1
|
Zhang Q, Chen R, Shi L, Zhao H, Yin F, Yu C, Wang Y, Lu P. Single-cell sequencing analysis of chronic subdural hematoma cell subpopulations and their potential therapeutic mechanisms. Brain Res Bull 2024; 211:110936. [PMID: 38554980 DOI: 10.1016/j.brainresbull.2024.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Chronic subdural hematoma (CSDH) is a prevalent form of intracranial haemorrhage encountered in neurosurgical practice, and its incidence has notably risen in recent years. Currently, there is a lack of studies that have comprehensively classified the cells present in hematomas removed during surgery, and their correlation with CSDH recurrence remains elusive. This study aims to analyse the subcellular populations and occupancy levels within peripheral blood. METHODS This study analyses the subcellular populations and occupancy levels within peripheral blood and postoperatively removed hematomas by single-cell sequencing and attempts to analyse the effect of different cell occupancies within peripheral blood and intraoperatively removed hematomas on CSDH. RESULTS The single-cell sequencing results showed that the cells were classified into 25 clusters by differential gene and UMAP dimensionality reduction clustering analyses and further classified into 17 significant cell populations by cell markers: pDCs, CD8 T cells, CD4 T cells, MigDCs, cDC2s, cDC1s, plasma cells, neutrophils, naive B cells, NK cells, memory B cells, M2 macrophages, CD8 Teffs, CD8 MAIT cells, CD4 Tregs, CD19 B cells, and monocytes. Further research showed that the presence of more cDC2 and M2 macrophages recruited at the focal site in patients with CSDH and the upregulation of the level of T-cell occupancy may be a red flag for further brain damage. ROS, a marker of oxidative stress, was significantly upregulated in cDC2 cells and may mediate the functioning of transcription proteins of inflammatory factors, such as NFκB, which induced T cells' activation. Moreover, cDC2 may regulate M2 macrophage immune infiltration and anti-inflammatory activity by secreting IL1β and binding to M2 macrophage IL1R protein. CONCLUSION The detailed classification of cells in the peripheral blood and hematoma site of CSDH patients helps us to understand the mechanism of CSDH generation and the reduction in the probability of recurrence by regulating the ratio of cell subpopulations.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurosurgery, Sir Run Run Shaw Hospital Medical College, Zhejiang University, Hangzhou, Zhejiang Province 310016, China
| | - Rundong Chen
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Lufeng Shi
- Department of Neurosurgery, Sir Run Run Shaw Hospital Medical College, Zhejiang University, Hangzhou, Zhejiang Province 310016, China
| | - Hehe Zhao
- Department of Neurosurgery, Sir Run Run Shaw Hospital Medical College, Zhejiang University, Hangzhou, Zhejiang Province 310016, China
| | - Fei Yin
- Department of Neurosurgery, Sir Run Run Shaw Hospital Medical College, Zhejiang University, Hangzhou, Zhejiang Province 310016, China
| | - Cong Yu
- Department of Neurosurgery, Sir Run Run Shaw Hospital (Shaoxing), Shaoxing, Zhejiang Province 312300, China
| | - Yirong Wang
- Department of Neurosurgery, Sir Run Run Shaw Hospital Medical College, Zhejiang University, Hangzhou, Zhejiang Province 310016, China.
| | - Peng Lu
- Department of Neurosurgery, Sir Run Run Shaw Hospital Medical College, Zhejiang University, Hangzhou, Zhejiang Province 310016, China.
| |
Collapse
|
2
|
Li Y, Zhu H, Cheng D, Zhao Z. Inhibition of Γδ T Cells Alleviates Brain Ischemic Injury in Cardiopulmonary-Cerebral Resuscitation Mice. Transplant Proc 2022; 54:1984-1991. [PMID: 35931471 DOI: 10.1016/j.transproceed.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND A half-million people in the United States suffer from cardiac arrest (CA) requiring cardiopulmonary resuscitation (CPR). An inflammatory mechanism is associated with neuronal injury in the presence of cerebral ischemia. T lymphocytes are identified as crucial regulators of inflammation. Therefore, we investigated the relationship between CA/CPR-induced ischemia injury and T lymphocytes. METHODS C57BL/6 mice were subjected to CA through injection of KCl (30 μL of 0.5 mol/L) and cessation of mechanical ventilation followed by CPR. The survival rate and neurologic deficit scores were assessed. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was carried out to detect neuronal death. Histologic changes were observed by hematoxylin-eosin staining. The levels of Trgv4, Trgv5 and Trgv7 were quantified by RT-qPCR. Inflammatory responses were identified by measurement of IL-1β, IL-6 and IL-17. RESULTS Downregulated γδ T cells improved survival and neurologic outcomes and inhibits neuronal apoptosis. γδ T inhibition protected brains from CA/CPR-mediated tissue damage. UC7-13D5 treatment inhibited the levels of γδ T markers. Knockdown of γδ T cells ameliorated neuroinflammation. CONCLUSIONS Inhibition of γδ T cells ameliorates ischemic injury in mice with CA/CPR by attenuating inflammation and neuronal apoptosis.
Collapse
Affiliation(s)
- Yeqiu Li
- Department of Anesthesiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Hongfei Zhu
- Department of Anesthesiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China; Department of Anesthesiology, The Affiliated Hospital of Hubei Traditional Chinese Medicine University, Wuhan, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China.
| | - Dong Cheng
- Department of Anesthesiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Zhenglan Zhao
- Department of Anesthesiology, People's Hospital of Dongxihu District, Wuhan, China
| |
Collapse
|
3
|
Bhusal A, Rahman MH, Suk K. Hypothalamic inflammation in metabolic disorders and aging. Cell Mol Life Sci 2021; 79:32. [PMID: 34910246 PMCID: PMC11071926 DOI: 10.1007/s00018-021-04019-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical brain region for the regulation of energy homeostasis. Over the years, studies on energy metabolism primarily focused on the neuronal component of the hypothalamus. Studies have recently uncovered the vital role of glial cells as an additional player in energy balance regulation. However, their inflammatory activation under metabolic stress condition contributes to various metabolic diseases. The recruitment of monocytes and macrophages in the hypothalamus helps sustain such inflammation and worsens the disease state. Neurons were found to actively participate in hypothalamic inflammatory response by transmitting signals to the surrounding non-neuronal cells. This activation of different cell types in the hypothalamus leads to chronic, low-grade inflammation, impairing energy balance and contributing to defective feeding habits, thermogenesis, and insulin and leptin signaling, eventually leading to metabolic disorders (i.e., diabetes, obesity, and hypertension). The hypothalamus is also responsible for the causation of systemic aging under metabolic stress. A better understanding of the multiple factors contributing to hypothalamic inflammation, the role of the different hypothalamic cells, and their crosstalks may help identify new therapeutic targets. In this review, we focus on the role of glial cells in establishing a cause-effect relationship between hypothalamic inflammation and the development of metabolic diseases. We also cover the role of other cell types and discuss the possibilities and challenges of targeting hypothalamic inflammation as a valid therapeutic approach.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
4
|
Markó L, Park JK, Henke N, Rong S, Balogh A, Klamer S, Bartolomaeus H, Wilck N, Ruland J, Forslund SK, Luft FC, Dechend R, Müller DN. B-cell lymphoma/leukaemia 10 and angiotensin II-induced kidney injury. Cardiovasc Res 2020; 116:1059-1070. [PMID: 31241148 DOI: 10.1093/cvr/cvz169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 01/09/2019] [Accepted: 06/21/2019] [Indexed: 12/30/2022] Open
Abstract
AIMS B-cell lymphoma/leukaemia 10 (Bcl10) is a member of the CARMA-Bcl10-MALT1 signalosome, linking angiotensin (Ang) II, and antigen-dependent immune-cell activation to nuclear factor kappa-B signalling. We showed earlier that Bcl10 plays a role in Ang II-induced cardiac fibrosis and remodelling, independent of blood pressure. We now investigated the role of Bcl10 in Ang II-induced renal damage. METHODS AND RESULTS Bcl10 knockout mice (Bcl10 KO) and wild-type (WT) controls were given 1% NaCl in the drinking water and Ang II (1.44 mg/kg/day) for 14 days. Additionally, Bcl10 KO or WT kidneys were transplanted onto WT mice that were challenged by the same protocol for 7 days. Kidneys of Ang II-treated Bcl10 KO mice developed less fibrosis and showed fewer infiltrating cells. Nevertheless, neutrophil gelatinase-associated lipocalin (Ngal) and kidney injury molecule (Kim)1 expression was higher in the kidneys of Ang II-treated Bcl10 KO mice, indicating exacerbated tubular damage. Furthermore, albuminuria was significantly higher in Ang II-treated Bcl10 KO mice accompanied by reduced glomerular nephrin expression and podocyte number. Ang II-treated WT mice transplanted with Bcl10 KO kidney showed more albuminuria and renal Ngal, compared to WT- > WT kidney-transplanted mice, as well as lower podocyte number but similar fibrosis and cell infiltration. Interestingly, mice lacking Bcl10 in the kidney exhibited less Ang II-induced cardiac hypertrophy than controls. CONCLUSION Bcl10 has multi-faceted actions in Ang II-induced renal damage. On the one hand, global Bcl10 deficiency ameliorates renal fibrosis and cell infiltration; on the other hand, lack of renal Bcl10 aggravates albuminuria and podocyte damage. These data suggest that Bcl10 maintains podocyte integrity and renal function.
