1
|
Valcárcel-Hernández V, Mayerl S, Guadaño-Ferraz A, Remaud S. Thyroid hormone action in adult neurogliogenic niches: the known and unknown. Front Endocrinol (Lausanne) 2024; 15:1347802. [PMID: 38516412 PMCID: PMC10954857 DOI: 10.3389/fendo.2024.1347802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Over the last decades, thyroid hormones (THs) signaling has been established as a key signaling cue for the proper maintenance of brain functions in adult mammals, including humans. One of the most fascinating roles of THs in the mature mammalian brain is their ability to regulate adult neurogliogenic processes. In this respect, THs control the generation of new neuronal and glial progenitors from neural stem cells (NSCs) as well as their final differentiation and maturation programs. In this review, we summarize current knowledge on the cellular organization of adult rodent neurogliogenic niches encompassing well-established niches in the subventricular zone (SVZ) lining the lateral ventricles, the hippocampal subgranular zone (SGZ), and the hypothalamus, but also less characterized niches in the striatum and the cerebral cortex. We then discuss critical questions regarding how THs availability is regulated in the respective niches in rodents and larger mammals as well as how modulating THs availability in those niches interferes with lineage decision and progression at the molecular, cellular, and functional levels. Based on those alterations, we explore the novel therapeutic avenues aiming at harnessing THs regulatory influences on neurogliogenic output to stimulate repair processes by influencing the generation of either new neurons (i.e. Alzheimer's, Parkinson's diseases), oligodendrocytes (multiple sclerosis) or both (stroke). Finally, we point out future challenges, which will shape research in this exciting field in the upcoming years.
Collapse
Affiliation(s)
- Victor Valcárcel-Hernández
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d’Histoire Naturelle, Paris, France
| | - Steffen Mayerl
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ana Guadaño-Ferraz
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
2
|
Weerasinghe-Mudiyanselage PDE, Kim JS, Shin T, Moon C. Understanding the spectrum of non-motor symptoms in multiple sclerosis: insights from animal models. Neural Regen Res 2024; 19:84-91. [PMID: 37488849 PMCID: PMC10479859 DOI: 10.4103/1673-5374.375307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Multiple sclerosis is a chronic autoimmune disease of the central nervous system and is generally considered to be a non-traumatic, physically debilitating neurological disorder. In addition to experiencing motor disability, patients with multiple sclerosis also experience a variety of non-motor symptoms, including cognitive deficits, anxiety, depression, sensory impairments, and pain. However, the pathogenesis and treatment of such non-motor symptoms in multiple sclerosis are still under research. Preclinical studies for multiple sclerosis benefit from the use of disease-appropriate animal models, including experimental autoimmune encephalomyelitis. Prior to understanding the pathophysiology and developing treatments for non-motor symptoms, it is critical to characterize the animal model in terms of its ability to replicate certain non-motor features of multiple sclerosis. As such, no single animal model can mimic the entire spectrum of symptoms. This review focuses on the non-motor symptoms that have been investigated in animal models of multiple sclerosis as well as possible underlying mechanisms. Further, we highlighted gaps in the literature to explain the non-motor aspects of multiple sclerosis in experimental animal models, which will serve as the basis for future studies.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju, Republic of Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju, Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Zimek D, Miklusova M, Mares J. Overview of the Current Pathophysiology of Fatigue in Multiple Sclerosis, Its Diagnosis and Treatment Options - Review Article. Neuropsychiatr Dis Treat 2023; 19:2485-2497. [PMID: 38029042 PMCID: PMC10674653 DOI: 10.2147/ndt.s429862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Fatigue is a common, debilitating and often underestimated symptom in patients with multiple sclerosis (MS). The exact pathophysiological mechanism of fatigue in MS is still unknown. However, there are many theories involving different immunological, metabolic and inflammatory mechanisms of fatigue. Owing to the subjective nature of this symptom, its diagnosis is still very limited and is still based only on diagnostic questionnaires. Although several therapeutic agents have been used in the past to try to influence fatigue in MS patients, no single effective approach for the treatment of fatigue has yet been found. This review article aims to provide the reader with information on the current theories on the origin and mechanism of fatigue in MS, as well as diagnostic procedures and, finally, current therapeutic strategies for the management of fatigue in MS patients.
Collapse
Affiliation(s)
- Dalibor Zimek
- Department of Neurology, Palacky University Hospital Olomouc, Olomouc, Czech Republic
| | - Martina Miklusova
- Department of Neurology, Palacky University Hospital Olomouc, Olomouc, Czech Republic
| | - Jan Mares
- Department of Neurology, Palacky University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
4
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Zaafar D, Batiha GES. Orexin pathway in Parkinson's disease: a review. Mol Biol Rep 2023:10.1007/s11033-023-08459-5. [PMID: 37155018 DOI: 10.1007/s11033-023-08459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease (NDD) caused by dopaminergic neuron degeneration in the substantia nigra (SN). Orexin is a neuropeptide that plays a role in the pathogenesis of PD. Orexin has neuroprotective properties in dopaminergic neurons. In PD neuropathology, there is also degeneration of orexinergic neurons in the hypothalamus, in addition to dopaminergic neurons. However, the loss of orexinergic neurons in PD began after the degeneration of dopaminergic neurons. Reduced activity of orexinergic neurons has been linked to developing and progressing motor and non-motor symptoms in PD. In addition, the dysregulation of the orexin pathway is linked to the development of sleep disorders. The hypothalamic orexin pathway regulates various aspects of PD neuropathology at the cellular, subcellular, and molecular levels. Finally, non-motor symptoms, particularly insomnia and disturbed sleep, promote neuroinflammation and the accumulation of neurotoxic proteins as a result of defects in autophagy, endoplasmic reticulum (ER) stress, and the glymphatic system. As a result, this review aimed to highlight the potential role of orexin in PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of clinical pharmacology and therapeutic medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of clinical pharmacology and therapeutic medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Al Beheira, Egypt.
