1
|
da Costa VG, Saivish MV, Sinhorini PF, Nogueira ML, Rahal P. A meta-analysis of Chikungunya virus in neurological disorders. Infect Dis Now 2024; 54:104938. [PMID: 38885813 DOI: 10.1016/j.idnow.2024.104938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/17/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Chikungunya disease typically presents with the fever-arthralgia-rash symptom triad. However, an increase in the number of atypical clinical manifestations, particularly neurological disorders, has occurred. The current evidence regarding the pooled prevalence of Chikungunya virus (CHIKV)-associated neurological cases (CANCs) suspected of having an arboviral aetiology is not well-understood. Therefore, this meta-analysis included 19 studies (n = 7319 patients) and aimed to determine the pooled rate of exposure to CANC. The pooled positivity rate of CANC was 12 % (95 % CI: 6-19), and Brazil was overrepresented (11/19). These estimations varied between 3 and 14 % based on the diagnostic method (real-time PCR vs. ELISA-IgM) and biological samples (cerebrospinal fluid or blood specimens) used for detection of CHIKV. Regarding the frequency of CHIKV in neurological clinical subgroups, the rates were higher among patients with myelitis (27 %), acute disseminated encephalomyelitis (27 %), Guillain-Barré syndrome (15 %), encephalitis (12 %), and meningoencephalitis (7 %). Our analysis highlights the significant burden of CANC. However, the data must be interpreted with caution due to the heterogeneity of the results, which may be related to the location of the studies covering endemic periods and/or outbreaks of CHIKV. Current surveillance resources should also focus on better characterizing the epidemiology of CHIKV infection in neurological disorders. Additionally, future studies should investigate the interactions between CHIKV and neurological diseases with the aim of gaining deeper insight into the mechanisms underlying the cause-and-effect relationship between these two phenomena.
Collapse
Affiliation(s)
- Vivaldo G da Costa
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil.
| | - Marielena V Saivish
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090‑000, SP, Brazil; Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083‑100, SP, Brazil
| | - Paola F Sinhorini
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Maurício L Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090‑000, SP, Brazil; Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil.
| |
Collapse
|
2
|
Hcini N, Lambert V, Picone O, Carod JF, Carles G, Pomar L, Epelboin L, Nacher M. Arboviruses and pregnancy: are the threats visible or hidden? Trop Dis Travel Med Vaccines 2024; 10:4. [PMID: 38355934 PMCID: PMC10868105 DOI: 10.1186/s40794-023-00213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/22/2023] [Indexed: 02/16/2024] Open
Abstract
Mosquito-borne arboviral diseases are a global concern and can have severe consequences on maternal, neonatal, and child health. Their impact on pregnancy tends to be neglected in developing countries. Despite hundreds of millions of infections, 90% pregnancies being exposed, scientific data on pregnant women is poor and sometimes non-existent. Recently and since the 2016 Zika virus outbreak, there has been a newfound interest in these diseases. Through various neuropathogenic, visceral, placental, and teratogenic mechanisms, these arbovirus infections can lead to fetal losses, obstetrical complications, and a wide range of congenital abnormalities, resulting in long-term neurological and sensory impairments. Climate change, growing urbanization, worldwide interconnectivity, and ease of mobility allow arboviruses to spread to other territories and impact populations that had never been in contact with these emerging agents before. Pregnant travelers are also at risk of infection with potential subsequent complications. Beyond that, these pathologies show the inequalities of access to care on a global scale in a context of demographic growth and increasing urbanization. It is essential to promote research, diagnostic tools, treatments, and vaccine development to address this emerging threat.Background The vulnerability of pregnant women and fetuses to emergent and re-emergent pathogens has been notably illustrated by the outbreaks of Zika virus. Our comprehension of the complete scope and consequences of these infections during pregnancy remains limited, particularly among those involved in perinatal healthcare, such as obstetricians and midwives. This review aims to provide the latest information and recommendations regarding the various risks, management, and prevention for pregnant women exposed to arboviral infections.
Collapse
Affiliation(s)
- Najeh Hcini
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana.
- CIC Inserm 1424 and DFR Santé Université Guyane, Cayenne, French Guiana, France.
| | - Véronique Lambert
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Olivier Picone
- Department of Obstetrics and Gynecology, Hôpital Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Assistance Publique : Hôpitaux de Paris, Université Paris Diderot, CEDEX, Colombes, France
| | - Jean-Francois Carod
- Department of Biology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Gabriel Carles
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Léo Pomar
- Materno-Fetal and Obstetrics Research Unit, Department "Woman-Mother-Child", Lausanne University Hospital, Lausanne, Switzerland
| | - Loïc Epelboin
- Department of Infectious and Tropical Diseases, Cayenne General Hospital, Cayenne, French Guiana, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique Antilles Guyane, Inserm CIC1424, Centre Hospitalier de Cayenne, 97300, Cayenne, French Guiana
| |
Collapse
|
3
|
Stockdale SR, Blanchard AM, Nayak A, Husain A, Nashine R, Dudani H, McClure CP, Tarr AW, Nag A, Meena E, Sinha V, Shrivastava SK, Hill C, Singer AC, Gomes RL, Acheampong E, Chidambaram SB, Bhatnagar T, Vetrivel U, Arora S, Kashyap RS, Monaghan TM. RNA-Seq of untreated wastewater to assess COVID-19 and emerging and endemic viruses for public health surveillance. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2023; 14:100205. [PMID: 37193348 PMCID: PMC10150210 DOI: 10.1016/j.lansea.2023.100205] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
Background The COVID-19 pandemic showcased the power of genomic sequencing to tackle the emergence and spread of infectious diseases. However, metagenomic sequencing of total microbial RNAs in wastewater has the potential to assess multiple infectious diseases simultaneously and has yet to be explored. Methods A retrospective RNA-Seq epidemiological survey of 140 untreated composite wastewater samples was performed across urban (n = 112) and rural (n = 28) areas of Nagpur, Central India. Composite wastewater samples were prepared by pooling 422 individual grab samples collected prospectively from sewer lines of urban municipality zones and open drains of rural areas from 3rd February to 3rd April 2021, during the second COVID-19 wave in India. Samples were pre-processed and total RNA was extracted prior to genomic sequencing. Findings This is the first study that has utilised culture and/or probe-independent unbiased RNA-Seq to examine Indian wastewater samples. Our findings reveal the detection of zoonotic viruses including chikungunya, Jingmen tick and rabies viruses, which have not previously been reported in wastewater. SARS-CoV-2 was detectable in 83 locations (59%), with stark abundance variations observed between sampling sites. Hepatitis C virus was the most frequently detected infectious virus, identified in 113 locations and co-occurring 77 times with SARS-CoV-2; and both were more abundantly detected in rural areas than urban zones. Concurrent identification of segmented virus genomic fragments of influenza A virus, norovirus, and rotavirus was observed. Geographical differences were also observed for astrovirus, saffold virus, husavirus, and aichi virus that were more prevalent in urban samples, while the zoonotic viruses chikungunya and rabies, were more abundant in rural environments. Interpretation RNA-Seq can effectively detect multiple infectious diseases simultaneously, facilitating geographical and epidemiological surveys of endemic viruses that could help direct healthcare interventions against emergent and pre-existent infectious diseases as well as cost-effectively and qualitatively characterising the health status of the population over time. Funding UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) grant number H54810, as supported by Research England.
