplementation with iron, PUFA or folic acid on neurodevelopment: update. Br J Nutr 2016; 122:S10-S15. [DOI: 10.1017/s0007114514004243] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractNeurodevelopment has been linked, among other factors, to maternal and early infant diets. The objective of this review, which is part of the NUTRIMENTHE research project ‘The effect of diet on the mental performance of children’ (www.nutrimenthe.com), was to update current evidence on the effects of nutritional interventions such as iron, folic acid or n-3 long-chain polyunsaturated fatty acid (LCPUFA) supplementation during pregnancy and/or in early life on the mental performance and psychomotor development of children. In May 2014, we searched MEDLINE and The Cochrane Database of Systematic Reviews for relevant studies published since 2009. The limited updated evidence suggests that iron supplementation of infants may positively influence the psychomotor development of children, although it does not seem to alter their mental development or behaviour. The use of multivitamin-containing folic acid supplements during pregnancy did not benefit the mental performance of the offspring. Evidence from randomised controlled trials (RCT) did not show a clear and consistent benefit of n-3 LCPUFA supplementation during pregnancy and/or lactation on childhood cognitive and visual development. Caution is needed when interpreting current evidence, as many of the included trials had methodological limitations such as small sample sizes, high attrition rates, and no intention-to-treat analyses. Taken together, the evidence is still inconclusive. Large, high-quality RCT to assess the effects of supplementation with iron, LCPUFA or folic acid are still needed to further clarify the effects of these, and other nutrients, on neurodevelopment. Recent recommendations from scientific societies are briefly presented.
Collapse
|
24
|
Lauritzen L, Brambilla P, Mazzocchi A, Harsløf LBS, Ciappolino V, Agostoni C. DHA Effects in Brain Development and Function. Nutrients 2016; 8:E6. [PMID: 26742060 PMCID: PMC4728620 DOI: 10.3390/nu8010006] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 01/21/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders.
Collapse
Affiliation(s)
- Lotte Lauritzen
- Department of Nutrition Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| | - Paolo Brambilla
- Psychiatric Clinic, Department of Neurosciences and Mental Health, Fondazione IRCCS Ospedale Cà Granda-Ospedale Maggiore Policlinico, University of Milan, 20121 Milan, Italy.
- Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, 2800 South Macgregor Way, Houston, TX 77021, USA.
| | - Alessandra Mazzocchi
- Pediatric Clinic, Fondazione IRCCS Ospedale Cà Granda-Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, 20121 Milan, Italy.
| | - Laurine B S Harsløf
- Department of Nutrition Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| | - Valentina Ciappolino
- Psychiatric Clinic, Department of Neurosciences and Mental Health, Fondazione IRCCS Ospedale Cà Granda-Ospedale Maggiore Policlinico, University of Milan, 20121 Milan, Italy.
| | - Carlo Agostoni
- Pediatric Clinic, Fondazione IRCCS Ospedale Cà Granda-Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, 20121 Milan, Italy.
| |
Collapse
|
25
|
Catena A, Muñoz-Machicao JA, Torres-Espínola FJ, Martínez-Zaldívar C, Diaz-Piedra C, Gil A, Haile G, Györei E, Molloy AM, Decsi T, Koletzko B, Campoy C. Folate and long-chain polyunsaturated fatty acid supplementation during pregnancy has long-term effects on the attention system of 8.5-y-old offspring: a randomized controlled trial. Am J Clin Nutr 2016; 103:115-27. [PMID: 26561619 DOI: 10.3945/ajcn.115.109108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/29/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND During fetal and perinatal periods, many nutrients, such as long-chain polyunsaturated fatty acids [contained in fish oil (FO)] and folate, are important in achieving normal brain development. Several studies have shown the benefits of early nutrition on children's neurocognitive development. However, the evidence with regard to the attention system is scarce. OBJECTIVES The aim of this study was to analyze the long-term effects of FO, 5-methyltetrahydrofolate (5-MTHF), or FO+5-MTHF prenatal supplementation on attention networks. DESIGN Participants were 136 children born to mothers from the NUHEAL (Nutraceuticals for a Healthy Life) project (randomly assigned to receive FO and/or 5-MTHF or placebo prenatal supplementation) who were recalled for a new examination 8.5 y later. The response conflict-resolution ability (using congruent and incongruent conditions)), alerting, and spatial orienting of attention were evaluated with behavioral measures (Attention Network Test), electroencephalography/event-related potentials (ERPs), and standardized low-resolution brain electromagnetic tomography (sLORETA). RESULTS Children born to mothers supplemented with 5-MTHF alone solved the response conflict more quickly than did the placebo and the FO+5-MTHF groups (all P < 0.05). Differences between ERP amplitudes for the conflict conditions were also observed. sLORETA analysis showed higher activation of the right midcingulate cortex for the incongruent condition. In addition, a significant slowing down of response speed depending on the warning cue in the 5-MTHF and FO groups was observed. CONCLUSIONS Folate supplementation during pregnancy, rather than FO or FO+5-MTHF supplementation, improves children's ability to solve response conflicts. This advantage seems to be based on the higher activation of the midcingulate cortex, indicating that early nutrition influences the functionality of specific brain areas involved in executive functions. This trial was registered at clinicaltrials.gov as NCT01180933.