| |
Collapse
|
5
|
Genç B, Şen S, Aslan K, İncesu L. Volumetric changes in hypothalamic subunits in patients with relapsing remitting multiple sclerosis. Neuroradiology 2023; 65:899-905. [PMID: 36720749 DOI: 10.1007/s00234-023-03122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 02/02/2023]
Abstract
PURPOSE Studies on hypothalamic changes in patients with relapsing remitting multiple sclerosis (RRMS) are very scarce, despite the fact that the relationship with the hypothalamus is frequently reported. The aim of the study was to determine the volume of the hypothalamic subunits and the total hypothalamus and its relationship with the total demyelinating lesion volume (TLV) and expanded disability status scale (EDSS) in RRMS patients. METHODS In this cross-sectional study, anterior-superior, superior tubular, posterior hypothalamus, anterior-inferior, inferior tubular subunits of hypothalamus, and total hypothalamus volume were calculated, with fully automatic analysis methods using volumetric T1 images of 65 relapsed RRMS patients and 68 healthy controls (HC). Volume changes in the hypothalamus and its subunits in RRMS patients were examined using multivariate analysis of covariance (MANCOVA). The relationship of these volumes with EDSS and TLV was investigated by partial correlation analysis. RESULTS There is volume reduction in total hypothalamus (F = 13.87, p < 0.001), anterior-superior (F = 19.2, p < 0.001), superior tubular (F = 10.1, p = 0.002) subunits, and posterior hypothalamus (F = 19.2, p < 0.001) volume in RRMS patients. EDSS correlates negatively with anterior-superior (p = 0.017, r = - 0.333), superior tubular subunits (p = 0.023, r = - 0.439), posterior hypothalamus (p < 0.001, r = - 0.511), and whole hypothalamus volume (p = 0.001, r = - 0.439). TLV correlates negatively with anterior superior (p < 0.001, r = - 0.565), anterior inferior (p = 0.002, r = - 0.431), superior tubular subunits (p = 0.002, r = - 0.432), posterior hypothalamus (p < 0.001, r = - 0.703), and whole hypothalamus (p < 0.001, r = - 0.627) volumes. CONCLUSION This study demonstrates a reduction in total hypothalamus volume, anterior-superior, superior tubular, and posterior hypothalamus in patients with RRMS. Anterior-superior and superior tubular subunit, posterior hypothalamus, and total hypothalamus volume were negatively correlated with TLV and EDSS scores.
Collapse
Affiliation(s)
- Barış Genç
- Department of Radiology, Samsun Education and Research Hospital, İlkadım, Samsun, 55060, Turkey.
| | - Sedat Şen
- Department of Neurology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Kerim Aslan
- Department of Neurology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey.,Department of Radiology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Lütfi İncesu
- Department of Radiology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| |
Collapse
|
6
|
Eren F, Demir A, Yilmaz SE, Ozturk S. Evaluation of the relationship between the morphometric structure of the pituitary gland and fatigue in patients with multiple sclerosis. Mult Scler Relat Disord 2023; 69:104470. [PMID: 36549104 DOI: 10.1016/j.msard.2022.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The correlation between fatigue and disability in multiple sclerosis (MS) with the hypothalamus-pituitary-adrenal axis is known. This study aimed to investigate the relationship between the morphometric dimensions of the pituitary gland with fatigue and disability. METHOD This research, designed as a prospective and case-control study, included 85 MS patients and 45 healthy controls. The disability was evaluated using the expanded disability rating scale (EDSS), while fatigue was determined using the fatigue severity scale (FSS) and the neurological fatigue index (NFI-MS). The morphometric structure of the pituitary gland was measured using a coronal, T2-weighted, turbo-spin-echo sequence of magnetic resonance imaging. RESULTS FSS and NFI-MS scores were higher in MS patients than in the control group (p = 0.001). Patients with a progressive and moderate-to-severe disability had a higher FSS score (p = 0.015; p = 0.002, respectively). A positive correlation was determined between disease duration, attack frequency, and EDSS and physical fatigue subscale score (p = 0.001; r = 0.383; 0.373; 0.545, respectively). The height and width of the pituitary gland were higher in MS patients (p = 0.021; p = 0.001, respectively). Pituitary gland height was higher in fatigued patients (p = 0.041). A low-positive correlation was determined between the number of attacks and the height of the pituitary gland (p = 0.027, r = 0.231). CONCLUSION The difference in the dimensions of the pituitary gland in MS patients, especially in the fatigued group, supports the relationship of fatigue with morphometric features as well as the hypothalamus-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Fettah Eren
- Selcuk University, Faculty of Medicine, Department of Neurology, Konya, Turkey.
| | - Aysegul Demir
- University of Health Sciences Turkey, Konya City Hospital, Neurology Clinic, Konya, Turkey
| | - Sueda Ecem Yilmaz
- Selcuk University, Faculty of Medicine, Department of Neurology, Konya, Turkey
| | - Serefnur Ozturk
- Selcuk University, Faculty of Medicine, Department of Neurology, Konya, Turkey
| |
Collapse
|
7
|
Düking T, Spieth L, Berghoff SA, Piepkorn L, Schmidke AM, Mitkovski M, Kannaiyan N, Hosang L, Scholz P, Shaib AH, Schneider LV, Hesse D, Ruhwedel T, Sun T, Linhoff L, Trevisiol A, Köhler S, Pastor AM, Misgeld T, Sereda M, Hassouna I, Rossner MJ, Odoardi F, Ischebeck T, de Hoz L, Hirrlinger J, Jahn O, Saher G. Ketogenic diet uncovers differential metabolic plasticity of brain cells. SCIENCE ADVANCES 2022; 8:eabo7639. [PMID: 36112685 PMCID: PMC9481126 DOI: 10.1126/sciadv.abo7639] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type-specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease.
