1
|
Dragunas G, Koster CS, de Souza Xavier Costa N, Melgert BN, Munhoz CD, Gosens R, Mauad T. Neuroplasticity and neuroimmune interactions in fatal asthma. Allergy 2025; 80:462-473. [PMID: 39484998 DOI: 10.1111/all.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/21/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Alteration of airway neuronal function and density and bidirectional interaction between immune cells and sensory peripheral nerves have been proposed to trigger and perpetuate inflammation that contribute to asthma severity. To date, few studies analysed neuroplasticity and neuroinflammation in tissue of asthmatic individuals. We hypothesized that the presence of these phenomena would be a pathological feature in fatal asthma. METHODS We have quantified the expression of the pan-neuronal marker PGP9.5 and the neuronal sensory-derived neuropeptide calcitonin gene-related peptide (CGRP) in the large airways of 12 individuals deceased due to an asthma attack and compared to 10 control lung samples. The proximity between nerve bundles to eosinophils, mast cells and CADM1+ cells was also quantified. We have additionally developed a hPSC-derived sensory neuron/mast cell co-culture model, from where mast cells were purified and differences in gene expression profile assessed. RESULTS Fatal asthma patients presented a higher PGP9.5 and CGRP positive area in the airways, indicating sensory neuroplasticity. Eosinophils, mast cells and CADM1+ cells were observed in close contact or touching the airway nerve bundles, and this was found to be statistically higher in fatal asthma samples. In vitro co-culture model showed that human mast cells adhere to sensory neurons and develop a distinct gene expression profile characterized by upregulated expression of genes related to heterophilic adhesion, activation and differentiation markers, such as CADM4, PTGS2, C-KIT, GATA2, HDC, CPA3, ATXN1 and VCAM1. CONCLUSIONS Our results support a significant role for neuroplasticity and neuroimmune interactions in fatal asthma, that could be implicated in the severity of the fatal attack. Accordingly, the presence of physical neuron and mast cell interaction leads to differential gene expression profile in the later cell type.
Collapse
Affiliation(s)
- Guilherme Dragunas
- Departamento de Farmacologia, Universidade de São Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Carli S Koster
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | | | - Barbro N Melgert
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Carolina D Munhoz
- Departamento de Farmacologia, Universidade de São Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Thais Mauad
- Departamento de Patologia, LIM-05, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Hu J, Zhao Q, Che D, Peng B, Wang X, CathyWang Z, Li L, Geng S. Epidermal Mechanical Scratching-Induced ROS Exacerbates the Itch-Scratch Cycle via TRPA1 Activation on Mast Cells in Atopic Dermatitis. J Invest Dermatol 2025:S0022-202X(25)00076-4. [PMID: 39892773 DOI: 10.1016/j.jid.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by the itch-scratch cycle. Itching, induced by irritants or allergens that stimulate pruriceptive neurons, triggers uncontrollable mechanical scratching, leading to epidermal barrier disruption, immune response activation, inflammatory mediator release, and further stimulation of pruritus conduction. Although oxidative stress and immune cells can exacerbate this cycle, the correlation between mechanical scratching, epidermal oxidative stress, and dermal mast cell activation in AD remains unclear. Here, by examining clinical specimens of AD, establishing a three-dimensional co-culture system of HaCaT and LAD2 cells, and utilizing a mechanical scratching mouse model of AD, we found that reactive oxygen species produced by mechanically stimulated HaCaT can activate TRPA1 on mast cells presenting tryptase (TPS). Implementing a free radical scavenger and TRPA1 inhibitor can inhibit mast cell activation and type II inflammatory response, thereby alleviating itching and skin lesions in AD. These results indicate that active oxygen scavenging combined with TRPA1 inhibition can inhibit the itch-scratch cycle, which may present a potential approach for the treatment of AD.
Collapse
Affiliation(s)
- Jiahui Hu
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P. R. China
| | - Qiang Zhao
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P. R. China
| | - Delu Che
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P. R. China
| | - Bin Peng
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P. R. China
| | - Xi Wang
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P. R. China
| | - Zhuochen CathyWang
- Department of Biomedical Sciences, Case Western Reserve University, Cleveland, 44106, USA
| | - Li Li
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P. R. China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P. R. China.
| |
Collapse
|
3
|
Shu F, Yu J, Liu Y, Wang F, Gou G, Wen M, Luo C, Lu X, Hu Y, Du Q, Xu J, Xie R. Mast cells: key players in digestive system tumors and their interactions with immune cells. Cell Death Discov 2025; 11:8. [PMID: 39814702 PMCID: PMC11735678 DOI: 10.1038/s41420-024-02258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
Mast cells (MCs) are critical components of both innate and adaptive immune processes. They play a significant role in protecting human health and in the pathophysiology of various illnesses, including allergies, cardiovascular diseases and autoimmune diseases. Recent studies in tumor-related research have demonstrated that mast cells exert a substantial influence on tumor cell behavior and the tumor microenvironment, exhibiting both pro- and anti-tumor effects. Specifically, mast cells not only secrete mediators related to pro-tumor function such as trypsin-like enzymes, chymotrypsin, vascular endothelial cell growth factor and histamine, but also mediators related to anti-tumor progression such as cystatin C and IL-17F. This dual role of mast cells renders them an under-recognized but very promising target for tumor immunotherapy. Digestive system tumors, characterized by high morbidity and associated mortality rates globally, are increasingly recognized as a significant healthcare burden. This paper examines the influence of mast cell-derived mediators on the development of tumors in the digestive system. It also explores the prognostic significance of mast cells in patients with various gastrointestinal cancers at different stages of the disease. Additionally, the article investigates the interactions between mast cells and immune cells, as well as the potential relationships among intratumoral bacteria, immune cells, and mast cell within digestive system microenvironment. The aim is to propose new strategies for the immunotherapy of digestive system tumors by targeting mast cells.
Collapse
Affiliation(s)
- Feihong Shu
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Yu
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Youjia Liu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Wang
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoyou Gou
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Min Wen
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Chen Luo
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Xianmin Lu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Yanxia Hu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Du
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jingyu Xu
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Rui Xie
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
4
|
He C, Wang Q, Gao J, Chen H, Tong P. Neuro-immune regulation in allergic Diseases: Role of neuropeptides. Int Immunopharmacol 2025; 145:113771. [PMID: 39667047 DOI: 10.1016/j.intimp.2024.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
The role of neuro-immune interaction in allergic diseases, a group of common immune system diseases, has garnered increasing attention. Neuropeptides, as a crucial component of neuro-immune crosstalk with local neuroendocrine and signaling functions, play a significant role that must not be overlooked. Neuropeptides are released by neurons and even some immune cells, and mediate neuro-immune crosstalk by activating relevant specific receptors on immune cells. Recent studies have found that neuropeptides have a certain regulatory effect on allergic diseases, which could be beneficial or detrimental for the development of allergic diseases. Nevertheless, the precise mechanism of neuropeptides in allergic diseases remains unclear, particularly in the context of food allergy where their role is poorly understood. This review summarized the interplay between neuropeptides and different immune cells, as well as their current research progress in several common allergic diseases: atopic dermatitis, allergic asthma, and food allergy. It is evident that neuropeptides such as substance P, calcitonin gene-related peptide, vasoactive intestinal peptide, and neuromedin U, exert important regulatory effects on allergic diseases, yet further investigation is required to fully elucidate their mechanisms of action, which may contribute to better understanding of the onset and progression of allergic diseases and finding better immunomodulatory strategies.
Collapse
Affiliation(s)
- Cuiying He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science & Technology, Nanchang University, Nanchang 330047, China
| | - Qian Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science & Technology, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science & Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| |
Collapse
|
5
|
Kotrba J, Müller I, Pausder A, Hoffmann A, Camp B, Boehme JD, Müller AJ, Schreiber J, Bruder D, Kahlfuss S, Dudeck A, Stegemann-Koniszewski S. Innate players in Th2 and non-Th2 asthma: emerging roles for the epithelial cell, mast cell, and monocyte/macrophage network. Am J Physiol Cell Physiol 2024; 327:C1373-C1383. [PMID: 39401422 DOI: 10.1152/ajpcell.00488.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 11/12/2024]
Abstract
Asthma is one of the most common chronic respiratory diseases and is characterized by airway inflammation, increased mucus production, and structural changes in the airways. Recently, there is increasing evidence that the disease is much more heterogeneous than expected, with several distinct asthma endotypes. Based on the specificity of T cells as the best-known driving force in airway inflammation, bronchial asthma is categorized into T helper cell 2 (Th2) and non-Th2 asthma. The most studied effector cells in Th2 asthma include T cells and eosinophils. In contrast to Th2 asthma, much less is known about the pathophysiology of non-Th2 asthma, which is often associated with treatment resistance. Besides T cells, the interaction of myeloid cells such as monocytes/macrophages and mast cells with the airway epithelium significantly contributes to the pathogenesis of asthma. However, the underlying molecular regulation and particularly the specific relevance of this cellular network in certain asthma endotypes remain to be understood. In this review, we summarize recent findings on the regulation of and complex interplay between epithelial cells and the "nonclassical" innate effector cells mast cells and monocytes/macrophages in Th2 and non-Th2 asthma with the ultimate goal of providing the rationale for future research into targeted therapy regimens.
Collapse
Affiliation(s)
- Johanna Kotrba
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ilka Müller
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Pausder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Aaron Hoffmann
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Belinda Camp
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Julia D Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas J Müller
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sascha Kahlfuss
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
6
|
Sun M, Chen ZR, Ding HJ, Feng J. Molecular and cellular mechanisms of itch sensation and the anti-itch drug targets. Acta Pharmacol Sin 2024:10.1038/s41401-024-01400-x. [PMID: 39424975 DOI: 10.1038/s41401-024-01400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
Itch is an uncomfortable feeling that evokes a desire to scratch. This protective reflex can effectively eliminate parasites that invade the skin. When itchy skin becomes severe or lasts for more than six weeks, it has deleterious effects on both quality of life and productivity. Despite decades of research, the complete molecular and cellular coding of chronic itch remains elusive. This persistent condition often defies treatment, including with antihistamines, and poses a significant societal challenge. Obtaining pathophysiological insights into the generation of chronic itch is essential for understanding its mechanisms and the development of innovative anti-itch medications. In this review we provide a systematic overview of the recent advancement in itch research, alongside the progress made in drug discovery within this field. We have examined the diversity and complexity of the classification and mechanisms underlying the complex sensation of itch. We have also delved into recent advancements in the field of itch mechanism research and how these findings hold potential for the development of new itch treatment medications. But the treatment of clinical itch symptoms still faces significant challenges. Future research needs to continue to delve deeper, not only to discover more itch-related pathways but also to explore how to improve treatment efficacy through multitarget or combination therapy.
