1
|
Wu D, Tian P, Zhang S, Wang Q, Yu K, Wang Y, Gao Z, Huang L, Li X, Zhai X, Tian M, Huang C, Zhang H, Zhang J. A Surface Electromyography (sEMG) System Applied for Grip Force Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:3818. [PMID: 38931601 PMCID: PMC11207591 DOI: 10.3390/s24123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Muscles play an indispensable role in human life. Surface electromyography (sEMG), as a non-invasive method, is crucial for monitoring muscle status. It is characterized by its real-time, portable nature and is extensively utilized in sports and rehabilitation sciences. This study proposed a wireless acquisition system based on multi-channel sEMG for objective monitoring of grip force. The system consists of an sEMG acquisition module containing four-channel discrete terminals and a host computer receiver module, using Bluetooth wireless transmission. The system is portable, wearable, low-cost, and easy to operate. Leveraging the system, an experiment for grip force prediction was designed, employing the bald eagle search (BES) algorithm to enhance the Random Forest (RF) algorithm. This approach established a grip force prediction model based on dual-channel sEMG signals. As tested, the performance of acquisition terminal proceeded as follows: the gain was up to 1125 times, and the common mode rejection ratio (CMRR) remained high in the sEMG signal band range (96.94 dB (100 Hz), 84.12 dB (500 Hz)), while the performance of the grip force prediction algorithm had an R2 of 0.9215, an MAE of 1.0637, and an MSE of 1.7479. The proposed system demonstrates excellent performance in real-time signal acquisition and grip force prediction, proving to be an effective muscle status monitoring tool for rehabilitation, training, disease condition surveillance and scientific fitness applications.
Collapse
Affiliation(s)
- Dantong Wu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Tian
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
| | - Qihang Wang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
| | - Kang Yu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
| | - Yunfeng Wang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixing Gao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Zhai
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Tian
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiying Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; (D.W.); (P.T.); (S.Z.); (Q.W.); (K.Y.); (Y.W.); (Z.G.); (L.H.); (X.L.); (X.Z.); (M.T.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Vucic S, de Carvalho M, Bashford J, Alix JJP. Contribution of neurophysiology to the diagnosis and monitoring of ALS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:87-118. [PMID: 38802184 DOI: 10.1016/bs.irn.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This chapter describes the role of neurophysiological techniques in diagnosing and monitoring amyotrophic lateral sclerosis (ALS). Despite many advances, electromyography (EMG) remains a keystone investigation from which to build support for a diagnosis of ALS, demonstrating the pathophysiological processes of motor unit hyperexcitability, denervation and reinnervation. We consider development of the different diagnostic criteria and the role of EMG therein. While not formally recognised by established diagnostic criteria, we discuss the pioneering studies that have demonstrated the diagnostic potential of transcranial magnetic stimulation (TMS) of the motor cortex and highlight the growing evidence for TMS in the diagnostic process. Finally, accurately monitoring disease progression is crucial for the successful implementation of clinical trials. Neurophysiological measures of disease state have been incorporated into clinical trials for over 20 years and we review prominent techniques for assessing disease progression.
Collapse
Affiliation(s)
- Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School and Department of Neurology, Concord Repatriation General Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Mamede de Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculty of Medicine, Universidade de Lisboa, Lisboa, Portugal; Department of Neurosciences, CHULN, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - James Bashford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - James J P Alix
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
3
|
Hiyoshi T, Zhao F, Baba R, Hirakawa T, Kuboki R, Suzuki K, Tomimatsu Y, O'Donnell P, Han S, Zach N, Nakashima M. Electrical impedance myography detects dystrophin-related muscle changes in mdx mice. Skelet Muscle 2023; 13:19. [PMID: 37980539 PMCID: PMC10657153 DOI: 10.1186/s13395-023-00331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND The lack of functional dystrophin protein in Duchenne muscular dystrophy (DMD) causes chronic skeletal muscle inflammation and degeneration. Therefore, the restoration of functional dystrophin levels is a fundamental approach for DMD therapy. Electrical impedance myography (EIM) is an emerging tool that provides noninvasive monitoring of muscle conditions and has been suggested as a treatment response biomarker in diverse indications. Although magnetic resonance imaging (MRI) of skeletal muscles has become a standard measurement in clinical trials for DMD, EIM offers distinct advantages, such as portability, user-friendliness, and reduced cost, allowing for remote monitoring of disease progression or response to therapy. To investigate the potential of EIM as a biomarker for DMD, we compared longitudinal EIM data with MRI/histopathological data from an X-linked muscular dystrophy (mdx) mouse model of DMD. In addition, we investigated whether EIM could detect dystrophin-related changes in muscles using antisense-mediated exon skipping in mdx mice. METHODS The MRI data for muscle T2, the magnetic resonance spectroscopy (MRS) data for fat fraction, and three EIM parameters with histopathology were longitudinally obtained from the hindlimb muscles of wild-type (WT) and mdx mice. In the EIM study, a cell-penetrating peptide (Pip9b2) conjugated antisense phosphorodiamidate morpholino oligomer (PPMO), designed to induce exon-skipping and restore functional dystrophin production, was administered intravenously to mdx mice. RESULTS MRI imaging in mdx mice showed higher T2 intensity at 6 weeks of age in hindlimb muscles compared to WT mice, which decreased at ≥ 9 weeks of age. In contrast, EIM reactance began to decline at 12 weeks of age, with peak reduction at 18 weeks of age in mdx mice. This decline was associated with myofiber atrophy and connective tissue infiltration in the skeletal muscles. Repeated dosing of PPMO (10 mg/kg, 4 times every 2 weeks) in mdx mice led to an increase in muscular dystrophin protein and reversed the decrease in EIM reactance. CONCLUSIONS These findings suggest that muscle T2 MRI is sensitive to the early inflammatory response associated with dystrophin deficiency, whereas EIM provides a valuable biomarker for the noninvasive monitoring of subsequent changes in skeletal muscle composition. Furthermore, EIM reactance has the potential to monitor dystrophin-deficient muscle abnormalities and their recovery in response to antisense-mediated exon skipping.
Collapse
Affiliation(s)
- Tetsuaki Hiyoshi
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Fuqiang Zhao
- Center of Excellence for Imaging, Preclinical and Translational Sciences, Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02141, USA
| | - Rina Baba
- Muscular Disease and Neuropathy Unit, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Takeshi Hirakawa
- Muscular Disease and Neuropathy Unit, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Ryosuke Kuboki
- Muscular Disease and Neuropathy Unit, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kazunori Suzuki
- Muscular Disease and Neuropathy Unit, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yoshiro Tomimatsu
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Patricio O'Donnell
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02141, USA
| | - Steve Han
- Neuroscience Therapeutic Area Unit, Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02141, USA
| | - Neta Zach
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02141, USA
| | - Masato Nakashima
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
4
|
Mandeville R, Sanchez B, Johnston B, Bazarek S, Thum JA, Birmingham A, See RHB, Leochico CFD, Kumar V, Dowlatshahi AS, Brown J, Stashuk D, Rutkove SB. A scoping review of current and emerging techniques for evaluation of peripheral nerve health, degeneration, and regeneration: part 1, neurophysiology. J Neural Eng 2023; 20:041001. [PMID: 37279730 DOI: 10.1088/1741-2552/acdbeb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
Peripheral neuroregeneration research and therapeutic options are expanding exponentially. With this expansion comes an increasing need to reliably evaluate and quantify nerve health. Valid and responsive measures that can serve as biomarkers of the nerve status are essential for both clinical and research purposes for diagnosis, longitudinal follow-up, and monitoring the impact of any intervention. Furthermore, such biomarkers can elucidate regeneration mechanisms and open new avenues for research. Without these measures, clinical decision-making falls short, and research becomes more costly, time-consuming, and sometimes infeasible. As a companion to Part 2, which is focused on non-invasive imaging, Part 1 of this two-part scoping review systematically identifies and critically examines many current and emerging neurophysiological techniques that have the potential to evaluate peripheral nerve health, particularly from the perspective of regenerative therapies and research.