Collapse
Affiliation(s)
| | - Adam M. Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Amit Nayak
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Aliabbas Husain
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Rupam Nashine
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Hemanshi Dudani
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - C. Patrick McClure
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, United Kingdom
| | - Alexander W. Tarr
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, United Kingdom
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Aditi Nag
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Ekta Meena
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Vikky Sinha
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Sandeep K. Shrivastava
- Centre for Innovation, Research & Development, Dr. B. Lal Clinical Laboratory Pvt. Ltd., Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Andrew C. Singer
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Rachel L. Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, United Kingdom
| | - Edward Acheampong
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, United Kingdom
- Department of Statistics and Actuarial Science, University of Ghana, P.O. Box, LG 115, Legon, Ghana
| | - Saravana B. Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, KA, India
| | - Tarun Bhatnagar
- ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Umashankar Vetrivel
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, 590010, India
- Virology and Biotechnology Division, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Rajpal Singh Kashyap
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Hwang KS, Seo EU, Choi N, Kim J, Kim HN. 3D engineered tissue models for studying human-specific infectious viral diseases. Bioact Mater 2023; 21:576-594. [PMID: 36204281 PMCID: PMC9519398 DOI: 10.1016/j.bioactmat.2022.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/13/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Viral infections cause damage to various organ systems by inducing organ-specific symptoms or systemic multi-organ damage. Depending on the infection route and virus type, infectious diseases are classified as respiratory, nervous, immune, digestive, or skin infections. Since these infectious diseases can widely spread in the community and their catastrophic effects are severe, identification of their causative agent and mechanisms underlying their pathogenesis is an urgent necessity. Although infection-associated mechanisms have been studied in two-dimensional (2D) cell culture models and animal models, they have shown limitations in organ-specific or human-associated pathogenesis, and the development of a human-organ-mimetic system is required. Recently, three-dimensional (3D) engineered tissue models, which can present human organ-like physiology in terms of the 3D structure, utilization of human-originated cells, recapitulation of physiological stimuli, and tight cell–cell interactions, were developed. Furthermore, recent studies have shown that these models can recapitulate infection-associated pathologies. In this review, we summarized the recent advances in 3D engineered tissue models that mimic organ-specific viral infections. First, we briefly described the limitations of the current 2D and animal models in recapitulating human-specific viral infection pathology. Next, we provided an overview of recently reported viral infection models, focusing particularly on organ-specific infection pathologies. Finally, a future perspective that must be pursued to reconstitute more human-specific infectious diseases is presented. 3D in vitro models are different from the traditional model in the infection process. Human-specific infection research requires a 3D microenvironment and human cells. 3D in vitro infectious models can be useful for basic research on infectious disease. 3D in vitro infectious models recapitulate the complex cell-virus-immune interaction.
Collapse
Affiliation(s)
- Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun U Seo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Corresponding author.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Corresponding author. Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
5
|
Chauhan L, Matthews E, Piquet AL, Henao-Martinez A, Franco-Paredes C, Tyler KL, Beckham D, Pastula DM. Nervous System Manifestations of Arboviral Infections. CURRENT TROPICAL MEDICINE REPORTS 2022; 9:107-118. [PMID: 36124288 PMCID: PMC9476420 DOI: 10.1007/s40475-022-00262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 01/11/2023]
Abstract
Purpose of Review Complex environmental factors and human intervention influence the spread of arthropod vectors and the cycle of transmission of arboviruses. The spectrum of clinical manifestations is diverse, ranging from serious presentations like viral hemorrhagic fever (e.g., dengue, yellow fever, rift valley fever) or shock syndromes (e.g., dengue virus) to organ-specific illness like meningoencephalitis. Recent Findings A spectrum of clinical neurologic syndromes with potential acute devastating consequences or long-term sequelae may result from some arboviral infections. Summary In this review, we describe some of the most frequent and emerging neuro-invasive arboviral infections, spectrum of neurologic disorders including encephalitis, meningitis, myelitis or poliomyelitis, acute demyelinating encephalomyelitis, Guillain-Barré syndrome, and ocular syndromes.
Collapse
Affiliation(s)
- Lakshmi Chauhan
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| | - Elizabeth Matthews
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| | - Amanda L. Piquet
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| | - Andrés Henao-Martinez
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Carlos Franco-Paredes
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
- Hospital Infantil de México, Federico Gómez, México City, México
| | - Kenneth L. Tyler
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado, Anschutz Medical Center, Aurora, CO USA
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| | - David Beckham
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado, Anschutz Medical Center, Aurora, CO USA
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| | - Daniel M. Pastula
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado, Anschutz Medical Center, Aurora, CO USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO USA
| |
Collapse
|
6
|
Peixoto VGMNP, Azevedo JP, Luz KG, Almondes KM. Cognitive Dysfunction of Chikungunya Virus Infection in Older Adults. Front Psychiatry 2022; 13:823218. [PMID: 35449568 PMCID: PMC9016789 DOI: 10.3389/fpsyt.2022.823218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Chikungunya fever is a disabling articular disease caused by chikungunya virus (CHIKV). In the past decade it has affected millions of people across America, Africa, Asia, and Europe, turning this infection into a public health concern. The acute phase of chikungunya infection is usually self-limiting, characterized by severe arthralgia, fever, chills, myalgia, headache, and rash. CHIKV neurovirulence is evident and seems to be higher among elders. Considering their susceptibility to cognitive decline and dementia, the aim of our study was to investigate whether CHIKV infection might cause long-term cognitive impairment in aged people. METHODS A cross-sectional study was conducted with volunteers aged from 60 to 90 who had been affected by chikungunya and also with healthy controls. A structured questionnaire was used to record demographic and clinical data, functional status, and depression. Global cognitive function was assessed through MoCA. A comprehensive neuropsychological battery was performed to assess specific cognitive functions. RESULTS Subjective memory complaints were present in 70% of subjects with previous chikungunya. This group had a poorer performance in MoCA (p = 0.000) and specific cognitive tests: Semantic (p = 0.05) and Phonemic Verbal Fluency (p = 0.003), 5-Digit (choice, reading, counting and alternance, p = 0.003, p = 0.014, p = 0.021, and p = 0.021, respectively), Stroop test (time, errors and interference, p = 0.000, p = 0.027 and p = 0.015, respectively), and RAVLT (word total session p = 0.05). These tests reflect performance on general executive functions, cognitive flexibility, inhibitory control, processing speed, semantic memory and episodic memory. CONCLUSION Our data suggest that CHIKV infection may cause long-term cognitive decline in aged people and might be a risk factor for future dementia in this population.