Collapse
Affiliation(s)
| | | | | | | | | | - Angel Gil
- Departments of Biochemistry and Molecular Biology and
| | - Gudrun Haile
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University of Munich Medical Center, Munich, Germany
| | - Eszter Györei
- Department of Pediatrics, University of Pécs, Pécs, Hungary; and
| | - Anne M Molloy
- School of Clinical Medicine, Trinity College, Dublin, Ireland
| | - Tamás Decsi
- Department of Pediatrics, University of Pécs, Pécs, Hungary; and
| | - Berthold Koletzko
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University of Munich Medical Center, Munich, Germany
| | - Cristina Campoy
- EURISTIKOS Excellence Center for Pediatric Research, and Pediatrics, University of Granada, Granada, Spain;
| |
Collapse
|
26
|
Cheatham CL, Sheppard KW. Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study. Nutrients 2015; 7:9079-95. [PMID: 26540073 PMCID: PMC4663580 DOI: 10.3390/nu7115452] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/03/2015] [Accepted: 10/21/2015] [Indexed: 01/08/2023] Open
Abstract
The aim was to explore the relation of human milk lutein; choline; and docosahexaenoic acid (DHA) with recognition memory abilities of six-month-olds. Milk samples obtained three to four months postpartum were analyzed for fatty acids, lutein, and choline. At six months, participants were invited to an electrophysiology session. Recognition memory was tested with a 70-30 oddball paradigm in a high-density 128-lead event-related potential (ERP) paradigm. Complete data were available for 55 participants. Data were averaged at six groupings (Frontal Right; Frontal Central; Frontal Left; Central; Midline; and Parietal) for latency to peak, peak amplitude, and mean amplitude. Difference scores were calculated as familiar minus novel. Final regression models revealed the lutein X free choline interaction was significant for the difference in latency scores at frontal and central areas (p < 0.05 and p < 0.001; respectively). Higher choline levels with higher lutein levels were related to better recognition memory. The DHA X free choline interaction was also significant for the difference in latency scores at frontal, central, and midline areas (p < 0.01; p < 0.001; p < 0.05 respectively). Higher choline with higher DHA was related to better recognition memory. Interactions between human milk nutrients appear important in predicting infant cognition, and there may be a benefit to specific nutrient combinations.
Collapse
Affiliation(s)
- Carol L Cheatham
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA.
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kelly Will Sheppard
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Cheatham CL, Lupu DS, Niculescu MD. Genetic and epigenetic transgenerational implications related to omega-3 fatty acids. Part II: maternal FADS2 rs174575 genotype and DNA methylation predict toddler cognitive performance. Nutr Res 2015; 35:948-55. [PMID: 26455892 DOI: 10.1016/j.nutres.2015.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 08/21/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
Abstract
Maternal transfer of fatty acids is important to fetal brain development. The prenatal environment may differentially affect the substrates supporting declarative memory abilities, as the level of fatty acids transferred across the placenta may be affected by the maternal fatty acid desaturase 2 (FADS2) rs174575 single nucleotide polymorphism. In this study, we hypothesized that toddler and maternal rs174575 genotype and FADS2 promoter methylation would be related to the toddlers' declarative memory performance. Seventy-one 16-month-old toddlers participated in an imitation paradigm designed to test immediate and long-term declarative memory abilities. FADS2 rs174575 genotype was determined and FADS2 promoter methylation was quantified from blood by bisulfite pyrosequencing for the toddlers and their natural mothers. Toddlers of GG mothers at the FADS2 rs174575 single nucleotide polymorphism did not perform as well on memory assessments as toddlers of CC or CG mothers when controlling for plasma α-linolenic acid and child genotype. Toddler methylation status was related to immediate memory performance, whereas maternal methylation status was related to delayed memory performance. Thus, prenatal experience and maternal FADS2 status have a pervasive, long-lasting influence on the brain development of the offspring, but as the postnatal environment becomes more primary, the offsprings' own biology begins to have an effect.