Collapse
Affiliation(s)
- Meng Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhen-Ru Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Juan Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Wollam J, Solomon M, Villescaz C, Lanier M, Evans S, Bacon C, Freeman D, Vasquez A, Vest A, Napora J, Charlot B, Cavarlez C, Kim A, Dvorak L, Selfridge B, Huang L, Nevarez A, Dedman H, Brooks J, Frischbutter S, Metz M, Serhan N, Gaudenzio N, Timony G, Martinborough E, Boehm MF, Viswanath V. Inhibition of mast cell degranulation by novel small molecule MRGPRX2 antagonists. J Allergy Clin Immunol 2024; 154:1033-1043. [PMID: 38971540 DOI: 10.1016/j.jaci.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Mas-related G protein-coupled receptor X2 (MRGPRX2) is a promiscuous receptor on mast cells that mediates IgE-independent degranulation and has been implicated in multiple mast cell-mediated disorders, including chronic urticaria, atopic dermatitis, and pain disorders. Although it is a promising therapeutic target, few potent, selective, small molecule antagonists have been identified, and functional effects of human MRGPRX2 inhibition have not been evaluated in vivo. OBJECTIVE We sought to identify and characterize novel, potent, and selective orally active small molecule MRGPRX2 antagonists for potential treatment of mast cell-mediated disease. METHODS Antagonists were identified using multiple functional assays in cell lines overexpressing human MRGPRX2, LAD2 mast cells, human peripheral stem cell-derived mast cells, and isolated skin mast cells. Skin mast cell degranulation was evaluated in Mrgprb2em(-/-) knockout and Mrgprb2em(MRGPRX2) transgenic human MRGPRX2 knock-in mice by assessment of agonist-induced skin vascular permeability. Ex vivo skin mast cell degranulation and associated histamine release was evaluated by microdialysis of human skin tissue samples. RESULTS MRGPRX2 antagonists potently inhibited agonist-induced MRGPRX2 activation and mast cell degranulation in all mast cell types tested in an IgE-independent manner. Orally administered MRGPRX2 antagonists also inhibited agonist-induced degranulation and resulting vascular permeability in MRGPRX2 knock-in mice. In addition, antagonist treatment dose dependently inhibited agonist-induced degranulation in ex vivo human skin. CONCLUSIONS MRGPRX2 small molecule antagonists potently inhibited agonist-induced mast cell degranulation in vitro and in vivo as well as ex vivo in human skin, supporting potential therapeutic utility as a novel treatment for multiple human diseases involving clinically relevant mast cell activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alan Vest
- Escient Pharmaceuticals, San Diego, Calif
| | - Jim Napora
- Escient Pharmaceuticals, San Diego, Calif
| | | | | | - Andrew Kim
- Escient Pharmaceuticals, San Diego, Calif
| | | | | | | | | | | | | | - Stefan Frischbutter
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)-University Toulouse III, Toulouse, France
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)-University Toulouse III, Toulouse, France; Genoskin SAS, Toulouse, France
| | | | | | | | | |
Collapse
|
8
|
Borbély É, Pethő G. Drug effects on neuropeptides and their receptors: Big hopes but moderate success in the treatment of chronic pain. Curr Opin Pharmacol 2024; 77:102474. [PMID: 39121555 DOI: 10.1016/j.coph.2024.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Neuropeptides, including tachykinins, CGRP, and somatostatin, are localized in a peptidergic subgroup of nociceptive primary afferent neurons. Tachykinins and CGRP are pronociceptive, somatostatin is an antinociceptive mediator. Intensive drug research has been performed to develop tachykinin and CGRP antagonists, and somatostatin agonists as analgesics. CGRP receptor antagonists are efficacious and well-tolerated drugs in migraine. Monoclonal antibodies against CGRP or its receptor are used for the prophylactic treatment of migraine. Tachykinin NK1 receptor antagonists failed as analgesics but are used for chemotherapy-induced nausea and vomiting. New, orally active somatostatin 4 receptor agonists are promising drug candidates for treating various pain conditions.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary; Centre for Neuroscience, University of Pécs, Ifjúság Str. 6, H-7624 Pécs, Hungary.
| | - Gábor Pethő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary; Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, H-7624 Pécs, Hungary
| |
Collapse
|
9
|
Cao M, Gao Y. Mast cell stabilizers: from pathogenic roles to targeting therapies. Front Immunol 2024; 15:1418897. [PMID: 39148726 PMCID: PMC11324444 DOI: 10.3389/fimmu.2024.1418897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Mast cells (MCs) are bone-marrow-derived haematopoietic cells that are widely distributed in human tissues. When activated, they will release tryptase, histamine and other mediators that play major roles in a diverse array of diseases/disorders, including allergies, inflammation, cardiovascular diseases, autoimmune diseases, cancers and even death. The multiple pathological effects of MCs have made their stabilizers a research hotspot for the treatment of related diseases. To date, the clinically available MC stabilizers are limited. Considering the rapidly increasing incidence rate and widespread prevalence of MC-related diseases, a comprehensive reference is needed for the clinicians or researchers to identify and choose efficacious MC stabilizers. This review analyzes the mechanism of MC activation, and summarizes the progress made so far in the development of MC stabilizers. MC stabilizers are classified by the action mechanism here, including acting on cell surface receptors, disturbing signal transduction pathways and interfering exocytosis systems. Particular emphasis is placed on the clinical applications and the future development direction of MC stabilizers.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Jordan J, Levy JH, Gonzalez-Estrada A. Perioperative anaphylaxis: updates on pathophysiology. Curr Opin Allergy Clin Immunol 2024; 24:183-188. [PMID: 38743470 DOI: 10.1097/aci.0000000000000994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
PURPOSE OF REVIEW Perioperative anaphylaxis has historically been attributed to IgE/FcεRI-mediated reactions; there is now recognition of allergic and nonallergic triggers encompassing various reactions beyond IgE-mediated responses. This review aims to present recent advancements in knowledge regarding the mechanisms and pathophysiology of perioperative anaphylaxis. RECENT FINDINGS Emerging evidence highlights the role of the mast-cell related G-coupled protein receptor X2 pathway in direct mast cell degranulation, shedding light on previously unknown mechanisms. This pathway, alongside traditional IgE/FcεRI-mediated reactions, contributes to the complex nature of anaphylactic reactions. Investigations into the microbiota-anaphylaxis connection are ongoing, with potential implications for future treatment strategies. While serum tryptase levels serve as mast cell activation indicators, identifying triggers remains challenging. A range of mediators have been associated with anaphylaxis, including vasoactive peptides, proteases, lipid molecules, cytokines, chemokines, interleukins, complement components, and coagulation factors. SUMMARY Further understanding of clinical endotypes and the microenvironment where anaphylactic reactions unfold is essential for standardizing mediator testing and characterization in perioperative anaphylaxis. Ongoing research aims to elucidate the mechanisms, pathways, and mediators involved across multiple organ systems, including the cardiovascular, respiratory, and integumentary systems, which will be crucial for improving patient outcomes.
Collapse
Affiliation(s)
- Justin Jordan
- TMC Health Medical Education Program, Tucson, Arizona
| | - Jerrold H Levy
- Departments of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina
| | | |
Collapse
|
11
|
Robles-Velasco K, Cevallos-Levicek D, Mosnaim G, Fok JS, Cherrez-Ojeda I. Case report of an unusual allergic reaction to a routine skin prick test performed in an outpatient clinic: Diagnosis, management, and knowledge gaps. Medicine (Baltimore) 2024; 103:e38628. [PMID: 38968527 PMCID: PMC11224818 DOI: 10.1097/md.0000000000038628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND The skin prick test (SPT) is a standard procedure in allergy/immunology clinics, crucial for evaluating conditions like allergic rhinitis and food allergies. As a cornerstone in investigating immunoglobulin E-mediated allergy, it plays a vital role in diagnosing allergies, including those triggered by common dust mites like Dermatophagoides pteronyssinus, Dermatophagoides farinae, Euroglyphus maynei, and Blomia tropicalis. Despite its widespread use, adverse reactions to SPT are uncommon (15 per 100,000 patients), though the procedure is not entirely risk-free. This article presents a clinical case involving a 17-year-old female who experienced a moderately delayed allergic reaction 120 minutes post-SPT, managed effectively with subsequent symptom resolution. METHODS The patient, with a history of persistent rhinorrhea, itchy nose, eyes, and postnasal drip, sought consultation due to worsening symptoms. Diagnostic measures, including patient-reported outcomes and SPT with a standard aeroallergen panel, revealed sensitization to various allergens. RESULTS Post-test, the patient reported ocular pruritus, left eyelid swelling, and moderate rhinorrhea, persisting for about 24 hours. On the subsequent medical visit, the patient received rupatadine and deflazacort, leading to symptom resolution within 3 hours. CONCLUSION This article delves into a systemic allergic reaction post-SPT, emphasizing the 2 main stages of type I hypersensitivity reactions. While the acute phase involves mast cell-driven mediators within 15 minutes, the delayed phase (4-8 hours) includes de novo cytokine release. Vigilance regarding symptom onset and differentiation between mild and severe reactions is crucial. Notably, the absence of specific waiting time guidelines post-SPT underscores the need for reporting to enhance understanding and subsequent management. Performing these procedures in specialized centers with qualified professionals is essential for effectively managing potential anaphylactic reactions. Addressing these knowledge gaps will contribute to enhanced patient safety during diagnostic procedures.
Collapse
Affiliation(s)
- Karla Robles-Velasco
- Universidad Espíritu Santo, Samborondón, Ecuador
- Respiralab, Respiralab Research Group, Guayaquil, Ecuador
| | - Denisse Cevallos-Levicek
- Universidad Espíritu Santo, Samborondón, Ecuador
- Respiralab, Respiralab Research Group, Guayaquil, Ecuador
| | - Giselle Mosnaim
- Division of Allergy and Immunology, Department of Medicine, NorthShore University Health System, Evanston, Illinois, USA
| | - Jie Shen Fok
- Department of Respiratory Medicine and General Medicine, Box Hill Hospital, Melbourne, Australia
- Monash Lung, Sleep and Allergy/Immunology, Monash Medical Centre, Melbourne, Australia
- Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Ivan Cherrez-Ojeda
- Universidad Espíritu Santo, Samborondón, Ecuador
- Respiralab, Respiralab Research Group, Guayaquil, Ecuador
| |
Collapse
|
12
|
Kim B, Rothenberg ME, Sun X, Bachert C, Artis D, Zaheer R, Deniz Y, Rowe P, Cyr S. Neuroimmune interplay during type 2 inflammation: Symptoms, mechanisms, and therapeutic targets in atopic diseases. J Allergy Clin Immunol 2024; 153:879-893. [PMID: 37634890 PMCID: PMC11215634 DOI: 10.1016/j.jaci.2023.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Type 2 inflammation is characterized by overexpression and heightened activity of type 2 cytokines, mediators, and cells that drive neuroimmune activation and sensitization to previously subthreshold stimuli. The consequences of altered neuroimmune activity differ by tissue type and disease; they include skin inflammation, sensitization to pruritogens, and itch amplification in atopic dermatitis and prurigo nodularis; airway inflammation and/or hyperresponsiveness, loss of expiratory volume, airflow obstruction and increased mucus production in asthma; loss of sense of smell in chronic rhinosinusitis with nasal polyps; and dysphagia in eosinophilic esophagitis. We describe the neuroimmune interactions that underlie the various sensory and autonomic pathologies in type 2 inflammatory diseases and present recent advances in targeted treatment approaches to reduce type 2 inflammation and its associated symptoms in these diseases. Further research is needed to better understand the neuroimmune mechanisms that underlie chronic, sustained inflammation and its related sensory pathologies in diseases associated with type 2 inflammation.