Collapse
Affiliation(s)
- Vanessa Giffoni M N P Peixoto
- Post-graduation Program in Psychobiology, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Department of Clinical Medicine, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Julianna P Azevedo
- Department of Psychology, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Kleber G Luz
- Department of Infectious Diseases, Institute of Tropical Medicine, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Technical Advisory Group for Arbovirus, World Health Organization, Geneva, Switzerland
| | - Katie M Almondes
- Post-graduation Program in Psychobiology, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Department of Psychology, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
7
|
Fourie I, Williams J, Ismail A, Jansen van Vuren P, Stoltz A, Venter M. Detection and genome characterization of Middelburg virus strains isolated from CSF and whole blood samples of humans with neurological manifestations in South Africa. PLoS Negl Trop Dis 2022; 16:e0010020. [PMID: 34979534 PMCID: PMC8722727 DOI: 10.1371/journal.pntd.0010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Old world Alphavirus, Middelburg virus (MIDV), is not well known and although a few cases associated with animal illness have previously been described from Southern Africa, there has been no investigation into the association of the virus with human illness. The current study aimed to investigate possible association of MIDV infection with febrile or neurological manifestations in hospitalized or symptomatic patients fromGauteng, South Africa. METHODS This study is a descriptive retrospective and prospective laboratory based study. Archived cerebrospinal fluid (CSF) samples submitted to the National Health Laboratory Service (NHLS), Tshwane Academic division for viral investigation from public sector hospitals in Gauteng as well as EDTA (ethylenediaminetetraacetic acid) whole blood samples from ad hoc cases of veterinary students, presenting with neurological and febrile illness, were selected and screened for the presence of alphaviruses using real-time reverse transcription(rtRT) PCR.Virus isolations from rtRT-PCR positive samples were conducted in Vero cell culture and used to obtain full genome sequences. Basic descriptive statistical analysis was conducted using EpiInfo. RESULTS MIDV was detected by rtRT-PCR in 3/187 retrospective CSF specimens obtained from the NHLS from hospitalised patients in the Tshwane region of Gauteng and 1/2 EDTA samples submitted in the same year (2017) from ad hoc query arbovirus cases from veterinary students from the Faculty of Veterinary Science University of Pretoria.Full genome sequences were obtained for virus isolates from two cases; one from an EDTA whole blood sample (ad hoc case) and another from a CSF sample (NHLS sample).Two of the four Middelburg virus positive cases,for which clinical information was available, had other comorbidities or infections at the time of infection. CONCLUSION Detection of MIDV in CSF of patients with neurological manifestations suggests that the virus should be investigated as a human pathogen with the potential of causing or contributing to neurological signs in children and adults.
Collapse
Affiliation(s)
- Isabel Fourie
- Zoonotic Arbo-and Respiratory Virus (ZARV) program, Centre for Viral Zoonoses (CVZ), University of Pretoria, Pretoria, South Africa
| | - June Williams
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute of Communicable Diseases (NICD), Division of National Health Laboratory Service (NHLS), Sandringham, South Africa
| | - Petrus Jansen van Vuren
- Australian Centre for Disease Preparedness, CSIRO-Health and Biosecurity, Geelong, Australia
| | - Anton Stoltz
- Infectious diseases, Steve Biko Hospital, Pretoria, South Africa
| | - Marietjie Venter
- Zoonotic Arbo-and Respiratory Virus (ZARV) program, Centre for Viral Zoonoses (CVZ), University of Pretoria, Pretoria, South Africa
- * E-mail:
| |
Collapse
|
8
|
Khongwichit S, Chansaenroj J, Thongmee T, Benjamanukul S, Wanlapakorn N, Chirathaworn C, Poovorawan Y. Large-scale outbreak of Chikungunya virus infection in Thailand, 2018-2019. PLoS One 2021; 16:e0247314. [PMID: 33690657 PMCID: PMC7946318 DOI: 10.1371/journal.pone.0247314] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/04/2021] [Indexed: 01/12/2023] Open
Abstract
Between 2018 and 2019, the incidence of chikungunya was approximately 15,000 cases across 60 provinces in Thailand. Here, the clinical presentations in chikungunya, emergent pattern, and genomic diversity of the chikungunya virus (CHIKV) causing this massive outbreak were demonstrated. A total of 1,806 sera samples from suspected cases of chikungunya were collected from 13 provinces in Thailand, and samples were tested for the presence of CHIKV RNA, IgG, and IgM using real-time PCR, enzyme-linked immunoassay (ELISA), commercial immunoassay (rapid test). The phylogenetic tree of CHIKV whole-genome and CHIKV E1 were constructed using the maximum-likelihood method. CHIKV infection was confirmed in 547 (42.2%) male and 748 (57.8%) female patients by positive real-time PCR results and/or CHIKV IgM antibody titers. Unsurprisingly, CHIKV RNA was detected in >80% of confirmed cases between 1 and 5 days after symptom onset, whereas anti-CHIKV IgM was detectable in >90% of cases after day 6. Older age was clearly one of the risk factors for the development of arthralgia in infected patients. Although phylogenetic analysis revealed that the present CHIKV Thailand strain of 2018–2020 belongs to the East, Central, and Southern African (ECSA) genotype similar to the CHIKV strains that caused outbreaks during 2008–2009 and 2013, all present CHIKV Thailand strains were clustered within the recent CHIKV strain that caused an outbreak in South Asia. Interestingly, all present CHIKV Thailand strains possess two mutations, E1-K211E, and E2-V264A, in the background of E1-226A. These mutations are reported to be associated with virus-adapted Aedes aegypti. Taken together, it was likely that the present CHIKV outbreak in Thailand occurred as a result of the importation of the CHIKV strain from South Asia. Understanding with viral genetic diversity is essential for epidemiological study and may contribute to better disease management and preventive measures.
Collapse
Affiliation(s)
- Sarawut Khongwichit
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jira Chansaenroj
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanunrat Thongmee
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Nasamon Wanlapakorn
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (YP); (CC)
| | - Yong Poovorawan
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (YP); (CC)
| |
Collapse
|
9
|
van Ewijk R, Huibers MHW, Manshande ME, Ecury-Goossen GM, Duits AJ, Calis JC, van Wassenaer-Leemhuis AG. Neurologic sequelae of severe chikungunya infection in the first 6 months of life: a prospective cohort study 24-months post-infection. BMC Infect Dis 2021; 21:179. [PMID: 33593326 PMCID: PMC7885242 DOI: 10.1186/s12879-021-05876-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/08/2021] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Perinatally chikungunya infected neonates have been reported to have high rates of post-infection neurologic sequelae, mainly cognitive problems. In older children and adults chikungunya does not appear to have sequelae, but data on postnatally infected infants are lacking. METHODS We performed a prospective, non-controlled, observational study of infants infected before the age of 6 months with a severe chikungunya infection during the 2014-2015 epidemic in Curaçao, Dutch Antilles. Two years post-infection cognitive and motor - (BSID-III) and social emotional assessments (ITSEA) were performed. RESULTS Of twenty-two infected infants, two died and two were lost to follow up. Eighteen children were seen at follow-up and included in the current study. Of these, 13 (72%) had abnormal scores on the BSID-III (cognitive/motor) or ITSEA. CONCLUSION In the first study aimed at postnatally infected infants, using an uncontrolled design, we observed a very high percentage of developmental problems. Further studies are needed to assess causality, however until these data are available preventive measure during outbreaks should also include young infants. Those that have been infected in early infancy should receive follow up.
Collapse
Affiliation(s)
- Roelof van Ewijk
- Saint Elisabeth Hospital, Willemstad, Curaçao.