Collapse
Affiliation(s)
- Carol L Cheatham
- University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, NC, 28081, USA; Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Daniel S Lupu
- University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, NC, 28081, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mihai D Niculescu
- University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, NC, 28081, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
28
|
Gunaratne AW, Makrides M, Collins CT. Maternal prenatal and/or postnatal n-3 long chain polyunsaturated fatty acids (LCPUFA) supplementation for preventing allergies in early childhood. Cochrane Database Syst Rev 2015; 2015:CD010085. [PMID: 26197477 PMCID: PMC8783748 DOI: 10.1002/14651858.cd010085.pub2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Allergies have become more prevalent globally over the last 20 years. Dietary consumption of n-3 (or omega 3) long chain polyunsaturated fatty acids (LCPUFA) has declined over the same period of time. This, together with the known role of n-3 LCPUFA in inhibiting inflammation, has resulted in speculation that n-3 LCPUFA may prevent allergy development. Dietary n-3 fatty acids supplements may change the developing immune system of the newborn before allergic responses are established, particularly for those with a genetic predisposition to the production of the immunoglobulin E (IgE) antibody. Individuals with IgE-mediated allergies have both the signs and symptoms of the allergic disease and a positive skin prick test (SPT) to the allergen. OBJECTIVES To assess the effect of n-3 LCPUFA supplementation in pregnant and/or breastfeeding women on allergy outcomes (food allergy, atopic dermatitis (eczema), allergic rhinitis (hay fever) and asthma/wheeze) in their children. SEARCH METHODS We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (6 August 2014), PubMed (1966 to 01 August 2014), CINAHL via EBSCOhost (1984 to 01 August 2014), Scopus (1995 to 01 August 2014), Web of Knowledge (1864 to 01 August 2014) and ClinicalTrials.gov (01 August 2014) and reference lists of retrieved studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating the effect of n-3 LCPUFA supplementation of pregnant and/or lactating women (compared with placebo or no treatment) on allergy outcomes of the infants or children. Trials using a cross-over design and trials examining biochemical outcomes only were not eligible for inclusion. DATA COLLECTION AND ANALYSIS Two review authors independently assessed eligibility and trial quality and performed data extraction. Where the review authors were also investigators on trials selected, an independent reviewer assessed trial quality and performed data extraction. MAIN RESULTS Eight trials involving 3366 women and their 3175 children were included in the review. In these trials, women were supplemented with n-3 LCPUFA during pregnancy (five trials), lactation (two trials) or both pregnancy and lactation (one trial). All trials randomly allocated women to either a n-3 LCPUFA supplement or a control group. The risk of bias varied across the eight included trials in this review with only two trials with a low risk of selection, performance and attrition bias.N-3 LCPUFA supplementation showed a clear reduction in the primary outcome of any allergy (medically diagnosed IgE mediated) in children aged 12 to 36 months (risk ratio (RR) 0.66, 95% confidence interval (CI) 0.44 to 0.98; two RCTs; 823 children), but not beyond 36 months (RR 0.86, 95% CI 0.61 to 1.20; one RCT, 706 children). For any allergy (medically diagnosed IgE mediated and/or parental report), no clear differences were seen in children either at 12 to 36 months (RR 0.89, 95% CI 0.71 to 1.11; two RCTs, 823 children) or beyond 36 months of age (RR 0.96, 95% CI 0.84 to 1.09; three RCTs, 1765 children).For the secondary outcomes of specific allergies there were no clear differences for food allergies at 12 to 36 months and beyond 36 months, but a clear reduction was seen for children in their first 12 months with n-3 LCPUFA (both for medically diagnosed IgE mediated and medically diagnosed IgE mediated and/or parental report). There was a clear reduction in medically diagnosed IgE-mediated eczema with n-3 LCPUFA for children 12 to 36 months of age, but not at any other time point for both medically diagnosed IgE mediated and medically diagnosed IgE mediated and/or parental report. No clear differences for allergic rhinitis or asthma/wheeze were seen at any time point for both medically diagnosed IgE mediated, and medically diagnosed IgE mediated and/or parental report.There was a clear reduction in children's sensitisation to egg and sensitisation to any allergen between 12 to 36 months of age when mothers were supplemented with n-3 LCPUFA.In terms of safety for the mother and child, n-3 LCPUFA supplementation during pregnancy did not show increased risk of postpartum haemorrhage or early childhood infections. AUTHORS' CONCLUSIONS Overall, there is limited evidence to support maternal n-3 LCPUFA supplementation during pregnancy and/or lactation for reducing allergic disease in children. Few differences in childhood allergic disease were seen between women who were supplemented with n-3 LCPUFA and those who were not.