Collapse
Affiliation(s)
- Brian Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, Calif
| | - Claus Bachert
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Muenster, Muenster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | | | - Yamo Deniz
- Regeneron Pharmaceuticals, Tarrytown, NY
| | | | - Sonya Cyr
- Regeneron Pharmaceuticals, Tarrytown, NY
| |
Collapse
|
13
|
Wang J, Wu Y, Li X, Wang X, Yang S. Bergapten inhibits airway inflammation and MRGPRX2-mediated mast cells activation by targeting NR4A1. Int Immunopharmacol 2024; 130:111798. [PMID: 38442583 DOI: 10.1016/j.intimp.2024.111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Asthma is a serious global health problem affecting 300 million persons around the world. Mast cells (MCs) play a major role in airway hyperresponsiveness (AHR) and inflammation in asthma, their exact effector mechanisms remain unclear. Here, we aim to investigate the inhibitory effect of Bergapten (BER) on MRGPRX2-mediated MCs activation through asthma model. Mouse model of asthma was established to examine the anti-asthmatic effects of BER. Calcium (Ca2+) influx, β-hexosaminidase and histamine release were used to assess MCs degranulation in vitro. RNA-Seq technique was conducted to study the gene expression profile. RT-PCR and Western Blotting were performed to examine targeting molecules expression. BER inhibited AHR, inflammation, mucous secretion, collagen deposition and lung MCs activation in asthma model. BER dramatically reduced levels of IL4, IL-5, and IL-13 in bronchoalveolar lavage fluid (BALF), as well as inflammatory cells. BER also reduced serum IgE levels. Pretreatment MCs with BER inhibited substance P (SP)-induced Ca2+ influx, degranulation and cytokines release from MCs. BER also reduced the phosphorylation levels of PKC, PLC, IP3R, AKT and ERK, which were induced by SP. Furthermore, RNA-seq analysis showed that SP up-regulated 68 genes in MCs, while were reversed by BER. Among these 68 genes, SP up-regulated NR4A1 expression, and this effect was inhibited by BER. Meanwhile, knockdown of NR4A1 significantly attenuated SP-induced MCs degranulation. In conclusion, NR4A1 plays a major role in MRGPRX2-mediated MCs activation, BER inhibited AHR and inflammation in asthmatic model by inhibiting MCs activation through MRGPRX2-NR4A1 pathway.
Collapse
Affiliation(s)
- Jue Wang
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Wu
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiao Li
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xinghui Wang
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shuanying Yang
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
14
|
Lerner L, Babina M, Zuberbier T, Stevanovic K. Beyond Allergies-Updates on The Role of Mas-Related G-Protein-Coupled Receptor X2 in Chronic Urticaria and Atopic Dermatitis. Cells 2024; 13:220. [PMID: 38334612 PMCID: PMC10854933 DOI: 10.3390/cells13030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Mast cells (MCs) are an important part of the immune system, responding both to pathogens and toxins, but they also play an important role in allergic diseases, where recent data show that non-IgE-mediated activation is also of relevance, especially in chronic urticaria (CU) and atopic dermatitis (AD). Skin MCs express Mas-related G-protein-coupled receptor X2 (MRGPRX2), a key protein in non-IgE-dependent MC degranulation, and its overactivity is one of the triggering factors for the above-mentioned diseases, making MRGPRX2 a potential therapeutic target. Reviewing the latest literature revealed our need to focus on the discovery of MRGPRX2 activators as well as the ongoing vast research towards finding specific MRGPRX2 inhibitors for potential therapeutic approaches. Most of these studies are in their preliminary stages, with one drug currently being investigated in a clinical trial. Future studies and improved model systems are needed to verify whether any of these inhibitors may have the potential to be the next therapeutic treatment for CU, AD, and other pseudo-allergic reactions.
Collapse
Affiliation(s)
- Liron Lerner
- Institute of Allergology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (L.L.); (M.B.); (T.Z.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, 12203 Berlin, Germany
| | - Magda Babina
- Institute of Allergology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (L.L.); (M.B.); (T.Z.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Institute of Allergology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (L.L.); (M.B.); (T.Z.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, 12203 Berlin, Germany
| | - Katarina Stevanovic
- Institute of Allergology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (L.L.); (M.B.); (T.Z.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, 12203 Berlin, Germany
| |
Collapse
|
15
|
Jia T, Che D, Zheng Y, Zhang H, Li Y, Zhou T, Peng B, Du X, Zhu L, An J, Geng S. Mast Cells Initiate Type 2 Inflammation through Tryptase Released by MRGPRX2/MRGPRB2 Activation in Atopic Dermatitis. J Invest Dermatol 2024; 144:53-62.e2. [PMID: 37482287 DOI: 10.1016/j.jid.2023.06.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/25/2023]
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease characterized by T helper 2 inflammation as the core pathogenic mechanism. MRGPRX2 plays a key role in nonhistamine allergies and neuroimmune mechanisms in chronic inflammatory dermatitis. However, the role of MRGPRX2 in AD and the development of type 2 inflammation is not yet clear. This study aimed to define the role of MRGPRX2 in type 2 inflammation development and cytokine release in AD by determining its levels in patients with AD and healthy controls. Furthermore, MrgprB2-conditional knockout (MrgprB2-/-) and wild-type mice were used to construct an MC903-induced AD mouse model to observe skin inflammation and cytokine release. Tryptase and its antagonist were applied separately to MrgprB2-/- mice with AD and wild-type mice with AD to confirm the role of the MRGPRB2-tryptase axis in the development of type 2 inflammation in AD. We found that AD severity and type 2 cytokine levels were not associated with IgE levels but were associated with MRGPRX2/MRGPRB2 expression. MrgprB2-/- mice with AD showed milder phenotypes and inflammatory infiltration in the skin than wild-type mice with AD. Tryptase released by MRGPRX2/MRGPRB2 activation is involved in the release of type 2 cytokines, which contributes to inflammatory development in AD.
Collapse
Affiliation(s)
- Tao Jia
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Delu Che
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Yi Zheng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Huan Zhang
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Yaxiang Li
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Tong Zhou
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Bin Peng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Xueshan Du
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Longfei Zhu
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Jingang An
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
16
|
Zhou Y, Chen R, Kong L, Sun Y, Deng J. Neuroimmune communication in allergic rhinitis. Front Neurol 2023; 14:1282130. [PMID: 38178883 PMCID: PMC10764552 DOI: 10.3389/fneur.2023.1282130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
The prevalence rate of allergic rhinitis (AR) is high worldwide. The inhalation of allergens induces AR, which is an immunoglobulin E-mediated and type 2 inflammation-driven disease. Recently, the role of neuroimmune communication in AR pathogenesis has piqued the interest of the scientific community. Various neuropeptides, such as substance P (SP), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), nerve growth factor (NGF), and neuromedin U (NMU), released via "axon reflexes" or "central sensitization" exert regulatory effects on immune cells to elicit "neurogenic inflammation," which contributes to nasal hyperresponsiveness (NHR) in AR. Additionally, neuropeptides can be produced in immune cells. The frequent colocalization of immune and neuronal cells at certain anatomical regions promotes the establishment of neuroimmune cell units, such as nerve-mast cells, nerve-type 2 innate lymphoid cells (ILC2s), nerve-eosinophils and nerve-basophils units. Receptors expressed both on immune cells and neurons, such as TRPV1, TRPA1, and Mas-related G protein-coupled receptor X2 (MRGPRX2) mediate AR pathogenesis. This review focused on elucidating the mechanisms underlying neuroimmune communication in AR.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Ru Chen
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Lili Kong
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Yaoyao Sun
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Jing Deng
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| |
Collapse
|
17
|
Zhang Y, Bai H, Zhang W, Gao J, Gao C, Deng T, Liu X, Sun X, Liu Y, Wang N, Wu Y. miR-212/132 attenuates OVA-induced airway inflammation by inhibiting mast cells activation through MRGPRX2 and ASAP1. Exp Cell Res 2023; 433:113828. [PMID: 37875175 DOI: 10.1016/j.yexcr.2023.113828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Allergic asthma is a chronic inflammatory disease of airways involving complex mechanisms, including MAS-related GPR family member X2 (MRGPRX2) and its orthologue MRGPRB2 on mast cells (MCs). Although miRNAs have been previously shown to related to allergic asthma, the role of miR-212/132 in this process has not been studied. In this study, the predicted pairing of miRNAs and MRGPRX2 (MRGPRB2) mRNAs was carried out by online databases and the function was verify using in vivo and in vitro experiments. Database prediction showed that miR-212/132 interact with MRGPRX2 and MRGPRB2. miR-212/132 mimics alleviated MRGPRB2 mRNA expression as well as pathology changes in lungs and AHR of mice with airway inflammation in vivo. The expression level of MRGPRB2 in the mice lungs after inhaled OVA was also decreased by miR-212/132 mimics. Meanwhile, miR-212/132 inhibited MCs degranulation and cytokines release triggered by C48/80 in vitro. Further, ASAP1 (ARF GTPase-Activating Protein 1) was selected from the junction related pathways using RNAseq and KEGG enrichment. ASAP1 mRNA level was upregulated in airway inflammation and MCs activation and decreased by miR-212/132 mimics. miR-212/132 attenuated OVA-induced airway inflammation by inhibiting MCs activation through MRGPRX2 and ASAP1.
Collapse
Affiliation(s)
- Yongjing Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Haoyun Bai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Wen Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jie Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Chang Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Tingting Deng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xinyu Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, Shaanxi, China
| | - Xiuzhen Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, Shaanxi, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, Shaanxi, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.
| | - Yuanyuan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, Shaanxi, China.
| |
Collapse
|
18
|
La Sorda M, Fossati M, Graffeo R, Ferraironi M, De Rosa MC, Buzzonetti A, Righino B, Zampetti N, Fattorossi A, Nucera E, Aruanno A, Ferrandina G, Apostol AI, Buonomo A, Scambia G, Sanguinetti M, Battaglia A. A Modified Basophil Activation Test for the Clinical Management of Immediate Hypersensitivity Reactions to Paclitaxel: A Proof-of-Concept Study. Cancers (Basel) 2023; 15:5818. [PMID: 38136365 PMCID: PMC10741873 DOI: 10.3390/cancers15245818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Immediate hypersensitivity reactions (iHSRs) to taxanes are observed in 6% and 4% of gynecologic and breast cancer patients, respectively. Drug desensitization is the only option, as no comparable alternative therapy is available. Surfactants in the taxane formulation have been implicated in the immunopathogenesis of iHSRs, although sporadic skin test (ST) positivity and iHSRs to nab-paclitaxel have suggested the involvement of the taxane moiety and/or IgE-mediated pathomechanisms. In vitro diagnostic tests might offer insights into mechanisms underlying iHSRs to taxanes. The aim of the present study was to address this unmet need by developing a novel basophil activation test (BAT). The study included patients (n = 31) undergoing paclitaxel/carboplatin therapy. Seventeen patients presented with iHSRs to paclitaxel (iHSR-Taxpos), and eleven were tolerant (iHSR-Taxneg). Fourteen patients presented with iHSRs to carboplatin (iHSR-Plpos), and fourteen were tolerant (iHSR-Plneg). The BAT median stimulation index (SI) values were 1.563 (range, 0.02-4.11; n = 11) and -0.28 (range -4.88-0.07, n = 11) in iHSR-Taxpos and iHSR-Taxneg, respectively. The BAT median SI values were 4.45 (range, 0.1-26.7; n = 14) and 0 (range, -0.51-1.65; n = 12) in iHSR-Plpos and iHSR-Plneg, respectively. SI levels were not associated with iHSR severity grading. Comparing BAT results in iHSR-Taxpos and iHSR-Taxneg showed the area under the receiver operator characteristic (ROC) curve to be 0.9752 (p = 0.0002). The cutoff calculated by the maximized likelihood ratio identified 90.91% of iHSR-Taxpos patients and 90.91% of iHSR-Taxneg patients. Comparing BAT results for iHSR-Plpos and iHSR-Plneg showed the area under the ROC curve to be 0.9286 (p = 0.0002). The cutoff calculated by the maximized likelihood ratio identified 78.57% of iHSR-Plpos patients and 91.67% of iHSR-Plneg patients. Most iHSR-Taxpos patients for which ST was available (10/11) scored ST-negative and BAT-positive, whereas most iHSR-Plpos patients for which ST was available (14/14) scored both BAT- and ST-positive. This suggested the intervention of non-IgE-mediated mechanisms in iHSR-Taxpos patients. Consistent with this view, an in silico molecular docking analysis predicted the high affinity of paclitaxel to the degranulation-competent MRGPRX2 receptor. This hypothesis warrants further in vitro investigations. In conclusion, the present study provides preliminary proof-of-concept evidence that this novel BAT has potential utility in understanding mechanisms underlying iHSRs to taxanes.
