1
|
Zhang S, Feng X, Yang G, Tan H, Cheng X, Tang Q, Yang H, Zhao Y, Ding X, Li S, Dou X, Li J, Kang H, Li X, Ji Y, Hou Q, An Q, Fang H, Fan H. Dexmedetomidine ameliorates acute kidney injury by regulating mitochondrial dynamics via the α2-AR/SIRT1/PGC-1α pathway activation in rats. Mol Med 2024; 30:184. [PMID: 39455916 PMCID: PMC11505563 DOI: 10.1186/s10020-024-00964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Sepsis-associated acute kidney injury (AKI) is a serious complication of systemic infection with high morbidity and mortality in patients. However, no effective drugs are available for AKI treatment. Dexmedetomidine (DEX) is an alpha 2 adrenal receptor agonist with antioxidant and anti-apoptotic effects. This study aimed to investigate the therapeutic effects of DEX on sepsis-associated AKI and to elucidate the role of mitochondrial dynamics during this process. METHODS A lipopolysaccharide (LPS)-induced AKI rat model and an NRK-52E cell model were used in the study. This study investigated the effects of DEX on sepsis-associated AKI and the molecular mechanisms using histologic assessment, biochemical analyses, ultrastructural observation, western blotting, immunofluorescence, immunohistochemistry, qRT-PCR, flow cytometry, and si-mRNA transfection. RESULTS In rats, the results showed that administration of DEX protected kidney structure and function from LPS-induced septic AKI. In addition, we found that DEX upregulated the α2-AR/SIRT1/PGC-1α pathway, protected mitochondrial structure and function, and decreased oxidative stress and apoptosis compared to the LPS group. In NRK-52E cells, DEX regulated the mitochondrial dynamic balance by preventing intracellular Ca2+ overloading and activating CaMKII. CONCLUSIONS DEX ameliorated septic AKI by reducing oxidative stress and apoptosis in addition to modulating mitochondrial dynamics via upregulation of the α2-AR/SIRT1/PGC-1α pathway. This is a confirmatory study about DEX pre-treatment to ameliorate septic AKI. Our research reveals a novel mechanistic molecular pathway by which DEX provides nephroprotection.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haoyang Tan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xin Cheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qichao Tang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Haotian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xuanpan Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyi Dou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Junfeng Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huijie Kang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xingxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yaxin Ji
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qingdian Hou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiuyue An
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hao Fang
- College of Optoelectronic Engineering, Chongqing University, Chongqing, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
2
|
Sanz RL, García Menéndez S, Inserra F, Ferder L, Manucha W. Sodium-glucose cotransporter-2 inhibitors protect tissues via cellular and mitochondrial pathways: Experimental and clinical evidence. World J Exp Med 2024; 14:91519. [PMID: 38948421 PMCID: PMC11212744 DOI: 10.5493/wjem.v14.i2.91519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 04/11/2024] [Indexed: 06/19/2024] Open
Abstract
Mitochondrial dysfunction is a key driver of cardiovascular disease (CVD) in metabolic syndrome and diabetes. This dysfunction promotes the production of reactive oxygen species (ROS), which cause oxidative stress and inflammation. Angiotensin II, the main mediator of the renin-angiotensin-aldosterone system, also contributes to CVD by promoting ROS production. Reduced activity of sirtuins (SIRTs), a family of proteins that regulate cellular metabolism, also worsens oxidative stress. Reduction of energy production by mitochondria is a common feature of all metabolic disorders. High SIRT levels and 5' adenosine monophosphate-activated protein kinase signaling stimulate hypoxia-inducible factor 1 beta, which promotes ketosis. Ketosis, in turn, increases autophagy and mitophagy, processes that clear cells of debris and protect against damage. Sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of drugs used to treat type 2 diabetes, have a beneficial effect on these mechanisms. Randomized clinical trials have shown that SGLT2i improves cardiac function and reduces the rate of cardiovascular and renal events. SGLT2i also increase mitochondrial efficiency, reduce oxidative stress and inflammation, and strengthen tissues. These findings suggest that SGLT2i hold great potential for the treatment of CVD. Furthermore, they are proposed as anti-aging drugs; however, rigorous research is needed to validate these preliminary findings.
Collapse
Affiliation(s)
- Raúl Lelio Sanz
- Department of Pathology, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Sebastián García Menéndez
- Department of Pathology, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
- Department of Pharmacology, Instituto de Medicina y Biología Experimental de Cuyo, Centro Científico Tecnológico, Mendoza 5500, Argentina
| | - Felipe Inserra
- Department of Nephrology, Universidad de Maimónides, Ciudad Autónoma de Buenos Aires C1405, Argentina
| | - Leon Ferder
- Department of Cardiology, Universidad de Maimónides, Ciudad Autónoma de Buenos Aires C1405, Argentina
| | - Walter Manucha
- Department of Pathology, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
- Department of Pharmacology, Instituto de Medicina y Biología Experimental de Cuyo, Centro Científico Tecnológico, Mendoza 5500, Argentina
| |
Collapse
|
3
|
Sanz RL, Menéndez SG, Inserra F, Ferder L, Manucha W. Cellular and Mitochondrial Pathways Contribute to SGLT2 Inhibitors-mediated Tissue Protection: Experimental and Clinical Data. Curr Pharm Des 2024; 30:969-974. [PMID: 38551044 DOI: 10.2174/0113816128289350240320063045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 06/21/2024]
Abstract
In metabolic syndrome and diabetes, compromised mitochondrial function emerges as a critical driver of cardiovascular disease, fueling its development and persistence, culminating in cardiac remodeling and adverse events. In this context, angiotensin II - the main interlocutor of the renin-angiotensin-aldosterone system - promotes local and systemic oxidative inflammatory processes. To highlight, the low activity/expression of proteins called sirtuins negatively participates in these processes, allowing more significant oxidative imbalance, which impacts cellular and tissue responses, causing tissue damage, inflammation, and cardiac and vascular remodeling. The reduction in energy production of mitochondria has been widely described as a significant element in all types of metabolic disorders. Additionally, high sirtuin levels and AMPK signaling stimulate hypoxia- inducible factor 1 beta and promote ketonemia. Consequently, enhanced autophagy and mitophagy advance through cardiac cells, sweeping away debris and silencing the orchestra of oxidative stress and inflammation, ultimately protecting vulnerable tissue from damage. To highlight and of particular interest, SGLT2 inhibitors (SGLT2i) profoundly influence all these mechanisms. Randomized clinical trials have evidenced a compelling picture of SGLT2i emerging as game-changers, wielding their power to demonstrably improve cardiac function and slash the rates of cardiovascular and renal events. Furthermore, driven by recent evidence, SGLT2i emerge as cellular supermolecules, exerting their beneficial actions to increase mitochondrial efficiency, alleviate oxidative stress, and curb severe inflammation. Its actions strengthen tissues and create a resilient defense against disease. In conclusion, like a treasure chest brimming with untold riches, the influence of SGLT2i on mitochondrial function holds untold potential for cardiovascular health. Unlocking these secrets, like a map guiding adventurers to hidden riches, promises to pave the way for even more potent therapeutic strategies.
Collapse
Affiliation(s)
- Raúl Lelio Sanz
- Departamento de Patologie et Pharmacologie, Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de Investigación Cientifica y Tecnológica (IMBECU- CONICET), Mendoza 5500, Argentina
| | - Sebastián García Menéndez
- Departamento de Patologie et Pharmacologie, Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de Investigación Cientifica y Tecnológica (IMBECU- CONICET), Mendoza 5500, Argentina
- Laboratorio de Farmacologia Experimental Básica y Traslacional, Departamento de Patologie et Pharmacologie, Área de Farmacologia, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Felipe Inserra
- Departmento de Pathologie et Pharmacologie, Universidad Maimónides, Buenos Aires C1405, Argentina
| | - León Ferder
- Departmento de Pathologie et Pharmacologie, Universidad Maimónides, Buenos Aires C1405, Argentina
| | - Walter Manucha
- Departamento de Patologie et Pharmacologie, Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de Investigación Cientifica y Tecnológica (IMBECU- CONICET), Mendoza 5500, Argentina
- Laboratorio de Farmacologia Experimental Básica y Traslacional, Departamento de Patologie et Pharmacologie, Área de Farmacologia, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| |
Collapse
|
4
|
Chirathanaphirom S, Chuammitri P, Pongkan W, Manachai N, Chantawong P, Boonsri B, Boonyapakorn C. Differences in Levels of Mitochondrial DNA Content at Various Stages of Canine Myxomatous Mitral Valve Disease. Animals (Basel) 2023; 13:3850. [PMID: 38136887 PMCID: PMC10740553 DOI: 10.3390/ani13243850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Myxomatous mitral valve disease (MMVD) is the most common heart disease in small-breed dogs, often leading to heart failure. Oxidative stress in MMVD can harm mitochondria, decreasing their DNA content. This study assesses dogs' oxidative stress and mitochondrial DNA at different MMVD stages. Fifty-five small-breed dogs were categorized into four groups, including: A-healthy (n = 15); B-subclinical (n = 15); C-heart failure (n = 15); and D-end-stage MMVD (n = 10). Serum malondialdehyde (MDA) and mitochondrial DNA in peripheral blood were analyzed. Quantitative real-time PCR measured mitochondrial DNA, and PCR data were analyzed via the fold-change Ct method. Serum MDA levels were assessed using competitive high-performance liquid chromatography (HPLC). Mitochondrial DNA was significantly lower in group B (-0.89 ± 2.82) than in group A (1.50 ± 2.01), but significantly higher in groups C (2.02 ± 1.44) and D (2.77 ± 1.76) than B. MDA levels were notably elevated in groups B (19.07 ± 11.87 µg/mL), C (23.41 ± 12.87 μg/mL), and D (19.72 ± 16.81 μg/mL) in comparison to group A (9.37 ± 4.67 μg/mL). Nevertheless, this observed difference did not reach statistical significance. It is noteworthy that mitochondrial DNA content experiences a decline during the subclinical stage but undergoes an increase in cases of heart failure. Concurrently, oxidative stress exhibits an upward trend in dogs with MMVD. These findings collectively suggest a potential association between mitochondrial DNA, oxidative stress, and the progression of MMVD in small-breed dogs.
Collapse
Affiliation(s)
- Suphakan Chirathanaphirom
- Cardiopulmonary Clinic, Small Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (W.P.)
| | - Phongsakorn Chuammitri
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (N.M.); (P.C.); (B.B.)
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai 50100, Thailand
| | - Wanpitak Pongkan
- Cardiopulmonary Clinic, Small Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (W.P.)
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (N.M.); (P.C.); (B.B.)
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai 50100, Thailand
| | - Nawin Manachai
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (N.M.); (P.C.); (B.B.)
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai 50100, Thailand
| | - Pinkarn Chantawong
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (N.M.); (P.C.); (B.B.)
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai 50100, Thailand
| | - Burin Boonsri
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (N.M.); (P.C.); (B.B.)
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai 50100, Thailand
| | - Chavalit Boonyapakorn
- Cardiopulmonary Clinic, Small Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (W.P.)
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (N.M.); (P.C.); (B.B.)
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai 50100, Thailand
| |
Collapse
|
5
|
Tantawy SI, Timofeeva N, Sarkar A, Gandhi V. Targeting MCL-1 protein to treat cancer: opportunities and challenges. Front Oncol 2023; 13:1226289. [PMID: 37601693 PMCID: PMC10436212 DOI: 10.3389/fonc.2023.1226289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Evading apoptosis has been linked to tumor development and chemoresistance. One mechanism for this evasion is the overexpression of prosurvival B-cell lymphoma-2 (BCL-2) family proteins, which gives cancer cells a survival advantage. Mcl-1, a member of the BCL-2 family, is among the most frequently amplified genes in cancer. Targeting myeloid cell leukemia-1 (MCL-1) protein is a successful strategy to induce apoptosis and overcome tumor resistance to chemotherapy and targeted therapy. Various strategies to inhibit the antiapoptotic activity of MCL-1 protein, including transcription, translation, and the degradation of MCL-1 protein, have been tested. Neutralizing MCL-1's function by targeting its interactions with other proteins via BCL-2 interacting mediator (BIM)S2A has been shown to be an equally effective approach. Encouraged by the design of venetoclax and its efficacy in chronic lymphocytic leukemia, scientists have developed other BCL-2 homology (BH3) mimetics-particularly MCL-1 inhibitors (MCL-1i)-that are currently in clinical trials for various cancers. While extensive reviews of MCL-1i are available, critical analyses focusing on the challenges of MCL-1i and their optimization are lacking. In this review, we discuss the current knowledge regarding clinically relevant MCL-1i and focus on predictive biomarkers of response, mechanisms of resistance, major issues associated with use of MCL-1i, and the future use of and maximization of the benefits from these agents.