Collapse
Affiliation(s)
- Anoja W Gunaratne
- The University of AdelaideSchool of Paediatrics and Reproductive HealthAdelaideSouth AustraliaAustralia5000
- Women's and Children's Hospital and Flinders Medical CentreChild Nutrition Research Centre, Women's and Children's Health Research InstituteAdelaideAustralia5000
| | - Maria Makrides
- The University of AdelaideSchool of Paediatrics and Reproductive HealthAdelaideSouth AustraliaAustralia5000
- Women's and Children's Hospital and Flinders Medical CentreChild Nutrition Research Centre, Women's and Children's Health Research InstituteAdelaideAustralia5000
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteC/‐ WCHRI72 King William RoadAdelaideSAAustralia5006
| | - Carmel T Collins
- The University of AdelaideSchool of Paediatrics and Reproductive HealthAdelaideSouth AustraliaAustralia5000
- Women's and Children's Hospital and Flinders Medical CentreChild Nutrition Research Centre, Women's and Children's Health Research InstituteAdelaideAustralia5000
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteC/‐ WCHRI72 King William RoadAdelaideSAAustralia5006
| | | |
Collapse
|
29
|
Delgado‐Noguera MF, Calvache JA, Bonfill Cosp X, Kotanidou EP, Galli‐Tsinopoulou A. Supplementation with long chain polyunsaturated fatty acids (LCPUFA) to breastfeeding mothers for improving child growth and development. Cochrane Database Syst Rev 2015; 2015:CD007901. [PMID: 26171898 PMCID: PMC9759098 DOI: 10.1002/14651858.cd007901.pub3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Long chain polyunsaturated fatty acids (LCPUFA), especially docosahexaenoic acid (DHA), are the most abundant fatty acids in the brain and are necessary for growth and maturation of an infant's brain and retina. LCPUFAs are named "essential" because they cannot be synthesised efficiently by the human body and come from maternal diet. It remains controversial whether LCPUFA supplementation to breastfeeding mothers is beneficial for the development of their infants. OBJECTIVES To assess the effectiveness and safety of supplementation with LCPUFA in breastfeeding mothers in the cognitive and physical development of their infants as well as safety for the mother and infant. SEARCH METHODS We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (6 August 2014), CENTRAL (Cochrane Library 2014, Issue 8), PubMed (1966 to August 2014), EMBASE (1974 to August 2014), LILACS (1982 to August 2014), Google Scholar (August 2014) and reference lists of published narrative and systematic reviews. SELECTION CRITERIA Randomised controlled trials or cluster-randomised controlled trials evaluating the effects of LCPUFA supplementation on breastfeeding mothers (including the pregnancy period) and their infants. DATA COLLECTION AND ANALYSIS Two review authors independently assessed eligibility and trial quality, performed data extraction and evaluated data accuracy. MAIN RESULTS We included eight randomised controlled trials involving 1567 women. All the studies were performed in high-income countries. The longest follow-up was seven years.We report the results from the longest follow-up time point from included studies. Overall, there was moderate quality evidence as assessed using the GRADE approach from these studies for the following outcomes measured beyond 24 months age of children: language development and child weight. There was low-quality evidence for the outcomes: Intelligence or solving problems ability, psychomotor development, child attention, and child visual acuity.We found no significant difference in children's neurodevelopment at long-term follow-up beyond 24 months: language development (standardised mean difference (SMD) -0.27, 95% confidence interval (CI) -0.56 to 0.02; two trials, 187 participants); intelligence or problem-solving ability (three trials, 238 participants; SMD 0.00, 95% CI -0.36 to 0.36); psychomotor development (SMD -0.11, 95% CI -0.48 to 0.26; one trial, 113 participants); motor development (SMD -0.23, 95% CI -0.60 to 0.14; one trial, 115 participants), or in general movements (risk ratio, RR, 1.12, 95% CI 0.58 to 2.14; one trial, 77 participants; at 12 weeks of life). However, child attention scores were better at five years of age in the group of children whose mothers had received supplementation with fatty acids (mean difference (MD) 4.70, 95% CI 1.30 to 8.10; one study, 110 participants)). In working memory and inhibitory control, we found no significant difference (MD -0.02 95% CI -0.07 to 0.03 one trial, 63 participants); the neurological optimality score did not present any difference (P value: 0.55).For child visual acuity, there was no significant difference (SMD 0.33, 95% CI -0.04 to 0.71; one trial, 111 participants).For growth, there were no significant differences in length (MD -0.39 cm, 95% CI -1.37 to 0.60; four trials, 441 participants), weight (MD 0.13 kg, 95% CI -0.49 to 0.74; four trials, 441 participants), and head circumference (MD 0.15 cm, 95% CI -0.27 to 0.58; three trials, 298 participants). Child fat mass and fat mass distribution did not differ between the intervention and control group (MD 2.10, 95% CI -0.48 to 4.68; one trial, 115 participants, MD -0.50, 95% CI -1.69 to 0.69; one trial, 165 participants, respectively).One study (117 infants) reported a significant difference in infant allergy at short-term follow-up (risk ratio (RR) 0.13, 95% CI 0.02 to 0.95), but not at medium-term follow-up (RR 0.52, 95% CI 0.17 to 1.59).We found no significant difference in two trials evaluating postpartum depression. Data were not possible to be pooled due to differences in the describing of the outcome. One study (89 women) did not find any significant difference between the LCPUFA supplementation and the control group at four weeks postpartum (MD 1.00, 95%CI -1.72 to 3.72).No adverse effects were reported. AUTHORS' CONCLUSIONS Based on the available evidence, LCPUFA supplementation did not appear to improve children's neurodevelopment, visual acuity or growth. In child attention at five years of age, weak evidence was found (one study) favouring the supplementation. Currently, there is inconclusive evidence to support or refute the practice of giving LCPUFA supplementation to breastfeeding mothers in order to improve neurodevelopment or visual acuity.