Collapse
Affiliation(s)
- Lajos Markó
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin, Berlin, Germany and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Song Rong
- Hannover Medical School, Hannover, Germany.,Transplantation Center, Zunyi Medical College, Zunyi, China
| | - András Balogh
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin, Berlin, Germany and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Samuel Klamer
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin, Berlin, Germany and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin, Berlin, Germany and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin, Berlin, Germany and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), Munich, Germany.,German Cancer Consortium (DKTK), partner Site, Munich, Germany
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin, Berlin, Germany and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin, Berlin, Germany and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.,Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin, Berlin, Germany and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany.,Helios Clinic Berlin-Buch, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin, Berlin, Germany and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
5
|
Ferrario CM, Ahmad S, Groban L. Twenty years of progress in angiotensin converting enzyme 2 and its link to SARS-CoV-2 disease. Clin Sci (Lond) 2020; 134:2645-2664. [PMID: 33063823 PMCID: PMC9055624 DOI: 10.1042/cs20200901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
The virulence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the aggressive nature of the disease has transformed the universal pace of research in the desperate attempt to seek effective therapies to halt the morbidity and mortality of this pandemic. The rapid sequencing of the SARS-CoV-2 virus facilitated identification of the receptor for angiotensin converting enzyme 2 (ACE2) as the high affinity binding site that allows virus endocytosis. Parallel evidence that coronavirus disease 2019 (COVID-19) disease evolution shows greater lethality in patients with antecedent cardiovascular disease, diabetes, or even obesity questioned the potential unfavorable contribution of angiotensin converting enzyme (ACE) inhibitors or angiotensin II (Ang II) receptor blockers as facilitators of adverse outcomes due to the ability of these therapies to augment the transcription of Ace2 with consequent increase in protein formation and enzymatic activity. We review, here, the specific studies that support a role of these agents in altering the expression and activity of ACE2 and underscore that the robustness of the experimental data is associated with weak clinical long-term studies of the existence of a similar regulation of tissue or plasma ACE2 in human subjects.
Collapse
Affiliation(s)
- Carlos M. Ferrario
- Departments of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
6
|
Phoksawat W, Jumnainsong A, Sornkayasit K, Srisak K, Komanasin N, Leelayuwat C. IL-17 and IFN-γ Productions by CD4+ T cells and T cell Subsets Expressing NKG2D Associated with the Number of Risk Factors for Cardiovascular Diseases. Mol Immunol 2020; 122:193-199. [PMID: 32388074 DOI: 10.1016/j.molimm.2020.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 01/26/2023]
Abstract
Cardiovascular diseases (CVD), which are major causes of morbidity and mortality worldwide, are characterized by complicated chronic inflammatory manifestation inducing from multi-risk factors. Previously, we have identified a pathological T cell subpopulation producing interleukin (IL)-17 in diabetes. We hypothesized that this T cell subpopulation could exist in the elderly with persistence low grade inflammation related to the risk factors for cardiovascular diseases. Thus, we investigated whether high levels of the natural group 2, member D (NKG2D) expression, IL-17 and interferon (IFN)-γ production by CD4 + T cells and T cell subsets were more prevalent in individuals who had age ≥ 60 years with > 2 risk factors for CVD (dyslipidemia, hypertension and/or diabetes mellitus) compared to subjects who had < 2 risk factors. Using flow cytometric analysis, we found that CD4 + T cells of subjects who had ≥ 2 risk factors had significantly higher NKG2D expression than those of subjects with < 2 risk factors (P = 0.023). Apparently, CD4+CD28null T subset of both two groups preferentially expressed NKG2D, and prominently produced IL-17 and IFN-γ compared to the CD4+CD28+ T subset. Expectedly, there was a statistical significance of IL-17 and IFN-γ production of CD4 + 28nullNKG2D + T cells (P = 0.037 and P = 0.042, respectively). We concluded that cumulative number of CVD risk factors associated with progressive alteration of CD4+ T cell phenotypes and their functions. Handling of metabolic risk factors may be an approach for healthcare of the elderly to prevent cardiovascular morbidity resulting from alteration of immunity.
Collapse
Affiliation(s)
- Wisitsak Phoksawat
- Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand; The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand; The Centre for Innovation and Standard of Medical Technology and Physical Therapy (CISMaP), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Amonrat Jumnainsong
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand; The Centre for Innovation and Standard of Medical Technology and Physical Therapy (CISMaP), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand; Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Kanda Sornkayasit
- Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand; The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Kanoungnit Srisak
- Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand; The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Nantarat Komanasin
- Department of Clinical Microscopy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Chanvit Leelayuwat
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand; The Centre for Innovation and Standard of Medical Technology and Physical Therapy (CISMaP), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand; Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
7
|
Satish M, Saxena SK, Agrawal DK. Adipokine Dysregulation and Insulin Resistance with Atherosclerotic Vascular Disease: Metabolic Syndrome or Independent Sequelae? J Cardiovasc Transl Res 2019; 12:415-424. [PMID: 30835048 DOI: 10.1007/s12265-019-09879-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022]
Abstract
Adipokine dysregulation and insulin resistance are two hallmark sequelae attributed to the current clinical definition of metabolic syndrome (MetS) that are also linked to atherosclerotic vascular disease. Here, we critically discuss the underlying pathophysiological mechanisms and the interplay between the two sequelae. Adipokine dysregulation is involved with decreased nitric oxide, vascular inflammation, and insulin resistance in itself to promote atherosclerosis. Insulin resistance is involved with endothelial dysfunction by direct and indirect mechanisms that also promote vascular inflammation and atherosclerosis. These mechanisms are discussed in atherosclerosis irrespective of MetS, and to evaluate the possibility of synergism in MetS. High retinol-binding protein-4 (RBP-4) and low cholesterol efflux in MetS may provide evidence of possible synergism and elevated atherosclerotic risk. An adverse adipokine panel that includes fetuin-A and adiponectin can potentially assess atherosclerotic risk in even those without MetS. Genetic possibilities may exist in atherosclerotic vascular diseases secondary to insulin resistance.
Collapse
Affiliation(s)
- Mohan Satish
- Department of Clinical & Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Shailendra K Saxena
- Department of Family Medicine, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
8
|
Li X, Sun W, Xi W, Shen W, Wei T, Chen W, Gao P, Li Q. Transplantation of skin mesenchymal stem cells attenuated AngII-induced hypertension and vascular injury. Biochem Biophys Res Commun 2018; 497:1068-1075. [DOI: 10.1016/j.bbrc.2018.02.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/28/2022]
|
9
|
Abboud FM, Singh MV. Autonomic regulation of the immune system in cardiovascular diseases. ADVANCES IN PHYSIOLOGY EDUCATION 2017; 41:578-593. [PMID: 29138216 PMCID: PMC6105770 DOI: 10.1152/advan.00061.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 05/27/2023]
Abstract
The autonomic nervous system is a powerful regulator of circulatory adjustments to acute hemodynamic stresses. Here we focus on new concepts that emphasize the chronic influence of the sympathetic and parasympathetic systems on cardiovascular pathology. The autonomic neurohumoral system can dramatically influence morbidity and mortality from cardiovascular disease through newly discovered influences on the innate and adaptive immune systems. Specifically, the end-organ damage in heart failure or hypertension may be worsened or alleviated by pro- or anti-inflammatory pathways of the immune system, respectively, that are activated through neurohumoral transmitters. These concepts provide a major new perspective on potentially life-saving therapeutic interventions in the deadliest of diseases.
Collapse
Affiliation(s)
- François M Abboud
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Madhu V Singh
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
10
|
Petroni R, Di Mauro M, Altorio SF, Romano S, Petroni A, Penco M. The role of bariatric surgery for improvement of hypertension in obese patients. J Cardiovasc Med (Hagerstown) 2017; 18:152-158. [DOI: 10.2459/jcm.0000000000000424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Abnormal CD161 + immune cells and retinoic acid receptor-related orphan receptor γt-mediate enhanced IL-17F expression in the setting of genetic hypertension. J Allergy Clin Immunol 2017; 140:809-821.e3. [PMID: 28093217 DOI: 10.1016/j.jaci.2016.11.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/15/2016] [Accepted: 11/15/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Hypertension is considered an immunologic disorder. However, the role of the IL-17 family in genetic hypertension in the spontaneously hypertensive rat (SHR) has not been investigated. OBJECTIVE We tested the hypothesis that enhanced TH17 programming and IL-17 expression in abundant CD161+ immune cells in SHRs represent an abnormal proinflammatory adaptive immune response. Furthermore, we propose that this response is driven by the master regulator retinoic acid receptor-related orphan receptor γt (RORγt) and a nicotinic proinflammatory innate immune response. METHODS We measured expression of the CD161 surface marker on splenocytes in SHRs and normotensive control Wistar-Kyoto (WKY) rats from birth to adulthood. We compared expression of IL-17A and IL-17F in splenic cells under different conditions. We then determined the functional effect of these cytokines on vascular reactivity. Finally, we tested whether pharmacologic inhibition of RORγt can attenuate hypertension in SHRs. RESULTS SHRs exhibited an abnormally large population of CD161+ cells at birth that increased with age, reaching more than 30% of the splenocyte population at 38 weeks. The SHR splenocytes constitutively expressed more RORγt than those of WKY rats and produced more IL-17F on induction. Exposure of WKY rat aortas to IL-17F impaired endothelium-dependent vascular relaxation, whereas IL-17A did not. Moreover, in vivo inhibition of RORγt by digoxin decreased systolic blood pressure in SHRs. CONCLUSIONS SHRs have a markedly enhanced potential for RORγt-driven expression of proinflammatory and prohypertensive IL-17F in response to innate immune activation. Increased RORγt and IL-17F levels contribute to SHR hypertension and might be therapeutic targets.