Collapse
Affiliation(s)
- Marilena La Sorda
- Microbiology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.L.S.); (R.G.); (M.S.)
| | - Marco Fossati
- Cytometry Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.F.); (A.B.); (N.Z.); (A.F.)
| | - Rosalia Graffeo
- Microbiology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.L.S.); (R.G.); (M.S.)
| | - Manuela Ferraironi
- Microbiology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.L.S.); (R.G.); (M.S.)
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies ‘‘Giulio Natta’’ (SCITEC)-CNR, 00168 Rome, Italy; (M.C.D.R.); (B.R.)
| | - Alexia Buzzonetti
- Cytometry Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.F.); (A.B.); (N.Z.); (A.F.)
| | - Benedetta Righino
- Institute of Chemical Sciences and Technologies ‘‘Giulio Natta’’ (SCITEC)-CNR, 00168 Rome, Italy; (M.C.D.R.); (B.R.)
| | - Nicole Zampetti
- Cytometry Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.F.); (A.B.); (N.Z.); (A.F.)
| | - Andrea Fattorossi
- Cytometry Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.F.); (A.B.); (N.Z.); (A.F.)
| | - Eleonora Nucera
- Allergy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.N.); (A.A.); (A.B.)
| | - Arianna Aruanno
- Allergy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.N.); (A.A.); (A.B.)
| | - Gabriella Ferrandina
- Gynecology Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.F.); (G.S.)
| | - Adriana Ionelia Apostol
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Alessandro Buonomo
- Allergy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.N.); (A.A.); (A.B.)
| | - Giovanni Scambia
- Gynecology Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.F.); (G.S.)
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.L.S.); (R.G.); (M.S.)
| | - Alessandra Battaglia
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
19
|
Gauthier MM, Hayoz S, Banek CT. Neuroimmune interplay in kidney health and disease: Role of renal nerves. Auton Neurosci 2023; 250:103133. [PMID: 38061177 PMCID: PMC10748436 DOI: 10.1016/j.autneu.2023.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Renal nerves and their role in physiology and disease have been a topic of increasing interest in the past few decades. Renal inflammation contributes to many cardiorenal disease conditions, including hypertension, chronic kidney disease, and polycystic kidney disease. Much is known about the role of renal sympathetic nerves in physiology - they contribute to the regulation of sodium reabsorption, renin release, and renal vascular resistance. In contrast, far less is known about afferent, or "sensory," renal nerves, which convey signals from the kidney to the brain. While much remains unknown about these nerves in the context of normal physiology, even less is known about their contribution to disease states. Furthermore, it has become apparent that the crosstalk between renal nerves and the immune system may augment or modulate disease. Research from other fields, especially pain research, has provided critical insight into neuroimmune crosstalk. Sympathetic renal nerve activity may increase immune cell recruitment, but far less work has been done investigating the interplay between afferent renal nerves and the immune system. Evidence from other fields suggests that inflammation may augment afferent renal nerve activity. Furthermore, these nerves may exacerbate renal inflammation through the release of afferent-specific neurotransmitters.
Collapse
Affiliation(s)
- Madeline M Gauthier
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, USA
| | - Sebastien Hayoz
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, USA
| | - Christopher T Banek
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, USA.
| |
Collapse
|
20
|
Mahmoud O, Oladipo O, Mahmoud RH, Yosipovitch G. Itch: from the skin to the brain - peripheral and central neural sensitization in chronic itch. Front Mol Neurosci 2023; 16:1272230. [PMID: 37849619 PMCID: PMC10577434 DOI: 10.3389/fnmol.2023.1272230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023] Open
Abstract
Similar to chronic pain, chronic itch is frequently linked to neural sensitization, a phenomenon wherein the nervous system becomes hypersensitive to stimuli. This process of neural sensitization of chronic itch is orchestrated by various signaling pathways and mediators in both the peripheral and central nervous systems. At the level of the peripheral nervous system, inflammation and neuroimmune interactions induce plastic changes to peripheral nerve fibers, thereby amplifying the transmission of itch signaling. Neural sensitization in the central nervous system occurs at both the spinal cord and brain levels. At the level of the spinal cord, it involves hyperactivity of itch-activating spinal pathways, dysfunction of spinal inhibitory circuits, and attenuation of descending supraspinal inhibitory pathways. In the brain, neural sensitization manifests as structural and functional changes to itch-associated brain areas and networks. Currently, we have a diverse array of neuroimmune-modulating therapies targeting itch neural sensitization mechanisms to help with providing relief to patients with chronic itch. Itch research is a dynamic and continually evolving field, and as we grow in our understanding of chronic itch mechanisms, so will our therapeutic toolbox. Further studies exploring the peripheral and central neural sensitization mechanisms in the context of chronic itch are needed.
Collapse
Affiliation(s)
| | | | | | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
21
|
Lin L, Liang Y, Cao T, Huang Y, Li W, Li J, Wang J, Peng X, Ge Y, Li Y, Li L. Transcriptome profiling and ceRNA network of small extracellular vesicles from resting and degranulated mast cells. Epigenomics 2023; 15:845-862. [PMID: 37846550 DOI: 10.2217/epi-2023-0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Aim: This study aimed to investigate the transcriptomic characteristics and interactions between competitive endogenous RNAs (ceRNAs) within small extracellular vesicles (sEVs) derived from mast cells (MCs). Methods: Transcriptome sequencing analyzed lncRNA, circRNA and mRNA expression in resting and degranulated MC-derived sEVs. Constructed ceRNA regulatory network through correlation analysis and target gene prediction. Results: Differentially expressed 1673 mRNAs, 173 lncRNAs and 531 circRNAs were observed between resting and degranulated MCs-derived sEVs. Enrichment analysis revealed involvement of neurodegeneration, infection and tumor pathways. CeRNA networks included interactions between lncRNA-miRNA, circRNA-miRNA and miRNA-mRNA, targeting genes in the hippo and wnt signaling pathways linked to tumor immune regulation. Conclusion: This study provides valuable insights into MC-sEV molecular mechanisms, offering significant data resources for further investigations.
Collapse
Affiliation(s)
- Lihui Lin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Yuting Liang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, 215006, P.R. China
| | - Tianyu Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Yuji Huang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Weize Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Jia Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Juan Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Xia Peng
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Yiqin Ge
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P.R. China
| | - Yanning Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| |
Collapse
|
22
|
Brooun A, Zhang J, Li C, Lam R, Cheng H, Shoemaker R, Daly J, Olaharski A. The pharmacologic and toxicologic characterization of the potent and selective KRAS G12D inhibitors ERAS-4693 and ERAS-5024. Toxicol Appl Pharmacol 2023; 474:116601. [PMID: 37321326 DOI: 10.1016/j.taap.2023.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Two potent and selective KRASG12D inhibitors, ERAS-4693 and ERAS-5024, were generated as possible clinical candidates to treat patients harboring G12D mutations in solid tumors. Both molecules exhibited strong anti-tumor activity in the KRASG12D mutant PDAC xenograft mouse models while ERAS-5024 also showed tumor growth inhibition when administered on an intermittent dosing regimen. Acute dose-limiting toxicity consistent with an allergic reaction was observed for both molecules shortly after administration at doses just above those which demonstrated anti-tumor activity, indicative of a narrow therapeutic index. A series of studies were subsequently conducted to identify a common underlying mechanism for the observed toxicity, including CETSA® (Cellular Thermal Shift Assay) as well as several functional off-target screens. Both ERAS-4693 and ERAS-5024 were identified to agonize MRGPRX2 which has been linked to pseudo-allergic reactions. In vivo toxicologic characterization of both molecules included repeat-dose studies in the rat and dog. Dose-limiting toxicities were observed in both species with ERAS-4693 and ERAS-5024 and plasma exposure levels at the maximum tolerated doses were generally below that which caused strong anti-tumor activity, supporting the initial observation of a narrow therapeutic index. Additional overlapping toxicities included a reduction in reticulocytes and clinical pathological changes suggestive of an inflammatory response. Furthermore, increases in plasma histamine were observed in dogs administered ERAS-5024, supporting the hypothesis that MRGPRX2 agonism may be the cause of the pseudo-allergic reaction. This work highlights the importance of balancing both the safety and efficacy of KRASG12D inhibitors as this class of molecules begins to enter clinical development.
Collapse
|
23
|
Yadav S, Shah D, Dalai P, Agrawal-Rajput R. The tale of antibiotics beyond antimicrobials: Expanding horizons. Cytokine 2023; 169:156285. [PMID: 37393846 DOI: 10.1016/j.cyto.2023.156285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Antibiotics had proved to be a godsend for mankind since their discovery. They were once the magical solution to the vexing problem of infection-related deaths. German scientist Paul Ehrlich had termed salvarsan as the silver bullet to treatsyphilis.As time passed, the magic of newly discovered silver bullets got tarnished with raging antibiotic resistance among bacteria and associated side-effects. Still, antibiotics remain the primary line of treatment for bacterial infections. Our understanding of their chemical and biological activities has increased immensely with advancement in the research field. Non-antibacterial effects of antibiotics are studied extensively to optimise their safer, broad-range use. These non-antibacterial effects could be both useful and harmful to us. Various researchers across the globe including our lab are studying the direct/indirect effects and molecular mechanisms behind these non-antibacterial effects of antibiotics. So, it is interesting for us to sum up the available literature. In this review, we have briefed the possible reason behind the non-antibacterial effects of antibiotics, owing to the endosymbiotic origin of host mitochondria. We further discuss the physiological and immunomodulatory effects of antibiotics. We then extend the review to discuss molecular mechanisms behind the plausible use of antibiotics as anticancer agents.