Collapse
Affiliation(s)
- Mario F Delgado‐Noguera
- Facultad Ciencias de la Salud, Universidad del Cauca, ColombiaDepartamento de PediatriaHospital Universitario San JoseDepartamento de PediatríaPopayanCaucaColombiaNA
| | - Jose Andres Calvache
- Universidad del Cauca, Colombia. Erasmus University Medical Centre Rotterdam, The Netherlands.Departamento de Anestesiología, Universidad del Cauca, Colombia. Department of Anesthesiology, Erasmus University Medical Centre Rotterdam, The Netherlands.Cra 2 16N‐142, tercer pisoHospital Universitario San JosePopayanColombia
| | - Xavier Bonfill Cosp
- CIBER Epidemiología y Salud Pública (CIBERESP) ‐ Universitat Autònoma de BarcelonaIberoamerican Cochrane Centre ‐ Biomedical Research Institute Sant Pau (IIB Sant Pau)Sant Antoni Maria Claret, 167Pavilion 18 (D‐13)BarcelonaCataloniaSpain08025
| | - Eleni P Kotanidou
- Medical School, Aristotle University of Thessaloniki4th Department of PaediatricsPapageorgiou General Hospital, Ring Road Nea EfkarpiaThessalonikiGreeceGR56403
| | - Assimina Galli‐Tsinopoulou
- Medical School, Aristotle University of Thessaloniki4th Department of PaediatricsPapageorgiou General Hospital, Ring Road Nea EfkarpiaThessalonikiGreeceGR56403
| | | |
Collapse
|
30
|
Jiao J, Li Q, Chu J, Zeng W, Yang M, Zhu S. Effect of n-3 PUFA supplementation on cognitive function throughout the life span from infancy to old age: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2014; 100:1422-36. [PMID: 25411277 DOI: 10.3945/ajcn.114.095315] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND n-3 PUFAs play an important role in cognitive function. OBJECTIVE The objective was to investigate the effect of n-3 PUFA supplements on cognitive development, function, and decline throughout the life span. DESIGN The study included randomized controlled trials and provided ≥3 mo of treatment. Potential studies were independently screened in duplicate, and study characteristics and outcomes were extracted. A meta-analysis was performed by using fixed- or random-effects models. The results are presented as standardized mean differences (SMDs) with 95% CIs. RESULTS Of the 3692 citations retrieved, 34 studies of a total of 12,999 participants (1031 infants, 1517 children, 3657 adults, and 6794 elderly individuals) were included. Compared with placebo, n-3 PUFA supplements significantly improved cognitive development in infants, including the Mental Development Index (SMD: 0.33; 95% CI: 0.15, 0.52), the Psychomotor Development Index (0.27; 95% CI: 0.09, 0.45), and language (0.27; 95% CI: 0.13, 0.42), motor (0.29; 95% CI: 0.14, 0.43), and cognitive (0.31; 95% CI: 0.16, 0.45) abilities. However, n-3 PUFAs did not promote cognitive function in terms of composite memory, executive function, and processing speed domains in children, adults, or the elderly, except for the attention domain. No association was found between n-3 PUFA intake and improvements in cognitive performance in terms of recognition, immediate and delayed word recall, digit span backward and forward tests, rapid visual information processing, verbal fluency, and simple and choice reaction times. In addition, n-3 PUFA supplements were not associated with improvements in cognitive decline or with any effects on Alzheimer disease in elderly people. CONCLUSIONS n-3 PUFA supplements may significantly improve cognitive development in infants but do not improve cognitive performance in children, adults, or the elderly. n-3 PUFA intake, especially that of DHA supplements, may benefit cognitive development during infancy.