Collapse
Affiliation(s)
- Ross Mandeville
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Benjamin Sanchez
- Department Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Benjamin Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Stanley Bazarek
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Jasmine A Thum
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Austin Birmingham
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Reiner Henson B See
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Carl Froilan D Leochico
- Department of Physical Medicine and Rehabilitation, St. Luke's Medical Center, Global City, Taguig, The Philippines
- Department of Rehabilitation Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, The Philippines
| | - Viksit Kumar
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Arriyan S Dowlatshahi
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Justin Brown
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Daniel Stashuk
- Department of Systems Design Engineering, University of Waterloo, Ontario N2L 3G1, Canada
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| |
Collapse
|
5
|
Ha GB, Steinberg BA, Freedman R, Bayés-Genís A, Sanchez B. Safety evaluation of smart scales, smart watches, and smart rings with bioimpedance technology shows evidence of potential interference in cardiac implantable electronic devices. Heart Rhythm 2023; 20:561-571. [PMID: 36997272 DOI: 10.1016/j.hrthm.2022.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 02/24/2023]
Abstract
BACKGROUND Smart scales, smart watches, and smart rings with bioimpedance technology may create interference in patients with cardiac implantable electronic devices (CIEDs). OBJECTIVES The purpose of this study was to determine interference at CIEDs with simulations and benchtop testing, and to compare the results with maximum values defined in the ISO 14117 electromagnetic interference standard for these devices. METHODS The interference at pacing electrodes was determined by simulations on a male and a female computable model. A benchtop evaluation of representative CIEDs from 3 different manufacturers as specified in the ISO 14117 standard also was performed. RESULTS Simulations showed evidence of interference with voltage values exceeding threshold values defined in the ISO 14117 standard. The level of interference varied with the frequency and amplitude of the bioimpedance signal, and between male and female models. The level of interference generated with smart scale and smart rings simulations was lower than with smart watches. Across device manufacturers, generators demonstrated susceptibility to oversensing and pacing inhibition at different signal amplitudes and frequencies. CONCLUSIONS This study evaluated the safety of smart scales, smart watches, and smart rings with bioimpedance technology via simulation and testing. Our results indicate that these consumer electronic devices could interfere in patients with CIEDs. The present findings do not recommend the use of these devices in this population due to potential interference.
Collapse
Affiliation(s)
- Gia-Bao Ha
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah
| | - Benjamin A Steinberg
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Roger Freedman
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Antoni Bayés-Genís
- Department of Cardiology, Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Autonomous University of Barcelona, Barcelona, Spain
| | - Benjamin Sanchez
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
6
|
Nescolarde L, Talluri A, Yanguas J, Lukaski H. Phase angle in localized bioimpedance measurements to assess and monitor muscle injury. Rev Endocr Metab Disord 2023; 24:415-428. [PMID: 36847994 PMCID: PMC10140135 DOI: 10.1007/s11154-023-09790-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 02/28/2023]
Abstract
Localized bioimpedance (L-BIA) measurements are an innovative method to non-invasively identify structural derangement of soft tissues, principally muscles, and fluid accumulation in response to traumatic injury. This review provides unique L-BIA data demonstrating significant relative differences between injured and contralateral non-injured regions of interest (ROI) associated with soft tissue injury. One key finding is the specific and sensitive role of reactance (Xc), measured at 50 kHz with a phase-sensitive BI instrument, to identify objective degrees of muscle injury, localized structural damage and fluid accretion, determined using magnetic resonance imaging. The predominant effect of Xc as an indicator of severity of muscle injury is highlighted in phase angle (PhA) measurements. Novel experimental models utilizing cooking-induced cell disruption, saline injection into meat specimens, and measurements of changing amounts of cells in a constant volume provide empirical evidence of the physiological correlates of series Xc as cells in water. Findings of strong associations of capacitance, computed from parallel Xc (XCP), with whole body counting of 40-potassium and resting metabolic rate support the hypothesis that parallel Xc is a biomarker of body cell mass. These observations provide a theoretical and practical basis for a significant role of Xc, and hence PhA, to identify objectively graded muscle injury and to reliably monitor progress of treatment and return of muscle function.
Collapse
Affiliation(s)
- Lexa Nescolarde
- Department of Electronic Engineering, Universitat Politècnica de Catalunya, c/ Jordi Girona 1-3, Edifici C4, 08034, Barcelona, Spain.
| | | | - Javier Yanguas
- Futbol Club Barcelona, Ciutat Esportiva Joan Gamper, Av. c/ Onze de Setembre s/n, 08790, Sant Joan Despí, Barcelona, Spain
| | - Henry Lukaski
- Department of Kinesiology and Public Health Education, University of North Dakota, Grand Forks, ND, 58202, USA
| |
Collapse
|
7
|
Nagy JA, Semple C, Lo P, Rutkove SB. Assessing the therapeutic impact of resveratrol in ALS SOD1-G93A mice with electrical impedance myography. Front Neurol 2022; 13:1059743. [PMID: 36619925 PMCID: PMC9813785 DOI: 10.3389/fneur.2022.1059743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
To aid in the identification of new treatments for amyotrophic lateral sclerosis (ALS), convenient biomarkers are needed to effectively and uniformly measure drug efficacy. To this end, we assessed the effects of the nutraceutical resveratrol (RSV) on disease onset and overall survival in SOD1-G93A (ALS) mice and compared several standard biomarkers including body mass, motor score (MS), paw grip endurance (PGE), and compound motor action potential (CMAP) amplitude, with the technique of electrical impedance myography (EIM) to follow disease progression. Eighteen ALS mice (nine females, nine males) received RSV in the chow (dose: 120 mg/kg/day) starting at 8 weeks of age; 19 ALS mice (nine females, 10 males) received normal chow; 10 wild type (WT) littermates (five females, five males) fed standard chow served as controls. Biomarker assessments were performed weekly beginning at 8 weeks. No differences in either disease onset or overall survival were found between RSV-treated and untreated ALS mice of either sex; moreover, all biomarkers failed to identify any beneficial effect of RSV when administered at this dose. Therefore, for the comparative evaluation of the ability of the various biomarkers to detect the earliest symptoms of disease, data from all animals (i.e., RSV-treated and untreated ALS mice of both sexes) were combined. Of the biomarkers tested, EIM impedance values, i.e., surface EIM longitudinal phase at 50 kHz (LP 50 kHz), and CMAP amplitude showed the earliest significant changes from baseline. LP 50 kHz values showed a rate of decline equivalent to that of CMAP amplitude and correlated with both PGE and CMAP amplitude [Spearman rho = 0.806 (p = 0.004) and 0.627 (p = 0.044), respectively]. Consistent with previous work, these findings indicate that surface EIM can serve as an effective non-invasive biomarker for preclinical drug testing in rodent models of ALS.