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| | - Minke H W Huibers
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Global Child Health Group, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | - Ashley J Duits
- Saint Elisabeth Hospital, Willemstad, Curaçao
- Red Cross Blood Bank Foundation Curaçao, Willemstad, Curaçao
| | - Job C Calis
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Global Child Health Group, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
10
|
Thite A, Agrawal M, Pavitrakar D, Cherian S, Damle R. Delineation of an epitope recognized by a chikungunya virus anti-capsid monoclonal antibody on the protease domain using an immuno-informatics approach. J Biomol Struct Dyn 2021; 40:5623-5633. [PMID: 33480314 DOI: 10.1080/07391102.2021.1872416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The capsid-protein (CP) of chikungunya virus (CHIKV) is reported to generate a primary immune response in infected individuals during disease progression. CP-specific monoclonal antibodies (mAbs) developed in our laboratory, exhibited promising potential in diagnosing recent CHIKV infection in IgM capture ELISA. In this study we focused on the molecular and structural characterization of one such representative mAb ClVE4/D9 to delineate the epitope recognized by it using an immuno-informatics approach. The antigen-antibody interacting residues were found to lie within the dimer interface region of the CP, also predicted as a conformational epitope. This implies that the mAb could interfere during the process of nucleocapsid assembly, ultimately preventing budding and egress of the virus particle. The binding specificity of the mAb highlights the possibility of using this anti-CP antibody for therapeutic or prophylactic treatment against CHIKV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aabha Thite
- NIBEC, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Dhankawadi, Pune, Maharashtra, India.,Department of Bioinformatics & Data Management, National Institute of Virology, Pune, India
| | - Megha Agrawal
- Department of Bioinformatics & Data Management, National Institute of Virology, Pune, India
| | - Daya Pavitrakar
- NIBEC, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Dhankawadi, Pune, Maharashtra, India
| | - Sarah Cherian
- Department of Bioinformatics & Data Management, National Institute of Virology, Pune, India
| | - Rekha Damle
- NIBEC, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Dhankawadi, Pune, Maharashtra, India
| |
Collapse
|
11
|
Endy TP. Viral Febrile Illnesses and Emerging Pathogens. HUNTER'S TROPICAL MEDICINE AND EMERGING INFECTIOUS DISEASES 2020. [PMCID: PMC7151808 DOI: 10.1016/b978-0-323-55512-8.00036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Emerging or emerged diseases and viral pathogens are responsible historically and currently for large epidemics, global pandemics, and significant morbidity and mortality. Our civilization will continue to face the emergence of new pathogens and viruses: viruses will continue to evolve and adapt to new environments at a high rate; our population continues to grow through birth rate, land development, and migration; climate change will continue to increase the vector burden and spread and change the migratory pattern of animals; and our societal mobility will continue to increase through rapid transportation. The clinical evaluation of the febrile patient with a potential emerging viral pathogen involves documenting the likelihood for an infection by a detailed travel history, calculation of an incubation time by exposure, and an understanding of the disease progression though the clinical illness, which drives the differential diagnosis and the type of diagnostics ordered. Ultimately, the proper identification and diagnosis of a patient with a viral febrile illness due to an emerging pathogen will elicit the appropriate precautions to protect health care providers and communities, deliver appropriate therapeutic interventions, and initiate a targeted public health response. The majority of emerging diseases are caused by viruses, with many that are transmitted by insect vectors or are zoonotic. RNA viruses in particular have high mutation rates and can evolve rapidly in new and changing environments. This, in combination with societal factors, climate change, and rapid travel, has increased the number of epidemics from emerging pathogens in the last several decades. Understanding the travel history, incubation time of potential viruses, and the clinical presentation by illness day is essential in making the right diagnosis and identifying the infecting virus.
Collapse
|
12
|
Rahman MM, Been Sayed SJ, Moniruzzaman M, Kabir AKMH, Mallik MU, Hasan MR, Siddique AB, Hossain MA, Uddin N, Hassan MM, Chowdhury FR. Clinical and Laboratory Characteristics of an Acute Chikungunya Outbreak in Bangladesh in 2017. Am J Trop Med Hyg 2019; 100:405-410. [PMID: 30526743 PMCID: PMC6367608 DOI: 10.4269/ajtmh.18-0636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
From April to September 2017, Bangladesh experienced a huge outbreak of acute Chikungunya virus infection in Dhaka. This series describes the clinical and laboratory features of a large number of cases (690; 399 confirmed and 291 probable) suffered during that period. This observational study was carried out at Dhaka Medical College Hospital, Bangladesh. The median age of the patients at presentation was 38 years (IQR 30–50) with a male (57.3%) predominance. Hypertension and diabetes were the most common comorbidities. The mean (±SD) duration of fever was 3.7 (±1.4) days. Other common manifestations were arthralgia (99.2%), maculopapular rash (50.2%), morning stiffness (49.7%), joint swelling (48.5%), and headache (37.6%). Cases were confirmed by anti-chikungunya IgG (173; 43.3%), IgM (165; 42.3%), and reverse transcription polymerase chain reaction (44; 11.0%). Important laboratory findings include high erythrocyte sedimentation rate (156; 22.6%), raised serum glutamic pyruvic transaminase (73; 10.5%), random blood sugar (54; 7.8%), leukopenia (72; 10.4%), thrombocytopenia (41; 5.9%), and others. The oligo-articular (453; 66.1%) variety of joint involvement was significantly more common compared with the poly-articular (237; 34.5%) variety. Commonly involved joints were the wrist (371; 54.1%), small joints of the hand (321; 46.8%), ankle (251; 36.6%), knee (240; 35.0%), and elbow (228; 33.2%). Eleven cases were found to be complicated with neurological involvement and two of them died. Another patient died due to myocarditis. Public health experts, clinicians, and policymakers could use the results of this study to construct the future strategy tackling chikungunya in Bangladesh and other epidemic countries.
Collapse
Affiliation(s)
| | | | | | | | - Md Uzzwal Mallik
- Director General of Health Services, Dhaka, Bangladesh.,Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Md Rockyb Hasan
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | | | - Md Arman Hossain
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Nazim Uddin
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Md Mehedi Hassan
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Fazle Rabbi Chowdhury
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Maciel LG, Oliveira AA, Romão TP, Leal LLL, Guido RVC, Silva-Filha MHNL, Dos Anjos JV, Soares TA. Discovery of 1,2,4-oxadiazole derivatives as a novel class of noncompetitive inhibitors of 3-hydroxykynurenine transaminase (HKT) from Aedes aegypti. Bioorg Med Chem 2019; 28:115252. [PMID: 31864777 DOI: 10.1016/j.bmc.2019.115252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
The mosquito Aedes aegypti is the vector of arboviruses such as Zika, Chikungunya, dengue and yellow fever. These infectious diseases have a major impact on public health. The unavailability of effective vaccines or drugs to prevent or treat most of these diseases makes vector control the main form of prevention. One strategy to promote mosquito population control is the use of synthetic insecticides to inhibit key enzymes in the metabolic pathway of these insects, particularly during larval stages. One of the main targets of the kynurenine detoxification pathway in mosquitoes is the enzyme 3-hydroxykynurenine transaminase (HKT), which catalyzes the conversion of 3-hydroxykynurenine (3-HK) into xanthurenic acid (XA). In this work, we report eleven newly synthesized oxadiazole derivatives and demonstrate that these compounds are potent noncompetitive inhibitors of HKT from Ae. aegypti. The present data provide direct evidence that HKT can be explored as a molecular target for the discovery of novel larvicides against Ae. aegypti. More importantly, it ensures that structural information derived from the HKT 3D-structure can be used to guide the development of more potent inhibitors.