Collapse
Affiliation(s)
- Jingjing Jiao
- From the Chronic Disease Research Institute, Department of Nutrition, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingqing Li
- From the Chronic Disease Research Institute, Department of Nutrition, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Chu
- From the Chronic Disease Research Institute, Department of Nutrition, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weijiang Zeng
- From the Chronic Disease Research Institute, Department of Nutrition, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Yang
- From the Chronic Disease Research Institute, Department of Nutrition, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shankuan Zhu
- From the Chronic Disease Research Institute, Department of Nutrition, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Reduced anxiety in forensic inpatients after a long-term intervention with Atlantic salmon. Nutrients 2014; 6:5405-18. [PMID: 25431880 PMCID: PMC4276975 DOI: 10.3390/nu6125405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/27/2014] [Accepted: 11/14/2014] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to investigate the effects of Atlantic salmon consumption on underlying biological mechanisms associated with anxiety such as heart rate variability (HRV) and heart rate (HR) as well as a measure of self-reported anxiety. Moreover, these biological and self-reported outcome measures were investigated in relation to specific nutrients; vitamin D status, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Ninety-five male forensic inpatients were randomly assigned into a Fish (Atlantic salmon three times per week from September to February) or a Control group (alternative meal, e.g., chicken, pork, or beef three times per week during the same period). HRV measured as the root mean square of successive differences (rMSSD), HR, state- and trait-anxiety (STAI), were assessed before (pre-test) and at the end of the 23 weeks dietary intervention period (post-test). The Fish group showed significant improvements in both rMSSD and HR. The Fish group also showed significant decreases in state-anxiety. Finally, there was a positive relationship between rMSSD and vitamin D status. The findings suggest that Atlantic salmon consumption may have an impact on mental health related variables such as underlying mechanisms playing a key role in emotion-regulation and state-anxiety.
Collapse
|
32
|
Koletzko B, Boey CCM, Campoy C, Carlson SE, Chang N, Guillermo-Tuazon MA, Joshi S, Prell C, Quak SH, Sjarif DR, Su Y, Supapannachart S, Yamashiro Y, Osendarp SJM. Current information and Asian perspectives on long-chain polyunsaturated fatty acids in pregnancy, lactation, and infancy: systematic review and practice recommendations from an early nutrition academy workshop. ANNALS OF NUTRITION AND METABOLISM 2014; 65:49-80. [PMID: 25227906 DOI: 10.1159/000365767] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022]
Abstract
The Early Nutrition Academy supported a systematic review of human studies on the roles of pre- and postnatal long-chain polyunsaturated fatty acids (LC-PUFA) published from 2008 to 2013 and an expert workshop that reviewed the information and developed recommendations, considering particularly Asian populations. An increased supply of n-3 LC-PUFA during pregnancy reduces the risk of preterm birth before 34 weeks of gestation. Pregnant women should achieve an additional supply ≥200 mg docosahexaenic acid (DHA)/day, usually achieving a total intake ≥300 mg DHA/day. Higher intakes (600-800 mg DHA/day) may provide greater protection against early preterm birth. Some studies indicate beneficial effects of pre- and postnatal DHA supply on child neurodevelopment and allergy risk. Breast-feeding is the best choice for infants. Breast-feeding women should get ≥200 mg DHA/day to achieve a human milk DHA content of ∼0.3% fatty acids. Infant formula for term infants should contain DHA and arachidonic acid (AA) to provide 100 mg DHA/day and 140 mg AA/day. A supply of 100 mg DHA/day should continue during the second half of infancy. We do not provide quantitative advice on AA levels in follow-on formula fed after the introduction of complimentary feeding due to a lack of sufficient data and considerable variation in the AA amounts provided by complimentary foods. Reasonable intakes for very-low-birth weight infants are 18-60 mg/kg/day DHA and 18-45 mg/kg/day AA, while higher intakes (55-60 mg/kg/day DHA, ∼1% fatty acids; 35-45 mg/kg/day AA, ∼0.6-0.75%) appear preferable. Research on the requirements and effects of LC-PUFA during pregnancy, lactation, and early childhood should continue. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Berthold Koletzko
- Early Nutrition Academy, Dr. von Hauner Children's Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Portillo-Reyes V, Pérez-García M, Loya-Méndez Y, Puente AE. Clinical significance of neuropsychological improvement after supplementation with omega-3 in 8-12 years old malnourished Mexican children: a randomized, double-blind, placebo and treatment clinical trial. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:861-870. [PMID: 24508294 DOI: 10.1016/j.ridd.2014.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
It has been shown that supplementation with omega-3 improves cognitive performance, especially in infants and toddlers, but it is unknown whether these results are effective in older malnourished children. The aims of this study, therefore, were to investigate the omega-3 supplementation effects in 8- to 12-year-old children and to know which neuropsychological functions improve after three months of intervention in a sample of Mexican children with mild to moderate malnutrition. This study was a randomized, double-blind, treatment and placebo study of 59 children aged 8-12 years who were individually allocated to 2 groups. The duration of the intervention lasted 3 months. Neuropsychological performance was measured at baseline and at 3 months. Results show that more than 50% of children in the treatment group had greater improvement in 11 of the 18 neuropsychological variables studied. Processing speed, visual-motor coordination, perceptual integration, attention and executive function showed improvement in more than 70% of the omega-3 supplemented children. This trial was registered at clinicaltrials.gov as NCT01199120.