Collapse
|
12
|
Abstract
In this chapter, we discuss the manner through which the immune system regulates the cardiovascular system in health and disease. We define the cardiovascular system and elements of atherosclerotic disease, the main focus in this chapter. Herein we elaborate on the disease process that can result in myocardial infarction (heart attack), ischaemic stroke and peripheral arterial disease. We have discussed broadly the homeostatic mechanisms in place that help autoregulate the cardiovascular system including the vital role of cholesterol and lipid clearance as well as the role lipid homeostasis plays in cardiovascular disease in the context of atherosclerosis. We then elaborate on the role played by the immune system in this setting, namely, major players from the innate and adaptive immune system, as well as discussing in greater detail specifically the role played by monocytes and macrophages.This chapter should represent an overview of the role played by the immune system in cardiovascular homeostasis; however further reading of the references cited can expand the reader's knowledge of the detail, and we point readers to many excellent reviews which summarise individual immune systems and their role in cardiovascular disease.
Collapse
Affiliation(s)
- Mohammed Shamim Rahman
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK
| | - Kevin Woollard
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
13
|
Kim JY, Park J, Chang JY, Kim SH, Lee JE. Inflammation after Ischemic Stroke: The Role of Leukocytes and Glial Cells. Exp Neurobiol 2016; 25:241-251. [PMID: 27790058 PMCID: PMC5081470 DOI: 10.5607/en.2016.25.5.241] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
The immune response after stroke is known to play a major role in ischemic brain pathobiology. The inflammatory signals released by immune mediators activated by brain injury sets off a complex series of biochemical and molecular events which have been increasingly recognized as a key contributor to neuronal cell death. The primary immune mediators involved are glial cells and infiltrating leukocytes, including neutrophils, monocytes and lymphocyte. After ischemic stroke, activation of glial cells and subsequent release of pro- and anti-inflammatory signals are important for modulating both neuronal cell damage and wound healing. Infiltrated leukocytes release inflammatory mediators into the site of the lesion, thereby exacerbating brain injury. This review describes how the roles of glial cells and circulating leukocytes are a double-edged sword for neuroinflammation by focusing on their detrimental and protective effects in ischemic stroke. Here, we will focus on underlying characterize of glial cells and leukocytes under inflammation after ischemic stroke.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.; Bk21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji Young Chang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jaecheon 27136, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.; Bk21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
14
|
Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem 2016; 22:1258-77. [PMID: 25666795 DOI: 10.2174/0929867322666150209154036] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/02/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke.
Collapse
Affiliation(s)
| | - Midori A Yenari
- Dept. of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
15
|
Yao W, Sun Y, Wang X, Niu K. Elevated Serum Level of Interleukin 17 in a Population With Prehypertension. J Clin Hypertens (Greenwich) 2015; 17:770-4. [PMID: 26140526 PMCID: PMC8032147 DOI: 10.1111/jch.12612] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 01/24/2023]
Abstract
Cytokines play an important role in the pathogenesis of hypertension. The authors hypothesized that interleukin 17 (IL-17) might contribute to the prehypertensive state. This study evaluated the relationship between serum levels of IL-17 and prehypertension. A total of 394 participants were enrolled, after excluding for hypertension or treated hypertension, and divided into two groups (optimal blood pressure [BP] and prehypertension) based on the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure classification of BP. Optimal BP was defined as systolic BP <120 mm Hg and diastolic BP <80 mm Hg. Prehypertension was defined as systolic BP of 120 to 139 mm Hg or diastolic BP of 80 to 89 mm Hg. IL-17A levels were determined by enzyme-linked immunosorbent assay. The mean serum IL-17 concentration in the prehypertension group was significantly higher than in the optimal BP group. The cohort was divided into quartiles Q1 (≤3.5 ng/L), Q2 (3.60 to 6.10 ng/L), Q3 (6.20 to 10.00 ng/L), and Q4 (≥10.10 ng/L) based on IL-17 levels. The Q2 to Q4 groups had increasing odds ratios for having prehypertension compared with the Q1 group. Elevated serum IL-17 was accompanied by a rise in systolic BP. Thus, increased serum IL-17 levels are associated with prehypertension.
Collapse
Affiliation(s)
- Wei Yao
- Department of CardiologyTianjin Medical University General HospitalTianjin Medial UniversityTianjinChina
| | - Yuemin Sun
- Department of CardiologyTianjin Medical University General HospitalTianjin Medial UniversityTianjinChina
| | - Xuechun Wang
- Department of CardiologyTianjin Medical University General HospitalTianjin Medial UniversityTianjinChina
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public HealthTianjin Medical UniversityTianjinChina
| |
Collapse
|
16
|
Thang LV, Demel SL, Crawford R, Kaminski NE, Swain GM, Van Rooijen N, Galligan JJ. Macrophage depletion lowers blood pressure and restores sympathetic nerve α2-adrenergic receptor function in mesenteric arteries of DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 2015; 309:H1186-97. [PMID: 26320034 DOI: 10.1152/ajpheart.00283.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023]
Abstract
We tested the hypothesis that vascular macrophage infiltration and O2 (-) release impairs sympathetic nerve α2-adrenergic autoreceptor (α2AR) function in mesenteric arteries (MAs) of DOCA-salt hypertensive rats. Male rats were uninephrectomized or sham operated (sham). DOCA pellets were implanted subcutaneously in uninephrectomized rats who were provided high-salt drinking water or high-salt water with apocynin. Sham rats received tap water. Blood pressure was measured using radiotelemetry. Treatment of sham and DOCA-salt rats with liposome-encapsulated clodronate was used to deplete macrophages. After 3-5, 10-13, and 18-21 days of DOCA-salt treatment, MAs and peritoneal fluid were harvested from euthanized rats. Norepinephrine (NE) release from periarterial sympathetic nerves was measured in vitro using amperometry with microelectrodes. Macrophage infiltration into MAs as well as TNF-α and p22(phox) were measured using immunohistochemistry. Peritoneal macrophage activation was measured by flow cytometry. O2 (-) was measured using dihydroethidium staining. Hypertension developed over 28 days, and apocynin reduced blood pressure on days 18-21. O2 (-) and macrophage infiltration were greater in DOCA-salt MAs compared with sham MAs after day 10. Peritoneal macrophage activation occurred after day 10 in DOCA-salt rats. Macrophages expressing TNF-α and p22(phox) were localized near sympathetic nerves. Impaired α2AR function and increased NE release from sympathetic nerves occurred in MAs from DOCA-salt rats after day 18. Macrophage depletion reduced blood pressure and vascular O2 (-) while restoring α2AR function in DOCA-salt rats. Macrophage infiltration into the vascular adventitia contributes to increased blood pressure in DOCA-salt rats by releasing O2 (-), which disrupts α2AR function, causing enhanced NE release from sympathetic nerves.
Collapse
Affiliation(s)
- Loc V Thang
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Stacie L Demel
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Robert Crawford
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Greg M Swain
- Neuroscience Program, Michigan State University, East Lansing, Michigan; Department of Chemistry, Michigan State University, East Lansing, Michigan; and
| | - Nico Van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - James J Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Neuroscience Program, Michigan State University, East Lansing, Michigan;
| |
Collapse
|
17
|
Sun YT, Gong Y, Zhu R, Liu X, Zhu Y, Wang Y, Qiu Q, Qi L, Liang J. Relationship between white blood cells and hypertension in Chinese adults: the Cardiometabolic Risk in Chinese (CRC) study. Clin Exp Hypertens 2015; 37:594-8. [PMID: 26114355 DOI: 10.3109/10641963.2015.1036058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increased blood pressure was associated with increased white blood cell count (adjusted p < 0.001) in a community-based health examination survey of adults in China (n = 39 282; aged 18-93 years). Adjusted odds ratios (95% confidence intervals) for hypertension across white blood cell count quintiles were 1.00, 0.99 (0.89-1.09), 1.11 (1.01-1.22), 1.09 (0.99-1.20), and 1.19 (1.08-1.31) (p for trend < 0.001). Body mass index and white blood cell count had an additive effect on systolic blood pressure (p for interaction = 0.047). Therefore, white blood cell count could independently predict hypertension in Chinese adults.