Collapse
Affiliation(s)
- Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Timofeeva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aloke Sarkar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Bencurova M, Lysikova T, Leskova Majdova K, Kaplan P, Racay P, Lehotsky J, Tatarkova Z. Age-Dependent Changes in Calcium Regulation after Myocardial Ischemia-Reperfusion Injury. Biomedicines 2023; 11:biomedicines11041193. [PMID: 37189811 DOI: 10.3390/biomedicines11041193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
During aging, heart structure and function gradually deteriorate, which subsequently increases susceptibility to ischemia-reperfusion (IR). Maintenance of Ca2+ homeostasis is critical for cardiac contractility. We used Langendorff's model to monitor the susceptibility of aging (6-, 15-, and 24-month-old) hearts to IR, with a specific focus on Ca2+-handling proteins. IR, but not aging itself, triggered left ventricular changes when the maximum rate of pressure development decreased in 24-month-olds, and the maximum rate of relaxation was most affected in 6-month-old hearts. Aging caused a deprivation of Ca2+-ATPase (SERCA2a), Na+/Ca2+ exchanger, mitochondrial Ca2+ uniporter, and ryanodine receptor contents. IR-induced damage to ryanodine receptor stimulates Ca2+ leakage in 6-month-old hearts and elevated phospholamban (PLN)-to-SERCA2a ratio can slow down Ca2+ reuptake seen at 2-5 μM Ca2+. Total and monomeric PLN mirrored the response of overexpressed SERCA2a after IR in 24-month-old hearts, resulting in stable Ca2+-ATPase activity. Upregulated PLN accelerated inhibition of Ca2+-ATPase activity at low free Ca2+ in 15-month-old after IR, and reduced SERCA2a content subsequently impairs the Ca2+-sequestering capacity. In conclusion, our study suggests that aging is associated with a significant decrease in the abundance and function of Ca2+-handling proteins. However, the IR-induced damage was not increased during aging.
Collapse
Affiliation(s)
- Maria Bencurova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Terezia Lysikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Katarina Leskova Majdova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
7
|
Sanz RL, Inserra F, García Menéndez S, Mazzei L, Ferder L, Manucha W. Metabolic Syndrome and Cardiac Remodeling Due to Mitochondrial Oxidative Stress Involving Gliflozins and Sirtuins. Curr Hypertens Rep 2023; 25:91-106. [PMID: 37052810 DOI: 10.1007/s11906-023-01240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE OF REVIEW To address the mechanistic pathways focusing on mitochondria dysfunction, oxidative stress, sirtuins imbalance, and other contributors in patient with metabolic syndrome and cardiovascular disease. Sodium glucose co-transporter type 2 (SGLT-2) inhibitors deeply influence these mechanisms. Recent randomized clinical trials have shown impressive results in improving cardiac function and reducing cardiovascular and renal events. These unexpected results generate the need to deepen our understanding of the molecular mechanisms able to generate these effects to help explain such significant clinical outcomes. RECENT FINDINGS Cardiovascular disease is highly prevalent among individuals with metabolic syndrome and diabetes. Furthermore, mitochondrial dysfunction is a principal player in its development and persistence, including the consequent cardiac remodeling and events. Another central protagonist is the renin-angiotensin system; the high angiotensin II (Ang II) activity fuel oxidative stress and local inflammatory responses. Additionally, sirtuins decline plays a pivotal role in the process; they enhance oxidative stress by regulating adaptive responses to the cellular environment and interacting with Ang II in many circumstances, including cardiac and vascular remodeling, inflammation, and fibrosis. Fasting and lower mitochondrial energy generation are conditions that substantially reduce most of the mentioned cardiometabolic syndrome disarrangements. In addition, it increases sirtuins levels, and adenosine monophosphate-activated protein kinase (AMPK) signaling stimulates hypoxia-inducible factor-1β (HIF-1 beta) and favors ketosis. All these effects favor autophagy and mitophagy, clean the cardiac cells with damaged organelles, and reduce oxidative stress and inflammatory response, giving cardiac tissue protection. In this sense, SGLT-2 inhibitors enhance the level of at least four sirtuins, some located in the mitochondria. Moreover, late evidence shows that SLGT-2 inhibitors mimic this protective process, improving mitochondria function, oxidative stress, and inflammation. Considering the previously described protection at the cardiovascular level is necessary to go deeper in the knowledge of the effects of SGLT-2 inhibitors on the mitochondria function. Various of the protective effects these drugs clearly had shown in the trials, and we briefly describe it could depend on sirtuins enhance activity, oxidative stress reduction, inflammatory process attenuation, less interstitial fibrosis, and a consequent better cardiac function. This information could encourage investigating new therapeutic strategies for metabolic syndrome, diabetes, heart and renal failure, and other diseases.
Collapse
Affiliation(s)
- Raúl Lelio Sanz
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Felipe Inserra
- Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sebastián García Menéndez
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza, Argentina
| | - Luciana Mazzei
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza, Argentina
| | - León Ferder
- Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
- Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
8
|
Chang X, Liu J, Wang Y, Guan X, Liu R. Mitochondrial disorder and treatment of ischemic cardiomyopathy: Potential and advantages of Chinese herbal medicine. Biomed Pharmacother 2023; 159:114171. [PMID: 36641924 DOI: 10.1016/j.biopha.2022.114171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is the main cause of damage to the pathological mechanism of ischemic cardiomyopathy. In addition, mitochondrial dysfunction can also affect the homeostasis of cardiomyocytes or endothelial cell dysfunction, leading to a vicious cycle of mitochondrial oxidative stress. And mitochondrial dysfunction is also an important pathological basis for ischemic cardiomyopathy and reperfusion injury after myocardial infarction or end-stage coronary heart disease. Therefore, mitochondria can be used as therapeutic targets against myocardial ischemia injury, and the regulation of mitochondrial morphology, function and structure is a key and important way of targeting mitochondrial quality control therapeutic mechanisms. Mitochondrial quality control includes mechanisms such as mitophagy, mitochondrial dynamics (mitochondrial fusion/fission), mitochondrial biosynthesis, and mitochondrial unfolded protein responses. Among them, the increase of mitochondrial fragmentation caused by mitochondrial pathological fission is the initial factor. The protective mitochondrial fusion can strengthen the interaction and synthesis of paired mitochondria and promote mitochondrial biosynthesis. In ischemia or hypoxia, pathological mitochondrial fission can promote the formation of mitochondrial fragments, fragmented mitochondria can lead to damaged mitochondrial DNA production, which can lead to mitochondrial biosynthesis dysfunction, insufficient mitochondrial ATP production, and mitochondrial ROS. Burst growth or loss of mitochondrial membrane potential. This eventually leads to the accumulation of damaged mitochondria. Then, under the leadership of mitophagy, damaged mitochondria can complete the mitochondrial degradation process through mitophagy, and transport the morphologically and structurally damaged mitochondria to lysosomes for degradation. But once the pathological mitochondrial fission increases, the damaged mitochondria increases, which may activate the pathway of cardiomyocyte death. Although laboratory studies have found that a variety of mitochondrial-targeted drugs can reduce myocardial ischemia and protect cardiomyocytes, there are still few drugs that have successfully passed clinical trials. In this review, we describe the role of MQS in ischemia/hypoxia-induced cardiomyocyte physiopathology and elucidate the relevant mechanisms of mitochondrial dysfunction in ischemic cardiomyopathy. In addition, we also further explained the advantages of natural products in improving mitochondrial dysfunction and protecting myocardial cells from the perspective of pharmacological mechanism, and explained its related mechanisms. Potential targeted therapies that can be used to improve MQS under ischemia/hypoxia are discussed, aiming to accelerate the development of cardioprotective drugs targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
9
|
Fan Y, Huang H, Shao J, Huang W. MicroRNA-mediated regulation of reactive astrocytes in central nervous system diseases. Front Mol Neurosci 2023; 15:1061343. [PMID: 36710937 PMCID: PMC9877358 DOI: 10.3389/fnmol.2022.1061343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Astrocytes (AST) are abundant glial cells in the human brain, accounting for approximately 20-50% percent of mammalian central nervous system (CNS) cells. They display essential functions necessary to sustain the physiological processes of the CNS, including maintaining neuronal structure, forming the blood-brain barrier, coordinating neuronal metabolism, maintaining the extracellular environment, regulating cerebral blood flow, stabilizing intercellular communication, participating in neurotransmitter synthesis, and defending against oxidative stress et al. During the pathological development of brain tumors, stroke, spinal cord injury (SCI), neurodegenerative diseases, and other neurological disorders, astrocytes undergo a series of highly heterogeneous changes, which are called reactive astrocytes, and mediate the corresponding pathophysiological process. However, the pathophysiological mechanisms of reactive astrocytes and their therapeutic relevance remain unclear. The microRNAs (miRNAs) are essential for cell differentiation, proliferation, and survival, which play a crucial role in the pathophysiological development of CNS diseases. In this review, we summarize the regulatory mechanism of miRNAs on reactive astrocytes in CNS diseases, which might provide a theoretical basis for the diagnosis and treatment of CNS diseases.
Collapse
|
10
|
He J, Xu D, Wang L, Yu X. Farrerol prevents Angiotensin II-induced cardiac remodeling in vivo and in vitro. Front Pharmacol 2023; 13:1079251. [PMID: 36686707 PMCID: PMC9846078 DOI: 10.3389/fphar.2022.1079251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease has become the primary disease that threatens human health and is considered the leading cause of death. Cardiac remodeling, which is associated with cardiovascular disease, mainly manifests as cardiac hypertrophy, fibrosis, inflammation, and oxidative stress. Farrerol plays an important role in treating conditions such as inflammation, endothelial injury and tumors, and we speculated that Farrerol may also play an important role in mitigating cardiac hypertrophy and remodeling. We established a model of myocardial remodeling using Angiotensin II (Ang II) with concurrent intraperitoneal injection of Farrerol as an intervention. We used cardiac ultrasound, immunohistochemistry, Immunofluorescence, Wheat Germ Agglutinin, Dihydroethidium, Western Blot, qPCR and other methods to detect the role of Farrerol in cardiac remodeling. The results showed that Farrerol inhibited Ang II-induced cardiac hypertrophy; decreased the ratio of heart weight to tibia length in mice; reduced inflammation, fibrosis, and oxidative stress; and reduced the size of cardiomyocytes in vivo. Farrerol inhibited Ang II-induced cardiomyocyte hypertrophy, levels of oxidative stress, and the proliferation and migration of fibroblast in vitro. Our results revealed that Farrerol could inhibit Ang II-induced cardiac remodeling. Farrerol may therefore be a candidate drug for the treatment of myocardial remodeling.
Collapse
Affiliation(s)
- Jian He
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dengyue Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command of China Medical University, Shenyang, China
| | - Lu Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command of China Medical University, Shenyang, China
| | - Xiaohong Yu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Knockout of the Complex III subunit Uqcrh causes bioenergetic impairment and cardiac contractile dysfunction. Mamm Genome 2022:10.1007/s00335-022-09973-w. [PMID: 36565314 DOI: 10.1007/s00335-022-09973-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/03/2022] [Indexed: 12/25/2022]
Abstract
Ubiquinol cytochrome c reductase hinge protein (UQCRH) is required for the electron transfer between cytochrome c1 and c of the mitochondrial cytochrome bc1 Complex (CIII). A two-exon deletion in the human UQCRH gene has recently been identified as the cause for a rare familial mitochondrial disorder. Deletion of the corresponding gene in the mouse (Uqcrh-KO) resulted in striking biochemical and clinical similarities including impairment of CIII, failure to thrive, elevated blood glucose levels, and early death. Here, we set out to test how global ablation of the murine Uqcrh affects cardiac morphology and contractility, and bioenergetics. Hearts from Uqcrh-KO mutant mice appeared macroscopically considerably smaller compared to wildtype littermate controls despite similar geometries as confirmed by transthoracic echocardiography (TTE). Relating TTE-assessed heart to body mass revealed the development of subtle cardiac enlargement, but histopathological analysis showed no excess collagen deposition. Nonetheless, Uqcrh-KO hearts developed pronounced contractile dysfunction. To assess mitochondrial functions, we used the high-resolution respirometer NextGen-O2k allowing measurement of mitochondrial respiratory capacity through the electron transfer system (ETS) simultaneously with the redox state of ETS-reactive coenzyme Q (Q), or production of reactive oxygen species (ROS). Compared to wildtype littermate controls, we found decreased mitochondrial respiratory capacity and more reduced Q in Uqcrh-KO, indicative for an impaired ETS. Yet, mitochondrial ROS production was not generally increased. Taken together, our data suggest that Uqcrh-KO leads to cardiac contractile dysfunction at 9 weeks of age, which is associated with impaired bioenergetics but not with mitochondrial ROS production. Global ablation of the Uqcrh gene results in functional impairment of CIII associated with metabolic dysfunction and postnatal developmental arrest immediately after weaning from the mother. Uqcrh-KO mice show dramatically elevated blood glucose levels and decreased ability of isolated cardiac mitochondria to consume oxygen (O2). Impaired development (failure to thrive) after weaning manifests as a deficiency in the gain of body mass and growth of internal organ including the heart. The relative heart mass seemingly increases when organ mass calculated from transthoracic echocardiography (TTE) is normalized to body mass. Notably, the heart shows no signs of collagen deposition, yet does develop a contractile dysfunction reflected by a decrease in ejection fraction and fractional shortening.