Collapse
Affiliation(s)
- Larissa G Maciel
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil
| | - Andrew A Oliveira
- Sao Carlos Institute of Physics - University of São Paulo, Av. Joao Dagnone, 1100 Jardim Santa Angelina, São Carlos, SP 13563-120, Brazil
| | - Tatiany P Romão
- Institute Aggeu Magalhães (IAM) - FIOCRUZ, Av. Professor Moraes Rego s/n°, Recife, PE 50740-560 Brazil
| | - Laylla L L Leal
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil
| | - Rafael V C Guido
- Sao Carlos Institute of Physics - University of São Paulo, Av. Joao Dagnone, 1100 Jardim Santa Angelina, São Carlos, SP 13563-120, Brazil
| | | | - Janaína V Dos Anjos
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil.
| | - Thereza A Soares
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil.
| |
Collapse
|
14
|
Farias LABG, Beserra FLCN, Fernandes L, Teixeira AAR, Ferragut JM, Girão ES, Pires Neto RDJ. Myocarditis Following Recent Chikungunya and Dengue Virus Coinfection: A Case Report. Arq Bras Cardiol 2019; 113:783-786. [PMID: 31553384 PMCID: PMC7020867 DOI: 10.5935/abc.20190187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/17/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
| | | | - Lucas Fernandes
- Universidade Federal do Ceará (UFC) - Faculdade de Medicina, Fortaleza, CE - Brazil
| | | | | | | | - Roberto da Justa Pires Neto
- Hospital São José de Doenças Infecciosas, Fortaleza, CE - Brazil.,Faculdade de Medicina da Universidade Federal do Ceará - Departamento de Saúde Comunitária, Fortaleza, CE - Brazil
| |
Collapse
|
15
|
Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat Rev Rheumatol 2019; 15:597-611. [DOI: 10.1038/s41584-019-0276-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
16
|
Silva VP, Costa DS, Carvalho VCCVL, Garcês TCCS, Barros ELT, Oliveira JS, Pereira ACTC, Ferreira GP. Peripheral polyneuropathy associated with Chikungunya virus infection. J Neurovirol 2019; 26:122-126. [PMID: 31428990 DOI: 10.1007/s13365-019-00782-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
The Chikungunya virus (CHIKV) is an arbovirus transmitted to humans through mosquito bites and can cause a series of symptoms ranging from a benign febrile illness to severe neurological conditions. We report the identification of CHIKV in a serum sample from an elderly woman with febrile illness and severe arthralgia in Brazil. The occurrence was found of peripheral polyneuropathy affecting the upper and lower limbs evidenced by electroneuromyographic findings. The patient was treated with a corticoid associated with methotrexate, suggesting that the pathophysiological basis of the case in question may be related to an immune-mediated response by T cells and inflammatory cytokines. This finding reinforces the need to be aware of the emergence of neuroinfections related to CHIKV and effective diagnoses for the early detection of neurological alterations, favoring the clinical management of these patients.
Collapse
Affiliation(s)
- Vanessa P Silva
- Laboratory of Biochemistry and Molecular Biology of Microorganisms and Plants, Federal University of Piauí, Campus Ministro Reis Velloso-CMRV, Parnaíba, Brazil
| | - Dacylla S Costa
- Laboratory of Biochemistry and Molecular Biology of Microorganisms and Plants, Federal University of Piauí, Campus Ministro Reis Velloso-CMRV, Parnaíba, Brazil
| | - Vania C C V L Carvalho
- Department of Medicine, Federal University of Piauí, Campus Ministro Reis Velloso-CMRV, Parnaíba, Brazil
| | - Tereza C C S Garcês
- Department of Medicine, Faculty of Human Sciences, Exact and Health of Piauí, Parnaíba, Brazil
| | - Emanuela L T Barros
- Laboratory of Biochemistry and Molecular Biology of Microorganisms and Plants, Federal University of Piauí, Campus Ministro Reis Velloso-CMRV, Parnaíba, Brazil
| | - Jefferson S Oliveira
- Laboratory of Biochemistry and Molecular Biology of Microorganisms and Plants, Federal University of Piauí, Campus Ministro Reis Velloso-CMRV, Parnaíba, Brazil
| | - Anna C T C Pereira
- Laboratory of Biochemistry and Molecular Biology of Microorganisms and Plants, Federal University of Piauí, Campus Ministro Reis Velloso-CMRV, Parnaíba, Brazil
| | - Gustavo P Ferreira
- Laboratory of Biochemistry and Molecular Biology of Microorganisms and Plants, Federal University of Piauí, Campus Ministro Reis Velloso-CMRV, Parnaíba, Brazil.
| |
Collapse
|
17
|
Machado LC, de Morais-Sobral MC, Campos TDL, Pereira MR, de Albuquerque MDFPM, Gilbert C, Franca RFO, Wallau GL. Genome sequencing reveals coinfection by multiple chikungunya virus genotypes in a recent outbreak in Brazil. PLoS Negl Trop Dis 2019; 13:e0007332. [PMID: 31095561 PMCID: PMC6541278 DOI: 10.1371/journal.pntd.0007332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 05/29/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is an RNA virus from the Togaviridae family transmitted by mosquitoes in both sylvatic and urban cycles. In humans, CHIKV infection leads to a febrile illness, denominated Chikungunya fever (CHIKF), commonly associated with more intense and debilitating outcomes. CHIKV arrived in Brazil in 2014 through two independent introductions: the Asian/Caribbean genotype entered through the North region and the African ECSA genotype was imported through the Northeast region. Following their initial introduction, both genotypes established their urban cycle among large naive human populations causing several outbreaks in the Americas. Here, we sequenced CHIKV genomes from a recent outbreak in the Northeast region of Brazil, employing an in-house developed Next-Generation Sequencing (NGS) protocol capable of directly detecting multiple known CHIKV genotypes from clinical positive samples. Our results demonstrate that both Asian/Caribbean and ECSA genotypes expanded their ranges, reaching cocirculation in the Northeast region of Brazil. In addition, our NGS data supports the findings of simultaneous infection by these two genotypes, suggesting that coinfection might be more common than previously thought in highly endemic areas. Future efforts to understand CHIKV epidemiology should thus take into consideration the possibility of coinfection by different genotypes in the human population.
Collapse
Affiliation(s)
- Lais Ceschini Machado
- Department of Entomology, Oswaldo Cruz Foundation - Fiocruz, Aggeu Magalhães Institute - Recife, Pernambuco - Brazil
| | | | - Tulio de Lima Campos
- Bioinformatics Core Facility, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife Pernambuco, Brazil
| | - Mylena Ribeiro Pereira
- Department of Veterinary Medicine, Federal Rural University of Pernambuco – UFRPE, Recife, Brazil
| | | | - Clément Gilbert
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS Université Paris-Sud UMR 9191, IRD UMR 247, Avenue de la Terrasse, Gif sur Yvette, France
| | - Rafael Freitas Oliveira Franca
- Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation - Fiocruz, Aggeu Magalhães Institute - Recife, Pernambuco - Brazil
| | - Gabriel Luz Wallau
- Department of Entomology, Oswaldo Cruz Foundation - Fiocruz, Aggeu Magalhães Institute - Recife, Pernambuco - Brazil
| |
Collapse
|
18
|
Beserra FLCN, Oliveira GM, Marques TMA, Farias LABG, Santos JRD, Daher EDF, Leite RD, Girão ES, Pires Neto RDJ. Clinical and laboratory profiles of children with severe chikungunya infection. Rev Soc Bras Med Trop 2019; 52:e20180232. [PMID: 30994798 DOI: 10.1590/0037-8682-0232-2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/29/2018] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Chikungunya infection presents with distinct clinical features depending on the patient age group. METHODS Medical records of children with positive IgM for the chikungunya virus who were hospitalized in a pediatric ward in Fortaleza, Ceará, Brazil were analyzed. RESULTS Fourteen children with a median age of 4 months (36 days to 15 years) were included. All patients presented with fever persisting for an average of 5 days. The joints were involved in 6 (42.8%) children, and 8 (57.1%) children presented with bullous rash. CONCLUSIONS Systemic involvement and atypical clinical manifestations characterize severe forms of chikungunya infection in children.