Collapse
Affiliation(s)
| | - Ying Gong
- b Department of Endocrinology , Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Institute of Diabetes , Jiangsu , China .,c Xuzhou Clinical School, Xuzhou Medical College, Affiliated Hospital of Southeast University , Xuzhou , Jiangsu , China
| | - Ruihua Zhu
- c Xuzhou Clinical School, Xuzhou Medical College, Affiliated Hospital of Southeast University , Xuzhou , Jiangsu , China .,d Department of Cardiology , Xuzhou Central Hospital , Jiangsu , China
| | - Xuekui Liu
- b Department of Endocrinology , Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Institute of Diabetes , Jiangsu , China .,c Xuzhou Clinical School, Xuzhou Medical College, Affiliated Hospital of Southeast University , Xuzhou , Jiangsu , China
| | - Yan Zhu
- a Xuzhou Medical College , Jiangsu , China
| | - Yu Wang
- a Xuzhou Medical College , Jiangsu , China
| | - Qinqin Qiu
- a Xuzhou Medical College , Jiangsu , China
| | - Lu Qi
- e Department of Nutrition , Harvard School of Public Health , Boston , MA , USA , and.,f Channing Laboratory, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Jun Liang
- b Department of Endocrinology , Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Institute of Diabetes , Jiangsu , China .,c Xuzhou Clinical School, Xuzhou Medical College, Affiliated Hospital of Southeast University , Xuzhou , Jiangsu , China
| |
Collapse
|
18
|
Wild blueberries (Vaccinium myrtillus) alleviate inflammation and hypertension associated with developing obesity in mice fed with a high-fat diet. PLoS One 2014; 9:e114790. [PMID: 25501421 PMCID: PMC4264776 DOI: 10.1371/journal.pone.0114790] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 11/03/2014] [Indexed: 11/26/2022] Open
Abstract
Background Low-grade metabolic inflammation and hypertension are primary mechanisms involved in obesity-associated adverse health effects. Berries, especially Nordic wild blueberries (hereafter referred to as bilberries), represent an important source of dietary anthocyanins, a group of polyphenols with potential beneficial effects to combat obesity-associated metabolic disturbances. Methods The effects of 5% or 10% (w/w) of whole bilberries (BB) were studied on the development of obesity and its metabolic disturbances in C57BL mice fed with a high-fat diet (HFD) for three months. Cytokines, inflammatory cells, systolic blood pressure, glucose tolerance, insulin sensitivity, weight gain, body fat, food consumption and energy metabolism were assessed. Results Bilberries ameliorated type 1 pro-inflammatory responsiveness induced by HFD. This was indicated by the altered cytokine profile and the reduced prevalence of interferon gamma -producing T-cells, in particular T helper type 1 cells. Bilberries also prevented the progression of obesity associated long term increase in systolic blood pressure in mice. Conclusions Bilberries reduce the development of systemic inflammation and prevent the progression of chronic hypertension, thus supporting their potential role in alleviating the adverse health effects associated with developing obesity.
Collapse
|
19
|
Abstract
Endothelial dysfunction plays a key role in the development and progression of cardiovascular disease. In patients with hypertension, endothelial dysfunction is characterized by a decrease of vasodilator factors release. Recent evidence highlights the involvement of regulatory T cell in the cardiovascular physiology and pathology. An increasing body of data suggest that an imbalance in the immune system triggers inflammation and compromises the cardiovascular homeostasis. In this mini-review, we will highlight the role of immune regulatory T cells in hypertension-induced vascular dysfunction.
Collapse
|
20
|
Obesity induces neuroinflammation mediated by altered expression of the renin-angiotensin system in mouse forebrain nuclei. Physiol Behav 2014; 136:31-8. [PMID: 24508821 DOI: 10.1016/j.physbeh.2014.01.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 12/26/2022]
Abstract
Obesity is a widespread health concern that is associated with an increased prevalence of hypertension and cardiovascular disease. Both obesity and hypertension have independently been associated with increased levels of inflammatory cytokines and immune cells within specific brain regions, as well as increased activity of the renin-angiotensin system (RAS). To test the hypothesis that high-fat diet (HFD) induced obesity leads to an angiotensin-II (Ang-II)-dependent increase in inflammatory cells within specific forebrain regions that are important for cardiovascular regulation, we first assessed microglial activation, astrocyte activation, inflammation and RAS component gene expression within selected metabolic and cardiovascular control centers of the forebrain in adult male C57BL/6 mice given either a HFD or a low-fat diet (LFD) for 8weeks. Subsequently, we assessed the necessity of the paraventricular nucleus of the hypothalamus (PVN) angiotensin type-1a (AT1a) receptor for these responses by using the Cre/lox system in mice to selectively delete the AT1a receptor from the PVN. These studies reveal that in addition to the arcuate nucleus of the hypothalamus (ARC), the PVN and the subfornical organ (SFO), two brain regions that are known to regulate blood pressure and energy balance, also initiate proinflammatory responses after the consumption of a diet high in fat. They further indicate that some, but not all, of these responses are reversed upon deletion of AT1a specifically within the PVN.
Collapse
|
21
|
Andrzejczak D, Górska D. The effects of celiprolol on serum concentrations of proinflammatory cytokines in hypertensive (SHR) and normotensive (WKY) rats. Pharmacol Rep 2014; 66:68-73. [DOI: 10.1016/j.pharep.2013.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/30/2013] [Accepted: 08/13/2013] [Indexed: 10/25/2022]
|
22
|
McDaniel DO, Rigney D, Olivier J, McDaniel KY, Brock M, Redmond P, Porter J. Trauma Induced Inflammation, Sepsis and Ageing. AGEING INTERNATIONAL 2013. [DOI: 10.1007/s12126-013-9195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, Hamza S, Speed J, Hall ME. Hypertension: physiology and pathophysiology. Compr Physiol 2013; 2:2393-442. [PMID: 23720252 DOI: 10.1002/cphy.c110058] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite major advances in understanding the pathophysiology of hypertension and availability of effective and safe antihypertensive drugs, suboptimal blood pressure (BP) control is still the most important risk factor for cardiovascular mortality and is globally responsible for more than 7 million deaths annually. Short-term and long-term BP regulation involve the integrated actions of multiple cardiovascular, renal, neural, endocrine, and local tissue control systems. Clinical and experimental observations strongly support a central role for the kidneys in the long-term regulation of BP, and abnormal renal-pressure natriuresis is present in all forms of chronic hypertension. Impaired renal-pressure natriuresis and chronic hypertension can be caused by intrarenal or extrarenal factors that reduce glomerular filtration rate or increase renal tubular reabsorption of salt and water; these factors include excessive activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, increased formation of reactive oxygen species, endothelin, and inflammatory cytokines, or decreased synthesis of nitric oxide and various natriuretic factors. In human primary (essential) hypertension, the precise causes of impaired renal function are not completely understood, although excessive weight gain and dietary factors appear to play a major role since hypertension is rare in nonobese hunter-gathers living in nonindustrialized societies. Recent advances in genetics offer opportunities to discover gene-environment interactions that may also contribute to hypertension, although success thus far has been limited mainly to identification of rare monogenic forms of hypertension.
Collapse
Affiliation(s)
- John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rhaleb NE, Yang XP, Carretero OA. The kallikrein-kinin system as a regulator of cardiovascular and renal function. Compr Physiol 2013; 1:971-93. [PMID: 23737209 DOI: 10.1002/cphy.c100053] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autocrine, paracrine, endocrine, and neuroendocrine hormonal systems help regulate cardio-vascular and renal function. Any change in the balance among these systems may result in hypertension and target organ damage, whether the cause is genetic, environmental or a combination of the two. Endocrine and neuroendocrine vasopressor hormones such as the renin-angiotensin system (RAS), aldosterone, and catecholamines are important for regulation of blood pressure and pathogenesis of hypertension and target organ damage. While the role of vasodepressor autacoids such as kinins is not as well defined, there is increasing evidence that they are not only critical to blood pressure and renal function but may also oppose remodeling of the cardiovascular system. Here we will primarily be concerned with kinins, which are oligopeptides containing the aminoacid sequence of bradykinin. They are generated from precursors known as kininogens by enzymes such as tissue (glandular) and plasma kallikrein. Some of the effects of kinins are mediated via autacoids such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and/or tissue plasminogen activator (tPA). Kinins help protect against cardiac ischemia and play an important part in preconditioning as well as the cardiovascular and renal protective effects of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARB). But the role of kinins in the pathogenesis of hypertension remains controversial. A study of Utah families revealed that a dominant kallikrein gene expressed as high urinary kallikrein excretion was associated with a decreased risk of essential hypertension. Moreover, researchers have identified a restriction fragment length polymorphism (RFLP) that distinguishes the kallikrein gene family found in one strain of spontaneously hypertensive rats (SHR) from a homologous gene in normotensive Brown Norway rats, and in recombinant inbred substrains derived from these SHR and Brown Norway rats this RFLP cosegregated with an increase in blood pressure. However, humans, rats and mice with a deficiency in one or more components of the kallikrein-kinin-system (KKS) or chronic KKS blockade do not have hypertension. In the kidney, kinins are essential for proper regulation of papillary blood flow and water and sodium excretion. B2-KO mice appear to be more sensitive to the hypertensinogenic effect of salt. Kinins are involved in the acute antihypertensive effects of ACE inhibitors but not their chronic effects (save for mineralocorticoid-salt-induced hypertension). Kinins appear to play a role in the pathogenesis of inflammatory diseases such as arthritis and skin inflammation; they act on innate immunity as mediators of inflammation by promoting maturation of dendritic cells, which activate the body's adaptive immune system and thereby stimulate mechanisms that promote inflammation. On the other hand, kinins acting via NO contribute to the vascular protective effect of ACE inhibitors during neointima formation. In myocardial infarction produced by ischemia/reperfusion, kinins help reduce infarct size following preconditioning or treatment with ACE inhibitors. In heart failure secondary to infarction, the therapeutic effects of ACE inhibitors are partially mediated by kinins via release of NO, while drugs that activate the angiotensin type 2 receptor act in part via kinins and NO. Thus kinins play an important role in regulation of cardiovascular and renal function as well as many of the beneficial effects of ACE inhibitors and ARBs on target organ damage in hypertension.