Collapse
|
8
|
Farid A, Golden E, Robicheau S, Hu A, Cheung K, Yu PB, Rutkove SB, Upadhyay J. Diminished muscle integrity in patients with fibrodysplasia ossificans progressiva assessed with at-home electrical impedance myography. Sci Rep 2022; 12:20908. [PMID: 36463382 PMCID: PMC9719538 DOI: 10.1038/s41598-022-25610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare disorder involving skeletal dysplasia and heterotopic ossification (HO) of muscle and connective tissue. We aimed to define a novel biomarker in FOP that enables reliable assessment of musculoskeletal tissue integrity. Considering logistical difficulties that FOP patients often face, our goal was to identify an at-home biomarker technique. Electrical impedance myography (EIM) is a non-invasive, portable method that can inform on muscle health. 15 FOP patients (age 10-52) and 13 healthy controls were assessed. Using EIM, multiple muscle groups were characterized per participant in a 45-min period. The Cumulative Analogue Joint Involvement Scale (CAJIS) was implemented to determine mobility burden severity. We additionally evaluated physical activity levels via a Patient-Reported Outcomes Measurement Information System (PROMIS)-based questionnaire. Relative to controls, FOP patients demonstrated significantly lower regional and whole-body phase values at 50 kHz and 100 kHz, indicating more diseased muscle tissue. Lower whole-body phase and reactance values, and higher resistance values, were associated with greater FOP burden (CAJIS score range: 4-30) and lower physical activity levels at 50 kHz and 100 kHz. This study points to the potential utility of EIM as a clinical biomarker tool capable of characterizing muscle integrity in FOP.
Collapse
Affiliation(s)
- Alexander Farid
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Emma Golden
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | | | - Alice Hu
- grid.492584.6Myolex Inc, Boston, MA USA
| | - Kin Cheung
- BioSAS Consulting, Inc., Wellesley, MA USA
| | - Paul B. Yu
- grid.38142.3c000000041936754XDivision of Cardiology, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Seward B. Rutkove
- grid.239395.70000 0000 9011 8547Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - Jaymin Upadhyay
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
9
|
Pîslaru-Dănescu L, Zărnescu GC, Telipan G, Stoica V. Design and Manufacturing of Equipment for Investigation of Low Frequency Bioimpedance. MICROMACHINES 2022; 13:1858. [PMID: 36363879 PMCID: PMC9698562 DOI: 10.3390/mi13111858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to highlight a method of making equipment for the investigation of low frequency bioimpedance. A constant current with an average value of I = 100 µA is injected into the human body via means of current injection electrodes, and the biological signal is taken from the electrodes of electric potential charged with the biopotentials generated by the human body. The resulting voltage, ΔU is processed by the electronic conditioning system. The mathematical model of the four-electrode system in contact with the skin, and considering a target organ, was simplified to a single equivalent impedance. The capacitive filter low passes down from the differential input of the first instrumentation amplifier together with the isolated capacitive barrier integrated in the precision isolated secondary amplifier and maintains the biological signal taken from the electrodes charged with the undistorted biopotentials generated by the human body. Mass loops are avoided, and any electric shocks or electrostatic discharges are prevented. In addition, for small amplitudes of the biological signal, electromagnetic interferences of below 100 Hz of the power supply network were eliminated by using an active fourth-order Bessel filtering module. The measurements performed for the low frequency of f = 100 Hz on the volunteers showed for the investigated organs that the bioelectrical resistivities vary from 90 Ωcm up to 450 Ωcm, and that these are in agreement with other published and disseminated results for each body zone.
Collapse
|
10
|
Rutkove SB, Le M, Ruehr SA, Nagy JA, Semple C, Sanchez B. Design and pilot testing of a 26-gauge impedance-electromyography needle in wild-type and ALS mice. Muscle Nerve 2022; 65:702-708. [PMID: 35383969 DOI: 10.1002/mus.27551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION/AIMS Needle impedance-electromyography (iEMG) is a diagnostic modality currently under development that combines intramuscular electrical impedance with concentric electromyography (EMG) in a single needle. We designed, manufactured, and tested a prototype iEMG needle in a cohort of wild-type (WT) and SOD1G93A amyotrophic lateral sclerosis (ALS) mice to assess its ability to record impedance and EMG data. METHODS A new six-electrode, 26-gauge, iEMG needle was designed, manufactured and tested. Quantitative impedance and qualitative "gestalt" EMG were performed sequentially on bilateral quadriceps of 16-wk-old SOD1G93A ALS (N = 6) and WT (N = 6) mice by connecting the needle first to an impedance analyzer (with the animal at rest) and then to a standard EMG system (with the animal fully under anesthesia to measure spontaneous activity and briefly during awakening to measure voluntary activity). The needle remained in the muscle throughout the measurement period. RESULTS EMG data were qualitatively similar to that observed with a commercially available concentric EMG needle; fibrillation potentials were observed in 84% of the ALS mice and none of the WT mice; motor unit potentials were also readily identified. Impedance data revealed significant differences in resistance, reactance, and phase values between the two groups, with ALS animals having reduced reactance and resistance values. DISCUSSION This work demonstrates the feasibility of a single iEMG needle conforming to standard dimensions of size and function. Further progress of iEMG technology for enhanced neuromuscular diagnosis and quantification of disease status is currently in development.
Collapse
Affiliation(s)
- Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mai Le
- Haystack Diagnostics, Inc, Lowell, Massachusetts, USA
| | | | - Janice A Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Carson Semple
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin Sanchez
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Critcher S, Freeborn TJ. System Performance and User Feedback Regarding Wearable Bioimpedance System for Multi-Site Knee Tissue Monitoring: Free-Living Pilot Study With Healthy Adults. FRONTIERS IN ELECTRONICS 2022; 3. [PMID: 37096020 PMCID: PMC10122869 DOI: 10.3389/felec.2022.824981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Knee-focused wearable devices have the potential to support personalized rehabilitation therapies by monitoring localized tissue alterations related to activities that reduce functional symptoms and pain. However, supporting these applications requires reported data to be reliable and accurate which can be challenging in the unsupervised free-living conditions that wearable devices are deployed. This pilot study has assessed a knee-focused wearable sensor system to quantify 1) system performance (operation, rates of data artifacts, environment impacts) to estimate realistic targets for reliable data with this system and 2) user experiences (comfort, fit, usability) to help inform future designs to increase usability and adoption of knee-focused wearables. Study data was collected from five healthy adult participants over 2 days, with 84.5 and 35.9% of artifact free data for longitudinal and transverse electrode configurations. Small to moderate positive correlations were also identified between changes in resistance, temperature, and humidity with respect to acceleration to highlight how this system can be used to explore relationships between knee tissues and environmental/activity context.