Collapse
Affiliation(s)
- Tim Düking
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan A. Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lars Piepkorn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Annika M. Schmidke
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Miso Mitkovski
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nirmal Kannaiyan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Leon Hosang
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Ali H. Shaib
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Lennart V. Schneider
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dörte Hesse
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Electron Microscopy Core Unit, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lisa Linhoff
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Translational Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrea Trevisiol
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Adrian Marti Pastor
- Institute of Neuronal Cell Biology, Technische Universität München, Cluster for Systems Neurology (SyNergy), German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Cluster for Systems Neurology (SyNergy), German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Michael Sereda
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Translational Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Imam Hassouna
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Moritz J. Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Francesca Odoardi
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Neurowissenschafliches Forschungszentrum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Hirrlinger
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
8
|
Brain Structural and Functional Alterations in Multiple Sclerosis-Related Fatigue: A Systematic Review. Neurol Int 2022; 14:506-535. [PMID: 35736623 PMCID: PMC9228847 DOI: 10.3390/neurolint14020042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Fatigue is one of the most disabling symptoms of multiple sclerosis (MS); it influences patients’ quality of life. The etiology of fatigue is complex, and its pathogenesis is still unclear and debated. The objective of this review was to describe potential brain structural and functional dysfunctions underlying fatigue symptoms in patients with MS. To reach this purpose, a systematic review was conducted of published studies comparing functional brain activation and structural brain in MS patients with and without fatigue. Electronic databases were searched until 24 February 2021. The structural and functional outcomes were extracted from eligible studies and tabulated. Fifty studies were included: 32 reported structural brain differences between patients with and without fatigue; 14 studies described functional alterations in patients with fatigue compared to patients without it; and four studies showed structural and functional brain alterations in patients. The results revealed structural and functional abnormalities that could correlate to the symptom of fatigue in patients with MS. Several studies reported the differences between patients with fatigue and patients without fatigue in terms of conventional magnetic resonance imaging (MRI) outcomes and brain atrophy, specifically in the thalamus. Functional studies showed abnormal activation in the thalamus and in some regions of the sensorimotor network in patients with fatigue compared to patients without it. Patients with fatigue present more structural and functional alterations compared to patients without fatigue. Specifically, abnormal activation and atrophy of the thalamus and some regions of the sensorimotor network seem linked to fatigue.
Collapse
|
9
|
Chepke C, Jain R, Rosenberg R, Moline M, Yardley J, Pinner K, Kumar D, Perdomo C, Filippov G, Atkins N, Malhotra M. Improvement in fatigue and sleep measures with the dual orexin receptor antagonist lemborexant in adults with insomnia disorder. Postgrad Med 2022; 134:316-325. [DOI: 10.1080/00325481.2022.2049553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Craig Chepke
- Excel Psychiatric Associates, PA, Huntersville, NC, USA
| | - Rakesh Jain
- Texas Tech University School of Medicine – Permian Basin, Midland, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Exercise training improves memory and produces changes in the adrenal gland morphology in the experimental autoimmune encephalomyelitis. Endocr Regul 2022; 56:31-37. [PMID: 35180820 DOI: 10.2478/enr-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective. The present study sought to verify the effects of an exercise training on the memory along with the morphological assessment of the adrenal gland tissue in the rats with experimental autoimmune encephalomyelitis (EAE). Methods. Female Lewis rats were randomly divided into three groups: EAE group, EAE group with exercise (EAE+Ex), and control group (CO). Each group contained 10 rats. To evaluate the memory, all rats were subjected to the Morris water maze learning test for four consecutive days and one day for a prop test. EAE was induced by guinea pig spinal cord homogenate emulsified in incomplete Freund's adjuvant and heat-mycobacterium. The exercise training on a motorized treadmill was initiated 3 weeks before EAE induction and disconnected 2 weeks post-induction. Results. We found that exercise training for five weeks produced an improved swimming velocity related to memory improvement in EAE+Ex group in comparison with EAE group, but not an incurable adrenal gland tissue after EAE induction. Conclusions. The experimental design selected for this study appears to be an effective treatment for memory in rats with experimental autoimmune encephalomyelitis.
Collapse
|
11
|
Couvineau A, Voisin T, Nicole P, Gratio V, Blais A. Orexins: A promising target to digestive cancers, inflammation, obesity and metabolism dysfunctions. World J Gastroenterol 2021; 27:7582-7596. [PMID: 34908800 PMCID: PMC8641057 DOI: 10.3748/wjg.v27.i44.7582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/22/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
Hypothalamic neuropeptides named hypocretin/orexins which were identified in 1998 regulate critical functions such as wakefulness in the central nervous system. These past 20 years had revealed that orexins/receptors system was also present in the peripheral nervous system where they participated to the regulation of multiple functions including blood pressure regulation, intestinal motility, hormone secretion, lipolyze and reproduction functions. Associated to these peripheral functions, it was found that orexins and their receptors were involved in various diseases such as acute/chronic inflammation, metabolic syndrome and cancers. The present review suggests that orexins or the orexin neural circuitry represent potential therapeutic targets for the treatment of multiple pathologies related to inflammation including intestinal bowel disease, multiple sclerosis and septic shock, obesity and digestive cancers.