Collapse
Affiliation(s)
- Verónica Portillo-Reyes
- Department of Psychology, Autonomous University of Ciudad Juarez, Mexico; Department of Clinical Psychology, University of Granada, Granada, Spain.
| | - Miguel Pérez-García
- Department of Clinical Psychology, University of Granada, Granada, Spain; Research Center, Mind, Brain and Behavior (CIMCYC), University of Granada, Granada, Spain.
| | | | - Antonio E Puente
- Department of Psychology, University of North Carolina Wilmington, USA.
| |
Collapse
|
34
|
Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. Am J Clin Nutr 2014; 99:734S-41S. [PMID: 24500153 DOI: 10.3945/ajcn.113.072595] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Maternal nutrition has little or no effect on many nutrients in human milk; for others, human milk may not be designed as a primary nutritional source for the infant; and for a few, maternal nutrition can lead to substantial variations in human milk quality. Human milk fatty acids are among the nutrients that show extreme sensitivity to maternal nutrition and are implicated in neurological development. Extensive development occurs in the infant brain, with growth from ∼ 350 g at birth to 925 g at 1 y, with this growth including extensive dendritic and axonal arborization. Transfer of n-6 (omega-6) and n-3 (omega-3) fatty acids from the maternal diet into human milk occurs with little interconversion of 18:2n-6 to 20:4n-6 or 18:3n-3 to docosahexaenoic acid (DHA) and little evidence of mammary gland regulation to maintain individual fatty acids constant with varying maternal fatty acid nutrition. DHA has gained attention because of its high concentrations and roles in the brain and retina. Studies addressing DHA intakes by lactating women or human milk amounts of DHA at levels above those typical in the United States and Canada on infant outcomes are inconsistent. However, separating effects of the fatty acid supply in gestation or in the weaning diet from effects on neurodevelopment solely due to human milk fatty acids is complex, particularly when neurodevelopment is assessed after the period of exclusive human milk feeding. Information on infant fatty acid intakes, including milk volume consumed and energy density, will aid in understanding of the human milk fatty acids that best support neurological development.
Collapse
Affiliation(s)
- Sheila M Innis
- Nutrition and Metabolism Research Program, Child and Family Research Institute, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
35
|
Engel S, Tronhjem KMH, Hellgren LI, Michaelsen KF, Lauritzen L. Docosahexaenoic acid status at 9 months is inversely associated with communicative skills in 3-year-old girls. MATERNAL & CHILD NUTRITION 2013; 9:499-510. [PMID: 22642227 PMCID: PMC6860840 DOI: 10.1111/j.1740-8709.2012.00411.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of the present observational study was to investigate if the docosahexaenoic acid (DHA) status assessed in infant erythrocytes (RBC) at 9 months was associated with the age when the infants reach developmental milestones and their psychomotor function at 3 years of age. Three hundred eleven healthy Danish children were followed from 9 months to 3 years of age (the SKOT cohort). RBC fatty acid composition was analysed by gas chromatography in 272 of the children. Milestone age was collected by questionnaires at 9 and 18 months and psychomotor development at 3 years of age was assessed by the parents using third edition of the Ages and Stages Questionnaire (ASQ-3). RBC DHA levels ranged from 2.2% to 12.6% of the RBC fatty acids. The age of reaching milestones correlated with psychomotor development, particularly with gross motor function at 3 years. An association between milestones and later personal and social skills was also observed, but only for girls. In girls, RBC-DHA was found to be inversely correlated with communication at 3 years of age (odds ratio = 0.69, 95% confidence interval: 0.56-0.86, P = 0.001), but no other associations with psychomotor development or milestones were found. The results from study indicate that DHA status at 9 months may not have a pronounced beneficial effect on psychomotor development in early childhood and that communicative skills at 3 years of age may even be inversely associated with early RBC-DHA levels in girls.