Collapse
|
12
|
Braczko A, Kutryb-Zajac B, Jedrzejewska A, Krol O, Mierzejewska P, Zabielska-Kaczorowska M, Slominska EM, Smolenski RT. Cardiac Mitochondria Dysfunction in Dyslipidemic Mice. Int J Mol Sci 2022; 23:ijms231911488. [PMID: 36232794 PMCID: PMC9570391 DOI: 10.3390/ijms231911488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dyslipidemia triggers many severe pathologies, including atherosclerosis and chronic inflammation. Several lines of evidence, including our studies, have suggested direct effects of dyslipidemia on cardiac energy metabolism, but details of these effects are not clear. This study aimed to investigate how mild dyslipidemia affects cardiac mitochondria function and vascular nucleotide metabolism. The analyses were performed in 3- and 6-month-old knock-out mice for low-density lipoprotein receptor (Ldlr−/−) and compared to wild-type C57Bl/6J mice (WT). Cardiac isolated mitochondria function was analyzed using Seahorse metabolic flux analyzer. The mechanical function of the heart was measured using echocardiography. The levels of fusion, fission, and mitochondrial biogenesis proteins were determined by ELISA kits, while the cardiac intracellular nucleotide concentration and vascular pattern of nucleotide metabolism ecto-enzymes were analyzed using reverse-phase high-performance liquid chromatography. We revealed the downregulation of mitochondrial complex I, together with a decreased activity of citrate synthase (CS), reduced levels of nuclear respiratory factor 1 and mitochondrial fission 1 protein, as well as lower intracellular adenosine and guanosine triphosphates’ pool in the hearts of 6-month Ldlr−/− mice vs. age-matched WT. The analysis of vascular ecto-enzyme pattern revealed decreased rate of extracellular adenosine monophosphate hydrolysis and increased ecto-adenosine deaminase activity (eADA) in 6-month Ldlr−/− vs. WT mice. No changes were observed in echocardiography parameters in both age groups of Ldlr−/− mice. Younger hyperlipidemic mice revealed no differences in cardiac mitochondria function, CS activity, intracellular nucleotides, mitochondrial biogenesis, and dynamics but exhibited minor changes in vascular eADA activity vs. WT. This study revealed that dysfunction of cardiac mitochondria develops during prolonged mild hyperlipidemia at the time point corresponding to the formation of early vascular alterations.
Collapse
Affiliation(s)
- Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Magdalena Zabielska-Kaczorowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Department of Physiology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| |
Collapse
|
13
|
Luan Y, Luan Y, Yuan RX, Feng Q, Chen X, Yang Y. Structure and Function of Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Role in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4578809. [PMID: 34336092 PMCID: PMC8289621 DOI: 10.1155/2021/4578809] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Abnormal function of suborganelles such as mitochondria and endoplasmic reticulum often leads to abnormal function of cardiomyocytes or vascular endothelial cells and cardiovascular disease (CVD). Mitochondria-associated membrane (MAM) is involved in several important cellular functions. Increasing evidence shows that MAM is involved in the pathogenesis of CVD. MAM mediates multiple cellular processes, including calcium homeostasis regulation, lipid metabolism, unfolded protein response, ROS, mitochondrial dynamics, autophagy, apoptosis, and inflammation, which are key risk factors for CVD. In this review, we discuss the structure of MAM and MAM-associated proteins, their role in CVD progression, and the potential use of MAM as the therapeutic targets for CVD treatment.
Collapse
Affiliation(s)
- Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Rui-Xia Yuan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Xing Chen
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
14
|
Li L, Voloboueva L, Griffiths BB, Xu L, Giffard RG, Stary CM. MicroRNA-338 inhibition protects against focal cerebral ischemia and preserves mitochondrial function in vitro in astrocytes and neurons via COX4I1. Mitochondrion 2021; 59:105-112. [PMID: 33933660 PMCID: PMC8292173 DOI: 10.1016/j.mito.2021.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 01/23/2023]
Abstract
Brain-enriched microRNA-338 (miR-338) is known to play a central role in brain mitochondrial function, however the role of miR-338 in stroke injury remains unknown. This study investigated the role of miR-338 in injury from transient focal cerebral ischemia in mice, and in cell survival and mitochondrial function after in vitro ischemia in astrocyte and neuronal cultures. Pre-treatment of mice with intracerebroventricular injection of miR-338 antagomir 24 h prior to 1 h of middle cerebral artery occlusion (MCAO) significantly reduced infarct size and improved neurological score at both 24 h and 7d after injury. Levels of the miR-338 target cytochrome-c oxidase subunit 4I1 (COX4I1), which plays an essential role in maintaining brain mitochondrial ATP production, were increased in miR-338 antagomir-treated mice. Mouse primary astrocyte cell cultures subjected to glucose deprivation exhibited increased cell survival when pre-treated with miR-338 inhibitor, and greater cell death with miR-338 mimic. Decreased miR-338 levels were associated with increased ATP production, augmented cytochrome c oxidative (CcO) activity and preservation of COX4I1. In vitro protection with miR-338 inhibitor was blocked by concurrent knockdown of COX4I1 with small interfering RNA. Parallel studies in mouse neuronal N2a cultures resulted in preserved ATP content and CcO activity with miR-338 inhibition, indicating a shared miR-338-dependent response to ischemic stress between brain cell types. These results suggest that miR-338 inhibition and/or COX4I1-targeted therapies may be novel clinical strategies to protect against stroke injury via preservation of mitochondrial function in multiple cell types.
Collapse
Affiliation(s)
- Le Li
- Dept of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Dept of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Ludmila Voloboueva
- Dept of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian B Griffiths
- Dept of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lijun Xu
- Dept of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rona G Giffard
- Dept of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Creed M Stary
- Dept of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Yang D, Yang Q, Fu N, Li S, Han B, Liu Y, Tang Y, Guo X, Lv Z, Zhang Z. Hexavalent chromium induced heart dysfunction via Sesn2-mediated impairment of mitochondrial function and energy supply. CHEMOSPHERE 2021; 264:128547. [PMID: 33049514 DOI: 10.1016/j.chemosphere.2020.128547] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Hexavalent chromium (Cr(VI)), the most toxic valence state of chromium, is widely present in industrial effluents and wastes. Although previous study has reported that Cr(VI) can cause cytomembrane structure impairment by aggravating lipid peroxidation in the heart, the detailed mechanism of Cr(VI)-induced heart dysfunction is still unclear. Sesn2, a novel antioxidant and stress-inducible molecule, is evidenced to protect against various cardiometabolic diseases such as atherosclerosis and cardiomyopathy. To define the potential mechanism of heart dysfunction induced by chronic Cr(VI) exposure, Wistar rats were intraperitoneal injected with potassium dichromate (K2Cr2O7) for 35 d in the present study. The data showed that chronic K2Cr2O7 exposure caused dose-dependently hematological variations, oxidative stress, dysfunction, and disorganized structure of heart, cardiomyocyte apoptosis, ATP depletion, and mitochondria impairment in rats. In addition, the expressions of Drp1 and Bax were increased by K2Cr2O7. However, the suppression of Mfn2, PGC-1α, Sesn2, nuclear Nrf2, HO-1, and NQO1 protein levels was observed in K2Cr2O7-treated rat hearts. In conclusion, these results demonstrate that chronic K2Cr2O7 exposure dose-dependently causes heart dysfunction, and the molecular mechanism of this event is associated with the loss of Sesn2 mediated mitochondrial function and energy supply impairment.
Collapse
Affiliation(s)
- Daqian Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Ning Fu
- Chifeng Institute of Agricultural and Animal Husbandry Science, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Chifeng Institute of Agricultural and Animal Husbandry Science, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yuqing Tang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xinyu Guo
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Chifeng Institute of Agricultural and Animal Husbandry Science, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
16
|
Ramaccini D, Montoya-Uribe V, Aan FJ, Modesti L, Potes Y, Wieckowski MR, Krga I, Glibetić M, Pinton P, Giorgi C, Matter ML. Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy. Front Cell Dev Biol 2021; 8:624216. [PMID: 33511136 PMCID: PMC7835522 DOI: 10.3389/fcell.2020.624216] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiac tissue requires a persistent production of energy in order to exert its pumping function. Therefore, the maintenance of this function relies on mitochondria that represent the “powerhouse” of all cardiac activities. Mitochondria being one of the key players for the proper functioning of the mammalian heart suggests continual regulation and organization. Mitochondria adapt to cellular energy demands via fusion-fission events and, as a proof-reading ability, undergo mitophagy in cases of abnormalities. Ca2+ fluxes play a pivotal role in regulating all mitochondrial functions, including ATP production, metabolism, oxidative stress balance and apoptosis. Communication between mitochondria and others organelles, especially the sarcoplasmic reticulum is required for optimal function. Consequently, abnormal mitochondrial activity results in decreased energy production leading to pathological conditions. In this review, we will describe how mitochondrial function or dysfunction impacts cardiac activities and the development of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Daniela Ramaccini
- University of Hawaii Cancer Center, Honolulu, HI, United States.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | | | - Femke J Aan
- University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Lorenzo Modesti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Irena Krga
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Marija Glibetić
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | | |
Collapse
|
17
|
Cohen L, Sagi I, Bigelman E, Solomonov I, Aloshin A, Ben-Shoshan J, Rozenbaum Z, Keren G, Entin-Meer M. Cardiac remodeling secondary to chronic volume overload is attenuated by a novel MMP9/2 blocking antibody. PLoS One 2020; 15:e0231202. [PMID: 32271823 PMCID: PMC7145114 DOI: 10.1371/journal.pone.0231202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/18/2020] [Indexed: 12/18/2022] Open
Abstract
Objective Monoclonal antibody derivatives are promising drugs for the treatment of various diseases due to their high matrix metalloproteinases (MMP) active site specificity. We studied the effects of a novel antibody, SDS3, which specifically recognizes the mature active site of MMP9/2 during ventricular remodeling progression in a mouse model of chronic volume overload (VO). Methods VO was induced by creating an aortocaval fistula (ACF) in 10- to 12-week-old C57BL male mice. The VO-induced mice were treated with either vehicle control (PBS) or with SDS3 twice weekly by intraperitoneal (ip) injection. The relative changes in cardiac parameters between baseline (day 1) and end-point (day 30), were evaluated by echocardiography. The effects of SDS3 treatment on cardiac fibrosis, cardiomyocyte volume, and cardiac inflammation were tested by cardiac staining with Masson's trichrome, wheat Germ Agglutinin (WGA), and CD45, respectively. Serum levels of TNFα and IL-6 with and without SDS3 treatment were tested by ELISA. Results SDS3 significantly reduced cardiac dilatation, left ventricular (LV) mass, and cardiomyocyte hypertrophy compared to the vehicle treated animals. The antibody also reduced the heart-to-body weight ratio of the ACF animals to values comparable to those of the controls. Interestingly, the SDS3 group underwent significant reduction of cardiac inflammation and pro-inflammatory cytokine production, indicating a regulatory role for MMP9/2 in tissue remodeling, possibly by tumor necrosis factor alpha (TNFα) activation. In addition, significant changes in the expression of proteins related to mitochondrial function were observed in ACF animals, these changes were reversed following treatment with SDS3. Conclusion The data suggest that MMP9/2 blockage with SDS3 attenuates myocardial remodeling associated with chronic VO by three potential pathways: downregulating the extracellular matrix proteolytic cleavage, reducing the cardiac inflammatory responses, and preserving the cardiac mitochondrial structure and function.