Collapse
Affiliation(s)
- Shivani Yadav
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Dhruvi Shah
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
24
|
Rousi E, Malheiro A, Harichandan A, Mohren R, Lourenço AF, Mota C, Cillero-Pastor B, Wieringa P, Moroni L. An innervated skin 3D in vitro model for dermatological research. IN VITRO MODELS 2023; 2:113-121. [PMID: 39871995 PMCID: PMC11756442 DOI: 10.1007/s44164-022-00021-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/29/2025]
Abstract
A 3D in vitro model of innervated skin would be a useful tool in dermatological research to study the effect of different chemicals and compounds on the sensory properties of skin. Current innervated skin models are limited in composition and often composed of ex vivo skin explants and/or animal-derived material. In this study, our aim was to develop a human innervated skin model with a better biomimicry composition for in vitro research. Fibrin hydrogel and aligned electrospun fibers of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) were used as a scaffold to generate the 3D in vitro model. The skin component was made of primary human keratinocytes and primary human fibroblasts, while the neuronal component was composed of iPSC-derived sensory neurons. Our results showed that the dermal component consisted of fibroblasts and synthesized collagen. The epidermal component was characterized by the expression of keratins 10 and 14, and involucrin. Finally, sensory neurons extended axons throughout the scaffold and reached the epidermis. Treating the model with a capsaicin solution for 30 min, which was performed as a proof of concept test for sensitization studies, resulted into partial depletion of substance P and tubulin β3. This model could be used for studying skin-neuron interactions and cutaneous toxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00021-0.
Collapse
Affiliation(s)
- Emma Rousi
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
- Institute of Clinical Medicine, Department of Surgery, University of Turku, Turku, Finland
| | - Afonso Malheiro
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - Abhishek Harichandan
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - Ronny Mohren
- M4i Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | - Ana Filipa Lourenço
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- M4i Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
| |
Collapse
|
25
|
Zuo Y, Wan R, Jiang P, Chen X, Li L, Hua W. Cowhage-induced itch scores and the current perception threshold in assessing sensitive skin: An observational laboratory study. Skin Res Technol 2023; 29:e13387. [PMID: 37357643 PMCID: PMC10242191 DOI: 10.1111/srt.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/25/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND The diagnosis of sensitive skin remains nonuniform, and the underlying mechanism is unclear. Previous studies were inconsistent in the current perception threshold (CPT) measurement for sensitive skin; thus, the neural sensitivity of sensitive skin needs to be clarified. OBJECTIVES This study aimed to compare the CPT measurement and the cowhage test for sensitive skin and to investigate the correlation between CPT values and cowhage-itch scores. METHODS Participants with and without sensitive skin (n = 30, 30) were included. The cowhage test and CPT measurement with its related sensations were performed. RESULTS No difference was found in CPT between the sensitive and nonsensitive groups at either the site of the face or the forearm (5, 250, or 2000 Hz). Once the CPT was reached, sensations (itch, stinging, and throbbing) were significantly different between the two groups. Cowhage provoked more intense itch with a longer duration in the face (visual analog scale [VAS] score 1.90 ± 1.47 vs. 0.52 ± 0.90, p < 0.001; duration 3.80 ± 3.31 vs. 0.87 ± 1.43 min, p < 0.001) and forearm (VAS 2.53 ± 2.60 vs. 0.72 ± 1.06, p < 0.001; duration 3.37 ± 3.46 vs. 1.33 ± 2.14 min, p < 0.01) of the sensitive group compared with the nonsensitive group. Cowhage-induced itch and CPT-related itch (5 Hz) showed moderate correlations in both the face (r = 0.441, p < 0.001) and forearm (r = 0.491 p < 0.001) and weak correlations in the forearm (r = 0.323 at 250 Hz, p = 0.012; r = 0.376 at 2000 Hz, p = 0.003). CONCLUSIONS Cowhage test showed better performance in assessing the neural sensitivity of sensitive skin in comparison with the CPT measurement. Evaluation of CPT-related sensations may add valuable information to sensitive skin assessment.
Collapse
Affiliation(s)
- Ying Zuo
- Department of DermatovenereologyWest China HospitalSichuan UniversityChengduChina
| | - Ruoyu Wan
- Department of DermatovenereologyWest China HospitalSichuan UniversityChengduChina
| | - Ping Jiang
- Department of Radiology of West China HospitalChina Huaxi MR Research Center (HMRRC)Sichuan UniversityChengduChina
| | - Xiaomei Chen
- Department of DermatovenereologyWest China HospitalSichuan UniversityChengduChina
| | - Li Li
- Department of DermatovenereologyWest China HospitalSichuan UniversityChengduChina
- Cosmetic Safety and Efficacy Evaluation CenterWest China HospitalSichuan UniversityChengduChina
| | - Wei Hua
- Department of DermatovenereologyWest China HospitalSichuan UniversityChengduChina
- Cosmetic Safety and Efficacy Evaluation CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
26
|
Guo Y, Ollé L, Proaño-Pérez E, Aparicio C, Guerrero M, Muñoz-Cano R, Martín M. MRGPRX2 signaling involves the Lysyl-tRNA synthetase and MITF pathway. Front Immunol 2023; 14:1154108. [PMID: 37234172 PMCID: PMC10206166 DOI: 10.3389/fimmu.2023.1154108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
MRGPRX2, a G-protein-coupled-seven transmembrane domain receptor, is mainly expressed in mast cells and neurons and is involved in skin immunity and pain. It is implicated in the pathophysiology of non-IgE-mediated immediate hypersensitivity and has been related to adverse drug reactions. Moreover, a role has been proposed in asthma, atopic dermatitis, contact dermatitis, and chronic spontaneous urticaria. Although it has a prominent role in disease, its signaling transduction is poorly understood. This study shows that MRGPRX2 activation with substance P increased Lysyl t-RNA synthetase (LysRS) translocation to the nucleus. LysRS is a moonlighting protein with a dual role in protein translation and IgE signaling in mast cells. Upon allergen- IgE-FcεRI crosslinking, LysRS is translocated to the nucleus and activates microphthalmia-associated transcription factor (MITF) activity. In this study, we found that MRGPRX2 triggering led to MITF phosphorylation and increased MITF activity. Therefore, overexpression of LysRS increased MITF activity after MRGPRX2 activation. MITF silencing reduced MRGPRX2-dependent calcium influx and mast cell degranulation. Furthermore, a MITF pathway inhibitor, ML329, impaired MITF expression, calcium influx, and mast cell degranulation. Moreover, drugs such as atracurium, vancomycin, and morphine, reported to induce MRGPRX2-dependent degranulation, increased MITF activity. Altogether, our data show that MRGPRX2 signaling enhances MITF activity, and its abrogation by silencing or inhibition resulted in defective MRGPRX2 degranulation. We conclude that MRGPRX2 signaling involves the LysRS and MITF pathway. Thus, MITF and MITF-dependent targets may be considered therapeutic approaches to treat pathologies where MRGPRX2 is implicated.
Collapse
Affiliation(s)
- Yanru Guo
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laia Ollé
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elizabeth Proaño-Pérez
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Health Sciences, Technical University of Ambato, Ambato, Ecuador
| | - Cristina Aparicio
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Mario Guerrero
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Rosa Muñoz-Cano
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Allergy Department, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - Margarita Martín
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
27
|
Broeders BWLCM, Carbone F, Balsiger LM, Schol J, Raymenants K, Huang I, Verheyden A, Vanuytsel T, Tack J. Review article: Functional dyspepsia-a gastric disorder, a duodenal disorder or a combination of both? Aliment Pharmacol Ther 2023; 57:851-860. [PMID: 36859629 DOI: 10.1111/apt.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/25/2022] [Accepted: 01/25/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Functional dyspepsia (FD) is one of the most frequent conditions in gastroenterological outpatient health care. Most recent research in FD has shifted its focus to duodenal pathophysiological mechanisms, although current treatments still focus mainly the stomach. AIM The aim of the study was to provide a comprehensive overview of the pathophysiology of FD focusing on a paradigm shift from gastric towards duodenal mechanisms. METHODS We conducted a literature search in PubMed for studies describing mechanisms that could possibly cause FD. RESULTS The pathophysiology of FD remains incompletely understood. Recent studies show that duodenal factors such as acid, bile salt exposure and eosinophil and mast cell activation correlate with symptom pattern and burden and can be associated with gastric sensorimotor dysfunction. The evolving data identify the duodenum an interesting target for new therapeutic approaches. Furthermore, the current first-line treatment, that is proton pump inhibitors, reduces duodenal low-grade inflammation and FD symptoms. CONCLUSION Future research for the treatment of FD should focus on the inhibition of duodenal mast cell activation, eosinophilia and loss of mucosal integrity.
Collapse
Affiliation(s)
- B W L C M Broeders
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
- Faculty of Medicine, KU Leuven, Leuven, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - F Carbone
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
- Faculty of Medicine, KU Leuven, Leuven, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - L M Balsiger
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - J Schol
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
- Faculty of Medicine, KU Leuven, Leuven, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - K Raymenants
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
- Faculty of Medicine, KU Leuven, Leuven, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - I Huang
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - A Verheyden
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - T Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
- Faculty of Medicine, KU Leuven, Leuven, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - J Tack
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
- Faculty of Medicine, KU Leuven, Leuven, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Jiang Y, Zong Y, Du Y, Zhang M, Ye F, Zhang J, Yang Y, Zhu C, Tang Z. Curcumin inhibits the pruritus in mice through mast cell MrgprB2 receptor. Inflamm Res 2023; 72:933-945. [PMID: 36997814 DOI: 10.1007/s00011-023-01724-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Curcumin is a diketone compound extracted from the rhizomes of some plants in the Zingiberaceae and Araceae family. It possesses a variety of biological activities, including antioxidant, anti-inflammatory and anti-cancer properties. However, the cellular and molecular antipruritic mechanisms of curcumin remain to be explored. OBJECTIVE Our objective was to study the role of curcumin in pruritus and determine whether its antipruritic effect is related to MrgprB2 receptor. METHODS The effect of curcumin on pruritus in mice was examined by scratching behavior test. The antipruritic mechanism of curcumin was explored by using transgenic mice (MrgprB2-/- mice, MrgprB2CreTd/tomato mice), histological analysis, western blot and immunofluorescence. In addition, the relationship between curcumin and MrgprB2/X2 receptor was studied in vitro by using calcium imaging, plasmid transfection and molecular docking RESULTS: In the current study, we found that curcumin had obvious antipruritic effect. Its antipruritic effect was related to the regulation of MrgprB2 receptor activation and mast cells tryptase release. In vitro, mouse peritoneal mast cells activated by compound 48/80 could be inhibited by curcumin. In addition, curcumin was also found to suppress the calcium flux in MrgprX2 or MrgprB2-overexpression HEK cells induced by compound 48/80, substance P, and PAMP 9-20, displaying the specific relation with the MrgprB2/X2 receptor. Moreover, molecular docking results showed that curcumin had affinity to MrgprX2 protein. CONCLUSIONS Overall, these results indicated that curcumin has the potential to treat pruritus induced by mast cell MrgprB2 receptor.