Collapse
Affiliation(s)
- Alain Couvineau
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Thierry Voisin
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Pascal Nicole
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Valerie Gratio
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Anne Blais
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris 75005, France
| |
Collapse
|
12
|
Wang Q, Cao F, Wu Y. Orexinergic System in Neurodegenerative Diseases. Front Aging Neurosci 2021; 13:713201. [PMID: 34483883 PMCID: PMC8416170 DOI: 10.3389/fnagi.2021.713201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023] Open
Abstract
Orexinergic system consisting of orexins and orexin receptors plays an essential role in regulating sleep–wake states, whereas sleep disruption is a common symptom of a number of neurodegenerative diseases. Emerging evidence reveals that the orexinergic system is disturbed in various neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and multiple sclerosis (MS), whereas the dysregulation of orexins and/or orexin receptors contributes to the pathogenesis of these diseases. In this review, we summarized advanced knowledge of the orexinergic system and its role in sleep, and reviewed the dysregulation of the orexinergic system and its role in the pathogenesis of AD, PD, HD, and MS. Moreover, the therapeutic potential of targeting the orexinergic system for the treatment of these diseases was discussed.
Collapse
Affiliation(s)
- Qinqin Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Fei Cao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Wenzhou, China
| |
Collapse
|
13
|
Bintoro DA, Nareswari I. The Role of Electroacupuncture in the Regulation of Appetite-Controlling Hormone and Inflammatory Response in Obesity. Med Acupunct 2021; 33:264-268. [PMID: 34471444 PMCID: PMC8403175 DOI: 10.1089/acu.2020.1500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Obesity, a condition with serious complications, needs special attention. It is a complex and multifactorial problem and regulation of calorie balance involving various humoral and central factors is the main key for managing obesity. In addition, there is an increase in various proinflammatory cytokines and an increase in oxidative stress. There is a need to discover a useful therapy for obesity management. The goal of this review was to examine the literature on electroacupuncture (EA) as a potential therapy. Methods: This review explores the literature on EA, which has proven to be effective for inducing weight loss in experimental human and animal studies. Both continuous and dense-disperse EA waves have their own roles in hormone regulation of obesity using ST 25, CV 9, CV 12, CV 4, SP 6, ST 36, and ST 44; this is discussed the associated mechanism related to this is through suppression of various orexigenic peptides, enhancement of anorexigenic peptides, suppression of inflammatory factors, and improvement in the balance of pro-oxidants and antioxidants. Conclusions: The absence of another definitive therapy for obesity and EA's minimal side-effects make it a potential therapy for managing obesity.
Collapse
Affiliation(s)
- Dinda Aniela Bintoro
- Department of Medical Acupuncture, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Central Public Hospital, Central Jakarta, Jakarta, Indonesia
| | - Irma Nareswari
- Department of Medical Acupuncture, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Central Public Hospital, Central Jakarta, Jakarta, Indonesia
| |
Collapse
|
14
|
Lasconi C, Pahl MC, Cousminer DL, Doege CA, Chesi A, Hodge KM, Leonard ME, Lu S, Johnson ME, Su C, Hammond RK, Pippin JA, Terry NA, Ghanem LR, Leibel RL, Wells AD, Grant SFA. Variant-to-Gene-Mapping Analyses Reveal a Role for the Hypothalamus in Genetic Susceptibility to Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2020; 11:667-682. [PMID: 33069917 PMCID: PMC7843407 DOI: 10.1016/j.jcmgh.2020.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease (IBD) is a polygenic disorder characterized principally by dysregulated inflammation impacting the gastrointestinal tract. However, there also is increasing evidence for a clinical association with stress and depression. Given the role of the hypothalamus in stress responses and in the pathogenesis of depression, useful insights could be gleaned from understanding its genetic role in IBD. METHODS We conducted genetic correlation analyses on publicly available genome-wide association study summary statistics for depression and IBD traits to identify genetic commonalities. We used partitioned linkage disequilibrium score regression, leveraging our ATAC sequencing and promoter-focused Capture C data, to measure enrichment of IBD single-nucleotide polymorphisms within promoter-interacting open chromatin regions of human embryonic stem cell-derived hypothalamic-like neurons (HNs). Using the same data sets, we performed variant-to-gene mapping to implicate putative IBD effector genes in HNs. To contrast these results, we similarly analyzed 3-dimensional genomic data generated in epithelium-derived colonoids from rectal biopsy specimens from donors without pathologic disease noted at the time of colonoscopy. Finally, we conducted enrichment pathway analyses on the implicated genes to identify putative IBD dysfunctional pathways. RESULTS We found significant genetic correlations (rg) of 0.122 with an adjusted P (Padj) = 1.4 × 10-4 for IBD: rg = 0.122; Padj = 2.5 × 10-3 for ulcerative colitis and genetic correlation (rg) = 0.094; Padj = 2.5 × 10-3 for Crohn's disease, and significant approximately 4-fold (P = .005) and approximately 7-fold (P = .03) enrichment of IBD single-nucleotide polymorphisms in HNs and colonoids, respectively. We implicated 25 associated genes in HNs, among which CREM, CNTF, and RHOA encode key regulators of stress. Seven genes also additionally were implicated in the colonoids. We observed an overall enrichment for immune and hormonal signaling pathways, and a colonoid-specific enrichment for microbiota-relevant terms. CONCLUSIONS Our results suggest that the hypothalamus warrants further study in the context of IBD pathogenesis.