Collapse
Affiliation(s)
- Lena Cohen
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Bigelman
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Aloshin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Jeremy Ben-Shoshan
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Zach Rozenbaum
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gad Keren
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Entin-Meer
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
18
|
Duan C, Cao Z, Tang F, Jian Z, Liang C, Liu H, Xiao Y, Liu L, Ma R. miRNA-mRNA crosstalk in myocardial ischemia induced by calcified aortic valve stenosis. Aging (Albany NY) 2020; 11:448-466. [PMID: 30651404 PMCID: PMC6366972 DOI: 10.18632/aging.101751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022]
Abstract
Aortic valve stenosis is the most common cause of morbidity and mortality in valvular heart disease in aged people. Both microRNA (miRNA) and mRNA are potential targets for the diagnosis and therapeutic intervention of myocardial ischemia induced by calcified aortic valve stenosis (CAVS), with unclear mechanisms. Here, 3 gene expression profiles of 47 male participants were applied to generate shared differentially expressed genes (DEGs) with significant major biological functions. Moreover, 20 hub genes were generated by a Weighted Genes Co-Expression Network Analysis (WGCNA) and were cross-linked to miRNA based on miRanda/miRwalk2 databases. Integrated miRNA/mRNA analysis identified several novel miRNAs and targeted genes as diagnostic/prognostic biomarkers or therapeutic targets in CAVS patients. In addition, the clinical data suggested that myocardial hypertrophy and myocardial ischemia in CAVS patients are likely associated with hub genes and the upstream regulatory miRNAs. Together, our data provide evidence that miRNAs and their targeted genes play an important role in the pathogenesis of myocardial hypertrophy and ischemia in patients with CAVS.
Collapse
Affiliation(s)
- Chenyang Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P. R. China.,Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Zhezhe Cao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Fuqin Tang
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Zhao Jian
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Chunshui Liang
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Hong Liu
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Yingbin Xiao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P. R. China
| | - Ruiyan Ma
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| |
Collapse
|
19
|
Quiroga C, Mancilla G, Oyarzun I, Tapia A, Caballero M, Gabrielli LA, Valladares-Ide D, del Campo A, Castro PF, Verdejo HE. Moderate Exercise in Spontaneously Hypertensive Rats Is Unable to Activate the Expression of Genes Linked to Mitochondrial Dynamics and Biogenesis in Cardiomyocytes. Front Endocrinol (Lausanne) 2020; 11:546. [PMID: 32973679 PMCID: PMC7466645 DOI: 10.3389/fendo.2020.00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023] Open
Abstract
Hypertension (HTN) is a public health concern and a major preventable cause of cardiovascular disease (CVD). When uncontrolled, HTN may lead to adverse cardiac remodeling, left ventricular hypertrophy, and ultimately, heart failure. Regular aerobic exercise training exhibits blood pressure protective effects, improves myocardial function, and may reverse pathologic cardiac hypertrophy. These beneficial effects depend at least partially on improved mitochondrial function, decreased oxidative stress, endothelial dysfunction, and apoptotic cell death, which supports the general recommendation of moderate exercise in CVD patients. However, most of these mechanisms have been described on healthy individuals; the effect of moderate exercise on HTN subjects at a cellular level remain largely unknown. We hypothesized that hypertension in adult spontaneously hypertensive rats (SHRs) reduces the mitochondrial response to moderate exercise in the myocardium. Methods: Eight-month-old SHRs and their normotensive control-Wistar-Kyoto rats (WKYR)-were randomly assigned to moderate exercise on a treadmill five times per week with a running speed set at 10 m/min and 15° inclination. The duration of each session was 45 min with a relative intensity of 70-85% of the maximum O2 consumption for a total of 8 weeks. A control group of untrained animals was maintained in their cages with short sessions of 10 min at 10 m/min two times per week to maintain them accustomed to the treadmill. After completing the exercise protocol, we assessed maximum exercise capacity and echocardiographic parameters. Animals were euthanized, and heart and muscle tissue were harvested for protein determinations and gene expression analysis. Measurements were compared using a nonparametric ANOVA (Kruskal-Wallis), with post-hoc Dunn's test. Results: At baseline, SHR presented myocardial remodeling evidenced by left ventricular hypertrophy (interventricular septum 2.08 ± 0.07 vs. 1.62 ± 0.08 mm, p < 0.001), enlarged left atria (0.62 ± 0.1 mm vs. 0.52 ± 0.1, p = 0.04), and impaired diastolic function (E/A ratio 2.43 ± 0.1 vs. 1.56 ± 0.2) when compared to WKYR. Moderate exercise did not induce changes in ventricular remodeling but improved diastolic filling pattern (E/A ratio 2.43 ± 0.1 in untrained SHR vs. 1.89 ± 0.16 trained SHR, p < 0.01). Histological analysis revealed increased myocyte transversal section area, increased Myh7 (myosin heavy chain 7) expression, and collagen fiber accumulation in SHR-control hearts. While the exercise protocol did not modify cardiac size, there was a significant reduction of cardiomyocyte size in the SHR-exercise group. Conversely, titin expression increased only WYK-exercise animals but remained unchanged in the SHR-exercise group. Mitochondrial response to exercise also diverged between SHR and WYKR: while moderate exercise showed an apparent increase in mRNA levels of Ppargc1α, Opa1, Mfn2, Mff, and Drp1 in WYKR, mitochondrial dynamics proteins remained unchanged in response to exercise in SHR. This finding was further confirmed by decreased levels of MFN2 and OPA1 in SHR at baseline and increased OPA1 processing in response to exercise in heart. In summary, aerobic exercise improves diastolic parameters in SHR but fails to activate the cardiomyocyte mitochondrial adaptive response observed in healthy individuals. This finding may explain the discrepancies on the effect of exercise in clinical settings and evidence of the need to further refine our understanding of the molecular response to physical activity in HTN subjects.
Collapse
Affiliation(s)
- Clara Quiroga
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago, Chile
| | - Georthan Mancilla
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ingrid Oyarzun
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anita Tapia
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mia Caballero
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luigi A. Gabrielli
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago, Chile
| | | | - Andrea del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F. Castro
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago, Chile
| | - Hugo E. Verdejo
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago, Chile
- *Correspondence: Hugo E. Verdejo
| |
Collapse
|
20
|
Lebeau J, Saunders JM, Moraes VWR, Madhavan A, Madrazo N, Anthony MC, Wiseman RL. The PERK Arm of the Unfolded Protein Response Regulates Mitochondrial Morphology during Acute Endoplasmic Reticulum Stress. Cell Rep 2019. [PMID: 29539413 PMCID: PMC5870888 DOI: 10.1016/j.celrep.2018.02.055] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is transmitted to mitochondria and is associated with pathologic mitochondrial dysfunction in diverse diseases. The PERK arm of the unfolded protein response (UPR) protects mitochondria during ER stress through the transcriptional and translational remodeling of mitochondrial molecular quality control pathways. Here, we show that ER stress also induces dynamic remodeling of mitochondrial morphology by promoting protective stress-induced mitochondrial hyperfusion (SIMH). ER-stress-associated SIMH is regulated by the PERK arm of the UPR and activated by eIF2α phosphorylation-dependent translation attenuation. We show that PERK-regulated SIMH is a protective mechanism to prevent pathologic mitochondrial fragmentation and promote mitochondrial metabolism in response to ER stress. These results identify PERK-dependent SIMH as a protective stress-responsive mechanism that regulates mitochondrial morphology during ER stress. Furthermore, our results show that PERK integrates transcriptional and translational signaling to coordinate mitochondrial molecular and organellar quality control in response to pathologic ER insults.
Collapse
Affiliation(s)
- Justine Lebeau
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jaclyn M Saunders
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vivian W R Moraes
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aparajita Madhavan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole Madrazo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mary C Anthony
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Lithium interacts with cardiac remodeling: the fundamental value in the pharmacotherapy of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:208-214. [PMID: 30053574 DOI: 10.1016/j.pnpbp.2018.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/18/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Patients with bipolar disorder (BD) have an increased risk of cardiovascular morbidity and mortality during the course of their illness. For over half a century, lithium has been the gold-standard medication used to treat the mood burdens of BD. In addition, lithium possesses several biological effects that may modulate cardiovascular risk in patients with BD. In this review, we update the current knowledge of cellular and molecular mechanisms underlying the possible cardiac actions of lithium. The mechanistic insights suggest that lithium at therapeutic levels potentially exerts cardioprotective effects on ischemic hearts by modulating structural and electrical remodeling. The possible cardioprotective actions of lithium may involve an extensive range of signaling pathways, including the Wnt/glycogen synthase kinase-3β, phosphatidylinositol-3-kinase/protein kinase B, phosphoinositide/protein kinase C, and mitogen-activated protein kinase/extracellular signal-regulated kinase cascades. Accordingly, understanding the cardioprotective effects of lithium may lead to the development of a potential strategy for reducing cardiovascular morbidity in patients with BD.
Collapse
|
22
|
Yue P, Jing S, Liu L, Ma F, Zhang Y, Wang C, Duan H, Zhou K, Hua Y, Wu G, Li Y. Association between mitochondrial DNA copy number and cardiovascular disease: Current evidence based on a systematic review and meta-analysis. PLoS One 2018; 13:e0206003. [PMID: 30403687 PMCID: PMC6221293 DOI: 10.1371/journal.pone.0206003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/04/2018] [Indexed: 11/24/2022] Open
Abstract
Background Mitochondria are energy-producing structure of the cell and help to maintain redox environment. In cardiovascular disease, the number of mitochondrial DNA (mtDNA) will changes accordingly compare to normal condition. Some investigators ask whether it has a clear association between mtDNA and cardiovascular disease with its adverse events. Thus, we conduct the meta-analysis to assess the role of circulating mtDNA in evaluating cardiovascular disease. Methods The meta-analysis was conducted in accordance with a predetermined protocol following the recommendations of Cochrane Handbook of Systematic Reviews. We searched the Pubmed, Embase, the Cochrane Central Register of Controlled Trials and World Health Organization clinical trials registry center to identify relevant studies up to the end of October 2017. Data were analyzed using STATA. Besides, publication bias and meta-regression analysis were also conducted. Results We collected results from 5 articles for further analyses with 8,252 cases and 20,904 control. The normalized mtDNA copy number level is lower in cardiovascular disease (CVD) than the control groups with a pooled standard mean difference (SMD) of -0.36(95%CI,-0.65 to -0.08); The pooled odds ratio (OR) for CVD proportion associated with a 1-SD (standard deviation) decrease in mtDNA copy number level is 1.23 (95% CI,1.06–1.42); The OR for CVD patients with mtDNA copy number lower than median level is 1.88(95% CI,1.65–2.13); The OR for CVD patients with mtDNA copy number located in the lowest quartile part is 2.15(95% CI, 1.46–3.18); the OR between mtDNA copy number and the risk of sudden cardiac death (SCD) is 1.83(95% CI, 1.22–2.74). Conclusion Although inter-study variability, the overall performance test of mtDNA for evaluating CVD and SCD revealed that the mtDNA copy number presented the potential to be a biomarker for CVD and SCD prediction. Given that, the fewer copies of mtDNA, the higher the risk of CVD.