Collapse
Affiliation(s)
| | - Gustavo Mesquita Oliveira
- Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Tino Miro Aurélio Marques
- Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | | - Janete Romão Dos Santos
- Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | | - Robério Dias Leite
- Departamento de Saúde Materno-Infantil, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil.,Hospital São José de Doenças Infecciosas, Secretaria de Saúde do Estado do Ceará, Fortaleza, CE, Brasil
| | - Evelyne Santana Girão
- Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil.,Hospital São José de Doenças Infecciosas, Secretaria de Saúde do Estado do Ceará, Fortaleza, CE, Brasil
| | - Roberto da Justa Pires Neto
- Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil.,Hospital São José de Doenças Infecciosas, Secretaria de Saúde do Estado do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
19
|
Monteiro VVS, Navegantes-Lima KC, de Lemos AB, da Silva GL, de Souza Gomes R, Reis JF, Rodrigues Junior LC, da Silva OS, Romão PRT, Monteiro MC. Aedes-Chikungunya Virus Interaction: Key Role of Vector Midguts Microbiota and Its Saliva in the Host Infection. Front Microbiol 2019; 10:492. [PMID: 31024463 PMCID: PMC6467098 DOI: 10.3389/fmicb.2019.00492] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/26/2019] [Indexed: 01/02/2023] Open
Abstract
Aedes mosquitoes are important vectors for emerging diseases caused by arboviruses, such as chikungunya (CHIKV). These viruses’ main transmitting species are Aedes aegypti and Ae. albopictus, which are present in tropical and temperate climatic areas all over the globe. Knowledge of vector characteristics is fundamentally important to the understanding of virus transmission. Only female mosquitoes are able to transmit CHIKV to the vertebrate host since they are hematophagous. In addition, mosquito microbiota is fundamentally important to virus infection in the mosquito. Microorganisms are able to modulate viral transmission in the mosquito, such as bacteria of the Wolbachia genus, which are capable of preventing viral infection, or protozoans of the Ascogregarina species, which are capable of facilitating virus transmission between mosquitoes and larvae. The competence of the mosquito is also important in the transmission of the virus to the vertebrate host, since their saliva has several substances with biological effects, such as immunomodulators and anticoagulants, which are able to modulate the host’s response to the virus, interfering in its pathogenicity and virulence. Understanding the Aedes vector-chikungunya interaction is fundamentally important since it can enable the search for new methods of combating the virus’ transmission.
Collapse
Affiliation(s)
- Valter Vinícius Silva Monteiro
- Laboratory of Inflammation and Pain, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kely Campos Navegantes-Lima
- Graduate Program in Neuroscience and Cellular Biology, Biology Science Institute, Federal University of Pará, Belém, Brazil
| | | | | | - Rafaelli de Souza Gomes
- Graduate Program in Pharmaceutical Science, Health Science Institute, Federal University of Pará, Belém, Brazil
| | - Jordano Ferreira Reis
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém, Brazil
| | - Luiz Carlos Rodrigues Junior
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Onilda Santos da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Marta Chagas Monteiro
- Graduate Program in Neuroscience and Cellular Biology, Biology Science Institute, Federal University of Pará, Belém, Brazil.,Graduate Program in Pharmaceutical Science, Health Science Institute, Federal University of Pará, Belém, Brazil
| |
Collapse
|
20
|
Beyond Members of the Flaviviridae Family, Sofosbuvir Also Inhibits Chikungunya Virus Replication. Antimicrob Agents Chemother 2019; 63:AAC.01389-18. [PMID: 30455237 DOI: 10.1128/aac.01389-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Abstract
Chikungunya virus (CHIKV) causes a febrile disease associated with chronic arthralgia, which may progress to neurological impairment. Chikungunya fever (CF) is an ongoing public health problem in tropical and subtropical regions of the world, where control of the CHIKV vector, Aedes mosquitos, has failed. As there is no vaccine or specific treatment for CHIKV, patients receive only palliative care to alleviate pain and arthralgia. Thus, drug repurposing is necessary to identify antivirals against CHIKV. CHIKV RNA polymerase is similar to the orthologue enzyme of other positive-sense RNA viruses, such as members of the Flaviviridae family. Among the Flaviviridae, not only is hepatitis C virus RNA polymerase susceptible to sofosbuvir, a clinically approved nucleotide analogue, but so is dengue, Zika, and yellow fever virus replication. Here, we found that sofosbuvir was three times more selective in inhibiting CHIKV production in human hepatoma cells than ribavirin, a pan-antiviral drug. Although CHIKV replication in human induced pluripotent stem cell-derived astrocytes was less susceptible to sofosbuvir than were hepatoma cells, sofosbuvir nevertheless impaired virus production and cell death in a multiplicity of infection-dependent manner. Sofosbuvir also exhibited antiviral activity in vivo by preventing CHIKV-induced paw edema in adult mice at a dose of 20 mg/kg of body weight/day and prevented mortality in a neonate mouse model at 40- and 80-mg/kg/day doses. Our data demonstrate that a prototypic alphavirus, CHIKV, is also susceptible to sofosbuvir. As sofosbuvir is a clinically approved drug, our findings could pave the way to it becoming a therapeutic option against CF.
Collapse
|
21
|
Wachira VK, Peixoto HM, de Oliveira MRF. Systematic review of factors associated with the development of Guillain-Barré syndrome 2007-2017: what has changed? Trop Med Int Health 2018; 24:132-142. [PMID: 30444562 DOI: 10.1111/tmi.13181] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The objective of this study was to describe the factors associated with the development of Guillain-Barré syndrome, both infectious and non-infectious, during and after the A(H1N1) influenza pandemic in 2009 and the recent Zika virus epidemic in the Americas. METHOD Systematic review of literature on factors associated with the development of the Guillain-Barré syndrome published between 2007 and 2017 listed in EBSCO, MEDLINE and LILACS databases. The quality of the studies was evaluated using the Newcastle Ottawa Scale. RESULTS Thirty-four articles met inclusion criteria and were selected for analysis. Their quality was considered good in relation to most of the items evaluated. Many aetiological agents had the results of association with Guillain-Barré syndrome, among them Campylobacter jejuni, influenza vaccine - both pandemic and seasonal vaccines, respiratory infection, gastrointestinal infection among others. The aetiological agents found are, in most part, the same reported prior to the study period. The association with surgeries, chikungunya virus (CHIKV), Zika virus and quadrivalent human papillomavirus vaccine stand out as new aetiological agents in the list of the various possible agents that trigger Guillain-Barré syndrome reported in the study period. There were no Brazilian studies identified during this period. CONCLUSIONS The results of the review reaffirmed C. jejuni as the major trigger of GBS, whereas the association of influenza vaccines and GBS is less clear; Zika virus infection in association with GBS was found in only one study.