Collapse
Affiliation(s)
- Chiara Lasconi
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Diana L Cousminer
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Claudia A Doege
- Division of Molecular Genetics (Pediatrics), Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Kenyaita M Hodge
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Matthew E Johnson
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Chun Su
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Reza K Hammond
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - James A Pippin
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | | | | | - Rudolph L Leibel
- Division of Molecular Genetics (Pediatrics), Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Department of Pathology, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania; Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
15
|
Singhal T, Cicero S, Pan H, Carter K, Dubey S, Chu R, Glanz B, Hurwitz S, Tauhid S, Park MA, Kijewski M, Stern E, Bakshi R, Silbersweig D, Weiner HL. Regional microglial activation in the substantia nigra is linked with fatigue in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/5/e854. [PMID: 32769103 PMCID: PMC7643614 DOI: 10.1212/nxi.0000000000000854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The goal of our study is to assess the role of microglial activation in MS-associated fatigue (MSAF) using [F-18]PBR06-PET. METHODS Fatigue severity was measured using the Modified Fatigue Impact Scale (MFIS) in 12 subjects with MS (7 relapsing-remitting and 5 secondary progressive) and 10 healthy control participants who underwent [F-18]PBR06-PET. The MFIS provides a total fatigue score as well as physical, cognitive, and psychosocial fatigue subscale scores. Standardized Uptake Value (SUV) 60-90 minute frame PET maps were coregistered to 3T MRI. Voxel-by-voxel analysis using Statistical Parametric Mapping and atlas-based regional analyses were performed. SUV ratios (SUVRs) were global brain normalized. RESULTS Peak voxel-based level of significance for correlation between total fatigue score and PET uptake was localized to the right substantia nigra (T-score 4.67, p = 0.001). Similarly, SUVRs derived from atlas-based segmentation of the substantia nigra showed significant correlation with MFIS (r = 0.76, p = 0.004). On multiple regression, the right substantia nigra was an independent predictor of total MFIS (p = 0.02) and cognitive MFIS subscale values (p = 0.007), after adjustment for age, disability, and depression. Several additional areas of significant correlations with fatigue scores were identified, including the right parahippocampal gyrus, right precuneus, and juxtacortical white matter (all p < 0.05). There was no correlation between fatigue scores and brain atrophy and lesion load in patients with MS. CONCLUSION Substantia nigra microglial activation is linked to fatigue in MS. Microglial activation across key brain regions may represent a unifying mechanism for MSAF, and further evaluation of neuroimmunologic basis of MSAF is warranted.
Collapse
Affiliation(s)
- Tarun Singhal
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Steven Cicero
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hong Pan
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kelsey Carter
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shipra Dubey
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Renxin Chu
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Bonnie Glanz
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shelley Hurwitz
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shahamat Tauhid
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mi-Ae Park
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marie Kijewski
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Emily Stern
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rohit Bakshi
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - David Silbersweig
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Howard L Weiner
- From the Partners MS Center (T.S., S.C., K.C., B.G., R.B., H.L.W.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; PET Imaging Program in Neurologic Diseases (T.S., S.C., K.C.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Functional Neuroimaging Laboratory (H.P., R.B., D.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nuclear Medicine and Molecular Imaging (S.D., M.-A.P., M.K.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Laboratory for Neuroimaging Research (R.C., S.T.), Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medicine (S.H.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Ceretype Neuromedicine (E.S.)Department of Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Monti L, Arrigucci U, Rossi A. Insights into Endothelin-3 and Multiple Sclerosis. Biomol Concepts 2020; 11:137-141. [PMID: 32589590 DOI: 10.1515/bmc-2020-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/21/2020] [Indexed: 08/19/2023] Open
Abstract
Endothelins are powerful vasoconstrictor peptides that play numerous other roles. Endothelin-1 (ET1) is the principal isoform produced by the endothelium in the human cardiovascular system. Endothelin-3 (ET3) and its rPptor affinity have been demonstrated to support neuronal repair mechanisms throughout life. In multiple sclerosis (MS), the role of vasoactive peptides are not well defined. Here we focus on ET3, specifically the plasma levels between MS patients and healthy subjects. Furthermore, we evaluated the changes in ET1 and ET3 plasma levels during different disease phases, the correlation between ET3 and cerebral circulation time, and the relationship between ET1 and ET3. In MS patients, the ET3 plasma levels were altered in a time-dependent manner. These results could support a putative role of ET3 in neuroprotection and/or neuroimmune modulation over time.
Collapse
Affiliation(s)
- Lucia Monti
- Unit of Diagnostic and Functional Neuroimaging, Dpt. of Neurology and Human Movement Sciences, University Hospital of Siena, Santa Maria alle Scotte, Viale Bracci 2, 53100 Siena, Italy
| | - Umberto Arrigucci
- Unit of Diagnostic and Functional Neuroimaging, Dpt. of Neurology and Human Movement Sciences, University Hospital of Siena, Santa Maria alle Scotte, Viale Bracci 2, 53100 Siena, Italy
| | - Alessandro Rossi
- Neurology and Neurophysiology Unit, Dpt. of Neurology and Human Movement Sciences, University Hospital of Siena, Santa Maria alle Scotte, Viale Bracci 2 53100 Siena, Italy
| |
Collapse
|
17
|
Insights into the Therapeutic Potential of Glucocorticoid Receptor Modulators for Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21062137. [PMID: 32244957 PMCID: PMC7139912 DOI: 10.3390/ijms21062137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids are crucial for stress-coping, resilience, and adaptation. However, if the stress hormones become dysregulated, the vulnerability to stress-related diseases is enhanced. In this brief review, we discuss the role of glucocorticoids in the pathogenesis of neurodegenerative disorders in both human and animal models, and focus in particular on amyotrophic lateral sclerosis (ALS). For this purpose, we used the Wobbler animal model, which mimics much of the pathology of ALS including a dysfunctional hypothalamic–pituitary–adrenal axis. We discuss recent studies that demonstrated that the pathological cascade characteristic for motoneuron degeneration of ALS is mimicked in the genetically selected Wobbler mouse and can be attenuated by treatment with the selective glucocorticoid receptor antagonist (GRA) CORT113176. In long-term treatment (3 weeks) GRA attenuated progression of the behavioral, inflammatory, excitatory, and cell-death-signaling pathways while increasing the survival signal of serine–threonine kinase (pAkt). The action mechanism of the GRA may be either by interfering with GR deactivation or by restoring the balance between pro- and anti-inflammatory signaling pathways driven by the complementary mineralocorticoid receptor (MR)- and GR-mediated actions of corticosterone. Accordingly, GR antagonism may have clinical relevance for the treatment of neurodegenerative diseases.