Collapse
Affiliation(s)
- Yucui Jiang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingxin Zong
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying Du
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Miaomiao Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fan Ye
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jian Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chan Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zongxiang Tang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
29
|
Zhu Z, Bhatia M. Inflammation and Organ Injury the Role of Substance P and Its Receptors. Int J Mol Sci 2023; 24:ijms24076140. [PMID: 37047113 PMCID: PMC10094202 DOI: 10.3390/ijms24076140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Tightly controlled inflammation is an indispensable mechanism in the maintenance of cellular and organismal homeostasis in living organisms. However, aberrant inflammation is detrimental and has been suggested as a key contributor to organ injury with different etiologies. Substance P (SP) is a neuropeptide with a robust effect on inflammation. The proinflammatory effects of SP are achieved by activating its functional receptors, namely the neurokinin 1 receptor (NK1R) receptor and mas-related G protein-coupled receptors X member 2 (MRGPRX2) and its murine homolog MRGPRB2. Upon activation, the receptors further signal to several cellular signaling pathways involved in the onset, development, and progression of inflammation. Therefore, excessive SP-NK1R or SP-MRGPRX2/B2 signals have been implicated in the pathogenesis of inflammation-associated organ injury. In this review, we summarize our current knowledge of SP and its receptors and the emerging roles of the SP-NK1R system and the SP-MRGPRX2/B2 system in inflammation and injury in multiple organs resulting from different pathologies. We also briefly discuss the prospect of developing a therapeutic strategy for inflammatory organ injury by disrupting the proinflammatory actions of SP via pharmacological intervention.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
30
|
Vander Does A, Ju T, Mohsin N, Chopra D, Yosipovitch G. How to get rid of itching. Pharmacol Ther 2023; 243:108355. [PMID: 36739914 DOI: 10.1016/j.pharmthera.2023.108355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Itch is an unpleasant sensation arising from a variety of dermatologic, neuropathic, systemic, and psychogenic etiologies. Various itch pathways are implicated according to the underlying etiology. A variety of pruritogens, or itch mediators, as well as receptors have been identified and provide potential therapeutic targets. Recent research has primarily focused on targeting inflammatory cytokines and Janus kinase signaling, protease-activated receptors, substance P and neurokinin, transient receptor potential-vanilloid ion channels, Mas-related G-protein-coupled receptors (MRGPRX2 and MRGPRX4), the endogenous opioid and cannabinoid balance, and phosphodiesterase 4. Periostin, a newly identified pruritogen, should be further explored with clinical trials. Drugs targeting neural sensitization including the gabergic system and P2X3 are other potential drugs for chronic itch. There is a need for more targeted therapies to improve clinical outcomes and reduce side effects.
Collapse
Affiliation(s)
- Ashley Vander Does
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Teresa Ju
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Noreen Mohsin
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Divya Chopra
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
31
|
Rische CH, Thames AN, Krier-Burris RA, O’Sullivan JA, Bochner BS, Scott EA. Drug delivery targets and strategies to address mast cell diseases. Expert Opin Drug Deliv 2023; 20:205-222. [PMID: 36629456 PMCID: PMC9928520 DOI: 10.1080/17425247.2023.2166926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Current and developing mast cell therapeutics are reliant on small molecule drugs and biologics, but few are truly selective for mast cells. Most have cellular and disease-specific limitations that require innovation to overcome longstanding challenges to selectively targeting and modulating mast cell behavior. This review is designed to serve as a frame of reference for new approaches that utilize nanotechnology or combine different drugs to increase mast cell selectivity and therapeutic efficacy. AREAS COVERED Mast cell diseases include allergy and related conditions as well as malignancies. Here, we discuss the targets of existing and developing therapies used to treat these disease pathologies, classifying them into cell surface, intracellular, and extracellular categories. For each target discussed, we discuss drugs that are either the current standard of care, under development, or have indications for potential use. Finally, we discuss how novel technologies and tools can be used to take existing therapeutics to a new level of selectivity and potency against mast cells. EXPERT OPINION There are many broadly and very few selectively targeted therapeutics for mast cells in allergy and malignant disease. Combining existing targeting strategies with technology like nanoparticles will provide novel platforms to treat mast cell disease more selectively.
Collapse
Affiliation(s)
- Clayton H. Rische
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Ariel N. Thames
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
- Northwestern University McCormick School of Engineering, Department of Chemical and Biological Engineering, Evanston, IL, USA
| | - Rebecca A. Krier-Burris
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Jeremy A. O’Sullivan
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Bruce S. Bochner
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Evan A. Scott
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Microbiolgy-Immunology, Chicago, IL, USA
| |
Collapse
|
32
|
Peng J, Federman HG, Hernandez C, Siracusa MC. Communication is key: Innate immune cells regulate host protection to helminths. Front Immunol 2022; 13:995432. [PMID: 36225918 PMCID: PMC9548658 DOI: 10.3389/fimmu.2022.995432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parasitic helminth infections remain a significant global health issue and are responsible for devastating morbidity and economic hardships. During infection, helminths migrate through different host organs, which results in substantial tissue damage and the release of diverse effector molecules by both hematopoietic and non-hematopoietic cells. Thus, host protective responses to helminths must initiate mechanisms that help to promote worm clearance while simultaneously mitigating tissue injury. The specialized immunity that promotes these responses is termed type 2 inflammation and is initiated by the recruitment and activation of hematopoietic stem/progenitor cells, mast cells, basophils, eosinophils, dendritic cells, neutrophils, macrophages, myeloid-derived suppressor cells, and group 2 innate lymphoid cells. Recent work has also revealed the importance of neuron-derived signals in regulating type 2 inflammation and antihelminth immunity. These studies suggest that multiple body systems coordinate to promote optimal outcomes post-infection. In this review, we will describe the innate immune events that direct the scope and intensity of antihelminth immunity. Further, we will highlight the recent progress made in our understanding of the neuro-immune interactions that regulate these pathways and discuss the conceptual advances they promote.
Collapse
Affiliation(s)
- Jianya Peng
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Hannah G. Federman
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Christina M. Hernandez
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Mark C. Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- *Correspondence: Mark C. Siracusa,
| |
Collapse
|
33
|
Konstantinou GN, Konstantinou GN, Koulias C, Petalas K, Makris M. Further Understanding of Neuro-Immune Interactions in Allergy: Implications in Pathophysiology and Role in Disease Progression. J Asthma Allergy 2022; 15:1273-1291. [PMID: 36117919 PMCID: PMC9473548 DOI: 10.2147/jaa.s282039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
The complicated interaction between the central and the autonomic (sympathetic, parasympathetic, and enteric) nervous systems on the one hand and the immune system and its components, on the other hand, seems to substantially contribute to allergy pathophysiology, uncovering an under-recognized association that could have diagnostic and therapeutic potentials. Neurons connect directly with and regulate the function of many immune cells, including mast cells, the cells that have a leading role in allergic disorders. Proinflammatory mediators such as cytokines, neurotrophins, chemokines, and neuropeptides are released by immune cells, which stimulate sensory neurons. The release of neurotransmitters and neuropeptides caused by the activation of these neurons directly impacts the functional activity of immune cells and vice versa, playing a decisive role in this communication. Successful application of Pavlovian conditioning in allergic disorders supports the existence of a psychoneuroimmunological interplay in classical allergic hypersensitivity reactions. Activation of neuronal homeostatic reflexes, like sneezing in allergic rhinitis, coughing in allergic asthma, and vomiting in food allergy, offers additional evidence of a neuroimmunological interaction that aims to maintain homeostasis. Dysregulation of this interaction may cause overstimulation of the immune system that will produce profound symptoms and exaggerated hemodynamic responses that will lead to severe allergic pathophysiological events, including anaphylaxis. In this article, we have systematically reviewed and discussed the evidence regarding the role of the neuro-immune interactions in common allergic clinical modalities like allergic rhinitis, chronic rhinosinusitis, allergic asthma, food allergy, atopic dermatitis, and urticaria. It is essential to understand unknown – to most of the immunology and allergy experts – neurological networks that not only physiologically cooperate with the immune system to regulate homeostasis but also pathogenetically interact with more or less known immunological pathways, contribute to what is known as neuroimmunological inflammation, and shift homeostasis to instability and disease clinical expression. This understanding will provide recognition of new allergic phenotypes/endotypes and directions to focus on specialized treatments, as the era of personalized patient-centered medicine, is hastening apace.
Collapse
Affiliation(s)
- George N Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Gerasimos N Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre of Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Christopher Koulias
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | - Michael Makris
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| |
Collapse
|
34
|
Neuroimmunology and Allergic Disease. ALLERGIES 2022. [DOI: 10.3390/allergies2030008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The prevalence of allergic diseases is rising globally, inducing heavy quality of life and economic burdens. Allergic reactions are mediated by the complex bi-directional cross-talk between immune and nervous systems that we are only beginning to understand. Here, we discuss our current understanding of the molecular mechanisms of how this cross-talk occurs in the skin, gut, and lungs. An improved understanding of the communication between the immune and nervous system may lead to the development of novel therapies for allergic diseases.
Collapse
|
35
|
Hsin L, Fernandopulle NA, Ding J, Lumb C, Veldhuis N, Karas JA, Northfield SE, Mackay GA. The effect of substance P and its common in vivo-formed metabolites on MRGPRX2 and human mast cell activation. Pharmacol Res Perspect 2022; 10:e00990. [PMID: 35904495 PMCID: PMC9337217 DOI: 10.1002/prp2.990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The tachykinin neuropeptide substance P (SP) is the canonical agonist peptide for the neurokinin 1 receptor (NK1R). More recently, it has also been shown to activate the Mas‐related G protein‐coupled receptor X2 (MRGPRX2) receptor on mast cells (MCs), triggering degranulation and release of inflammatory mediators. SP undergoes rapid C‐terminal truncation in vivo by a number of proteases to generate the metabolites SP(1–9)‐COOH and in particular SP(1–7)‐COOH. While the C terminus of SP is critical for NK1R activation, studies have shown that the peptide polycationic N terminus is key for MRGPRX2 and mast cell activation. The study thus aimed to determine if the C‐terminally truncated metabolites of SP, SP(1–9)‐COOH, and SP(1–7)‐COOH retained stimulatory activity at MRGPRX2. SP, SP(1–9)‐COOH, and SP(1–7)‐COOH were synthesized and tested on HEK293 cells expressing NK1R or MRGPRX2, and LAD2 human mast cells, to determine the activity of SP and its metabolites in Ca2+ mobilization, degranulation, and cytokine assays. As expected from prior studies, both C‐terminally truncated SP metabolites had essentially no activity at NK1R, even at very high concentrations. In contrast, the in vivo metabolite of SP, SP(1–9)‐COOH retained ability to activate MRGPRX2 across all parameters tested, albeit with reduced potency compared to intact SP. SP(1–7)‐COOH did not produce any significant MRGRPX2 activation. Our results suggest that the SP metabolite, SP(1–9)‐COOH, may play a regulatory role through the activation of MRGPRX2. However, given the relatively low potency of both SP and SP(1–9)‐COOH at MRGPRX2, additional work is needed to better understand the biological importance of this expanded SP/MRGPRX2 pathway.