Collapse
|
12
|
Altered electrical properties in skeletal muscle of mice with glycogen storage disease type II. Sci Rep 2022; 12:5327. [PMID: 35351934 PMCID: PMC8964715 DOI: 10.1038/s41598-022-09328-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/14/2022] [Indexed: 01/15/2023] Open
Abstract
Electrical impedance methods, including electrical impedance myography, are increasingly being used as biomarkers of muscle health since they measure passive electrical properties of muscle that alter in disease. One disorder, Pompe Disease (Glycogen storage disease type II (GSDII)), remains relatively unstudied. This disease is marked by dramatic accumulation of intracellular myofiber glycogen. Here we assessed the electrical properties of skeletal muscle in a model of GSDII, the Pompe6neo/6neo (Pompe) mouse. Ex vivo impedance measurements of gastrocnemius (GA) were obtained using a dielectric measuring cell in 30-week-old female Pompe (N = 10) and WT (N = 10) mice. Longitudinal and transverse conductivity, σ, and the relative permittivity, εr, and Cole–Cole complex resistivity parameters at 0 Hz and infinite frequency, ρo and ρ∞, respectively, and the intracellular resistivity, ρintracellular were determined from the impedance data. Glycogen content (GC) was visualized histologically and quantified biochemically. At frequencies > 1 MHz, Pompe mice demonstrated significantly decreased longitudinal and transverse conductivity, increased Cole–Cole parameters, ρo and ρo-ρ∞, and decreased ρintracellular. Changes in longitudinal conductivity and ρintracellular correlated with increased GC in Pompe animals. Ex vivo high frequency impedance measures are sensitive to alterations in intracellular myofiber features considered characteristic of GSDII, making them potentially useful measures of disease status.
Collapse
|
13
|
Ngo C, Munoz C, Lueken M, Hülkenberg A, Bollheimer C, Briko A, Kobelev A, Shchukin S, Leonhardt S. A Wearable, Multi-Frequency Device to Measure Muscle Activity Combining Simultaneous Electromyography and Electrical Impedance Myography. SENSORS 2022; 22:s22051941. [PMID: 35271088 PMCID: PMC8914780 DOI: 10.3390/s22051941] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 01/24/2023]
Abstract
The detection of muscle contraction and the estimation of muscle force are essential tasks in robot-assisted rehabilitation systems. The most commonly used method to investigate muscle contraction is surface electromyography (EMG), which, however, shows considerable disadvantages in predicting the muscle force, since unpredictable factors may influence the detected force but not necessarily the EMG data. Electrical impedance myography (EIM) investigates the change in electrical impedance during muscle activities and is another promising technique to investigate muscle functions. This paper introduces the design, development, and evaluation of a device that performs EMG and EIM simultaneously for more robust measurement of muscle conditions subject to artifacts. The device is light, wearable, and wireless and has a modular design, in which the EMG, EIM, micro-controller, and communication modules are stacked and interconnected through connectors. As a result, the EIM module measures the bioimpedance between 20 and 200 Ω with an error of less than 5% at 140 SPS. The settling time during the calibration phase of this module is less than 1000 ms. The EMG module captures the spectrum of the EMG signal between 20–150 Hz at 1 kSPS with an SNR of 67 dB. The micro-controller and communication module builds an ARM-Cortex M3 micro-controller which reads and transfers the captured data every 1 ms over RF (868 Mhz) with a baud rate of 500 kbps to a receptor connected to a PC. Preliminary measurements on a volunteer during leg extension, walking, and sit-to-stand showed the potential of the system to investigate muscle function by combining simultaneous EMG and EIM.
Collapse
Affiliation(s)
- Chuong Ngo
- Medical Information Technology, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany; (C.M.); (M.L.); (A.H.); (S.L.)
- Correspondence: ; Tel.: +49-241-8023513
| | - Carlos Munoz
- Medical Information Technology, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany; (C.M.); (M.L.); (A.H.); (S.L.)
| | - Markus Lueken
- Medical Information Technology, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany; (C.M.); (M.L.); (A.H.); (S.L.)
| | - Alfred Hülkenberg
- Medical Information Technology, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany; (C.M.); (M.L.); (A.H.); (S.L.)
| | | | - Andrey Briko
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, 105005 Moscow, Russia; (A.B.); (A.K.); (S.S.)
| | - Alexander Kobelev
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, 105005 Moscow, Russia; (A.B.); (A.K.); (S.S.)
| | - Sergey Shchukin
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, 105005 Moscow, Russia; (A.B.); (A.K.); (S.S.)
| | - Steffen Leonhardt
- Medical Information Technology, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany; (C.M.); (M.L.); (A.H.); (S.L.)
| |
Collapse
|
14
|
Wang H, Zheng J, Yu Q, Fan Z, Lo WLA, Li L, Wang C. Electrical Properties of Lumbar Paraspinal Muscles in Young Adults With and Without Chronic Low Back Pain Based on Electrical Impedance Myography: A Cross-Sectional Study. Front Neurol 2022; 12:789589. [PMID: 35250793 PMCID: PMC8891446 DOI: 10.3389/fneur.2021.789589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Background Lumbar paraspinal muscle (LPM) is important in spinal stabilization in patients with chronic low back pain (CLBP). However, the electrical properties of LPM in patients with CLBP remain unclear. Electrical impedance myography (EIM) is a novel and non-invasive technique that provides a simple quantitative evaluation of electrical properties of the LPM. Purpose This study aimed to apply EIM to assess the electrical properties of the LPM between patients with CLBP and healthy control (HC). Methods Thirty participants (15 CLBP participants; 15 healthy controls) were enrolled in the study. Participants in the CLBP group were asked to complete the visual analog scale (VAS), Oswestry Disability Index (ODI), and Roland–Morris Disability Questionnaire (RDQ) to assess the pain intensity and disability in daily life. Independent sample t-tests were adopted to analyze the basic characteristics between the two groups. At 5, 50, 100, and 200 kHz current frequencies, the electrical properties were measured on each side of the LPM. The EIM parameters of resistance (R), reactance (X), phase angle (PA), and Z value were analyzed by one-way analysis of variance (ANOVA), with age as covariate. Spearman's rank correlation coefficient analysis was applied to explore the relationships between the questionnaires and the EIM parameters. Results The R and Z values of bilateral LPM in the CLBP group were significantly larger than those in the HC group; the PA decreased and the X did not change at these four tested current frequencies. At 5 kHz, Z and R on the right side were non-significantly different between patients and HCs. Correlation analysis showed that at 50 kHz, ODI and RDQ scores correlated negatively with the R of the bilateral LPM (r = 0.523, r = 0.581, respectively; p < 0.05). RDQ scores correlated positively with the PA of the right LPM (r = 0.521, p < 0.05). Conclusion The electrical properties of the bilateral LPM differed between CLBP participants and healthy individuals, regardless of the different frequencies used. These altered electrical properties of the LPM in the patients with CLBP correlated to some extent with disability in daily life.