Collapse
Affiliation(s)
| | - Henry Maia Peixoto
- Centre for Tropical Medicine, University of Brasília, Brasília, Federal District, Brazil.,National Institute for Science and Technology for Health Technology Assessment, Porto Alegre, Brazil
| | - Maria Regina Fernandes de Oliveira
- Centre for Tropical Medicine, University of Brasília, Brasília, Federal District, Brazil.,National Institute for Science and Technology for Health Technology Assessment, Porto Alegre, Brazil
| |
Collapse
|
22
|
Kendra JA, Advani VM, Chen B, Briggs JW, Zhu J, Bress HJ, Pathy SM, Dinman JD. Functional and structural characterization of the chikungunya virus translational recoding signals. J Biol Chem 2018; 293:17536-17545. [PMID: 30242123 DOI: 10.1074/jbc.ra118.005606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/18/2018] [Indexed: 12/26/2022] Open
Abstract
Climate change and human globalization have spurred the rapid spread of mosquito-borne diseases to naïve populations. One such emerging virus of public health concern is chikungunya virus (CHIKV), a member of the Togaviridae family, genus Alphavirus CHIKV pathogenesis is predominately characterized by acute febrile symptoms and severe arthralgia, which can persist in the host long after viral clearance. CHIKV has also been implicated in cases of acute encephalomyelitis, and its vertical transmission has been reported. Currently, no FDA-approved treatments exist for this virus. Recoding elements help expand the coding capacity in many viruses and therefore represent potential therapeutic targets in antiviral treatments. Here, we report the molecular and structural characterization of two CHIKV translational recoding signals: a termination codon read-through (TCR) element located between the nonstructural protein 3 and 4 genes and a programmed -1 ribosomal frameshift (-1 PRF) signal located toward the 3' end of the CHIKV 6K gene. Using Dual-Luciferase and immunoblot assays in HEK293T and U87MG mammalian cell lines, we validated and genetically characterized efficient TCR and -1 PRF. Analyses of RNA chemical modification data with selective 2'-hydroxyl acylation and primer extension (SHAPE) assays revealed that CHIKV -1 PRF is stimulated by a tightly structured, triple-stem hairpin element, consistent with previous observations in alphaviruses, and that the TCR signal is composed of a single large multibulged hairpin element. These findings illuminate the roles of RNA structure in translational recoding and provide critical information relevant for design of live-attenuated vaccines against CHIKV and related viruses.
Collapse
Affiliation(s)
- Joseph A Kendra
- From the Department of Cell Biology and Molecular Genetics and
| | - Vivek M Advani
- From the Department of Cell Biology and Molecular Genetics and.,First-Year Innovation and Research Experience Program, University of Maryland, College Park, Maryland 20742
| | - Bin Chen
- From the Department of Cell Biology and Molecular Genetics and
| | - Joseph W Briggs
- From the Department of Cell Biology and Molecular Genetics and
| | - Jinyi Zhu
- First-Year Innovation and Research Experience Program, University of Maryland, College Park, Maryland 20742
| | - Hannah J Bress
- First-Year Innovation and Research Experience Program, University of Maryland, College Park, Maryland 20742
| | - Sushrut M Pathy
- First-Year Innovation and Research Experience Program, University of Maryland, College Park, Maryland 20742
| | | |
Collapse
|
23
|
Moizéis RNC, Fernandes TAADM, Guedes PMDM, Pereira HWB, Lanza DCF, de Azevedo JWV, Galvão JMDA, Fernandes JV. Chikungunya fever: a threat to global public health. Pathog Glob Health 2018; 112:182-194. [PMID: 29806537 PMCID: PMC6147074 DOI: 10.1080/20477724.2018.1478777] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chikungunya fever is an emerging arbovirus infection, representing a serious public health problem. Its etiological agent is the Chikungunya virus (CHIKV). Transmission of this virus is mainly vector by mosquitoes of the genus Aedes, although transmission by blood transfusions and vertical transmission has also been reported. The disease presents high morbidity caused mainly by the arthralgia and arthritis generated. Cardiovascular and neurological manifestations have also been reported. The severity of the infection seems to be directly associated with the action of the virus, but also with the decompensation of preexisting comorbidities. Currently, there are no therapeutic products neither vaccines licensed to the infection CHIKV control, although several vaccine candidates are being evaluated and human polyvalent immunoglobulins anti-CHIKV had been tested. Antibodies can protect against the infection, but in sub-neutralizing concentrations can augment virus infection and exacerbate disease severity. So, the prevention still depends on the use of personal protection measures and vector control, which are only minimally effective.
Collapse
Affiliation(s)
- Raíza Nara Cunha Moizéis
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Paulo Marcos da Matta Guedes
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Josélio Maria de Araújo Galvão
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - José Veríssimo Fernandes
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
24
|
Farias LABG, Ferragut JM, Pires Neto RDJ. Encephalitis and transverse myelitis in dengue and chikungunya coinfection. Rev Soc Bras Med Trop 2018; 51:403. [PMID: 29972580 DOI: 10.1590/0037-8682-0259-2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Roberto da Justa Pires Neto
- Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil.,Hospital São José de Doenças Infecciosas, Secretaria de Saúde do Estado do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Arboviruses have been associated with central and peripheral nervous system injuries, in special the flaviviruses. Guillain-Barré syndrome (GBS), transverse myelitis, meningoencephalitis, ophthalmological manifestations, and other neurological complications have been recently associated to Zika virus (ZIKV) infection. In this review, we aim to analyze the epidemiological aspects, possible pathophysiology, and what we have learned about the clinical and laboratory findings, as well as treatment of patients with ZIKV-associated neurological complications. RECENT FINDINGS In the last decades, case series have suggested a possible link between flaviviruses and development of GBS. Recently, large outbreaks of ZIKV infection in Asia and the Americas have led to an increased incidence of GBS in these territories. Rapidly, several case reports and case series have reported an increase of all clinical forms and electrophysiological patterns of GBS, also including cases with associated central nervous system involvement. Finally, cases suggestive of acute transient polyneuritis, as well as acute and progressive postinfectious neuropathies associated to ZIKV infection have been reported, questioning the usually implicated mechanisms of neuronal injury. SUMMARY The recent ZIKV outbreaks have triggered the occurrence of a myriad of neurological manifestations likely associated to this arbovirosis, in special GBS and its variants.
Collapse
|
26
|
Alves LV, da Câmara FMP, Batista Granha M, Meneses Neto A, Alves, JG B. Chikungunya infection and horner syndrome. IDCases 2018; 14:e00473. [PMID: 30510900 PMCID: PMC6275168 DOI: 10.1016/j.idcr.2018.e00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022] Open
Abstract
Chikungunya in infants may lead to unusual neurological manifestations. Chikungunya virus may cause Horner syndrome. We believe that a vasculitis caused by the CHIKV infection led to Horner syndrome.
We describe an infant with Chikungunya virus (CHIKV) infection who developed Horner syndrome. The infant had diagnostic confirmation of CHIKV infection by IgM-ELISA positive in serum and cerebrospinal fluid, and clinical signs of Horner syndrome. Magnetic resonance angiography showed alterations in the cervical and intra cavernous portions of the internal carotid artery. To the best of our knowledge this is the first report of the association of CHIKV infection with Horner syndrome.