Collapse
Affiliation(s)
- Lin Hsin
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nithya A Fernandopulle
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jie Ding
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Chris Lumb
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Nicholas Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - John A Karas
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan E Northfield
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Graham A Mackay
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Wang C, Hu T, Lu J, Lv Y, Ge S, Hou Y, He H. Convenient Diaryl Ureas as Promising Anti-pseudo-allergic Agents. J Med Chem 2022; 65:10626-10637. [PMID: 35876064 DOI: 10.1021/acs.jmedchem.2c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, No. 76, Yanta West Road, Xi’an, Shaanxi 710061, China
| | - Tian Hu
- Department of Pharmacy, 3201 Hospital Affiliated to Xi’an Jiaotong University, Hanzhong, Shaanxi 723000, China
| | - Jiayu Lu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, No. 76, Yanta West Road, Xi’an, Shaanxi 710061, China
| | - Yuexin Lv
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, No. 76, Yanta West Road, Xi’an, Shaanxi 710061, China
| | - Shuai Ge
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, No. 76, Yanta West Road, Xi’an, Shaanxi 710061, China
| | - Yajing Hou
- Department of Pharmacy, Shaanxi Province People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Huaizhen He
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, No. 76, Yanta West Road, Xi’an, Shaanxi 710061, China
| |
Collapse
|
37
|
Zhu Y, Duan S, Wang M, Deng Z, Li J. Neuroimmune Interaction: A Widespread Mutual Regulation and the Weapons for Barrier Organs. Front Cell Dev Biol 2022; 10:906755. [PMID: 35646918 PMCID: PMC9130600 DOI: 10.3389/fcell.2022.906755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Since the embryo, the nervous system and immune system have been interacting to regulate each other’s development and working together to resist harmful stimuli. However, oversensitive neural response and uncontrolled immune attack are major causes of various diseases, especially in barrier organs, while neural-immune interaction makes it worse. As the first defense line, the barrier organs give a guarantee to maintain homeostasis in external environment. And the dense nerve innervation and abundant immune cell population in barrier organs facilitate the neuroimmune interaction, which is the physiological basis of multiple neuroimmune-related diseases. Neuroimmune-related diseases often have complex mechanisms and require a combination of drugs, posing challenges in finding etiology and treatment. Therefore, it is of great significance to illustrate the specific mechanism and exact way of neuro-immune interaction. In this review, we first described the mutual regulation of the two principal systems and then focused on neuro-immune interaction in the barrier organs, including intestinal tract, lungs and skin, to clarify the mechanisms and provide ideas for clinical etiology exploration and treatment.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Shixin Duan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| |
Collapse
|
38
|
Levi-Schaffer F, Gibbs BF, Hallgren J, Pucillo C, Redegeld F, Siebenhaar F, Vitte J, Mezouar S, Michel M, Puzzovio PG, Maurer M. Selected recent advances in understanding the role of human mast cells in health and disease. J Allergy Clin Immunol 2022; 149:1833-1844. [PMID: 35276243 DOI: 10.1016/j.jaci.2022.01.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Mast cells are highly granular tissue-resident cells and key drivers of inflammation, particularly in allergies as well as in other inflammatory diseases. Most mast cell research was initially conducted in rodents but has increasingly shifted to the human system, with the advancement of research technologies and methodologies. Today we can analyze primary human cells including rare subpopulations, we can produce and maintain mast cells isolated from human tissues, and there are several human mast cell lines. These tools have substantially facilitated our understanding of their role and function in different organs in both health and disease. We can now define more clearly where human mast cells originate from, how they develop, which mediators they store, produce de novo, and release, how they are activated and by which receptors, and which neighbouring cells they interact with and by which mechanisms. Considerable progress has also been made regarding the potential contribution of mast cells to disease, which, in turn, has led to the development of novel approaches for preventing key pathogenic effects of mast cells, heralding the era of mast cell-targeted therapeutics. In this review, we present and discuss a selection of some of the most significant advancements and remaining gaps in our understanding of human mast cells during the last 25 years, with a focus on clinical relevance.
Collapse
Affiliation(s)
- Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Bernhard F Gibbs
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carlo Pucillo
- Laboratory of Immunology, Department of Medicine, University of Udine, Udine, Italy
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Frank Siebenhaar
- Institute for Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP Allergology and Immunology, Berlin, Germany
| | - Joana Vitte
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France; IDESP, INSERM UA 11, Montpellier, France
| | | | - Moïse Michel
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France; Immunology Laboratory, CHU Nîmes, Nîmes, France
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marcus Maurer
- Institute for Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
39
|
Mast Cells and Acupuncture Analgesia. Cells 2022; 11:cells11050860. [PMID: 35269483 PMCID: PMC8909752 DOI: 10.3390/cells11050860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Mast cells are widely distributed in various parts of the human body and play a vital role in the progression of many diseases. Recently, the close relationship between mast cells and acupoints was elucidated, and the role of mast cells in acupuncture analgesia has attracted the attention of researchers worldwide. Using mast cells, acupuncture analgesia and acupoint as key words to search CNKI, PubMed, Web of Science and other databases, combining the representative articles in these databases with the published research papers of our group, we summarized: The enrichment of mast cells and the dense arrangement of collagen fibers, microvessels, and nerves form the basis for acupoints as the reaction sites of acupuncture; acupuncture can cause the deformation of collagen fibers and activate TRPV channels on mast cells membrane, so as to stimulate mast cells to release bioactive substances and activate nerve receptors to generate analgesic effect; system biology models are set up to explain the quantitative process of information initiation and transmission at acupuncture points, and indicate that the acupuncture effect depends on the local mast cells density. In a conclusion, this review will give a scientific explanation of acupuncture analgesia from the material basis of acupoints, the local initiation, and afferent biological mechanism.
Collapse
|
40
|
Iio K, Kutsumura N, Nagumo Y, Saitoh T, Tokuda A, Hashimoto K, Yamamoto N, Kise R, Inoue A, Mizoguchi H, Nagase H. Synthesis of unnatural morphinan compounds to induce itch-like behaviors in mice: Towards the development of MRGPRX2 selective ligands. Bioorg Med Chem Lett 2022; 56:128485. [PMID: 34861349 DOI: 10.1016/j.bmcl.2021.128485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Mas-related G protein-coupled receptor X2 (MRGPRX2) mediates the itch response in neurons and is involved in atopic dermatitis (AD)-associated inflammation and itch. Potent and MRGPRX2-selective ligands are essential to an understanding of the detailed function of the receptor and to develop new therapeutic agents for its related diseases. (+)-TAN-67 (1), the enantiomer of the δ-opioid receptor (DOR) selective ligand (-)-TAN-67 (1), has been reported to activate MRGPRX2, although (+)-1 also interacts with DOR, which prevents investigators from interrogating the function of MRGPRX2. Here, we have succeeded in developing a novel unnatural morphinan compound (+)-2a by a transformation based on the structure of (+)-1, which removes the DOR binding affinity. (+)-2a activated both human MRGPRX2 and the mouse orthologue Mrgprb2 in in vitro experiments and induced itch-like behaviors in mice to the same extent as (+)-1. The (+)-2a-induced itch response in mice was suppressed by administration of the tripeptide QWF, an MRGPRX2/Mrgprb2 antagonist, or the antipruritic drug nalfurafine. Together, (+)-2a serves as a useful tool to elucidate the itch-related function/action of MRGPRX2 and its mouse orthologue Mrgprb2.
Collapse
Affiliation(s)
- Keita Iio
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Noriki Kutsumura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuyuki Nagumo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihisa Tokuda
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kao Hashimoto
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Naoshi Yamamoto
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hirokazu Mizoguchi
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Hiroshi Nagase
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
41
|
Meng Z, Chen H, Deng C, Meng S. Potential cellular endocrinology mechanisms underlying the effects of Chinese herbal medicine therapy on asthma. Front Endocrinol (Lausanne) 2022; 13:916328. [PMID: 36051395 PMCID: PMC9424672 DOI: 10.3389/fendo.2022.916328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Asthma is a complex syndrome with polygenetic tendency and multiple phenotypes, which has variable expiratory airflow limitation and respiratory symptoms that vary over time and in intensity. In recent years, continuous industrial development has seriously impacted the climate and air quality at a global scale. It has been verified that climate change can induce asthma in predisposed individuals and that atmospheric pollution can exacerbate asthma severity. At present, a subset of patients is resistant to the drug therapy for asthma. Hence, it is urgent to find new ideas for asthma prevention and treatment. In this review, we discuss the prescription, composition, formulation, and mechanism of traditional Chinese medicine monomer, traditional Chinese medicine monomer complex, single herbs, and traditional Chinese patent medicine in the treatment of asthma. We also discuss the effects of Chinese herbal medicine on asthma from the perspective of cellular endocrinology in the past decade, emphasizing on the roles as intracellular and extracellular messengers of three substances-hormones, substances secreted by pulmonary neuroendocrine cells, and neuroendocrine-related signaling protein-which provide the theoretical basis for clinical application and new drug development.
Collapse
Affiliation(s)
- Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Shengxi Meng,
| |
Collapse
|
42
|
Trier AM, Kim BS. Structural insights into MRGPRX2: a new vision of itch and allergy. J Allergy Clin Immunol 2022; 149:1221-1222. [DOI: 10.1016/j.jaci.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
43
|
Duraisamy K, Singh K, Kumar M, Lefranc B, Bonnafé E, Treilhou M, Leprince J, Chow BKC. P17 induces chemotaxis and differentiation of monocytes via MRGPRX2-mediated mast cell-line activation. J Allergy Clin Immunol 2022; 149:275-291. [PMID: 34111449 DOI: 10.1016/j.jaci.2021.04.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/29/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND P17, a peptide isolated from Tetramorium bicarinatum ant venom, is known to induce an alternative phenotype of human monocyte-derived macrophages via activation of an unknown G protein-coupled receptor (GPCR). OBJECTIVE We sought to investigate the mechanism of action and the immunomodulatory effects of P17 mediated through MRGPRX2 (Mas-related G protein-coupled receptor X2). METHODS To identify the GPCR for P17, we screened 314 GPCRs. Upon identification of MRGPRX2, a battery of in silico, in vitro, ex vivo, and in vivo assays along with the receptor mutation studies were performed. In particular, to investigate the immunomodulatory actions, we used β-hexosaminidase release assay, cytokine releases, quantification of mRNA expression, cell migration and differentiation assays, immunohistochemical labeling, hematoxylin and eosin, and immunofluorescence staining. RESULTS P17 activated MRGPRX2 in a dose-dependent manner in β-arrestin recruitment assay. In LAD2 cells, P17 induced calcium and β-hexosaminidase release. Quercetin- and short hairpin RNA-mediated knockdown of MRGPRX2 reduced P17-evoked β-hexosaminidase release. In silico and in vitro mutagenesis studies showed that residue Lys8 of P17 formed a cation-π interaction with the Phe172 of MRGPRX2 and [Ala8]P17 lost its activity partially. P17 activated LAD2 cells to recruit THP-1 and human monocytes in Transwell migration assay, whereas MRGPRX2-impaired LAD2 cells cannot. In addition, P17-treated LAD2 cells stimulated differentiation of THP-1 and human monocytes, as indicated by the enhanced expression of macrophage markers cluster of differentiation 11b and TNF-α by quantitative RT-PCR. Immunohistochemical and immunofluorescent staining suggested monocyte recruitment in mice ears injected with P17. CONCLUSIONS Our data provide novel structural information regarding the interaction of P17 with MRGPRX2 and intracellular pathways for its immunomodulatory action.