Collapse
Affiliation(s)
- Hongjiang Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaxuan Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuhua Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziyan Fan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
- *Correspondence: Le Li
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Chuhuai Wang
| |
Collapse
|
15
|
Bioelectrical Impedance Vector and Creatine Phosphokinase Changes Induced by a High-Intensity Training Session in Rink Hockey Players. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study aimed to analyze anthropometric and whole-body/muscle-localized bioelectrical impedance vector analysis (BIVA) adaptations and their relation to creatine kinase (CK) as a biomarker of muscle damage in a group of seven male players in the maximum category of professional rink hockey. There were three checkpoint assessments in relation to a high-intensity training session: pre-session (PRE), post-session (POST), and 24 h-post-session (POST24H). The resistance, reactance, and impedance module were adjusted by height (R/h, Xc/h, and Z/h, respectively). The Wilcoxon signed-rank test was used to compare the data at baseline and follow-up, while Spearman correlation was used to explore the relationship between CK and the rest of the parameters. The results registered a decrease in body mass at POST (p = 0.03) and a reestablishment at POST24H (p = 0.02). Whole-body BIVA registered a significant increase in R/h between PRE–to–POST (p = 0.02) and returned to baseline values at POST24H (p = 0.02), which was expected since this parameter is related to hydration processes. Muscle-localized BIVA in the rectus femoris muscle showed an increase in both Xc/h and phase angle in POST (p = 0.04 and p = 0.03, respectively) and a decrease in Xc/h at POST24H (p = 0.02). CK correlated with R/h in the rectus femoris at all the checkpoints (PRE–to–POST: r = 0.75, p = 0.05; PRE–to–POST24H: r = 0.81, p = 0.03; POST–to–POST24H: r = 0.82, p = 0.02). Our results indicate that BIVA is a sensitive methodology to assess general and muscle-localized hydration induced by a high-intensity training session in rink hockey players. A correlation between BIVA and CK was also reported.
Collapse
|
16
|
Briko A, Kapravchuk V, Kobelev A, Hammoud A, Leonhardt S, Ngo C, Gulyaev Y, Shchukin S. A Way of Bionic Control Based on EI, EMG, and FMG Signals. SENSORS 2021; 22:s22010152. [PMID: 35009694 PMCID: PMC8747574 DOI: 10.3390/s22010152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 01/24/2023]
Abstract
Creating highly functional prosthetic, orthotic, and rehabilitation devices is a socially relevant scientific and engineering task. Currently, certain constraints hamper the development of such devices. The primary constraint is the lack of an intuitive and reliable control interface working between the organism and the actuator. The critical point in developing these devices and systems is determining the type and parameters of movements based on control signals recorded on an extremity. In the study, we investigate the simultaneous acquisition of electric impedance (EI), electromyography (EMG), and force myography (FMG) signals during basic wrist movements: grasping, flexion/extension, and rotation. For investigation, a laboratory instrumentation and software test setup were made for registering signals and collecting data. The analysis of the acquired signals revealed that the EI signals in conjunction with the analysis of EMG and FMG signals could potentially be highly informative in anthropomorphic control systems. The study results confirm that the comprehensive real-time analysis of EI, EMG, and FMG signals potentially allows implementing the method of anthropomorphic and proportional control with an acceptable delay.
Collapse
Affiliation(s)
- Andrey Briko
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.K.); (A.K.); (A.H.); (S.S.)
- Correspondence: ; Tel.: +7-903-261-60-14
| | - Vladislava Kapravchuk
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.K.); (A.K.); (A.H.); (S.S.)
| | - Alexander Kobelev
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.K.); (A.K.); (A.H.); (S.S.)
| | - Ahmad Hammoud
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.K.); (A.K.); (A.H.); (S.S.)
| | - Steffen Leonhardt
- Medical Information Technology, RWTH Aachen University, 52074 Aachen, Germany; (S.L.); (C.N.)
| | - Chuong Ngo
- Medical Information Technology, RWTH Aachen University, 52074 Aachen, Germany; (S.L.); (C.N.)
| | - Yury Gulyaev
- Kotelnikov Institute of Radioengineering and Electronics (IRE) of Russian Academy of Sciences, 125009 Moscow, Russia;
| | - Sergey Shchukin
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.K.); (A.K.); (A.H.); (S.S.)
| |
Collapse
|
17
|
Pandeya SR, Nagy JA, Riveros D, Semple C, Taylor RS, Sanchez B, Rutkove SB. Relationships between in vivo surface and ex vivo electrical impedance myography measurements in three different neuromuscular disorder mouse models. PLoS One 2021; 16:e0259071. [PMID: 34714853 PMCID: PMC8555802 DOI: 10.1371/journal.pone.0259071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Electrical impedance myography (EIM) using surface techniques has shown promise as a means of diagnosing and tracking disorders affecting muscle and assessing treatment efficacy. However, the relationship between such surface-obtained impedance values and pure muscle impedance values has not been established. Here we studied three groups of diseased and wild-type (WT) animals, including a Duchenne muscular dystrophy model (the D2-mdx mouse), an amyotrophic lateral sclerosis (ALS) model (the SOD1 G93A mouse), and a model of fat-related atrophy (the db/db diabetic obese mouse), performing hind limb measurements using a standard surface array and ex vivo measurements on freshly excised gastrocnemius muscle. A total of 101 animals (23 D2-mdx, 43 ALS mice, 12 db/db mice, and corresponding 30 WT mice) were studied with EIM across a frequency range of 8 kHz to 1 MHz. For both D2-mdx and ALS models, moderate strength correlations (Spearman rho values generally ranging from 0.3-0.7, depending on the impedance parameter (i.e., resistance, reactance and phase) were obtained. In these groups of animals, there was an offset in frequency with impedance values obtained at higher surface frequencies correlating more strongly to impedance values obtained at lower ex vivo frequencies. For the db/db model, correlations were comparatively weaker and strongest at very high and very low frequencies. When combining impedance data from all three disease models together, moderate correlations persisted (with maximal Spearman rho values of 0.45). These data support that surface EIM data reflect ex vivo muscle tissue EIM values to a moderate degree across several different diseases, with the highest correlations occurring in the 10-200 kHz frequency range. Understanding these relationships will prove useful for future applications of the technique of EIM in the assessment of neuromuscular disorders.
Collapse
Affiliation(s)
- Sarbesh R. Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Janice A. Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Daniela Riveros
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Carson Semple
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Rebecca S. Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Benjamin Sanchez
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Cebrián-Ponce Á, Irurtia A, Carrasco-Marginet M, Saco-Ledo G, Girabent-Farrés M, Castizo-Olier J. Electrical Impedance Myography in Health and Physical Exercise: A Systematic Review and Future Perspectives. Front Physiol 2021; 12:740877. [PMID: 34594243 PMCID: PMC8476966 DOI: 10.3389/fphys.2021.740877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Electrical impedance myography (EIM) is a non-invasive method that provides information about muscle health and changes that occur within it. EIM is based on the analysis of three impedance variables: resistance, reactance, and the phase angle. This systematic review of the literature provides a deeper insight into the scope and range of applications of EIM in health and physical exercise. The main goal of this work was to systematically review the studies on the applications of EIM in health and physical exercise in order to summarize the current knowledge on this method and outline future perspectives in this growing area, including a proposal for a research agenda. Furthermore, some basic assessment principles are provided. Methods: Systematic literature searches on PubMed, Scopus, SPORTDiscus and Web of Science up to September 2020 were conducted on any empirical investigations using localized bioimpedance devices to perform EIM within health and physical exercise contexts. The search included healthy individuals, elite soccer players with skeletal muscle injury, and subjects with primary sarcopenia. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist was used to develop the systematic review protocol. The quality and risk of bias of the studies included were assessed with the AQUA tool. Results: Nineteen eligible original articles were included in this review, which were separated into three tables according to the nature of the study. The first table includes six studies on the bioelectrical characterization of muscle. The second table includes five studies analyzing muscle changes in injured elite soccer players. The third table includes studies on the short-, medium-, and long-term bioelectrical adaptations to physical exercise. Conclusions: EIM has been used for the evaluation of the muscle condition in the clinical field over the last few years, especially in different neuromuscular diseases. It can also play an important role in other contexts as an alternative to complex and expensive methods such as magnetic resonance imaging. However, further research is needed. The main step in establishing EIM as a valid tool in the scientific field is to standardize the protocol for performing impedance assessments.