Collapse
|
18
|
Pallais JP, Kotz CM, Stanojlovic M. Orexin/hypocretinin in multiple sclerosis and experimental autoimmune encephalomyelitis. Neural Regen Res 2020; 15:1039-1040. [PMID: 31823881 PMCID: PMC7034266 DOI: 10.4103/1673-5374.270310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Jean Pierre Pallais
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Catherine M Kotz
- Integrative Biology and Physiology, University of Minnesota; Minneapolis VA Health Care System, Geriatric Research, Education and Clinical Center, Minneapolis, MN, USA
| | - Milos Stanojlovic
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
19
|
Altered hypothalamic metabolism in early multiple sclerosis – MR spectroscopy study. J Neurol Sci 2019; 407:116458. [DOI: 10.1016/j.jns.2019.116458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022]
|
20
|
Abstract
Fatigue is one of the most debilitating symptoms in patients with multiple sclerosis (MS). Despite its clinical significance, the aetiology and pathophysiology of MS-related fatigue are not well understood. Current evidence and understanding of the neuroanatomical underpinnings of MS-related fatigue are reviewed in this article. The aims of this paper are to (1) review the findings of previous structural neuroimaging studies on MS-related fatigue and summarize consistent findings regarding brain circuitry associated with fatigue in MS, (2) contextualize these findings with the neurochemistry of the relevant circuits and (3) discuss future perspectives with regard to impact on fatigue management of MS patients and methodological challenges towards improved understanding of fatigue pathogenesis. The detailed understanding of the neuroanatomical underpinnings of fatigue might contribute to the identification of novel treatment targets and factors determining treatment resistance to drugs used in current clinical practice.
Collapse
Affiliation(s)
- Miklos Palotai
- Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles Rg Guttmann
- Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci Biobehav Rev 2019; 107:23-46. [PMID: 31442519 DOI: 10.1016/j.neubiorev.2019.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
The feeding of cuprizone (CPZ) to animals has been extensively used to model the processes of demyelination and remyelination, with many papers adopting a narrative linked to demyelinating conditions like multiple sclerosis (MS), the aetiology of which is unknown. However, no current animal model faithfully replicates the myriad of symptoms seen in the clinical condition of MS. CPZ ingestion causes mitochondrial and endoplasmic reticulum stress and subsequent apoptosis of oligodendrocytes leads to central nervous system demyelination and glial cell activation. Although there are a wide variety of behavioural tests available for characterizing the functional deficits in animal models of disease, including that of CPZ-induced deficits, they have focused on a narrow subset of outcomes such as motor performance, cognition, and anxiety. The literature has not been systematically reviewed in relation to these or other symptoms associated with clinical MS. This paper reviews these tests and makes recommendations as to which are the most important in order to better understand the role of this model in examining aspects of demyelinating diseases like MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada.
| | - Peter J Shortland
- Science and Health, Western Sydney University, New South Wales, Australia.
| |
Collapse
|
22
|
Bårdsen K, Brede C, Kvivik I, Kvaløy JT, Jonsdottir K, Tjensvoll AB, Ruoff P, Omdal R. Interleukin-1-related activity and hypocretin-1 in cerebrospinal fluid contribute to fatigue in primary Sjögren's syndrome. J Neuroinflammation 2019; 16:102. [PMID: 31101054 PMCID: PMC6525358 DOI: 10.1186/s12974-019-1502-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/06/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Fatigue is a common and sometimes debilitating phenomenon in primary Sjögren's syndrome (pSS) and other chronic inflammatory diseases. We aimed to investigate how IL-1 β-related molecules and the neuropeptide hypocretin-1 (Hcrt1), a regulator of wakefulness, influence fatigue. METHODS Hcrt1 was measured by radioimmunoassay (RIA) in cerebrospinal fluid (CSF) from 49 patients with pSS. Interleukin-1 receptor antagonist (IL-1Ra), IL-1 receptor type 2 (IL-1RII), IL-6, and S100B protein were measured by enzyme-linked immunosorbent assay (ELISA). Fatigue was rated by the fatigue visual analog scale (fVAS). RESULTS Simple univariate regression and multiple regression analyses with fatigue as a dependent variable revealed that depression, pain, and the biochemical variable IL-1Ra had a significant association with fatigue. In PCA, two significant components were revealed. The first component (PC1) was dominated by variables related to IL-1β activity (IL-1Ra, IL-1RII, and S100B). PC2 showed a negative association between IL-6 and Hcrt1. fVAS was then introduced as an additional variable. This new model demonstrated that fatigue had a higher association with the IL-1β-related PC1 than to PC2. Additionally, a third component (PC3) became significant between low Hcrt1 concentrations and fVAS scores. CONCLUSIONS The main findings of this study indicate a functional network in which several IL-1β-related molecules in CSF influence fatigue in addition to the classical clinical factors of depression and pain. The neuropeptide Hcrt1 seems to participate in fatigue generation, but likely not through the IL-1 pathway.