Collapse
Affiliation(s)
- Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.
| | | | | |
Collapse
|
25
|
Purkayastha S, Cai D. Neuroinflammatory basis of metabolic syndrome. Mol Metab 2013; 2:356-63. [PMID: 24327952 DOI: 10.1016/j.molmet.2013.09.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/07/2023] Open
Abstract
Inflammatory reaction is a fundamental defense mechanism against threat towards normal integrity and physiology. On the other hand, chronic diseases such as obesity, type 2 diabetes, hypertension and atherosclerosis, have been causally linked to chronic, low-grade inflammation in various metabolic tissues. Recent cross-disciplinary research has led to identification of hypothalamic inflammatory changes that are triggered by overnutrition, orchestrated by hypothalamic immune system, and sustained through metabolic syndrome-associated pathophysiology. While continuing research is actively trying to underpin the identity and mechanisms of these inflammatory stimuli and actions involved in metabolic syndrome disorders and related diseases, proinflammatory IκB kinase-β (IKKβ), the downstream nuclear transcription factor NF-κB and some related molecules in the hypothalamus were discovered to be pathogenically significant. This article is to summarize recent progresses in the field of neuroendocrine research addressing the central integrative role of neuroinflammation in metabolic syndrome components ranging from obesity, glucose intolerance to cardiovascular dysfunctions.
Collapse
Affiliation(s)
- Sudarshana Purkayastha
- Department of Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
26
|
Guzik B, Sagan A, Ludew D, Mrowiecki W, Chwała M, Bujak-Gizycka B, Filip G, Grudzien G, Kapelak B, Żmudka K, Mrowiecki T, Sadowski J, Korbut R, Guzik TJ. Mechanisms of oxidative stress in human aortic aneurysms--association with clinical risk factors for atherosclerosis and disease severity. Int J Cardiol 2013; 168:2389-96. [PMID: 23506637 PMCID: PMC3819986 DOI: 10.1016/j.ijcard.2013.01.278] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/06/2013] [Accepted: 01/23/2013] [Indexed: 11/18/2022]
Abstract
UNLABELLED Aortic abdominal aneurysms (AAA) are important causes of cardiovascular morbidity and mortality. Oxidative stress may link multiple mechanisms of AAA including vascular inflammation and increased metalloproteinase activity. However, the mechanisms of vascular free radical production remain unknown. Accordingly, we aimed to determine sources and molecular regulation of vascular superoxide (O2(-)) production in human AAA. METHODS AND RESULTS AAA segments and matched non-dilated aortic samples were obtained from 40 subjects undergoing AAA repair. MDA levels (determined by HPLC/MS) were greater in plasma of AAA subjects (n=16) than in risk factor matched controls (n=16). Similarly, superoxide production, measured by lucigenin chemiluminescence and dihydroethidium fluorescence, was increased in aneurysmatic segments compared to non-dilated aortic specimens. NADPH oxidases and iNOS are the primary sources of O2(-) in AAA. Xanthine oxidase, mitochondrial oxidases and cyclooxygenase inhibition had minor or no effect. Protein kinase C inhibition had no effect on superoxide production in AAA. NADPH oxidase subunit mRNA levels for p22phox, nox2 and nox5 were significantly increased in AAAs while nox4 mRNA expression was lower. Superoxide production was higher in subjects with increased AAA repair risk Vanzetto score and was significantly associated with smoking, hypercholesterolemia and presence of CAD in AAA cohort. Basal superoxide production and NADPH oxidase activity were correlated to aneurysm size. CONCLUSIONS Increased expression and activity of NADPH oxidases are important mechanisms underlying oxidative stress in human aortic abdominal aneurysm. Uncoupled iNOS may link oxidative stress to inflammation in AAA. Oxidative stress is related to aneurysm size and major clinical risk factors in AAA patients.
Collapse
Affiliation(s)
- Bartłomiej Guzik
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Agnieszka Sagan
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | - Dominik Ludew
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | | | - Maciej Chwała
- Department of Vascular Surgery, J. Grande Hospital, Cracow, Poland
| | - Beata Bujak-Gizycka
- Department of Pharmacology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Grzegorz Filip
- Department of Cardiovascular Surgery, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Grzegorz Grudzien
- Department of Cardiovascular Surgery, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Boguslaw Kapelak
- Department of Cardiovascular Surgery, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Krzysztof Żmudka
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Tomasz Mrowiecki
- Department of Vascular Surgery, J. Grande Hospital, Cracow, Poland
| | - Jerzy Sadowski
- Department of Cardiovascular Surgery, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Ryszard Korbut
- Department of Pharmacology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Tomasz J. Guzik
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| |
Collapse
|
27
|
Abstract
Functional integrity of endothelial cells is an indicator and a prerequisite for vascular health and counteracts the development of atherosclerosis. This concept of 'endothelial therapy' was developed in the late 1990s as an approach to preserve or restore endothelial cell health given that 'the knowledge of the mechanisms involved in 'endothelial dysfunction' allows us to interfere specifically with pathogenic pathways at very early time points and to slow down the progression of disease'. In the present review, the principles underlying endothelial cell health will be discussed as well as the role of endothelial therapy as a preventive measure to reduce the prevalence of coronary artery disease or to delay disease progression in patients with chronic coronary artery disease. This article also highlights the importance of active participation, the need to reduce the number of future patients in view of the rising prevalence of childhood obesity, and the potential of endothelial therapy to improve survival, reduce disability and health costs, and to improve overall quality of life in patients at risk for or already diagnosed with coronary artery disease. The preventive and therapeutic approaches and considerations described herein can be applied by physicians, patients, parents, educators, health agencies, and political decision makers to help reducing the global cardiovascular disease burden in the decades to come.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, LTK Y44 G22, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
28
|
Neuroimmune communication in hypertension and obesity: a new therapeutic angle? Pharmacol Ther 2013; 138:428-40. [PMID: 23458610 DOI: 10.1016/j.pharmthera.2013.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/13/2022]
Abstract
Hypertension is an epidemic health concern and a major risk factor for the development of cardiovascular disease. Although there are available treatment strategies for hypertension, numerous hypertensive patients do not have their clinical symptoms under control and it is imperative that new avenues to treat or prevent high blood pressure in these patients are developed. It is well established that increases in sympathetic nervous system (SNS) outflow and enhanced renin-angiotensin system (RAS) activity are common features of hypertension and various pathological conditions that predispose individuals to hypertension. More recently, hypertension has also become recognized as an immune condition and accumulating evidence suggests that interactions between the RAS, SNS and immune systems play a role in blood pressure regulation. This review summarizes what is known about the interconnections between the RAS, SNS and immune systems in the neural regulation of blood pressure. Based on the reviewed studies, a model for RAS/neuroimmune interactions during hypertension is proposed and the therapeutic potential of targeting RAS/neuroimmune interactions in hypertensive patients is discussed. Special emphasis is placed on the applicability of the proposed model to obesity-related hypertension.
Collapse
|
29
|
Abstract
Inflammation is a biological response mounted by the immune system against dangerous assaults that threaten the integrity and normal physiology of an organism. During the past decades, cross-disciplinary research from immunology and endocrinology has much broadened this knowledge by demonstrating that chronic conditions of nutritional excess constitute an independent category of inflammatory activators, and the resulting chronic and low-grade inflammation is an important characteristic of overnutrition-induced diseases. A large body of research has demonstrated that these diseases are pathogenically associated with the local, negative actions of inflammation in peripheral tissues predominantly including the liver, muscle, and fat. In this research background, more recent research has advanced to a new level, with the important discoveries showing that overnutrition-induced inflammation occurs in the brain and thus plays a broad and leadership role in overnutrition-induced diseases. While much more research establishments are expected in this emerging and quickly expanding research, the appreciated understandings have been mainly based on proinflammatory IKKβ/NF-κB pathway and related molecules in the hypothalamus. In this chapter, the author focuses on describing IKKβ/NF-κB-induced neural inflammation in the context of overnutrition-induced metabolic inflammation and especially the central roles of this neural inflammation in the development of a spectrum of overnutrition-related diseases.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Institute of Aging, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
30
|
Nguyen H, Chiasson VL, Chatterjee P, Kopriva SE, Young KJ, Mitchell BM. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc Res 2012; 97:696-704. [PMID: 23263331 DOI: 10.1093/cvr/cvs422] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS Elevated levels of pro-inflammatory cytokine interleukin-17A (IL-17) are associated with hypertensive autoimmune diseases; however, the connection between IL-17 and hypertension is unknown. We hypothesized that IL-17 increases blood pressure by decreasing endothelial nitric oxide production. METHODS AND RESULTS Acute treatment of endothelial cells with IL-17 caused a significant increase in phosphorylation of the inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495). Of the kinases known to phosphorylate eNOS Thr495, only inhibition of Rho-kinase prevented the IL-17-induced increase. IL-17 caused a threefold increase in the Rho-kinase activator RhoA, and this was prevented by an IL-17 neutralizing antibody. In isolated mouse aortas, IL-17 significantly increased eNOS Thr495 phosphorylation, induced RhoA expression, and decreased NO-dependent relaxation responses, all of which were prevented by either an IL-17 neutralizing antibody or inhibition of Rho-kinase. In mice, IL-17 treatment for 1 week significantly increased systolic blood pressure and this was associated with decreased aortic NO-dependent relaxation responses, increased eNOS Thr495 phosphorylation, and increased RhoA expression. Inhibition of Rho-kinase prevented the hypertension caused by IL-17. CONCLUSION These data demonstrate that IL-17 activates RhoA/Rho-kinase leading to endothelial dysfunction and hypertension. Inhibitors of IL-17 or Rho-kinase may prove useful as anti-hypertensive drugs in IL-17-associated autoimmune diseases.