Collapse
Affiliation(s)
- Álex Cebrián-Ponce
- Barcelona Sports Sciences Research Group, Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Alfredo Irurtia
- Barcelona Sports Sciences Research Group, Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Carrasco-Marginet
- Barcelona Sports Sciences Research Group, Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Gonzalo Saco-Ledo
- Bioenergy and Motion Analysis Laboratory, National Research Center on Human Evolution (CENIEH), Burgos, Spain
| | | | | |
Collapse
|
19
|
Pandeya SR, Nagy JA, Riveros D, Semple C, Taylor RS, Mortreux M, Sanchez B, Kapur K, Rutkove SB. Estimating myofiber cross-sectional area and connective tissue deposition with electrical impedance myography: A study in D2-mdx mice. Muscle Nerve 2021; 63:941-950. [PMID: 33759456 PMCID: PMC8883327 DOI: 10.1002/mus.27240] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/19/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Surface electrical impedance myography (sEIM) has the potential for providing information on muscle composition and structure noninvasively. We sought to evaluate its use to predict myofiber size and connective tissue deposition in the D2-mdx model of Duchenne muscular dystrophy (DMD). METHODS We applied a prediction algorithm, the least absolute shrinkage and selection operator, to select specific EIM measurements obtained with surface and ex vivo EIM data from D2-mdx and wild-type (WT) mice (analyzed together or separately). We assessed myofiber cross-sectional area histologically and hydroxyproline (HP), a surrogate measure for connective tissue content, biochemically. RESULTS Using WT and D2-mdx impedance values together in the algorithm, sEIM gave average root-mean-square errors (RMSEs) of 26.6% for CSA and 45.8% for HP, which translate into mean errors of ±363 μm2 for a mean CSA of 1365 μm2 and of ±1.44 μg HP/mg muscle for a mean HP content of 3.15 μg HP/mg muscle. Stronger predictions were obtained by analyzing sEIM data from D2-mdx animals alone (RMSEs of 15.3% for CSA and 34.1% for HP content). Predictions made using ex vivo EIM data from D2-mdx animals alone were nearly equivalent to those obtained with sEIM data (RMSE of 16.59% for CSA), and slightly more accurate for HP (RMSE of 26.7%). DISCUSSION Surface EIM combined with a predictive algorithm can provide estimates of muscle pathology comparable to values obtained using ex vivo EIM, and can be used as a surrogate measure of disease severity and progression and response to therapy.
Collapse
Affiliation(s)
- Sarbesh R. Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Janice A. Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniela Riveros
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Carson Semple
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Rebecca S. Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Sanchez
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah
| | - Kush Kapur
- Department of Neurology, Boston Childrenʼs Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Luo X, Sanchez B. In silicomuscle volume conduction study validates in vivomeasurement of tongue volume conduction properties using a user tongue array depressor. Physiol Meas 2021; 42. [PMID: 33690188 DOI: 10.1088/1361-6579/abed36] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/09/2021] [Indexed: 01/24/2023]
Abstract
Objective.Electrophysiological assessment of the tongue volume conduction properties (VCPs) using our novel multi-electrode user tongue array (UTA) depressor has the promise to serve as a biomarker in patients with bulbar dysfunction. However, whetherin vivodata collected using the UTA depressor accurately reflect the tongue VCPs remains unknown.Approach.To address this question, we performedin silicosimulations of the depressor with an accurate anatomical tongue finite element model (FEM) using healthy human tongue VCP values, namely the conductivity and the relative permittivity, in the sagittal plane (i.e. longitudinal direction) and axial and coronal planes (i.e. transverse directions). We then established the relationship between tongue VCP values simulated from our model to measured human data.Main results.Experimental versus simulated tongue VCP values including their spatial variation were in good agreement with differences well within the variability of the experimental results. Tongue FEM simulations corroborate the feasibility of our UTA depressor in assessing tongue VCPs.Significance.The UTA depressor is a new non-invasive and safe tool to measure tongue VCPs. These electrical properties reflect the tongue's ionic composition and cellular membrane integrity and could serve as a novel electrophysiological biomarker in neurological disorders affecting the tongue.
Collapse
Affiliation(s)
- Xuesong Luo
- Sanchez Research Lab, Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112-9206, United States of America
| | - Benjamin Sanchez
- Sanchez Research Lab, Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112-9206, United States of America
| |
Collapse
|
21
|
Localized Bioimpedance Measurements with the MAX3000x Integrated Circuit: Characterization and Demonstration. SENSORS 2021; 21:s21093013. [PMID: 33923037 PMCID: PMC8123364 DOI: 10.3390/s21093013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 01/24/2023]
Abstract
The commercial availability of integrated circuits with bioimpedance sensing functionality is advancing the opportunity for practical wearable systems that monitor the electrical impedance properties of tissues to identify physiological features in support of health-focused applications. This technical note characterizes the performance of the MAX3000x (resistance/reactance accuracy, power modes, filtering, gains) and is available for on-board processing (electrode detection) for localized bioimpedance measurements. Measurements of discrete impedances that are representative of localized tissue bioimpedance support that this IC has a relative error of <10% for the resistance component of complex impedance measurements, but can also measure relative alterations in the 250 mΩ range. The application of the MAX3000x for monitoring localized bicep tissues during activity is presented to highlight its functionality, as well as its limitations, for multi-frequency measurements. This device is a very-small-form-factor single-chip solution for measuring multi-frequency bioimpedance with significant on-board processing with potential for wearable applications.