Collapse
Affiliation(s)
- Peng Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Jing
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lei Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Fan Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Duan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiyu Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yimin Hua
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Bradley JM, Li Z, Organ CL, Polhemus DJ, Otsuka H, Islam KN, Bhushan S, Gorodnya OM, Ruchko MV, Gillespie MN, Wilson GL, Lefer DJ. A novel mtDNA repair fusion protein attenuates maladaptive remodeling and preserves cardiac function in heart failure. Am J Physiol Heart Circ Physiol 2017; 314:H311-H321. [PMID: 29101177 DOI: 10.1152/ajpheart.00515.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxidative stress results in mtDNA damage and contributes to myocardial cell death. mtDNA repair enzymes are crucial for mtDNA repair and cell survival. We investigated a novel, mitochondria-targeted fusion protein (Exscien1-III) containing endonuclease III in myocardial ischemia-reperfusion injury and transverse aortic constriction (TAC)-induced heart failure. Male C57/BL6J mice (10-12 wk) were subjected to 45 min of myocardial ischemia and either 24 h or 4 wk of reperfusion. Exscien1-III (4 mg/kg ip) or vehicle was administered at the time of reperfusion. Male C57/BL6J mice were subjected to TAC, and Exscien1-III (4 mg/kg i.p) or vehicle was administered daily starting at 3 wk post-TAC and continued for 12 wk. Echocardiography was performed to assess left ventricular (LV) structure and function. Exscien1-III reduced myocardial infarct size ( P < 0.01) at 24 h of reperfusion and preserved LV ejection fraction at 4 wk postmyocardial ischemia. Exscien1-III attenuated TAC-induced LV dilation and dysfunction at 6-12 wk post-TAC ( P < 0.05). Exscien1-III reduced ( P < 0.05) cardiac hypertrophy and maladaptive remodeling after TAC. Assessment of cardiac mitochondria showed that Exscien1-III localized to mitochondria and increased mitochondrial antioxidant and reduced apoptotic markers. In conclusion, our results indicate that administration of Exscien1-III provides significant protection against myocardial ischemia and preserves myocardial structure and LV performance in the setting of heart failure. NEW & NOTEWORTHY Oxidative stress-induced mitochondrial DNA damage is a prominent feature in the pathogenesis of cardiovascular diseases. In the present study, we demonstrate the efficacy of a novel, mitochondria-targeted fusion protein that traffics endonuclease III specifically for mitochondrial DNA repair in two well-characterized murine models of cardiac injury and failure.
Collapse
Affiliation(s)
- Jessica M Bradley
- Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Zhen Li
- Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Chelsea L Organ
- Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - David J Polhemus
- Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Hiroyuki Otsuka
- Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Kazi N Islam
- Department of Surgery, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Shashi Bhushan
- Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Olena M Gorodnya
- College of Medicine, University of South Alabama , Mobile, Alabama
| | | | - Mark N Gillespie
- College of Medicine, University of South Alabama , Mobile, Alabama
| | - Glenn L Wilson
- College of Medicine, University of South Alabama , Mobile, Alabama.,Exscien Corporation , Mobile, Alabama
| | - David J Lefer
- Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
24
|
Sheeran FL, Pepe S. Mitochondrial Bioenergetics and Dysfunction in Failing Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:65-80. [PMID: 28551782 DOI: 10.1007/978-3-319-55330-6_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Energy insufficiency has been recognized as a key feature of systolic heart failure. Although mitochondria have long been known to sustain myocardial work energy supply, the capacity to therapeutically target mitochondrial bioenergetics dysfunction is hampered by a complex interplay of multiple perturbations that progressively compound causing myocardial failure and collapse. Compared to non-failing human donor hearts, activity rates of complexes I and IV, nicotinamide nucleotide transhydrogenase (NADPH-transhydrogenase, Nnt) and the Krebs cycle enzymes isocitrate dehydrogenase, malate dehydrogenase and aconitase are markedly decreased in end-stage heart failure. Diminished REDOX capacity with lower total glutathione and coenzyme Q10 levels are also a feature of chronic left ventricular failure. Decreased enzyme activities in part relate to abundant and highly specific oxidative, nitrosylative, and hyperacetylation modifications. In this brief review we highlight that energy deficiency in end-stage failing human left ventricle predominantly involves concomitantly impaired activities of key electron transport chain and Krebs cycle enzymes rather than altered expression of respective genes or proteins. Augmented oxidative modification of these enzyme subunit structures, and the formation of highly reactive secondary metabolites, implicates dysfunction due to diminished capacity for management of mitochondrial reactive oxygen species, which contribute further to progressive decreases in bioenergetic capacity and contractile function in human heart failure.
Collapse
Affiliation(s)
- Freya L Sheeran
- Heart Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia
| | - Salvatore Pepe
- Heart Research, Murdoch Children's Research Institute, Melbourne, Australia. .,Department of Paediatrics, University of Melbourne, Melbourne, Australia. .,Royal Children's Hospital, Melbourne, Australia. .,Department of Cardiology, Royal Children's Hospital, 50 Flemington Road, VIC, 3052, Melbourne, Australia.
| |
Collapse
|
25
|
Extract of Sheng-Mai-San Ameliorates Myocardial Ischemia-Induced Heart Failure by Modulating Ca 2+-Calcineurin-Mediated Drp1 Signaling Pathways. Int J Mol Sci 2017; 18:ijms18091825. [PMID: 28841143 PMCID: PMC5618477 DOI: 10.3390/ijms18091825] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Sheng-Mai-San (SMS) is a well-known traditional Chinese medicine (TCM) complex prescription used to treat heart failure (HF) and angina in clinic. However, its potential therapeutic mechanisms remain unclear. The present study evaluated the cardioprotection of extract of SMS (ESMS) on myocardial ischemia (MI)-induced HF, and explored the underlying molecular mechanisms. The results demonstrated that ESMS (728.0 mg/kg) significantly attenuated MI injury-induced HF by improving cardiac function and pathological changes, decreasing lactate dehydrogenase (LDH), creatine kinase (CK) activities, and brain natriuretic peptide (BNP) levels; increasing ATPase activity; and reducing intracellular Ca2+ levels in MI-induced HF mice model. It also significantly decreased the apoptotic index. In vitro, ESMS (400 μg/mL) inhibited mitochondrial-dependent myocardial apoptosis by modulating the expression of caspase-3 and the Bcl-2/Bax ratio, and improved mitochondrial function through increasing mitochondrial membrane potential and cellular ATP content. ESMS restored intracellular Ca2+ and downregulated the expression of Calcineurin A (CnA), thus inhibiting phosphorylation of dynamin-related protein 1 (Drp1) at Ser616 and increasing phosphorylation of Drp1 at Ser637 to prevent cardiomyocyte mitochondrial fission. Above-mentioned results demonstrated ESMS suppressed mitochondrial-mediated apoptosis in oxygen glucose deprivation (OGD) injured H9c2 cardiomyocytes. These findings suggested that ESMS attenuated MI-induced HF by regulating Ca2+ homeostasis and suppressing mitochondrial mediated apoptosis through the modulation of Ca2+-calcineurin-mediated Drp1 signaling pathways. Our results provide insight into the mechanism and clinical applications of SMS and suggest a potential therapeutic strategy for HF.
Collapse
|
26
|
Khatua TN, Borkar RM, Mohammed SA, Dinda AK, Srinivas R, Banerjee SK. Novel Sulfur Metabolites of Garlic Attenuate Cardiac Hypertrophy and Remodeling through Induction of Na +/K +-ATPase Expression. Front Pharmacol 2017; 8:18. [PMID: 28194108 PMCID: PMC5276815 DOI: 10.3389/fphar.2017.00018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/10/2017] [Indexed: 11/13/2022] Open
Abstract
Epidemiologic studies show an inverse correlation between garlic consumption and progression of cardiovascular disease. However, the molecular basis for the beneficial effect of garlic on the heart is not known. Therefore, the objective of the present study was to (1) investigate the effect of raw garlic on isoproterenol (Iso) induced cardiac hypertrophy (2) find the active metabolites of garlic responsible for the beneficial effect. Cardiac hypertrophy was induced in rats by subcutaneous single injection of Iso 5 mg kg-1 day-1 for 15 days and the effect of garlic (250 mg/kg/day orally) was evaluated. Garlic metabolites in in vivo were identified by LC/MS study. The effect of garlic and its metabolites were evaluated against hypertrophy in H9C2 cells. Garlic normalized cardiac oxidative stress after Iso administration. Cardiac pathology and mitochondrial enzyme activities were improved in hypertrophy heart after garlic administration. Decreased Na+/K+-ATPase protein level that observed in hypertrophy heart was increased after garlic administration. We identified three garlic metabolites in rat serum. To confirm the role of garlic metabolites on cardiac hypertrophy, Na+/K+-ATPase expression and intracellular calcium levels were measured after treating H9C2 cells with raw garlic and two of its active metabolites, allyl methyl sulfide and allyl methyl sulfoxide. Raw garlic and both metabolites increased Na+/K+-ATPase protein level and decreased intracellular calcium levels and cell size in Iso treated H9C2 cells. This antihypertrophic effect of garlic and its sulfur metabolites were lost in H9C2 cells in presence of Na+/K+-ATPase inhibitor. In conclusion, garlic and its active metabolites increased Na+/K+-ATPase in rat heart, and attenuated cardiac hypertrophy and associated remodeling. Our data suggest that identified new garlic metabolites may be useful for therapeutic intervention against cardiac hypertrophy.
Collapse
Affiliation(s)
- Tarak N Khatua
- Division of Medicinal Chemistry and Pharmacology, Indian Institute of Chemical TechnologyHyderabad, India; Drug Discovery Research Center, Translational Health Science and Technology InstituteFaridabad, India
| | - Roshan M Borkar
- National Centre for Mass Spectrometry, Indian Institute of Chemical Technology Hyderabad, India
| | - Soheb A Mohammed
- Drug Discovery Research Center, Translational Health Science and Technology Institute Faridabad, India
| | - Amit K Dinda
- Department of Pathology, All India Institute of Medical Sciences New Delhi, India
| | - R Srinivas
- National Centre for Mass Spectrometry, Indian Institute of Chemical Technology Hyderabad, India
| | - Sanjay K Banerjee
- Division of Medicinal Chemistry and Pharmacology, Indian Institute of Chemical TechnologyHyderabad, India; Drug Discovery Research Center, Translational Health Science and Technology InstituteFaridabad, India
| |
Collapse
|
27
|
Wang CW, Hsu WH, Tai CJ. Antimetastatic effects of cordycepin mediated by the inhibition of mitochondrial activity and estrogen-related receptor α in human ovarian carcinoma cells. Oncotarget 2017; 8:3049-3058. [PMID: 27966445 PMCID: PMC5356863 DOI: 10.18632/oncotarget.13829] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022] Open
Abstract
Cordycepin (3'-deoxyadenosine) is a compound for antitumor, which has been found to exert antiangiogenic, antimetastatic, and antiproliferative effects, as well as inducing apoptosis. However, the association between cancer metastasis and mitochondrial activity in cordycepin-treated ovarian carcinoma cells remains unclear. The 50 and 100 μM of cordycepin inhibits mitochondrial fusion and induces mitochondrial fission, respectively. These suggested that cordycepin showed the down-regulation of mitochondrial function and limitation of energy production. Because of activation of mitochondria and generation of energy are needed in cancer cell migration/invasion. After 24 h treatment, cordycepin suppresses epithelial-mesenchymal transition and migration in ovarian carcinoma cells through inhibiting estrogen-related receptor (ERR)-α. The ERRα is a co-transcription factor for gene expressions associated with mitochondrial fusion. Our results indicate that cordycepin suppresses metastasis and migration of ovarian carcinoma cells via inhibiting mitochondrial activity in non-toxic concentrations, and cordycepin has potential benefits in ovarian cancer therapy.
Collapse
Affiliation(s)
- Chia-Woei Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Wei-Hsuan Hsu
- Biochemical Process Technology Department, Center of Excellence for Drug Development, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30068, Taiwan
| | - Chen-Jei Tai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Department of Traditional Chinese Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11042, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11042, Taiwan
| |
Collapse
|
28
|
Abstract
The highly regulated processes of mitochondrial fusion (joining), fission (division) and trafficking, collectively called mitochondrial dynamics, determine cell-type specific morphology, intracellular distribution and activity of these critical organelles. Mitochondria are critical for cardiac function, while their structural and functional abnormalities contribute to several common cardiovascular diseases, including heart failure (HF). The tightly balanced mitochondrial fusion and fission determine number, morphology and activity of these multifunctional organelles. Although the intracellular architecture of mature cardiomyocytes greatly restricts mitochondrial dynamics, this process occurs in the adult human heart. Fusion and fission modulate multiple mitochondrial functions, ranging from energy and reactive oxygen species production to Ca(2+) homeostasis and cell death, allowing the heart to respond properly to body demands. Tightly controlled balance between fusion and fission is of utmost importance in the high energy-demanding cardiomyocytes. A shift toward fission leads to mitochondrial fragmentation, while a shift toward fusion results in the formation of enlarged mitochondria and in the fusion of damaged mitochondria with healthy organelles. Mfn1, Mfn2 and OPA1 constitute the core machinery promoting mitochondrial fusion, whereas Drp1, Fis1, Mff and MiD49/51 are the core components of fission machinery. Growing evidence suggests that fusion/fission factors in adult cardiomyocytes play essential noncanonical roles in cardiac development, Ca(2+) signaling, mitochondrial quality control and cell death. Impairment of this complex circuit causes cardiomyocyte dysfunction and death contributing to heart injury culminating in HF. Pharmacological targeting of components of this intricate network may be a novel therapeutic modality for HF treatment.