Collapse
Affiliation(s)
- Hoanglan Nguyen
- Division of Nephrology & Hypertension, Department of Internal Medicine, Texas A&M Health Science Center College of Medicine/Scott & White Memorial Hospital, 702 SW HK Dodgen Loop, Temple, TX 76504, USA
| | | | | | | | | | | |
Collapse
|
31
|
Dulak J, Guzik TJ. Angiogenesis, stem cells, eNOS and inflammation--the many faces of vascular biology. Thromb Haemost 2012; 108:801-3. [PMID: 23052221 DOI: 10.1160/th12-10-0729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 11/05/2022]
|
32
|
Brook RD, Rajagopalan S. Particulate matter, air pollution, and blood pressure. ACTA ACUST UNITED AC 2012; 3:332-50. [PMID: 20409976 DOI: 10.1016/j.jash.2009.08.005] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/10/2009] [Accepted: 08/20/2009] [Indexed: 01/08/2023]
Abstract
A short-term increase in fine particulate matter air pollution (PM(2.5)) concentration increases the risk for myocardial infarctions, strokes, and heart failure exacerbations. An important mechanism likely contributing to these associations is an elevation in arterial blood pressure (BP). Exposure to ambient PM(2.5) even at present-day concentrations can increase BP within a period of a few days while long-term exposure might also promote the development of chronic hypertension. Controlled human and animal experiments have corroborated the veracity of these findings and elucidated plausible biological mechanisms. PM(2.5) deposition within the pulmonary tree is capable of rapidly triggering autonomic nervous system imbalance, thereby increasing BP within minutes of inhalation. In addition, fine particles can instigate a systemic pro-inflammatory response over a more prolonged period of exposure. Higher circulating levels of activated immune cells and inflammatory cytokines could consequently cause vascular endothelial dysfunction leading to an imbalance in vascular homeostatic responses. Indeed, chronic PM(2.5) exposure augments pro-vasoconstrictive pathways while blunting vasodilator capacity. Finally, certain particle constituents (e.g., metals, organic compounds, and ultra-fine particles) might also be capable of reaching the systemic circulation upon inhalation and thereafter directly impair vascular function. At the molecular level, the generation of oxidative stress with the consequent up-regulation of redox sensitive pathways appears to be a common and fundamental mechanism involved in the instigation of these pro-hypertensive responses. Due to the ubiquitous, continuous and often involuntary nature of exposure, PM(2.5) may be an important and under-appreciated worldwide environmental risk factor for increased arterial BP.
Collapse
Affiliation(s)
- Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
33
|
Hatta K, MacLeod RJ, Gerber SA, Croy BA. Emerging themes in uterine natural killer cell heterogeneity and function. Am J Reprod Immunol 2012; 68:282-9. [PMID: 22626252 DOI: 10.1111/j.1600-0897.2012.01160.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/23/2012] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Understanding of uterine natural killer (uNK) cell functions during normal pregnancy remains incomplete. METHOD OF STUDY Cloud tag analysis of literature was used to document themes addressed experimentally for uNK cells. Immunohistochemistry, including whole-mount staining of early implantation sites, separation of uNK cells into molecularly distinct subsets, and physiologic measurements in normal and mutant mice, are further advancing understanding of uNK cell biology. RESULTS Literature analyses revealed three key, current uNK cell research themes: angiogenesis, spiral arterial remodeling/pre-eclampsia/hypertension and infertility. UNK cells are being defined as cells potentially regulated by Wnt signaling that are heterogeneous in progenitor source and function and make unique contributions to implantation site development prior to spiral arterial remodeling. CONCLUSION Future studies are poised to define uNK cell progenitor cells, identify the signaling pathways supporting established uNK cell functions and move current understanding of mouse uNK cells to clinical research questions.
Collapse
Affiliation(s)
- Kota Hatta
- Division of Cardiovascular Surgery, Toronto General Hospital Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
34
|
Takac I, Schröder K, Brandes RP. The Nox family of NADPH oxidases: friend or foe of the vascular system? Curr Hypertens Rep 2012; 14:70-8. [PMID: 22071588 DOI: 10.1007/s11906-011-0238-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NADPH (nicotinamide adenine dinucleotide phosphate) oxidases are important sources of reactive oxygen species (ROS). In the vascular system, ROS can have both beneficial and detrimental effects. Under physiologic conditions, ROS are involved in signaling pathways that regulate vascular tone as well as cellular processes like proliferation, migration and differentiation. However, high doses of ROS, which are produced after induction or activation of NADPH oxidases in response to cardiovascular risk factors and inflammation, contribute to the development of endothelial dysfunction and vascular disease. In vascular cells, the NADPH oxidase isoforms Nox1, Nox2, Nox4, and Nox5 are expressed, which differ in their activity, response to stimuli, and the type of ROS released. This review focuses on the specific role of different NADPH oxidase isoforms in vascular physiology and their potential contributions to vascular diseases.
Collapse
Affiliation(s)
- Ina Takac
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | | | | |
Collapse
|
35
|
Abstract
The hypothalamus is one of the master regulators of various physiological processes, including energy balance and nutrient metabolism. These regulatory functions are mediated by discrete hypothalamic regions that integrate metabolic sensing with neuroendocrine and neural controls of systemic physiology. Neurons and nonneuronal cells in these hypothalamic regions act supportively to execute metabolic regulations. Under conditions of brain and hypothalamic inflammation, which may result from overnutrition-induced intracellular stresses or disease-associated systemic inflammatory factors, extracellular and intracellular environments of hypothalamic cells are disrupted, leading to central metabolic dysregulations and various diseases. Recent research has begun to elucidate the effects of hypothalamic inflammation in causing diverse components of metabolic syndrome leading to diabetes and cardiovascular disease. These new understandings have provocatively expanded previous knowledge on the cachectic roles of brain inflammatory response in diseases, such as infections and cancers. This review describes the molecular and cellular characteristics of hypothalamic inflammation in metabolic syndrome and related diseases as opposed to cachectic diseases, and also discusses concepts and potential applications of inhibiting central/hypothalamic inflammation to treat nutritional diseases.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
36
|
Emergency management of hypertension in children. Int J Nephrol 2012; 2012:420247. [PMID: 22577545 PMCID: PMC3345222 DOI: 10.1155/2012/420247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/13/2011] [Accepted: 01/12/2012] [Indexed: 12/18/2022] Open
Abstract
Systemic arterial hypertension in children has traditionally been thought to be secondary in origin. Increased incidence of risk factors like obesity, sedentary life-styles, and faulty dietary habits has led to increased prevalence of the primary arterial hypertension (PAH), particularly in adolescent age children. PAH has become a global epidemic worldwide imposing huge economic constraint on health care. Sudden acute increase in systolic and diastolic blood pressure can lead to hypertensive crisis. While it generally pertains to secondary hypertension, occurrence of hypertensive crisis in PAH is however rare in children. Hypertensive crisis has been further subclassified depending on presence or absence of end-organ damage into hypertensive emergency or urgency. Both hypertensive emergencies and urgencies are known to cause significant morbidity and mortality. Increasing awareness among the physicians, targeted at investigation of the pathophysiology of hypertension and its complications, better screening methods, generation, and implementation of novel treatment modalities will impact overall outcomes. In this paper, we discuss the etiology, pathogenesis, and management of hypertensive crisis in children. An extensive database search using keywords was done to obtain the information.
Collapse
|
37
|
Brait VH, Arumugam TV, Drummond GR, Sobey CG. Importance of T lymphocytes in brain injury, immunodeficiency, and recovery after cerebral ischemia. J Cereb Blood Flow Metab 2012; 32:598-611. [PMID: 22293986 PMCID: PMC3318155 DOI: 10.1038/jcbfm.2012.6] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following an ischemic stroke, T lymphocytes become activated, infiltrate the brain, and appear to release cytokines and reactive oxygen species to contribute to early inflammation and brain injury. However, some subsets of T lymphocytes may be beneficial even in the early stages after a stroke, and recent evidence suggests that T lymphocytes can also contribute to the repair and regeneration of the brain at later stages. In the hours to days after stroke, T-lymphocyte numbers are then reduced in the blood and in secondary lymphoid organs as part of a 'stroke-induced immunodeficiency syndrome,' which is mediated by hyperactivity of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis, resulting in increased risk of infectious complications. Whether or not poststroke T-lymphocyte activation occurs via an antigen-independent process, as opposed to a classical antigen-dependent process, is still controversial. Although considerable recent progress has been made, a better understanding of the roles of the different T-lymphocyte subpopulations and their temporal profile of damage versus repair will help to clarify whether T-lymphocyte targeting may be a viable poststroke therapy for clinical use.