Collapse
Affiliation(s)
- Sara Engel
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Lars I. Hellgren
- Department of System Biology, Technical University of Denmark, Lyngby, Denmark (BLH)
| | - Kim F. Michaelsen
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lotte Lauritzen
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
36
|
Belfort MB, Rifas-Shiman SL, Kleinman KP, Guthrie LB, Bellinger DC, Taveras EM, Gillman MW, Oken E. Infant feeding and childhood cognition at ages 3 and 7 years: Effects of breastfeeding duration and exclusivity. JAMA Pediatr 2013; 167:836-44. [PMID: 23896931 PMCID: PMC3998659 DOI: 10.1001/jamapediatrics.2013.455] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Breastfeeding may benefit child cognitive development, but few studies have quantified breastfeeding duration or exclusivity, nor has any study to date examined the role of maternal diet during lactation on child cognition. OBJECTIVES To examine relationships of breastfeeding duration and exclusivity with child cognition at ages 3 and 7 years and to evaluate the extent to which maternal fish intake during lactation modifies associations of infant feeding with later cognition. DESIGN, SETTING, AND PARTICIPANTS Prospective cohort study (Project Viva), a US prebirth cohort that enrolled mothers from April 22, 1999, to July 31, 2002, and followed up children to age 7 years, including 1312 Project Viva mothers and children. MAIN EXPOSURE Duration of any breastfeeding to age 12 months. MAIN OUTCOMES AND MEASURES Child receptive language assessed with the Peabody Picture Vocabulary Test at age 3 years, Wide Range Assessment of Visual Motor Abilities at ages 3 and 7 years, and Kaufman Brief Intelligence Test and Wide Range Assessment of Memory and Learning at age 7 years. RESULTS Adjusting for sociodemographics, maternal intelligence, and home environment in linear regression, longer breastfeeding duration was associated with higher Peabody Picture Vocabulary Test score at age 3 years (0.21; 95% CI, 0.03-0.38 points per month breastfed) and with higher intelligence on the Kaufman Brief Intelligence Test at age 7 years (0.35; 0.16-0.53 verbal points per month breastfed; and 0.29; 0.05-0.54 nonverbal points per month breastfed). Breastfeeding duration was not associated with Wide Range Assessment of Memory and Learning scores. Beneficial effects of breastfeeding on the Wide Range Assessment of Visual Motor Abilities at age 3 years seemed greater for women who consumed 2 or more servings of fish per week (0.24; 0.00-0.47 points per month breastfed) compared with less than 2 servings of fish per week (−0.01; −0.22 to 0.20 points per month breastfed) (P = .16 for interaction). CONCLUSIONS AND RELEVANCE Our results support a causal relationship of breastfeeding duration with receptive language and verbal and nonverbal intelligence later in life.
Collapse
Affiliation(s)
- Mandy B. Belfort
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sheryl L. Rifas-Shiman
- Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Ken P. Kleinman
- Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Lauren B. Guthrie
- Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - David C. Bellinger
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elsie M. Taveras
- Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Matthew W. Gillman
- Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, Massachusetts,Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, Massachusetts
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| |
Collapse
|
37
|
Abstract
Postpartum depression (PPD) is a relatively common and often severe mood disorder that develops in women after childbirth. The aetiology of PPD is unclear, although there is emerging evidence to suggest a psychoneuroimmune connection. Additionally, deficiencies in n-3 PUFA, B vitamins, vitamin D and trace minerals have been implicated. This paper reviews evidence for a link between micronutrient status and PPD, analysing the potential contribution of each micronutrient to psychoneuroimmunological mechanisms of PPD. Articles related to PPD and women's levels of n-3 PUFA, B vitamins, vitamin D and the trace minerals Zn and Se were reviewed. Findings suggest that while n-3 PUFA levels have been shown to vary inversely with PPD and link with psychoneuroimmunology, there is mixed evidence regarding the ability of n-3 PUFA to prevent or treat PPD. B vitamin status is not clearly linked to PPD, even though it seems to vary inversely with depression in non-perinatal populations and may have an impact on immunity. Vitamin D and the trace minerals Zn and Se are linked to PPD and psychoneuroimmunology by intriguing, but small, studies. Overall, evidence suggests that certain micronutrient deficiencies contribute to the development of PPD, possibly through psychoneuroimmunological mechanisms. Developing a better understanding of these mechanisms is important for guiding future research, clinical practice and health education regarding PPD.
Collapse
|
38
|
Abstract
The aim of this review is to evaluate the effects of omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) supplementation in pregnant and lactating women and infants during postnatal life, on the visual acuity, psychomotor development, mental performance and growth of infants and children. Eighteen publications (11 sets of randomized control clinical trial [RCTs]) assessed the effects of the n-3 LCPUFA supplementation duringpregnancyon neurodevelopment and growth, in the same subjects at different time points; 4 publications (2 data sets from RCTs) addressed physiological responses to n-3 LCPUFA supplementation duringpregnancy & lactationand 5 publications (3 data sets from RCTs) exclusively duringlactation. Some of these studies showed beneficial effects of docosahexaenoic acid (DHA) supplementation during pregnancy and/or lactation especially on visual acuity outcomes and some on long-term neurodevelopment; a few, showed positive effects on growth. There were also 15 RCTs involving term infants who received infant formula supplemented with DHA, which met our selection criteria. Many of these studies claimed a beneficial effect of such supplementation on visual, neural, or developmental outcomes and no effects on growth. Although new well designed and conducted studies are being published, evidence from RCTs does not demonstrate still a clear and consistent benefit of n-3 LCPUFA supplementation during pregnancy and/or lactation on term infants growth, neurodevelopment and visual acuity. These results should be interpreted with caution due to methodological limitations of the included studies.
Collapse
|