Collapse
|
29
|
5-HTR3 and 5-HTR4 located on the mitochondrial membrane and functionally regulated mitochondrial functions. Sci Rep 2016; 6:37336. [PMID: 27874067 PMCID: PMC5118798 DOI: 10.1038/srep37336] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/25/2016] [Indexed: 11/29/2022] Open
Abstract
5-HT has been reported to possess significant effects on cardiac activities, but activation of 5-HTR on the cell membrane failed to illustrate the controversial cardiac reaction. Because 5-HT constantly comes across the cell membrane via 5-HT transporter (5-HTT) into the cytoplasm, whether 5-HTR is functional present on the cellular organelles is unknown. Here we show 5-HTR3 and 5-HTR4 were located in cardiac mitochondria, and regulated mitochondrial activities and cellular functions. Knock down 5-HTR3 and 5-HTR4 in neonatal cardiomyocytes resulted in significant increase of cell damage in response to hypoxia, and also led to alternation in heart beating. Activation of 5-HTR4 attenuated mitochondrial Ca2+ uptake under the both normoxic and hypoxic conditions, whereas 5-HTR3 augmented Ca2+ uptake only under hypoxia. 5-HTR3 and 5-HTR4 exerted the opposite effects on the mitochondrial respiration: 5-HTR3 increased RCR (respiration control ratio), but 5-HTR4 reduced RCR. Moreover, activation of 5-HTR3 and 5-HTR4 both significantly inhibited the opening of mPTP. Our results provided the first evidence that 5-HTR as a GPCR and an ion channel, functionally expressed in mitochondria and participated in the mitochondria function and regulation to maintain homeostasis of mitochondrial [Ca2+], ROS, and ATP generation efficiency in cardiomyocytes in response to stress and O2 tension.
Collapse
|
30
|
Hu DX, Liu XB, Song WC, Wang JA. Roles of SIRT3 in heart failure: from bench to bedside. J Zhejiang Univ Sci B 2016; 17:821-830. [PMID: 27819129 PMCID: PMC5120224 DOI: 10.1631/jzus.b1600253] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) represents the most common endpoint of most cardiovascular diseases (CVDs) which are the leading causes of death around the world. Despite the advances in treating CVDs, the prevalence of HF continues to increase. It is believed that better results of prognosis are obtained from prevention rather than additional treatment for HF. Therefore, it is reasonable to prevent the development of CVDs or other complications to HF. Most types of HF are attributed to contractile dysfunction, cardiac hypertrophy or remodeling, and ischemic injuries. SIRT3 is a mitochondrial nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase whose substrates vary from metabolic biogenesis-associated proteins to stress-responsive proteins. In recent years, a number of studies have highlighted the cardio-protective role of SIRT3 and, as such, efforts have been made to induce over-expression or increased activity of this protein. In this review, we provide an overview of the roles of SIRT3 in cardiac hypertrophy induced by pressure overload or agonists and cardiomyocytes ischemic injuries. Moreover, we will introduce the application of SIRT3 agonists in the prevention of cardiac hypertrophy and ischemia reperfusion injury.
Collapse
Affiliation(s)
- De-xing Hu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Provincial Key Laboratory of Cardiovascular Research of Zhejiang Province, Hangzhou 310009, China
- Department of Cardiology, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo 315100, China
| | - Xian-bao Liu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Provincial Key Laboratory of Cardiovascular Research of Zhejiang Province, Hangzhou 310009, China
| | - Wen-chao Song
- Department of Cardiology, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo 315100, China
| | - Jian-an Wang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Provincial Key Laboratory of Cardiovascular Research of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
31
|
Huang J, Tan L, Shen R, Zhang L, Zuo H, Wang DW. Decreased Peripheral Mitochondrial DNA Copy Number is Associated with the Risk of Heart Failure and Long-term Outcomes. Medicine (Baltimore) 2016; 95:e3323. [PMID: 27082579 PMCID: PMC4839823 DOI: 10.1097/md.0000000000003323] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial DNA (mtDNA) copy number variation (CNV), which reflects the oxidant-induced cell damage, has been observed in a wide range of human diseases. However, whether it correlates with heart failure, which is closely related to oxidative stress, has never been elucidated before. We aimed to systematically investigate the associations between leukocyte mtDNA CNV and heart failure risk and prognosis. A total of 1700 hospitalized patients with heart failure and 1700 age- and sex-matched community population were consecutively enrolled in this observational study, as well as 1638 (96.4%) patients were followed prospectively for a median of 17 months (12-24 months). The relative mtDNA copy number of leukocyte of peripheral blood or cardiac tissue was measured in triplicate by quantitative real-time PCR method. Patients with heart failure possessed much lower relative mtDNA copy number compared with control subjects (median 0.83, interquartile range [IQR] 0.60-1.16 vs median 1.00, IQR 0.47-2.20; P < 0.001), especially for the patients with ischemic etiology (median, 0.77 for ischemic and 0.91 for non-ischemic, P < 0.001). Patients with lower mtDNA copy number exhibited 1.7 times higher risk of heart failure (odds ratio 1.71, 95% confidence interval [CI] 1.48-1.97, P < 0.001). Long-term follow-up (median of 17 months) showed that decreased mtDNA copy number was significant associated with both increased cardiovascular deaths (hazard ratio [HR] 1.58, 95% CI 1.16-2.16, P = 0.004) and cardiovascular rehospitalization (HR 1.48, 95% CI 1.21-1.82, P < 0.001). After adjusting for the conventional risk factors and medications, lower mtDNA copy numbers were still significantly associated with 50% higher cardiovascular mortality (P = 0.035). In conclusion, mtDNA copy number depletion is an independent risk factor for heart failure and predicts higher cardiovascular mortality in patients with heart failure.
Collapse
Affiliation(s)
- Jin Huang
- From the Division of Cardiology, Departments of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | |
Collapse
|
32
|
Wang C, Li X, Shen C, Ma L, Dong Z, Zhu H, Wang P, Ge J, Sun A. SPECT imaging of cytochrome c in pressure overload mice hearts. RSC Adv 2016. [DOI: 10.1039/c6ra18224k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Clinically, pressure overload (PO) occurs in many clinical settings such as hypertension and valvular stenosis especially in the current aging society.
Collapse
Affiliation(s)
- Cong Wang
- Shanghai Institute of Cardiovascular Diseases
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- PR China
| | - Xiao Li
- Department of Nuclear Medicine
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- PR China
| | - Cheng Shen
- Shanghai Institute of Cardiovascular Diseases
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- PR China
| | - Leilei Ma
- Shanghai Institute of Cardiovascular Diseases
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- PR China
| | - Zhen Dong
- Shanghai Institute of Cardiovascular Diseases
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- PR China
| | - Hong Zhu
- Shanghai Institute of Cardiovascular Diseases
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- PR China
| | - Peng Wang
- Shanghai Institute of Cardiovascular Diseases
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- PR China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- PR China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- PR China
| |
Collapse
|
33
|
Akhmedov AT, Rybin V, Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 2015; 20:227-49. [PMID: 25192828 DOI: 10.1007/s10741-014-9457-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite significant progress in cardiovascular medicine, myocardial ischemia and infarction, progressing eventually to the final end point heart failure (HF), remain the leading cause of morbidity and mortality in the USA. HF is a complex syndrome that results from any structural or functional impairment in ventricular filling or blood ejection. Ultimately, the heart's inability to supply the body's tissues with enough blood may lead to death. Mechanistically, the hallmarks of the failing heart include abnormal energy metabolism, increased production of reactive oxygen species (ROS) and defects in excitation-contraction coupling. HF is a highly dynamic pathological process, and observed alterations in cardiac metabolism and function depend on the disease progression. In the early stages, cardiac remodeling characterized by normal or slightly increased fatty acid (FA) oxidation plays a compensatory, cardioprotective role. However, upon progression of HF, FA oxidation and mitochondrial oxidative activity are decreased, resulting in a significant drop in cardiac ATP levels. In HF, as a compensatory response to decreased oxidative metabolism, glucose uptake and glycolysis are upregulated, but this upregulation is not sufficient to compensate for a drop in ATP production. Elevated mitochondrial ROS generation and ROS-mediated damage, when they overwhelm the cellular antioxidant defense system, induce heart injury and contribute to the progression of HF. Mitochondrial uncoupling proteins (UCPs), which promote proton leak across the inner mitochondrial membrane, have emerged as essential regulators of mitochondrial membrane potential, respiratory activity and ROS generation. Although the physiological role of UCP2 and UCP3, expressed in the heart, has not been clearly established, increasing evidence suggests that these proteins by promoting mild uncoupling could reduce mitochondrial ROS generation and cardiomyocyte apoptosis and ameliorate thereby myocardial function. Further investigation on the alterations in cardiac UCP activity and regulation will advance our understanding of their physiological roles in the healthy and diseased heart and also may facilitate the development of novel and more efficient therapies.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA
| | | | | |
Collapse
|
34
|
Mainous AG, Tanner RJ, Anton SD, Jo A. Grip Strength as a Marker of Hypertension and Diabetes in Healthy Weight Adults. Am J Prev Med 2015; 49:850-8. [PMID: 26232901 PMCID: PMC4656117 DOI: 10.1016/j.amepre.2015.05.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Muscle strength may play a role in cardiometabolic disease. We examined the relationship between hand grip strength and diabetes and hypertension in a sample of healthy weight adults. METHODS In 2015, we analyzed the National Health and Nutrition Examination Survey 2011-2012 for adults aged ≥20 years with healthy BMIs (between 18.5 and <25) and no history of cardiovascular disease (unweighted n=1,467; weighted n=61,587,139). Hand grip strength was assessed with a dynamometer. Diabetes was based on hemoglobin A1c level and reported diabetes diagnosis. Hypertension was based on measured blood pressure and reported hypertension diagnosis. RESULTS Individuals with undiagnosed diabetes compared with individuals without diabetes had lower grip strength (51.9 vs 69.8, p=0.0001), as did individuals with diagnosed diabetes compared with individuals without diabetes (61.7 vs 69.8, p=0.008). Mean grip strength was lower among individuals with undiagnosed hypertension compared with individuals without hypertension (63.5 vs 71.5, p=0.008) as well as among individuals with diagnosed hypertension compared with those without hypertension (60.8 vs 71.5, p<0.0001). In adjusted analyses controlling for age, sex, race, smoking status, and first-degree relative with disease, mean grip strength was lower for undiagnosed diabetes (β=-10.02, p<0.0001) and diagnosed diabetes (β=-8.21, p=0.03) compared with individuals without diabetes. In adjusted analyses, grip strength was lower among individuals with undiagnosed hypertension (β=-6.6, p=0.004) and diagnosed hypertension (β=-4.27, p=0.04) compared with individuals without hypertension. CONCLUSIONS Among healthy weight adults, combined grip strength is lower in individuals with diagnosed and undiagnosed diabetes and hypertension.
Collapse
Affiliation(s)
- Arch G Mainous
- Department of Health Services Research, Management, and Policy, University of Florida, Gainesville, Florida; Department of Family and Community Medicine, University of Florida, Gainesville, Florida;.
| | - Rebecca J Tanner
- Department of Health Services Research, Management, and Policy, University of Florida, Gainesville, Florida
| | - Stephen D Anton
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida
| | - Ara Jo
- Department of Health Services Research, Management, and Policy, University of Florida, Gainesville, Florida
| |
Collapse
|
35
|
Interplay between oxidant species and energy metabolism. Redox Biol 2015; 8:28-42. [PMID: 26741399 PMCID: PMC4710798 DOI: 10.1016/j.redox.2015.11.010] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
It has long been recognized that energy metabolism is linked to the production of reactive oxygen species (ROS) and critical enzymes allied to metabolic pathways can be affected by redox reactions. This interplay between energy metabolism and ROS becomes most apparent during the aging process and in the onset and progression of many age-related diseases (i.e. diabetes, metabolic syndrome, atherosclerosis, neurodegenerative diseases). As such, the capacity to identify metabolic pathways involved in ROS formation, as well as specific targets and oxidative modifications is crucial to our understanding of the molecular basis of age-related diseases and for the design of novel therapeutic strategies. Herein we review oxidant formation associated with the cell's energetic metabolism, key antioxidants involved in ROS detoxification, and the principal targets of oxidant species in metabolic routes and discuss their relevance in cell signaling and age-related diseases. Energy metabolism is both a source and target of oxidant species. Reactive oxygen species are formed in redox reactions in catabolic pathways. Sensitive targets of oxidant species regulate the flux of metabolic pathways. Metabolic pathways and antioxidant systems are regulated coordinately.