Collapse
Affiliation(s)
- Karthi Duraisamy
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mukesh Kumar
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Benjamin Lefranc
- INSERM U1239, PRIMACEN, IRIB, Normandy University, Rouen, France
| | - Elsa Bonnafé
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Michel Treilhou
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Jérôme Leprince
- INSERM U1239, PRIMACEN, IRIB, Normandy University, Rouen, France.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Regulatory Peptides in Asthma. Int J Mol Sci 2021; 22:ijms222413656. [PMID: 34948451 PMCID: PMC8707337 DOI: 10.3390/ijms222413656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or β-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.
Collapse
|
45
|
Mackay GA, Fernandopulle NA, Ding J, McComish J, Soeding PF. Antibody or Anybody? Considering the Role of MRGPRX2 in Acute Drug-Induced Anaphylaxis and as a Therapeutic Target. Front Immunol 2021; 12:688930. [PMID: 34867939 PMCID: PMC8639860 DOI: 10.3389/fimmu.2021.688930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
Acute anaphylaxis to small molecule drugs is largely considered to be antibody-mediated with immunogloblin E (IgE) and mast cell activation being key. More recently, a role for drug-reactive immunoglobulin G (IgG) with neutrophil activation has also been suggested, at least in reactions to neuromuscular blocking agents (NMBAs). However, the mast cell receptor MRGPRX2 has also been highlighted as a possible triggering mechanism in acute anaphylaxis to many clinically used drugs. Significantly, MRGPRX2 activation is not dependent upon the presence of drug-recognising antibody. Given the reasonable assumption that MRGPRX2 is expressed in all individuals, the corollary of this is that in theory, anybody could respond detrimentally to triggering drugs (recently suggested to be around 20% of a drug-like compound library). But this clearly is not the case, as the incidence of acute drug-induced anaphylaxis is very low. In this mini-review we consider antibody-dependent and -independent mechanisms of mast cell activation by small molecule drugs with a focus on the MRGPRX2 pathway. Moreover, as a juxtaposition to these adverse drug actions, we consider how increased understanding of the role of MRGPRX2 in anaphylaxis is important for future drug development and can complement exploration of this receptor as a drug target in broader clinical settings.
Collapse
Affiliation(s)
- Graham A Mackay
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Nithya A Fernandopulle
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Jie Ding
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Jeremy McComish
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Paul F Soeding
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia.,Department of Anaesthesia and Pain Medicine, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
46
|
Cao C, Kang HJ, Singh I, Chen H, Zhang C, Ye W, Hayes BW, Liu J, Gumpper RH, Bender BJ, Slocum ST, Krumm BE, Lansu K, McCorvy JD, Kroeze WK, English JG, DiBerto JF, Olsen RHJ, Huang XP, Zhang S, Liu Y, Kim K, Karpiak J, Jan LY, Abraham SN, Jin J, Shoichet BK, Fay JF, Roth BL. Structure, function and pharmacology of human itch GPCRs. Nature 2021; 600:170-175. [PMID: 34789874 PMCID: PMC9150435 DOI: 10.1038/s41586-021-04126-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022]
Abstract
The MRGPRX family of receptors (MRGPRX1-4) is a family of mas-related G-protein-coupled receptors that have evolved relatively recently1. Of these, MRGPRX2 and MRGPRX4 are key physiological and pathological mediators of itch and related mast cell-mediated hypersensitivity reactions2-5. MRGPRX2 couples to both Gi and Gq in mast cells6. Here we describe agonist-stabilized structures of MRGPRX2 coupled to Gi1 and Gq in ternary complexes with the endogenous peptide cortistatin-14 and with a synthetic agonist probe, respectively, and the development of potent antagonist probes for MRGPRX2. We also describe a specific MRGPRX4 agonist and the structure of this agonist in a complex with MRGPRX4 and Gq. Together, these findings should accelerate the structure-guided discovery of therapeutic agents for pain, itch and mast cell-mediated hypersensitivity.
Collapse
MESH Headings
- Cryoelectron Microscopy
- Drug Inverse Agonism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/ultrastructure
- Humans
- Models, Molecular
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/ultrastructure
- Pruritus/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/ultrastructure
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/ultrastructure
Collapse
Affiliation(s)
- Can Cao
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Isha Singh
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chengwei Zhang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenlei Ye
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Byron W Hayes
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan H Gumpper
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Brian J Bender
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Katherine Lansu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - John D McCorvy
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wesley K Kroeze
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Justin G English
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Reid H J Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Shicheng Zhang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kuglae Kim
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joel Karpiak
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Lily Y Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA.
| | - Jonathan F Fay
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
47
|
Toyama S, Tominaga M, Takamori K. Connections between Immune-Derived Mediators and Sensory Nerves for Itch Sensation. Int J Mol Sci 2021; 22:12365. [PMID: 34830245 PMCID: PMC8624544 DOI: 10.3390/ijms222212365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.
Collapse
Affiliation(s)
- Sumika Toyama
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
- Department of Dermatology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Chiba 279-0021, Japan
| |
Collapse
|
48
|
Che D, Zheng Y, Hou Y, Du X, Jia T, Zhao Q, Song X, Zhou T, Geng S. Action of substance P and PAMP(9-20) on different excitation sites of MRGPRX2 induces differences in mast cell activation. Int Immunopharmacol 2021; 101:108342. [PMID: 34753104 DOI: 10.1016/j.intimp.2021.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
MRGPRX2 on mast cells (MCs) is the target that directly mediates MC activation through the activity of small molecular substances. Previous work has attempted to prove that substance P (SP) and PAMP(9-20) induce an MRGPRX2-mediated MC degranulation reaction. However, SP activates MRGPRX2-induced histamine release, which may lead to allergic airway inflammation, while PAMP(9-20)-induced MrgprB2 activation releases more tryptase and fewer monoamines. Due to the lack of direct available comparisons, the different types of sensitizing mediators released by the action of SP and PAMP(9-20) inducing pseudo-allergic reactions via MRGPRX2 are unclear. To investigate whether the action sites of excited MRGPRX2 are different for SP and PAMP(9-20), leading to different effects, the release of inflammatory mediators was measured using MC degranulation reactions and RNA-seq assay in vitro. Mice were treated to observe local inflammation and MC degranulation in vivo. Moreover, site-directed mutagenesis was used to verify the excited sites of SP and PAMP(9-20). SP and PAMP(9-20) both activated MRGPRX2 and led MCs to release inflammatory mediators. Significantly different levels of histamine, tryptase, TNF-α, MCP-1, and other cytokines were released in vivo and in vitro. G165E, D184N, W243R, and H259Y were necessary for SP to activate MRGPRX2, while only D184N and W243R were important for PAMP(9-20). The downstream signaling pathways activated by SP and PAMP(9-20) also differed in the phosphorylation level of PKC. There were differences in the sites via which SP and PAMP(9-20) activate MRGPRX2 and also in the activated downstream signaling pathways, which led to the differences the activation of the pathways and effects of SP- and PAMP(9-20)-induced MRGPRX2 activation.
Collapse
Affiliation(s)
- Delu Che
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Yi Zheng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Yajing Hou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xueshan Du
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Jia
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiang Zhao
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiangjin Song
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tong Zhou
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China.
| |
Collapse
|
49
|
Ogasawara H, Noguchi M. Therapeutic Potential of MRGPRX2 Inhibitors on Mast Cells. Cells 2021; 10:cells10112906. [PMID: 34831128 PMCID: PMC8616451 DOI: 10.3390/cells10112906] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Mast cells (MCs) act as primary effectors in inflammatory and allergic reactions by releasing intracellularly-stored inflammatory mediators in diseases. The two major pathways for MC activation are known to be immunoglobulin E (IgE)-dependent and -independent. Although IgE-dependent signaling is the main pathway to MC activation, IgE-independent pathways have also been found to serve pivotal roles in the pathophysiology of various inflammatory conditions. Recent studies have shown that human and mouse MCs express several regulatory receptors such as toll-like receptors (TLRs), CD48, C300a, and GPCRs, including mas-related GPCR-X2 (MRGPRX2). MRGPRX2 has been reported as a novel GPCR that is expressed in MCs activated by basic secretagogues, neurokinin peptides, host defense antimicrobial peptides, and small molecule compounds (e.g., neuromuscular blocking agents) and leads to MC degranulation and eicosanoids release under in vitro experimental condition. Functional analyses of MRGPRX2 and Mrgprb2 (mouse ortholog) indicate that MRGPRX2 is involved in MC hypersensitivity reactions causing neuroinflammation such as postoperative pain, type 2 inflammation, non-histaminergic itch, and drug-induced anaphylactic-like reactions. In this review, we discuss the roles in innate immunity through functional studies on MRGPRX2-mediated IgE-independent MC activation and also the therapeutic potential of MRGPRX2 inhibitors on allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Hiroyuki Ogasawara
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan;
- Correspondence: ; Tel.: +81-45-786-7690
| | - Masato Noguchi
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan;
- Office of Research Development and Sponsored Projects, Shinanomachi Campus, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
50
|
The Toxicity of Wiped Dust and Airborne Microbes in Individual Classrooms Increase the Risk of Teachers' Work-Related Symptoms: A Cross-Sectional Study. Pathogens 2021; 10:pathogens10111360. [PMID: 34832514 PMCID: PMC8624243 DOI: 10.3390/pathogens10111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The causes and pathophysiological mechanisms of building-related symptoms (BRS) remain open. Objective: We aimed to investigate the association between teachers’ individual work-related symptoms and intrinsic in vitro toxicity in classrooms. This is a further analysis of a previously published dataset. Methods: Teachers from 15 Finnish schools in Helsinki responded to the symptom survey. The boar sperm motility inhibition assay, a sensitive indicator of mitochondrial dysfunction, was used to measure the toxicity of wiped dust and cultured microbial fallout samples collected from the teachers’ classrooms. Results: 231 teachers whose classroom toxicity data had been collected responded to the questionnaire. Logistic regression analysis adjusted for age, gender, smoking, and atopy showed that classroom dust intrinsic toxicity was statistically significantly associated with the following 12 symptoms reported by teachers (adjusted ORs in parentheses): nose stuffiness (4.1), runny nose (6.9), hoarseness (6.4), globus sensation (9.0), throat mucus (7.6), throat itching (4.4), shortness of breath (12.2), dry cough (4.7), wet eyes (12.7), hypersensitivity to sound (7.9), difficulty falling asleep (7.6), and increased need for sleep (7.7). Toxicity of cultured microbes was found to be associated with nine symptoms (adjusted ORs in parentheses): headache (2.3), nose stuffiness (2.2), nose dryness (2.2), mouth dryness (2.8), hoarseness (2.2), sore throat (2.8), throat mucus (2.3), eye discharge (10.2), and increased need for sleep (3.5). Conclusions: The toxicity of classroom dust and airborne microbes in boar sperm motility inhibition assay significantly increased teachers’ risk of work-related respiratory and ocular symptoms. Potential pathophysiological mechanisms of BRS are discussed.
Collapse
|