Collapse
Affiliation(s)
- Lucas Victor Alves
- Neuropediatrics Department, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP) – Rua dos Coelhos, 300, Boa Vista, Recife, PE, CEP: 50070-550, Brazil
| | - Filipe Marinho Pinheiro da Câmara
- Pediatrics Department, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP) - Rua dos Coelhos, 300, Boa Vista, Recife, PE, Brazil
| | - Mayara Batista Granha
- Neuropediatrics Department, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP) – Rua dos Coelhos, 300, Boa Vista, Recife, PE, CEP: 50070-550, Brazil
| | - Alfredo Meneses Neto
- Pediatrics Department, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP) - Rua dos Coelhos, 300, Boa Vista, Recife, PE, Brazil
| | - Bezerra Alves, JG
- Pediatrics Department, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP) - Rua dos Coelhos, 300, Boa Vista, Recife, PE, Brazil
- Corresponding author.
| |
Collapse
|
27
|
Abstract
Zika virus was discovered in East Africa in 1947 by the Rockefeller Foundation during investigations on the ecology of yellow fever. Although it was subsequently shown to have widespread distribution in Africa and Asia, it was not known to cause epidemics until 2007. This paper describes the history of the virus discovery, emergence and evolution as an epidemic virus, and the its evolving clinical spectrum.
Collapse
Affiliation(s)
- Duane J Gubler
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore
| | - Nikos Vasilakis
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases/Center for Tropical Diseases Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Didier Musso
- Unit of Emerging Infectious Disease, Institut Louis Malardé Papeete, Tahiti, Polynésie
| |
Collapse
|
28
|
Tang X, Zhao S, Chiu APY, Wang X, Yang L, He D. Analysing increasing trends of Guillain-Barré Syndrome (GBS) and dengue cases in Hong Kong using meteorological data. PLoS One 2017; 12:e0187830. [PMID: 29200423 PMCID: PMC5714337 DOI: 10.1371/journal.pone.0187830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/26/2017] [Indexed: 12/28/2022] Open
Abstract
Background Guillain-Barré Syndrome (GBS) is a severe paralytic neuropathy associated with virus infections such as Zika virus and Chikungunya virus. There were also case reports of dengue fever preceding GBS. With the aim to understand the mechanisms of GBS and dengue outbreaks, this ecological study investigates the relationships between GBS, dengue, meteorological factors in Hong Kong and global climatic factors from January 2000 to June 2016. Methods The correlations between GBS, dengue, Multivariate El Niño Southern Oscillation Index (MEI) and local meteorological data were explored by Spearman’s Rank correlations and cross-correlations. Three Poisson regression models were fitted to identify non-linear associations among GBS, dengue and MEI. Cross wavelet analyses were applied to infer potential non-stationary oscillating associations among GBS, dengue and MEI. Findings and conclusion We report a substantial increasing of local GBS and dengue cases (mainly imported) in recent year in Hong Kong. The seasonalities of GBS and dengue are different, in particular, GBS is low while dengue is high in the summer. We found weak but significant correlations between GBS and local meteorological factors. MEI could explain over 17% of dengue’s variations based on Poisson regression analyses. We report a possible non-stationary oscillating association between dengue fever and GBS cases in Hong Kong. This study has led to an improved understanding about the timing and ecological relationships between MEI, GBS and dengue.
Collapse
Affiliation(s)
- Xiujuan Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shi Zhao
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Alice P. Y. Chiu
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong SAR, China
- * E-mail: (AC); (DH)
| | - Xin Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lin Yang
- School of Nursing, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Daihai He
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong SAR, China
- * E-mail: (AC); (DH)
| |
Collapse
|
29
|
Abraham R, Singh S, Nair SR, Hulyalkar NV, Surendran A, Jaleel A, Sreekumar E. Nucleophosmin (NPM1)/B23 in the Proteome of Human Astrocytic Cells Restricts Chikungunya Virus Replication. J Proteome Res 2017; 16:4144-4155. [PMID: 28959884 DOI: 10.1021/acs.jproteome.7b00513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chikungunya virus (CHIKV), a positive-stranded RNA virus, can cause neurological complications by infecting the major parenchymal cells of the brain such as neurons and astrocytes. A proteomic analysis of CHIKV-infected human astrocytic cell line U-87 MG revealed tight functional associations among the modulated proteins. The predominant cellular pathways involved were of transcription-translation machinery, cytoskeletol reorganization, apoptosis, ubiquitination, and metabolism. In the proteome, we could also identify a few proteins that are reported to be involved in host-virus interactions. One such protein, Nucleophosmin (NPM1)/B23, a nucleolar protein, showed enhanced cytoplasmic aggregation in CHIKV-infected cells. NPM1 aggregation was predominantly localized in areas wherein CHIKV antigen could be detected. Furthermore, we observed that inhibition of this aggregation using a specific NPM1 oligomerization inhibitor, NSC348884, caused a significant dose-dependent enhancement in virus replication. There was a marked increase in the amount of intracellular viral RNA, and ∼105-fold increase in progeny virions in infected cells. Our proteomic analysis provides a comprehensive spectrum of host proteins modulated in response to CHIKV infection in astrocytic cells. Our results also show that NPM1/B23, a multifunctional chaperone, plays a critical role in restricting CHIKV replication and is a possible target for antiviral strategies.
Collapse
Affiliation(s)
- Rachy Abraham
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Sneha Singh
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Sreeja R Nair
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Neha Vijay Hulyalkar
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Arun Surendran
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Abdul Jaleel
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| |
Collapse
|
30
|
Tohidpour A, Morgun AV, Boitsova EB, Malinovskaya NA, Martynova GP, Khilazheva ED, Kopylevich NV, Gertsog GE, Salmina AB. Neuroinflammation and Infection: Molecular Mechanisms Associated with Dysfunction of Neurovascular Unit. Front Cell Infect Microbiol 2017; 7:276. [PMID: 28676848 PMCID: PMC5476750 DOI: 10.3389/fcimb.2017.00276] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is a complex inflammatory process in the central nervous system, which is sought to play an important defensive role against various pathogens, toxins or factors that induce neurodegeneration. The onset of neurodegenerative diseases and various microbial infections are counted as stimuli that can challenge the host immune system and trigger the development of neuroinflammation. The homeostatic nature of neuroinflammation is essential to maintain the neuroplasticity. Neuroinflammation is regulated by the activity of neuronal, glial, and endothelial cells within the neurovascular unit, which serves as a “platform” for the coordinated action of pro- and anti-inflammatory mechanisms. Production of inflammatory mediators (cytokines, chemokines, reactive oxygen species) by brain resident cells or cells migrating from the peripheral blood, results in the impairment of blood-brain barrier integrity, thereby further affecting the course of local inflammation. In this review, we analyzed the most recent data on the central nervous system inflammation and focused on major mechanisms of neurovascular unit dysfunction caused by neuroinflammation and infections.
Collapse
Affiliation(s)
- Abolghasem Tohidpour
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Andrey V Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Department of Paediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Elizaveta B Boitsova
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Department of Children Infectious Diseases, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Galina P Martynova
- Department of Children Infectious Diseases, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Natalia V Kopylevich
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Galina E Gertsog
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Alla B Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| |
Collapse
|