Collapse
|
36
|
Anton SD, Woods AJ, Ashizawa T, Barb D, Buford TW, Carter CS, Clark DJ, Cohen RA, Corbett DB, Cruz-Almeida Y, Dotson V, Ebner N, Efron PA, Fillingim RB, Foster TC, Gundermann DM, Joseph AM, Karabetian C, Leeuwenburgh C, Manini TM, Marsiske M, Mankowski RT, Mutchie HL, Perri MG, Ranka S, Rashidi P, Sandesara B, Scarpace PJ, Sibille KT, Solberg LM, Someya S, Uphold C, Wohlgemuth S, Wu SS, Pahor M. Successful aging: Advancing the science of physical independence in older adults. Ageing Res Rev 2015; 24:304-27. [PMID: 26462882 DOI: 10.1016/j.arr.2015.09.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/08/2015] [Accepted: 09/30/2015] [Indexed: 02/08/2023]
Abstract
The concept of 'successful aging' has long intrigued the scientific community. Despite this long-standing interest, a consensus definition has proven to be a difficult task, due to the inherent challenge involved in defining such a complex, multi-dimensional phenomenon. The lack of a clear set of defining characteristics for the construct of successful aging has made comparison of findings across studies difficult and has limited advances in aging research. A consensus on markers of successful aging is furthest developed is the domain of physical functioning. For example, walking speed appears to be an excellent surrogate marker of overall health and predicts the maintenance of physical independence, a cornerstone of successful aging. The purpose of the present article is to provide an overview and discussion of specific health conditions, behavioral factors, and biological mechanisms that mark declining mobility and physical function and promising interventions to counter these effects. With life expectancy continuing to increase in the United States and developed countries throughout the world, there is an increasing public health focus on the maintenance of physical independence among all older adults.
Collapse
|
37
|
MicroRNA as biomarkers of mitochondrial toxicity. Toxicol Appl Pharmacol 2015; 312:26-33. [PMID: 26476301 DOI: 10.1016/j.taap.2015.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/04/2015] [Accepted: 10/13/2015] [Indexed: 01/17/2023]
Abstract
Mitochondrial toxicity can be difficult to detect as most cells can tolerate reduced activity as long as minimal capacity for function is maintained. However, once minimal capacity is lost, apoptosis or necrosis occurs quickly. Identification of more sensitive, early markers of mitochondrial toxicity was the objective of this work. Rotenone, a mitochondrial complex I inhibitor, and 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor, were administered daily to male Sprague-Dawley rats at subcutaneous doses of 0.1 or 0.3mg/kg/day and intraperitoneal doses of 5 or 10mg/kg/day, respectively, for 1week. Samples of kidney, skeletal muscle (quadriceps femoris), and serum were collected for analysis of mitochondrial DNA (mtDNA) copy number and microRNA (miRNA) expression patterns. MtDNA was significantly decreased with administration of rotenone at 0.3mg/kg/day and 3-NP at 5 and 10mg/kg/day in the quadriceps femoris and with 3-NP at 10mg/kg/day in the kidney. Additionally, rotenone and 3-NP treatment produced changes to miRNA expression that were similar in direction (i.e. upregulation, downregulation) to those previously linked to mitochondrial functions, such as mitochondrial damage and biogenesis (miR-122, miR-202-3p); regulation of ATP synthesis, abolished oxidative phosphorylation, and loss of membrane potential due to increased reactive oxygen species (ROS) production (miR-338-5p, miR-546, miR-34c); and mitochondrial DNA damage and depletion (miR-546). These results suggest that miRNAs may be sensitive biomarkers for early detection of mitochondrial toxicity.
Collapse
|
38
|
Hsu WH, Lee BH, Pan TM. Leptin-induced mitochondrial fusion mediates hepatic lipid accumulation. Int J Obes (Lond) 2015; 39:1750-6. [PMID: 26119995 DOI: 10.1038/ijo.2015.120] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/02/2015] [Accepted: 06/22/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Leptin alleviates metabolic conditions such as insulin resistance and obesity, although the precise mechanism of action is unclear. Mitochondrial fusion/fission states affect energy balance, but the association between mitochondrial fusion and lipid metabolism is also unknown. The aim of this study was to determine whether mitochondrial fusion/fission state regulates lipid accumulation and to understand the role of leptin in mitochondrial function and its mechanism of action in metabolic regulation. METHODS Primary mouse hepatocytes were isolated from C57BL/6J mice and treated with leptin (25 ng ml(-1)) for 3 days before determinations of mitochondrial morphology and fatty acid accumulation. Hyperglycemia in C57BL/6J mice was induced by providing a 30% fructose-rich diet (FRD) for 6 months, followed by intraperitoneal injections of leptin (1 mg kg(-1) per body weight) for 6 weeks (twice per week). RESULTS Leptin triggered mitochondrial fusion and alleviated high glucose-induced fatty acid accumulation in primary hepatocytes by promoting mitochondrial fusion-associated transcription factor peroxisome proliferative-activated receptor-α and co-activator peroxisome proliferative-activated receptor-γ co-activator (PGC)-1α. In turn, these activate the fusion protein mitofusin 1 (Mfn-1). RNA silencing of Mfn-1 or PGC-1 blocked the inhibitory effect of leptin. Leptin treatment also elevated liver Mfn-1 and PGC-1α and improved lipid profiles in FRD mice. CONCLUSIONS Mitochondrial fusion has a critical role in alleviating hepatic fatty acid accumulation. Leptin switches mitochondrial morphology via a PGC-1α-dependent pathway to improve hyperlipidemia.
Collapse
Affiliation(s)
- W-H Hsu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Basic Medical Sciences, College of Veterinary Medicine, Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - B-H Lee
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Basic Medical Sciences, College of Veterinary Medicine, Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - T-M Pan
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
39
|
Alehagen U, Johansson P, Björnstedt M, Rosén A, Post C, Aaseth J. Relatively high mortality risk in elderly Swedish subjects with low selenium status. Eur J Clin Nutr 2015; 70:91-6. [PMID: 26105108 PMCID: PMC4709701 DOI: 10.1038/ejcn.2015.92] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/15/2015] [Accepted: 04/19/2015] [Indexed: 12/31/2022]
Abstract
Background/Objectives: The daily dietary intake of selenium (Se), an essential trace element, is still low in Sweden in spite of decades of nutritional information campaigns and the effect of this on the public health is presently not well known. The objective of this study was to determine the serum Se levels in an elderly Swedish population and to analyze whether a low Se status had any influence on mortality. Subjects/Methods: Six-hundred sixty-eight (n=668) elderly participants were invited from a municipality and evaluated in an observational study. Individuals were followed for 6.8 years and Se levels were re-evaluated in 98 individuals after 48 months. Clinical examination of all individuals included functional classification, echocardiography, electrocardiogram and serum Se measurement. All mortality was registered and endpoints of mortality were assessed by Kaplan–Meier plots, and Cox proportional hazard ratios adjusted for potential confounding factors were calculated. Results: The mean serum Se level of the study population (n=668) was 67.1 μg/l, corresponding to relatively low Se intake. After adjustment for male gender, smoking, ischemic heart disease, diabetes, chronic obstructive pulmonary disease and impaired heart function, persons with serum Se in the lowest quartile had 43% (95% confidence interval (CI): 1.02–2.00) and 56% (95% CI: 1.03–2.36) increased risk for all-cause and cardiovascular mortality, respectively. The result was not driven by inflammatory effects on Se concentration in serum. Conclusion: The mean serum Se concentration in an elderly Swedish population was 67.1 μg/l, which is below the physiological saturation level for several selenoprotein enzymes. This result may suggest the value of modest Se supplementation in order to improve the health of the Swedish population.
Collapse
Affiliation(s)
- U Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Heart Center, Linköping University, Linköping, Sweden
| | - P Johansson
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Heart Center, Linköping University, Linköping, Sweden
| | - M Björnstedt
- Division of Pathology F42, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A Rosén
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - C Post
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - J Aaseth
- Research Department, Innlandet Hospital Trust and Hedmark University College, Norway
| |
Collapse
|
40
|
The Role of Muscle Mass, Muscle Quality, and Body Composition in Risk for the Metabolic Syndrome and Functional Decline in Older Adults. CURRENT GERIATRICS REPORTS 2015. [DOI: 10.1007/s13670-015-0132-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Oropeza-Moe M, Wisløff H, Bernhoft A. Selenium deficiency associated porcine and human cardiomyopathies. J Trace Elem Med Biol 2015; 31:148-56. [PMID: 25456335 DOI: 10.1016/j.jtemb.2014.09.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/13/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is a trace element playing an important role in animal and human physiological homeostasis. It is a key component in selenoproteins (SeP) exerting multiple actions on endocrine, immune, inflammatory and reproductive processes. The SeP family of glutathione peroxidases (GSH-Px) inactivates peroxides and thereby maintains physiological muscle function in humans and animals. Animals with high feed conversion efficiency and substantial muscle mass have shown susceptibility to Se deficiency related diseases since nutritional requirements of the organism may not be covered. Mulberry Heart Disease (MHD) in pigs is an important manifestation of Se deficiency often implicating acute heart failure and sudden death without prior clinical signs. Post-mortem findings include hemorrhagic and pale myocardial areas accompanied by fluid accumulation in the pericardial sac and pleural cavity. Challenges in MHD are emerging in various parts of the world. Se is of fundamental importance also to human health. In the 1930s the Se deficiency associated cardiomyopathy named Keshan Disease (KD) was described for the first time in China. Various manifestations, such as cardiogenic shock, enlarged heart, congestive heart failure, and cardiac arrhythmias are common. Multifocal necrosis and fibrous replacement of myocardium are characteristic findings. Pathological findings in MD and KD show striking similarities.
Collapse
Affiliation(s)
- Marianne Oropeza-Moe
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, Department of Production Animal Clinical Sciences, Kyrkjevegen 332-334, 4325 Sandnes, Norway.
| | - Helene Wisløff
- Norwegian Veterinary Institute, Department of Laboratory Services, Postbox 750 Sentrum, NO-0106 Oslo, Norway
| | - Aksel Bernhoft
- Norwegian Veterinary Institute, Department of Health Surveillance, Postbox 750 Sentrum, NO-0106 Oslo, Norway
| |
Collapse
|
42
|
Alehagen U, Aaseth J. Selenium and coenzyme Q10 interrelationship in cardiovascular diseases--A clinician's point of view. J Trace Elem Med Biol 2015; 31:157-62. [PMID: 25511910 DOI: 10.1016/j.jtemb.2014.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 12/31/2022]
Abstract
A short review is given of the potential role of selenium deficiency and selenium intervention trials in atherosclerotic heart disease. Selenium is an essential constituent of several proteins, including the glutathione peroxidases and selenoprotein P. The selenium intake in Europe is generally in the lower margin of recommendations from authorities. Segments of populations in Europe may thus have a deficient intake that may be presented by a deficient anti-oxidative capacity in various illnesses, in particular atherosclerotic disease, and this may influence the prognosis of the disease. Ischemic heart disease and heart failure are two conditions where increased oxidative stress has been convincingly demonstrated. Some of the intervention studies of anti-oxidative substances that have focused on selenium are discussed in this review. The interrelationship between selenium and coenzyme Q10, another anti-oxidant, is presented, pointing to a theoretical advantage in using both substances in an intervention if there are deficiencies within the population. Clinical results from an intervention study using both selenium and coenzyme Q10 in an elderly population are discussed, where reduction in cardiovascular mortality, a better cardiac function according to echocardiography, and finally a lower concentration of the biomarker NT-proBNP as a sign of lower myocardial wall tension could be seen in those on active treatment, compared to placebo.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medicine and Health Sciences, Linköping University, Department of Cardiology, County Council of Östergötland, SE-581 85 Linköping, Sweden.