Collapse
|
22
|
Cardoner MMDM, Kwon H, Pulido HVG, Nagy J, Rutkove S, Sanchez B. Modeling and Reproducibility of Twin Concentric Electrical Impedance Myography. IEEE Trans Biomed Eng 2021; 68:3068-3077. [PMID: 33661730 DOI: 10.1109/tbme.2021.3063724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Electrical impedance myography (EIM) is a recent technology to assess muscle health. As of today, the clinical application of EIM has been applied only to evaluate muscle condition using non-invasive surface electrodes in contact with the skin; however, intermediate tissues at the recording site introduce confounding artifacts which reduce the technique's performance as a biomarker of neuromuscular disorders (NMD). Here, we develop and test in humans a new approach using two concentric needles for intramuscular EIM recordings. METHODS First, we study the recording characteristics of dual concentric needle EIM via analytical models and finite element models (FEMs). Next, the validity of the models is verified by performing experiments on saline and agar phantoms. Finally, 8 subjects with various neuromuscular diseases were studied measuring tibialis anterior, biceps, deltoid, adductor pollicis brevis, first dorsal interosseous and flexor carpi radialis muscles. RESULTS Analytical and FEM simulations are in good agreement with a maximum experimental discrepancy 8% and 9% using gauge needles 26 and 30, respectively. The inter-session reproducibility, as measured by the intraclass correlation coefficients for all muscles studied, was 0.926, which is comparable or exceeds the reproducibility of other well-established electrophysiological tests to assess muscle health. CONCLUSION The reproducibility of the technique support future clinical validation of needle EIM for assessment of disease status, either as part of standard patient care or as biomarker measure in clinical trials. SIGNIFICANCE Needle EIM has the potential of becoming a valuable diagnostic tool to evaluate NMD in adult population.
Collapse
|
23
|
Pandeya SR, Nagy JA, Riveros D, Semple C, Taylor RS, Mortreux M, Sanchez B, Kapur K, Rutkove SB. Predicting myofiber cross-sectional area and triglyceride content with electrical impedance myography: A study in db/db mice. Muscle Nerve 2021; 63:127-140. [PMID: 33063867 PMCID: PMC8891989 DOI: 10.1002/mus.27095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/02/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Electrical impedance myography (EIM) provides insight into muscle composition and structure. We sought to evaluate its use in a mouse obesity model characterized by myofiber atrophy. METHODS We applied a prediction algorithm, ie, the least absolute shrinkage and selection operator (LASSO), to surface, needle array, and ex vivo EIM data from db/db and wild-type mice and assessed myofiber cross-sectional area (CSA) histologically and triglyceride (TG) content biochemically. RESULTS EIM data from all three modalities provided acceptable predictions of myofiber CSA with average root mean square error (RMSE) of 15% in CSA (ie, ±209 μm2 for a mean CSA of 1439 μm2 ) and TG content with RMSE of 30% in TG content (ie, ±7.3 nmol TG/mg muscle for a mean TG content of 25.4 nmol TG/mg muscle). CONCLUSIONS EIM combined with a predictive algorithm provides reasonable estimates of myofiber CSA and TG content without the need for biopsy.
Collapse
Affiliation(s)
- Sarbesh R. Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Janice A. Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniela Riveros
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Carson Semple
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Rebecca S. Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah
| | - Kush Kapur
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
In vivo muscle conduction study of the tongue using a multi-electrode tongue depressor. Clin Neurophysiol 2020; 132:683-687. [PMID: 33309468 DOI: 10.1016/j.clinph.2020.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To test a novel technology for assessment of the volume conduction properties (VCPs) of the tongue. These properties are electrophysiological data that might reflect alterations in patients with tongue involvement. METHODS Seven healthy individuals were self-measured. The depressor was placed on the surface of the anterior tongue. Directional differences of VCPs were determined with standard descriptive statistics. RESULTS Conductivity in longitudinal direction was larger than in transverse direction at 16 (p < 0.05), 32 (p < 0.05), 64 (p < 0.01), and 128 kHz (p < 0.01). No differences were found in relative permittivity. The intraclass correlation was 0.778 and 0.771, respectively. CONCLUSIONS Our technology provides, for the first time, VCPs of the healthy human tongue. SIGNIFICANCE Tongue VCPs are standard electrophysiological, quantitative and objective data reflecting ionic content and membrane integrity which could find value for diagnostic purposes and treatment monitoring.
Collapse
|
25
|
Sanchez B, Martinsen OG, Freeborn TJ, Furse CM. Electrical impedance myography: A critical review and outlook. Clin Neurophysiol 2020; 132:338-344. [PMID: 33450556 DOI: 10.1016/j.clinph.2020.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022]
Abstract
Electrical impedance myography (EIM) technology is finding application in neuromuscular disease research as a tool to assess muscle health. Correlations between EIM outcomes, functional, imaging and histological data have been established in a variety of neuromuscular disorders; however, an analytical discussion of EIM is lacking. This review presents an explanation for clinicians and others who are applying EIM and interpreting impedance outcomes. The background of EIM is presented, including the relation between EIM, volume conduction properties, tissue structure, electrode configuration and conductor volume. Also discussed are technical considerations to guide the reader to critically evaluate EIM and understand its limitations and strengths.
Collapse
Affiliation(s)
- Benjamin Sanchez
- Sanchez Research Lab, Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Orjan G Martinsen
- Department of Physics, University of Oslo, 0371 Oslo, Norway; Department of Clinical and Biomedical Engineering, Oslo University Hospital, Oslo 0372, Norway
| | - Todd J Freeborn
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Cynthia M Furse
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
26
|
Approaching Gravity as a Continuum Using the Rat Partial Weight-Bearing Model. Life (Basel) 2020; 10:life10100235. [PMID: 33049988 PMCID: PMC7599661 DOI: 10.3390/life10100235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
For decades, scientists have relied on animals to understand the risks and consequences of space travel. Animals remain key to study the physiological alterations during spaceflight and provide crucial information about microgravity-induced changes. While spaceflights may appear common, they remain costly and, coupled with limited cargo areas, do not allow for large sample sizes onboard. In 1979, a model of hindlimb unloading (HU) was successfully created to mimic microgravity and has been used extensively since its creation. Four decades later, the first model of mouse partial weight-bearing (PWB) was developed, aiming at mimicking partial gravity environments. Return to the Lunar surface for astronauts is now imminent and prompted the need for an animal model closer to human physiology; hence in 2018, our laboratory created a new model of PWB for adult rats. In this review, we will focus on the rat model of PWB, from its conception to the current state of knowledge. Additionally, we will address how this new model, used in conjunction with HU, will help implement new paradigms allowing scientists to anticipate the physiological alterations and needs of astronauts. Finally, we will discuss the outstanding questions and future perspectives in space research and propose potential solutions using the rat PWB model.
Collapse
|
27
|
Semple C, Riveros D, Sung DM, Nagy JA, Rutkove SB, Mortreux M. Using Electrical Impedance Myography as a Biomarker of Muscle Deconditioning in Rats Exposed to Micro- and Partial-Gravity Analogs. Front Physiol 2020; 11:557796. [PMID: 33041858 PMCID: PMC7522465 DOI: 10.3389/fphys.2020.557796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
As astronauts prepare to undertake new extra-terrestrial missions, innovative diagnostic tools are needed to better assess muscle deconditioning during periods of weightlessness and partial gravity. Electrical impedance myography (EIM) has been used to detect muscle deconditioning in rodents exposed to microgravity during spaceflight or using the standard ground-based model of hindlimb unloading via tail suspension (HU). Here, we used EIM to assess muscle changes in animals exposed to two new models: hindlimb suspension using a pelvic harness (HLS) and a partial weight-bearing (PWB) model that mimics partial gravity (including Lunar and Martian gravities). We also used a simple needle array electrode in lieu of surface or ex vivo EIM approaches previously employed. Our HLS results confirmed earlier findings obtained after spaceflight and tail suspension. Indeed, one EIM measure (i.e., phase-slope) that was previously reported as highly sensitive, was significantly decreased after HLS (day 0: 14.60 ± 0.97, day 7: 11.03 ± 0.81, and day 14: 10.13 ± 0.55 | Deg/MHz|, p < 0.0001), and was associated with a significant decrease in muscle grip force. Although EIM parameters such as 50 kHz phase, reactance, and resistance remained variable over 14 days in PWB animals, we identified major PWB-dependent effects at 7 days. Moreover, the data at both 7 and 14 days correlated to previously observed changes in rear paw grip force using the same PWB model. In conclusion, our data suggest that EIM has the potential to serve as biomarker of muscle deconditioning during exposure to both micro- and partial- gravity during future human space exploration.