Collapse
Affiliation(s)
- Kjetil Bårdsen
- Research Department, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Cato Brede
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.,Department of Medical Biochemistry, Stavanger University Hospital, Stavanger, Norway
| | - Ingeborg Kvivik
- Research Department, Stavanger University Hospital, Stavanger, Norway
| | - Jan Terje Kvaløy
- Research Department, Stavanger University Hospital, Stavanger, Norway.,Department of Mathematics and Physics, University of Stavanger, Stavanger, Norway
| | | | | | - Peter Ruoff
- Centre for Organelle Research (CORE), Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Omdal
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, POB 8100, N-4068, Stavanger, Norway. .,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
23
|
Tyshkov C, Pawate S, Bradshaw MJ, Kimbrough DJ, Chitnis T, Gelfand JM, Ryerson LZ, Kister I. Multiple sclerosis and sarcoidosis: A case for coexistence. Neurol Clin Pract 2019; 9:218-227. [PMID: 31341709 DOI: 10.1212/cpj.0000000000000629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
Abstract
Background Patients with biopsy-proven systemic sarcoidosis who develop a chronic CNS disorder are often presumed to have neurosarcoidosis (NS), however, the possibility of comorbid neurologic disease, such as MS, must be considered if presentation and course are not typical for NS. Methods Retrospective chart review across 4 academic MS centers was undertaken to identify patients with diagnosis of MS (2017 McDonald criteria) and biopsy-confirmed extraneural sarcoidosis. Data were abstracted from each chart using a case report form that systematically queried for demographic, clinical, and paraclinical characteristics relevant to NS and MS. Results Ten patients met our inclusion criteria (mean age 47.7 [±5.9] years; 80% female). Noncaseating granulomas consistent with sarcoidosis were found on biopsy in all cases (lung 7/10, mediastinum 2/10, liver 1/10, spleen 1/10, and skin 1/10). Diagnosis of MS was based on clinical history of MS-like relapses and MRI findings characteristic of demyelination and typical disease evolution during follow-up (average of 7 years). No patient developed features of NS that could be considered a "red flag" against the diagnosis of MS (such as meningeal enhancement, hydrocephalus, and pituitary involvement). All patients were treated with disease-modifying therapy for MS. Conclusions We propose a rational diagnostic approach to patients with sarcoidosis who may have comorbid MS. When the clinical picture is equivocal, the presence of multiple "MS-typical lesions" and the absence of any "NS-typical lesions" on MRI favor diagnosis of MS. Close follow-up is required to ascertain whether clinical and radiologic disease evolution and response to MS therapies conform to the proposed diagnosis of MS.
Collapse
Affiliation(s)
- Charles Tyshkov
- New York University Langone Medical Center (CT, LZR, IK), Multiple Sclerosis Comprehensive Care Center, New York, NY; the Vanderbilt University Medical Center (SP), Neuroimmunology Division, Nashville, TN; the Brigham and Women's Hospital (MJB, DJK, TC), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and the Division of Neuroinflammation and Glial Biology (JMG), UCSF Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Siddharama Pawate
- New York University Langone Medical Center (CT, LZR, IK), Multiple Sclerosis Comprehensive Care Center, New York, NY; the Vanderbilt University Medical Center (SP), Neuroimmunology Division, Nashville, TN; the Brigham and Women's Hospital (MJB, DJK, TC), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and the Division of Neuroinflammation and Glial Biology (JMG), UCSF Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Michael J Bradshaw
- New York University Langone Medical Center (CT, LZR, IK), Multiple Sclerosis Comprehensive Care Center, New York, NY; the Vanderbilt University Medical Center (SP), Neuroimmunology Division, Nashville, TN; the Brigham and Women's Hospital (MJB, DJK, TC), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and the Division of Neuroinflammation and Glial Biology (JMG), UCSF Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Dorlan J Kimbrough
- New York University Langone Medical Center (CT, LZR, IK), Multiple Sclerosis Comprehensive Care Center, New York, NY; the Vanderbilt University Medical Center (SP), Neuroimmunology Division, Nashville, TN; the Brigham and Women's Hospital (MJB, DJK, TC), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and the Division of Neuroinflammation and Glial Biology (JMG), UCSF Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Tanuja Chitnis
- New York University Langone Medical Center (CT, LZR, IK), Multiple Sclerosis Comprehensive Care Center, New York, NY; the Vanderbilt University Medical Center (SP), Neuroimmunology Division, Nashville, TN; the Brigham and Women's Hospital (MJB, DJK, TC), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and the Division of Neuroinflammation and Glial Biology (JMG), UCSF Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Jeffrey M Gelfand
- New York University Langone Medical Center (CT, LZR, IK), Multiple Sclerosis Comprehensive Care Center, New York, NY; the Vanderbilt University Medical Center (SP), Neuroimmunology Division, Nashville, TN; the Brigham and Women's Hospital (MJB, DJK, TC), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and the Division of Neuroinflammation and Glial Biology (JMG), UCSF Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Lana Zhovtis Ryerson
- New York University Langone Medical Center (CT, LZR, IK), Multiple Sclerosis Comprehensive Care Center, New York, NY; the Vanderbilt University Medical Center (SP), Neuroimmunology Division, Nashville, TN; the Brigham and Women's Hospital (MJB, DJK, TC), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and the Division of Neuroinflammation and Glial Biology (JMG), UCSF Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Ilya Kister
- New York University Langone Medical Center (CT, LZR, IK), Multiple Sclerosis Comprehensive Care Center, New York, NY; the Vanderbilt University Medical Center (SP), Neuroimmunology Division, Nashville, TN; the Brigham and Women's Hospital (MJB, DJK, TC), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and the Division of Neuroinflammation and Glial Biology (JMG), UCSF Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| |
Collapse
|
24
|
Wang LH, Huang W, Wei D, Ding DG, Liu YR, Wang JJ, Zhou ZY. Mechanisms of Acupuncture Therapy for Simple Obesity: An Evidence-Based Review of Clinical and Animal Studies on Simple Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:5796381. [PMID: 30854010 PMCID: PMC6378065 DOI: 10.1155/2019/5796381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/25/2018] [Indexed: 12/15/2022]
Abstract
Simple obesity is a worldwide epidemic associated with rapidly growing morbidity and mortality which imposes an enormous burden on individual and public health. As a part of Traditional Chinese Medicine (TCM), acupuncture has shown the positive efficacy in the management of simple obesity. In this article, we comprehensively review the clinical and animal studies that demonstrated the potential mechanisms of acupuncture treatment for simple obesity. Clinical studies suggested that acupuncture regulates endocrine system, promotes digestion, attenuates oxidative stress, and modulates relevant molecules of metabolism in patients of simple obesity. Evidence from laboratory indicated that acupuncture regulates lipid metabolism, modulates inflammatory responses, and promotes white adipose tissue browning. Acupuncture also suppresses appetite through regulating appetite regulatory hormones and the downstream signaling pathway. The evidence from clinical and animal studies indicates that acupuncture induces multifaceted regulation through complex mechanisms and moreover a single factor may not be enough to explain the beneficial effects against simple obesity.