| | - Jan Aaseth
- Deptartment of Medicine, Innlandet Hospital Trust, N-2226 Kongsvinger, Norway
| |
Collapse
|
43
|
Tigchelaar W, Yu H, de Jong AM, van Gilst WH, van der Harst P, Westenbrink BD, de Boer RA, Silljé HHW. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS-mediated cardiomyocyte hypertrophy. Am J Physiol Cell Physiol 2014; 308:C155-63. [PMID: 25377088 DOI: 10.1152/ajpcell.00227.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently, a locus at the mitochondrial exo/endonuclease EXOG gene, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and hypertrophy in cardiomyocytes. Depletion of EXOG in primary neonatal rat ventricular cardiomyocytes (NRVCs) induced a marked increase in cardiomyocyte hypertrophy. Depletion of EXOG, however, did not result in loss of mitochondrial DNA integrity. Although EXOG depletion did not induce fetal gene expression and common hypertrophy pathways were not activated, a clear increase in ribosomal S6 phosphorylation was observed, which readily explains increased protein synthesis. With the use of a Seahorse flux analyzer, it was shown that the mitochondrial oxidative consumption rate (OCR) was increased 2.4-fold in EXOG-depleted NRVCs. Moreover, ATP-linked OCR was 5.2-fold higher. This increase was not explained by mitochondrial biogenesis or alterations in mitochondrial membrane potential. Western blotting confirmed normal levels of the oxidative phosphorylation (OXPHOS) complexes. The increased OCR was accompanied by a 5.4-fold increase in mitochondrial ROS levels. These increased ROS levels could be normalized with specific mitochondrial ROS scavengers (MitoTEMPO, mnSOD). Remarkably, scavenging of excess ROS strongly attenuated the hypertrophic response. In conclusion, loss of EXOG affects normal mitochondrial function resulting in increased mitochondrial respiration, excess ROS production, and cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Wardit Tigchelaar
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands; and
| | - Hongjuan Yu
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands; and Department of Hematology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Anne Margreet de Jong
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands; and
| | - Wiek H van Gilst
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands; and
| | - Pim van der Harst
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands; and
| | - B Daan Westenbrink
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands; and
| | - Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands; and
| | - Herman H W Silljé
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands; and
| |
Collapse
|
44
|
Rainbolt TK, Saunders JM, Wiseman RL. Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrinol Metab 2014; 25:528-37. [PMID: 25048297 DOI: 10.1016/j.tem.2014.06.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria form physical interactions involved in the regulation of biologic functions including mitochondrial bioenergetics and apoptotic signaling. To coordinate these functions during stress, cells must coregulate ER and mitochondria through stress-responsive signaling pathways such as the ER unfolded protein response (UPR). Although the UPR is traditionally viewed as a signaling pathway responsible for regulating ER proteostasis, it is becoming increasingly clear that the protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) signaling pathway within the UPR can also regulate mitochondria proteostasis and function in response to pathologic insults that induce ER stress. Here, we discuss the contributions of PERK in coordinating ER-mitochondrial activities and describe the mechanisms by which PERK adapts mitochondrial proteostasis and function in response to ER stress.
Collapse
Affiliation(s)
- T Kelly Rainbolt
- Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jaclyn M Saunders
- Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
45
|
Troncoso R, Paredes F, Parra V, Gatica D, Vásquez-Trincado C, Quiroga C, Bravo-Sagua R, López-Crisosto C, Rodriguez AE, Oyarzún AP, Kroemer G, Lavandero S. Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle 2014; 13:2281-95. [PMID: 24897381 DOI: 10.4161/cc.29272] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids, such as dexamethasone, enhance protein breakdown via ubiquitin-proteasome system. However, the role of autophagy in organelle and protein turnover in the glucocorticoid-dependent atrophy program remains unknown. Here, we show that dexamethasone stimulates an early activation of autophagy in L6 myotubes depending on protein kinase, AMPK, and glucocorticoid receptor activity. Dexamethasone increases expression of several autophagy genes, including ATG5, LC3, BECN1, and SQSTM1 and triggers AMPK-dependent mitochondrial fragmentation associated with increased DNM1L protein levels. This process is required for mitophagy induced by dexamethasone. Inhibition of mitochondrial fragmentation by Mdivi-1 results in disrupted dexamethasone-induced autophagy/mitophagy. Furthermore, Mdivi-1 increases the expression of genes associated with the atrophy program, suggesting that mitophagy may serve as part of the quality control process in dexamethasone-treated L6 myotubes. Collectively, these data suggest a novel role for dexamethasone-induced autophagy/mitophagy in the regulation of the muscle atrophy program.
Collapse
Affiliation(s)
- Rodrigo Troncoso
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Felipe Paredes
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile; Department of Internal Medicine (Cardiology Division); University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Damián Gatica
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - César Vásquez-Trincado
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Camila López-Crisosto
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Andrea E Rodriguez
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Alejandra P Oyarzún
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Guido Kroemer
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer; INSERM; Centre de Recherche des Cordeliers; Paris, France; Metabolomics and Cell Biology Platforms; Institut Gustave Roussy; Villejuif, France; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France; Université Paris Descartes; Paris Sorbonne Cité; Paris, France
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile; Department of Internal Medicine (Cardiology Division); University of Texas Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
46
|
Abstract
INTRODUCTION Apoptosis plays an important role in age-related disease, and prostate apoptosis response-4 (PAR-4) is a novel apoptosis-inducing factor that regulates apoptosis in most cells. Recent studies suggest that PAR-4 plays an important role in the progression of many age-related diseases. This review highlights the significance of PAR-4 and builds a strong case supporting its role as a possible therapeutic target in age-related disease. AREAS COVERED This review covers the advancements over the last 15 years with respect to PAR-4 and its significance in age-related disease. Additionally, it provides knowledge regarding the significance of PAR-4 in age-related disease as well as its role in apoptotic signaling pathways, endoplasmic reticulum (ER) stress, and other mechanisms that may induce age-related disease. EXPERT OPINION PAR-4 may be a potential therapeutic target that can trigger selective apoptosis in cancer cells. It is induced by ER stress and increased ER stress, and it is involved in the activity of the dopamine D2 receptor. Abnormal expression of PAR-4 may be associated with cardiovascular disease and diabetes. PAR-4 agonists and inhibitors must be identified before gene therapy can commence.
Collapse
Affiliation(s)
- Wu Qinan
- The First Affiliated Hospital of the Third Military Medical University, Endocrine Department , Post number: 400038, Chongqing , China
| | | | | |
Collapse
|
47
|
Szibor M, Pöling J, Warnecke H, Kubin T, Braun T. Remodeling and dedifferentiation of adult cardiomyocytes during disease and regeneration. Cell Mol Life Sci 2014; 71:1907-16. [PMID: 24322910 PMCID: PMC11113405 DOI: 10.1007/s00018-013-1535-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022]
Abstract
Cardiomyocytes continuously generate the contractile force to circulate blood through the body. Imbalances in contractile performance or energy supply cause adaptive responses of the heart resulting in adverse rearrangement of regular structures, which in turn might lead to heart failure. At the cellular level, cardiomyocyte remodeling includes (1) restructuring of the contractile apparatus; (2) rearrangement of the cytoskeleton; and (3) changes in energy metabolism. Dedifferentiation represents a key feature of cardiomyocyte remodeling. It is characterized by reciprocal changes in the expression pattern of "mature" and "immature" cardiomyocyte-specific genes. Dedifferentiation may enable cardiomyocytes to cope with hypoxic stress by disassembly of the energy demanding contractile machinery and by reduction of the cellular energy demand. Dedifferentiation during myocardial repair might provide cardiomyocytes with additional plasticity, enabling survival under hypoxic conditions and increasing the propensity to enter the cell cycle. Although dedifferentiation of cardiomyocytes has been described during tissue regeneration in zebrafish and newts, little is known about corresponding mechanisms and regulatory circuits in mammals. The recent finding that the cytokine oncostatin M (OSM) is pivotal for cardiomyocyte dedifferentiation and exerts strong protective effects during myocardial infarction highlights the role of cytokines as potent stimulators of cardiac remodeling. Here, we summarize the current knowledge about transient dedifferentiation of cardiomyocytes in the context of myocardial remodeling, and propose a model for the role of OSM in this process.
Collapse
Affiliation(s)
- Marten Szibor
- Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- Research Program of Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Jochen Pöling
- Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- Department of Cardiac Surgery, Schüchtermann Clinic, Bad Rothenfelde, Germany
| | - Henning Warnecke
- Department of Cardiac Surgery, Schüchtermann Clinic, Bad Rothenfelde, Germany
| | - Thomas Kubin
- Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| |
Collapse
|
48
|
del Campo A, Parra V, Vásquez-Trincado C, Gutiérrez T, Morales PE, López-Crisosto C, Bravo-Sagua R, Navarro-Marquez MF, Verdejo HE, Contreras-Ferrat A, Troncoso R, Chiong M, Lavandero S. Mitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca2+ uptake. Am J Physiol Endocrinol Metab 2014; 306:E1-E13. [PMID: 24085037 DOI: 10.1152/ajpendo.00146.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Insulin is a major regulator of glucose metabolism, stimulating its mitochondrial oxidation in skeletal muscle cells. Mitochondria are dynamic organelles that can undergo structural remodeling in order to cope with these ever-changing metabolic demands. However, the process by which mitochondrial morphology impacts insulin signaling in the skeletal muscle cells remains uncertain. To address this question, we silenced the mitochondrial fusion proteins Mfn2 and Opa1 and assessed insulin-dependent responses in L6 rat skeletal muscle cells. We found that mitochondrial fragmentation attenuates insulin-stimulated Akt phosphorylation, glucose uptake and cell respiratory rate. Importantly, we found that insulin induces a transient rise in mitochondrial Ca(2+) uptake, which was attenuated by silencing Opa1 or Mfn2. Moreover, treatment with Ruthenium red, an inhibitor of mitochondrial Ca(2+) uptake, impairs Akt signaling without affecting mitochondrial dynamics. All together, these results suggest that control of mitochondrial Ca(2+) uptake by mitochondrial morphology is a key event for insulin-induced glucose uptake.
Collapse
Affiliation(s)
- Andrea del Campo
- Advanced Center for Chronic Diseases (ACCDiSCEMC, Facultad Ciencias Químicas y Farmacéuticas y Facultad Medicina, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The ARF-like (ARL) proteins, within the ARF family, are a collection of functionally diverse GTPases that share extensive (>40 %) identity with the ARFs and each other and are assumed to share basic mechanisms of regulation and a very incompletely documented degree of overlapping regulators. At least four ARLs were already present in the last eukaryotic common ancestor, along with one ARF, and these have been expanded to >20 members in mammals. We know little about the majority of these proteins so our review will focus on those about which the most is known, including ARL1, ARL2, ARL3, ARL4s, ARL6, ARL13s, and ARFRP1. From this fragmentary information we extract some generalizations and conclusions regarding the sources and extent of specificity and functions of the ARLs.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
50
|
The NO/ONOO-cycle as the central cause of heart failure. Int J Mol Sci 2013; 14:22274-330. [PMID: 24232452 PMCID: PMC3856065 DOI: 10.3390/ijms141122274] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
The NO/ONOO-cycle is a primarily local, biochemical vicious cycle mechanism, centered on elevated peroxynitrite and oxidative stress, but also involving 10 additional elements: NF-κB, inflammatory cytokines, iNOS, nitric oxide (NO), superoxide, mitochondrial dysfunction (lowered energy charge, ATP), NMDA activity, intracellular Ca(2+), TRP receptors and tetrahydrobiopterin depletion. All 12 of these elements have causal roles in heart failure (HF) and each is linked through a total of 87 studies to specific correlates of HF. Two apparent causal factors of HF, RhoA and endothelin-1, each act as tissue-limited cycle elements. Nineteen stressors that initiate cases of HF, each act to raise multiple cycle elements, potentially initiating the cycle in this way. Different types of HF, left vs. right ventricular HF, with or without arrhythmia, etc., may differ from one another in the regions of the myocardium most impacted by the cycle. None of the elements of the cycle or the mechanisms linking them are original, but they collectively produce the robust nature of the NO/ONOO-cycle which creates a major challenge for treatment of HF or other proposed NO/ONOO-cycle diseases. Elevated peroxynitrite/NO ratio and consequent oxidative stress are essential to both HF and the NO/ONOO-cycle.
Collapse
|