Collapse
Affiliation(s)
- Vanessa H Brait
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
38
|
Hao XQ, Kong T, Zhang SY, Zhao ZS. Alteration of embryonic AT(2)-R and inflammatory cytokines gene expression induced by prenatal exposure to lipopolysaccharide affects renal development. ACTA ACUST UNITED AC 2012; 65:433-9. [PMID: 22342485 DOI: 10.1016/j.etp.2012.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 10/25/2011] [Accepted: 01/11/2012] [Indexed: 01/13/2023]
Abstract
UNLABELLED Prenatal exposure to LPS(lipopolysaccharide) results in renal damage in offspring rats, but the mechanism is unknown. The present study was to explore the role of angiotensin II and inflammation in the development of renal damage induced by prenatal exposure to LPS. The pregnant rats were randomly divided into two groups, i.e., control group, LPS group. The rats in the two groups were administered intraperitoneally with vehicle or 0.79 mg/kg LPS on 8th, 10th and 12th day during gestation. The mRNA expression of angiotensinogen, renin, AT(1)-R, AT(2)-R, TNF-α and IL-6 in embryos were assessed. Renal Ang II-positive cells, monocytes/macrophages, lymphocytes, collagen I and TUNEL-positive cells were identified by immunohistochemical staining in newborn and 7-week-old offspring rats. The number of glomeruli and creatinine clearance rate were determined in offspring at 7 weeks of age. The results showed that prenatal LPS decreased AT(2)-R mRNA expression but increased TNF-α and IL-6 mRNA expression in embryos. Prenatal LPS decreased renal angiotensin II-positive cells in newborn offspring rats, while these increased in 7-week-old offspring rats. Prenatal LPS decreased glomerular number and creatinine clearance rate but increased renal infiltrating monocytes/macrophages and lymphocytes at 7 weeks of age. Prenatal LPS also increased TUNEL-positive cells and collagen I expressions in newborn rats and 7-week-old offspring rats. CONCLUSION Alteration of embryonic AT(2)-R and inflammatory cytokines gene expression induced by prenatal exposure to lipopolysaccharide affects renal development.
Collapse
Affiliation(s)
- Xue-Qin Hao
- Department of Pharmacology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | | | | | | |
Collapse
|
39
|
Rodríguez-Iturbe B, Franco M, Tapia E, Quiroz Y, Johnson RJ. Renal inflammation, autoimmunity and salt-sensitive hypertension. Clin Exp Pharmacol Physiol 2012; 39:96-103. [PMID: 21251049 PMCID: PMC3137657 DOI: 10.1111/j.1440-1681.2011.05482.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1. The present article reviews the role of immune-competent cells infiltrating the kidney and their association with oxidative stress and renal angiotensin activity in the development of salt-sensitive hypertension. 2. We discuss changes in the pressure-natriuresis relationship resulting from renal inflammation and its improvement resulting from immunosuppressive treatment. 3. The potential role of T-cell-driven reactivity in sustaining the renal inflammation is examined in the light of accumulating evidence of autoimmune mechanisms in experimental and clinical hypertension.
Collapse
Affiliation(s)
- Bernardo Rodríguez-Iturbe
- Renal Service, University Hospital, University of Zulia and Venezuelan Institute of Scientific Research-Zulia, Maracaibo, Estado Zulia, Venezuela.
| | | | | | | | | |
Collapse
|
40
|
Lee YC, Chang HH, Chiang CL, Liu CH, Yeh JI, Chen MF, Chen PY, Kuo JS, Lee TJF. Role of perivascular adipose tissue-derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension. Circulation 2011; 124:1160-71. [PMID: 21844078 DOI: 10.1161/circulationaha.111.027375] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Perivascular adipose tissue (PVAT)-derived relaxing factor (PVATRF) significantly regulates vascular tone. Its chemical nature remains unknown. We determined whether palmitic acid methyl ester (PAME) was the PVATRF and whether its release and/or vasorelaxing activity decreased in hypertension. METHODS AND RESULTS Using superfusion bioassay cascade technique, tissue bath myography, and gas chromatography/mass spectrometry, we determined PVATRF and PAME release from aortic PVAT preparations of Wistar Kyoto rats and spontaneously hypertensive rats. The PVAT of Wistar Kyoto rats spontaneously and calcium dependently released PVATRF and PAME. Both induced aortic vasorelaxations, which were inhibited by 4-aminopyridine (2 mmol/L) and tetraethylammonium 5 and 10 mmol/L but were not affected by tetraethylammonium 1 or 3 mmol/L, glibenclamide (3 μmol/L), or iberiotoxin (100 nmol/L). Aortic vasorelaxations induced by PVATRF- and PAME-containing Krebs solutions were not affected after heating at 70°C but were equally attenuated after hexane extractions. Culture mediums of differentiated adipocytes, but not those of fibroblasts, contained significant PAME and caused aortic vasorelaxation. The PVAT of spontaneously hypertensive rats released significantly less PVATRF and PAME with an increased release of angiotensin II. In addition, PAME-induced relaxation of spontaneously hypertensive rats aortic smooth muscle diminished drastically, which was ameliorated significantly by losartan. CONCLUSIONS We found that PAME is the PVATRF, causing vasorelaxation by opening voltage-dependent K+ channels on smooth muscle cells. Diminished PAME release and its vasorelaxing activity and increased release of angiotensin II in the PVAT suggest a noble role of PVAT in pathogenesis of hypertension. The antihypertensive effect of losartan is attributed partly to its reversing diminished PAME-induced vasorelaxation.
Collapse
Affiliation(s)
- Yuan-Chieh Lee
- Department of Ophthalmology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Vitamin D belongs to the family of nuclear steroid hormones, which has pleiotropic effects on several organ systems. Different vitamin D compounds have been studied as potential cardioprotective agents over the past 20 years. The results of these clinical studies vary based on the form and dosage of vitamin D administered during the trial. In the past 5 years, many have described an association of vitamin D compounds and cardiovascular health through reduction in blood pressure, reduction in inflammatory biomarkers, improved insulin sensitivity, and reduction in cardiovascular disease complications and death. Because there are several vitamin D compounds, it is important to consider the full breadth of the literature when examining vitamin D and cardiovascular health, to assist in hypothesis generation and understanding of the current state of the science. Although a growing body of evidence suggests that nutritional vitamin D supplementation and potentially even treatment with synthetic analogues of vitamin D may be cardioprotective, relatively few studies have examined either of these compounds in a randomized, controlled fashion. Studies examining the benefit of vitamin D supplementation are now beginning, but future studies considering calcitriol and analogue therapy also seem warranted.
Collapse
Affiliation(s)
- Suzanne E Judd
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, 1665 University Boulevard, Birmingham, AL 35294-0022, USA.
| | | |
Collapse
|
42
|
Guan Z, Inscho EW. Role of adenosine 5'-triphosphate in regulating renal microvascular function and in hypertension. Hypertension 2011; 58:333-40. [PMID: 21768526 DOI: 10.1161/hypertensionaha.110.155952] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ATP is an essential energy substrate for cellular metabolism, but it can also influence many biological processes when released into the extracellular milieu. Research has established that extracellular ATP acts as an autocrine/paracrine factor that regulates many physiological functions. Alternatively, excessive extracellular ATP levels contribute to pathophysiological processes, such as inflammation, cell proliferation and apoptosis, and atherosclerosis. Renal P2 receptors are widely distributed throughout glomeruli, vasculature, and tubular segments and participate in controlling renal vascular resistance, mediating renal autoregulation, and regulating tubular transport function. This review will focus on the role of ATP-P2 receptor signaling in regulating renal microvascular function and autoregulation, recent advances on the role of ATP-P2 signaling in hypertension-associated renal vascular injury, and emerging new directions.
Collapse
Affiliation(s)
- Zhengrong Guan
- Department of Physiology CA3137, Georgia Health Sciences University, 1120 15th St, Augusta, GA 30912, USA
| | | |
Collapse
|
43
|
Purkayastha S, Zhang G, Cai D. Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-β and NF-κB. Nat Med 2011; 17:883-7. [PMID: 21642978 PMCID: PMC3134198 DOI: 10.1038/nm.2372] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/05/2011] [Indexed: 02/07/2023]
Affiliation(s)
- Sudarshana Purkayastha
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| | | | | |
Collapse
|
44
|
Coppo M, Bandinelli M, Berni A, Galastri S, Abbate R, Poggesi L, Marra F, Gensini GF, Boddi M. Ang II Upregulation of the T-lymphocyte renin-angiotensin system is amplified by low-grade inflammation in human hypertension. Am J Hypertens 2011; 24:716-23. [PMID: 21394089 DOI: 10.1038/ajh.2011.32] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Low-grade inflammation facilitates the development of essential hypertension and target organ damage (TOD). Recently, human T-lymphocytes were shown to be endowed with a functional active renin-angiotensin system (RAS). We investigated whether in hypertensive patients a selective angiotensin (Ang) II-driven upregulation of T-cell RAS occurs and whether it is differently modulated in presence of low-grade inflammation. METHODS T-lymphocytes were obtained from 21 hypertensives (I-II World Health Organization class; 16 males, 5 females; 56 ± 11 years). Low-grade inflammation was defined for high sensitive C-reactive protein (hsCRP) > 2 mg/l. Ten healthy subjects formed the age- and sex-matched control group. After T-lymphocytes isolation, mRNAs for angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor (AT1-R) were quantified by reverse-transcriptase PCR with or without 0.1 pmol/l Ang II in addition to T-cells cultures. Cell pellet and supernatant ACE activity and Ang II content were measured. Cardiac and renal TOD-indexes were evaluated. RESULTS Both in controls and hypertensives, Ang II-stimulation significantly increased ACE and AT1-R mRNA levels (P < 0.05). In patients, the increase was earlier and higher than controls, with the highest values in hypertensives with > 2 mg/l hsCRP. Peak Ang II-induced ACE and AT1-R mRNA levels were positively related to hsCRP, systolic blood pressure and body mass index (BMI) at the univariate analyses. The stepwise regression analyses selected hsCRP (r = 0.47) and left ventricular mass index (LVMI) (r = 0.50) as the variables independently related to peak ace-gene expression, while BMI resulted independently related to peak AT1-R gene expression (P < 0.001). CONCLUSIONS In hypertension, an Ang II-driven activation of T-cell RAS, further amplified by low-grade inflammation, does occur and is associated to worse TOD. New therapeutic approaches aimed at this specific target might be proposed to control hypertension and hypertensive damage.