Collapse
Affiliation(s)
- Li-Hua Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Wei Huang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Dan Wei
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - De-Guang Ding
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yi-Ran Liu
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jia-Jie Wang
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhong-Yu Zhou
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
25
|
The interplay of multiple sclerosis and menstrual cycle: Which one affects the other one? Mult Scler Relat Disord 2018; 21:46-50. [DOI: 10.1016/j.msard.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 01/09/2023]
|
26
|
Liguori G, Tafuri S, Miyoshi C, Yanagisawa M, Squillacioti C, De Pasquale V, Mirabella N, Vittoria A, Costagliola A. Localization of orexin B and orexin-2 receptor in the rat epididymis. Acta Histochem 2018; 120:292-297. [PMID: 29496265 DOI: 10.1016/j.acthis.2018.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Abstract
The peptides orexin A (OXA) and orexin B (OXB) derived from the proteolytic cleavage of a common precursor molecule, prepro-orexin, were originally described in the rat hypothalamus. Successively, they have been found in many other brain regions as well as in peripheral organs of mammals and other less evolved animals. The widespread localization of orexins accounts for the multiple activities that they exert in the body, including the regulation of energy homeostasis, feeding, metabolism, sleep and arousal, stress, addiction, and cardiovascular and endocrine functions. Both OXA and OXB peptides bind to two G-coupled receptors, orexin-1 (OX1R) and orexin-2 (OX2R) receptor, though with different binding affinity. Altered expression/activity of orexins and their receptors has been associated with a large number of human diseases. Though at present evidence highlighted a role for orexins and cognate receptors in mammalian reproduction, their central and/or local effects on gonadal functions remain poorly known. Here, we investigated the localization of OXB and OX2R in the rat epididymis. Immunohistochemical staining of sections from caput, corpus and cauda segments of the organ showed intense signals for both OXB and OX2R in the principal cells of the lining epithelium, while no staining was detected in the other cell types. Negative results were obtained from immunohistochemical analysis of hypothalamic and testicular tissues from OX2R knock-out mice (OX2R-/-) and OX1R/OX2R double knock-out (OX1R-/-; OX2R-/-) mice, thus demonstrating the specificity of the rabbit polyclonal anti-OX2R antibody used in our study. On contrary, the same antibody clearly showed the presence of OX2R in sections from hypothalamus and testis of normal mice and rats which are well known to express the receptor. Thus, our results provide the first definite evidence for the immunohistochemical localization of OXB and OX2R in the principal cells of rat epididymis.
Collapse
|
27
|
Piketty ML, Prie D, Sedel F, Bernard D, Hercend C, Chanson P, Souberbielle JC. High-dose biotin therapy leading to false biochemical endocrine profiles: validation of a simple method to overcome biotin interference. ACTA ACUST UNITED AC 2017; 55:817-825. [DOI: 10.1515/cclm-2016-1183] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022]
Abstract
Abstract
Background:
High-dose biotin therapy is beneficial in progressive multiple sclerosis (MS) and is expected to be adopted by a large number of patients. Biotin therapy leads to analytical interference in many immunoassays that utilize streptavidin-biotin capture techniques, yielding skewed results that can mimic various endocrine disorders. We aimed at exploring this interference, to be able to remove biotin and avoid misleading results.
Methods:
We measured free triiodothyronine (fT3), free thyroxine (fT4), thyroid-stimulating hormone (TSH), parathyroid homrone (PTH), 25-hydroxyvitamin D (25OHD), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, C-peptide, cortisol (Roche Diagnostics assays), biotin and its main metabolites (liquid chromatography tandem mass spectrometry) in 23 plasmas from MS patients and healthy volunteers receiving high-dose biotin, and in 39 biotin-unsupplemented patients, before and after a simple procedure (designated N5) designed to remove biotin by means of streptavidin-coated microparticles. We also assayed fT4, TSH and PTH in the 23 high-biotin plasmas using assays not employing streptavidin-biotin binding.
Results:
The biotin concentration ranged from 31.7 to 1160 µg/L in the 23 high-biotin plasmas samples. After the N5 protocol, the biotin concentration was below the detection limit in all but two samples (8.3 and 27.6 μg/L). Most hormones results were abnormal, but normalized after N5. All results with the alternative methods were normal except two slight PTH elevations. In the 39 biotin-unsupplemented patients, the N5 protocol did not affect the results for any of the hormones, apart from an 8.4% decrease in PTH.
Conclusions:
We confirm that most streptavidin-biotin hormone immunoassays are affected by high biotin concentrations, leading to a risk of misdiagnosis. Our simple neutralization method efficiently suppresses biotin interference.
Collapse
|
28
|
Schloss J, Steel A. Medical synopsis: Yoga may assist females with multiple sclerosis by influencing cortisol and adrenocorticotropic hormone (ACTH) levels. ADVANCES IN INTEGRATIVE MEDICINE 2016. [DOI: 10.1016/j.aimed.2017.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|