Collapse
|
45
|
Vérier CMP, Duhamel A, Béghin L, Diaz LE, Warnberg J, Marcos A, Gómez-Martínez S, Manios Y, De Henauw S, Sjöström M, Moreno LA, Kersting M, Breidenassel C, Molnar D, Artero EG, Ferrari M, Widhalm K, Turck D, Gottrand F. Breastfeeding in infancy is not associated with inflammatory status in healthy adolescents. J Nutr 2011; 141:411-7. [PMID: 21248197 DOI: 10.3945/jn.110.128249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been suggested that breast-feeding (BF) may be associated with a decreased risk of cardiovascular disease in adulthood. A low-grade inflammation is associated with an increased risk of cardiovascular disease, even in apparently healthy children. The objective of this study was to assess the potential modulating effect of BF on the inflammatory status of healthy adolescents. Information on BF (duration) was obtained from parental records in 484 of 1040 healthy European urban adolescents (56.4% females) that had a blood sample obtained as part of the Healthy Lifestyle in Europe by Nutrition and Adolescence study. Blood serum inflammatory markers were measured, including high sensitivity C-reactive protein, complement factors 3 and 4, ceruloplasmin, adhesion molecules (L-selectin and soluble endothelial selectin, soluble vascular cell adhesion molecule 1, and intercellular adhesion molecule 1), cytokines, TGFβ1, and white blood cells. After univariate analysis, a propensity score, including the potential confounding factors, was computed and used to assess the association between BF and selected inflammatory markers. BF was not significantly associated with any of the selected inflammatory markers after adjustment for gender and propensity score. In our study, BF was not associated with low-grade inflammatory status in healthy adolescents, suggesting that the potential cardiovascular benefits of BF are related to other mechanisms than modulation of inflammation or might become relevant at a later age. Groups at high risk for cardiovascular disease should be a target for further research concerning the effects of BF.
Collapse
Affiliation(s)
- Caroline M P Vérier
- Inserm U995, IFR114, Department of Paediatrics, Faculty of Medicine, University of Lille 2, Lille 59037, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yvan-Charvet L, Quignard-Boulangé A. Role of adipose tissue renin–angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Int 2011; 79:162-8. [DOI: 10.1038/ki.2010.391] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Natural regulatory T cells control coronary arteriolar endothelial dysfunction in hypertensive mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:434-41. [PMID: 21224080 DOI: 10.1016/j.ajpath.2010.11.034] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/30/2010] [Accepted: 09/14/2010] [Indexed: 02/07/2023]
Abstract
Coronary artery disease in patients with hypertension is increasing worldwide and leads to severe cardiovascular complications. The cellular and molecular mechanisms that underlie this pathologic condition are not well understood. Experimental and clinical research indicates that immune cells and inflammation play a central role in the pathogenesis of cardiovascular diseases. Recently, it has been reported that CD4(+)CD25(+) regulatory T cells (Tregs) regulate heart fibrosis in hypertension. In this study, we determined the role of Tregs in coronary arteriolar endothelial dysfunction in angiotensin II-dependent hypertensive mice. Mice infused with angiotensin II had significantly increased blood pressure, as determined using telemetry, and apoptotic Treg numbers, as measured using flow cytometry. The mice displayed inflammation, assessed by macrophage activation/infiltration into coronary arterioles and the heart, and increased local tumor necrosis factor-α release, which participates in reduced coronary arteriolar endothelial-dependent relaxation in response to acetylcholine using an arteriograph. Hypertensive mice injected with Tregs isolated from control mice had significantly reduced macrophage activation and infiltration, reduced tumor necrosis factor-α release, and improved coronary arteriolar endothelium-dependent relaxation. Our novel data indicate that Tregs are important in the development of coronary arteriolar endothelial dysfunction in hypertension. These results suggest a new direction in the investigation of vascular disease in hypertension and could lead to a therapeutic strategy that involves immune system modulation using Tregs.
Collapse
|
48
|
Tian N, Penman AD, Mawson AR, Manning RD, Flessner MF. Association between circulating specific leukocyte types and blood pressure: the atherosclerosis risk in communities (ARIC) study. JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION : JASH 2010; 4:272-83. [PMID: 20980213 PMCID: PMC3014578 DOI: 10.1016/j.jash.2010.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 12/23/2022]
Abstract
Although total white blood cell (WBC) count has been associated with hypertension, the association between specific WBC types and blood pressure (BP) levels has not been studied. In a cohort of 5746 middle-age African-American and white adults free of clinical cardiovascular disease and cancer and not taking hypertension or anti-inflammatory medications, BP was measured at baseline and 3, 6, and 9 years later. Levels of circulating neutrophils, lymphocytes, and monocytes were measured at baseline. In African-Americans, but much less so in whites, increased neutrophil levels and decreased lymphocyte levels were significantly associated with elevation of BP but did not influence the rate of change of BP over time. The mean BP difference between the highest and lowest quartiles of neutrophils was approximately 8 mm Hg for systolic BP (SBP), 4 mm Hg for mean arterial pressure (MAP), and 5 mm Hg for pulse pressure (PP). The mean BP difference between the lowest and highest quartiles of lymphocytes was approximately 6 mm Hg for SBP, 2 mm Hg for diastolic BP (DBP), 3 mm Hg for MAP, and 4 mm Hg for PP. Increased neutrophils and decreased lymphocytes are significantly correlated with the regulation of BP and the development of hypertension, especially in African-Americans.
Collapse
Affiliation(s)
- Niu Tian
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | | | | | | | |
Collapse
|
49
|
Hatta K, Carter AL, Chen Z, Leno-Durán E, Ruiz-Ruiz C, Olivares EG, Tse MY, Pang SC, Croy BA. Expression of the vasoactive proteins AT1, AT2, and ANP by pregnancy-induced mouse uterine natural killer cells. Reprod Sci 2010; 18:383-90. [PMID: 20959647 DOI: 10.1177/1933719110385136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Angiotensin II receptor type 1 (AT1) activation leads to vasoconstriction and type 2 receptor (AT2) leads to vasodilation. Atrial natriuretic peptide (ANP) antagonizes the effects of AT1. In human and murine pregnancies, uterine natural killer (uNK) cells closely associate with decidual blood vessels. Protein localization of AT1, AT2, and ANP to mouse uNK cells was examined between gestation days (gds) 6 and 12, the interval of uNK cell expansion. Percentages of uNK cells expressing AT1 or AT2 changed between gd6 and gd10. Atrial natriuretic peptide did not localize to uNK cells at gd6 or 8, but did colocalize to uNK cells at gd10 and 12, times immediately after spiral arterial modification. This is the first report of AT1, AT2, and ANP expression in uterine immune cells. Expression of these molecules suggests that uNK cells have the potential to contribute to the changes in blood pressure that occur between days 5 and 12 of pregnancy in mice.
Collapse
Affiliation(s)
- Kota Hatta
- Division of Cardiovascular Surgery and Department of Surgery, Toronto General Research Institute and University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Granger DN, Rodrigues SF, Yildirim A, Senchenkova EY. Microvascular responses to cardiovascular risk factors. Microcirculation 2010; 17:192-205. [PMID: 20374483 DOI: 10.1111/j.1549-8719.2009.00015.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypertension, hypercholesterolemia, diabetes, and obesity are among a growing list of conditions that have been designated as major risk factors for cardiovascular disease (CVD). While CVD risk factors are well known to enhance the development of atherosclerotic lesions in large arteries, there is also evidence that the structure and function of microscopic blood vessels can be profoundly altered by these conditions. The diverse responses of the microvasculature to CVD risk factors include oxidative stress, enhanced leukocyte- and platelet-endothelial cell adhesion, impaired endothelial barrier function, altered capillary proliferation, enhanced thrombosis, and vasomotor dysfunction. Emerging evidence indicates that a low-grade systemic inflammatory response that results from risk factor-induced cell activation and cell-cell interactions may underlie the phenotypic changes induced by risk factor exposure. A consequence of the altered microvascular phenotype and systemic inflammatory response is an enhanced vulnerability of tissues to the deleterious effects of secondary oxidative and inflammatory stresses, such as ischemia and reperfusion. Future efforts to develop therapies that prevent the harmful effects of risk factor-induced inflammation should focus on the microcirculation.
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | | | | | | |
Collapse
|