Collapse
Affiliation(s)
- Carson Semple
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Daniela Riveros
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Dong-Min Sung
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Janice A Nagy
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Seward B Rutkove
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Marie Mortreux
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
28
|
Martinez-Gonzalez M, Montilla-Herrador J, García-Vidal JA, Escolar-Reina P, Gacto-Sánchez M, Medina-Mirapeix F. Intra- and inter-rater reliability of electrical impedance myography using adhesive electrodes in healthy volunteers. J Electromyogr Kinesiol 2020; 55:102456. [PMID: 32905888 DOI: 10.1016/j.jelekin.2020.102456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
In spite of the growing use of the electrical impedance myography (EIM) measures for clinical assessment and follow-up of diseased muscle tissue, reliability studies are scarce. We evaluate the reliability of the (EIM) technique using four adhesive electrodes over the muscle of interest. Intra- and inter-rater reliability was studied within the same session and between sessions. Thirty-one healthy and volunteer subjects aged between 20 and 26 years were recruited. Phase angle, reactance and resistance were assessed for each EIM measurement. Intraclass correlation coefficient (ICC) was used to determine the relative reliability. Absolute reliability was expressed as the standard error of measurement and the minimum detectable change. Relative reliability within the same session and between sessions for the EIM technique was excellent (ICCs > 0.9) concerning both intra- and inter-rater reliability, except for the component reactance. The absolute reliability was very high for the three EIM components. EIM measures using four adhesive electrodes over the area of interest is a reliable technique to assess muscle tissue status. This study confirms that these measurement results barely vary depending on the examiner and the moment. The present study also confirms phase angle as the least affected EIM component by examiner and evaluation moment.
Collapse
Affiliation(s)
- Mariano Martinez-Gonzalez
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Department of Physical Therapy, University of Murcia, Murcia, Spain.
| | - Joaquina Montilla-Herrador
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Department of Physical Therapy, University of Murcia, Murcia, Spain
| | - Jose A García-Vidal
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Department of Physical Therapy, University of Murcia, Murcia, Spain
| | - Pilar Escolar-Reina
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Department of Physical Therapy, University of Murcia, Murcia, Spain
| | - Mariano Gacto-Sánchez
- Department of Physical Therapy, EUSES University School, University of Girona, Spain
| | - Francesc Medina-Mirapeix
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Department of Physical Therapy, University of Murcia, Murcia, Spain
| |
Collapse
|
29
|
Munir B, Murphy EK, Mallick A, Gutierrez H, Zhang F, Verga S, Smith C, Levy S, McIlduff C, Sarbesh P, Halter RJ, Rutkove SB. A robust and novel electrical impedance metric of pulmonary function in ALS patients. Physiol Meas 2020; 41:044005. [PMID: 32240997 DOI: 10.1088/1361-6579/ab85cf] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Pulmonary function tests (PFTs) are important for assessing respiratory function in amyotrophic lateral sclerosis (ALS) patients. However, weakness of oral and glottal closure, due to concomitant bulbar dysfunction, may result in unreliable PFT values stemming from leakage of air around the breathing tube and through the glottis. In this study, we assessed whether standard thoracic electrical impedance tomography (EIT) could serve as a surrogate measure for PFTs. APPROACH Thoracic EIT was performed simultaneously with standard PFTs on seven ALS patients without clinical bulbar weakness (six men and one woman, mean age of 63 years) and ten healthy volunteers (seven men and three women, mean age of 57 years). A raw impedance metric along with more standard EIT measures were computed and correlated with the normalized forced vital capacity (FVC). Additionally, test/re-test metrics and EIT images were analyzed. MAIN RESULTS The impedance metric was found to be robust and sensitive to lung activity. We also identified qualitative EIT differences between healthy volunteers and ALS patients, with the ALS images showing greater heterogeneity. Significant correlations with FVC were found for both impedance and EIT metrics in ALS patients (r2 = 0.89) and for the impedance metric only in healthy volunteers (r2 = 0.49). SIGNIFICANCE This suggests that EIT, using our novel impedance metric, has the potential to serve as an alternative technology to standard PFTs for assessing pulmonary function in patients with ALS, offering new metrics of disease status for those with bulbar weakness.
Collapse
Affiliation(s)
- Badria Munir
- Department of Neurology, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA 02215, United States of America. Harvard Medical School, Boston, MA 02115, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vavrinsky E, Subjak J, Donoval M, Wagner A, Zavodnik T, Svobodova H. Application of Modern Multi-Sensor Holter in Diagnosis and Treatment. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2663. [PMID: 32392697 PMCID: PMC7273207 DOI: 10.3390/s20092663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Modern Holter devices are very trendy tools used in medicine, research, or sport. They monitor a variety of human physiological or pathophysiological signals. Nowadays, Holter devices have been developing very fast. New innovative products come to the market every day. They have become smaller, smarter, cheaper, have ultra-low power consumption, do not limit everyday life, and allow comfortable measurements of humans to be accomplished in a familiar and natural environment, without extreme fear from doctors. People can be informed about their health and 24/7 monitoring can sometimes easily detect specific diseases, which are normally passed during routine ambulance operation. However, there is a problem with the reliability, quality, and quantity of the collected data. In normal life, there may be a loss of signal recording, abnormal growth of artifacts, etc. At this point, there is a need for multiple sensors capturing single variables in parallel by different sensing methods to complement these methods and diminish the level of artifacts. We can also sense multiple different signals that are complementary and give us a coherent picture. In this article, we describe actual interesting multi-sensor principles on the grounds of our own long-year experiences and many experiments.
Collapse
Affiliation(s)
- Erik Vavrinsky
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia
| | - Jan Subjak
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
| | - Martin Donoval
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
| | - Alexandra Wagner
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia; (A.W.); (H.S.)
| | - Tomas Zavodnik
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
| | - Helena Svobodova
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia; (A.W.); (H.S.)
| |
Collapse
|
31
|
Offit MB, Wu T, Floeter MK, Lehky TJ. Electrical impedance myography (EIM) in a natural history study of C9ORF72 mutation carriers. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:445-451. [PMID: 32312103 DOI: 10.1080/21678421.2020.1752247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: Electrical Impedance Myography (EIM) was used to evaluate disease progression in subjects with C9ORF72 expansion mutations and to assess correlations with Medical Research Council (MRC) Scale and revised ALS Functional Rating Scale (ALSFRS-R) measurements. Four types of clinical presentations were assessed; Amyotrophic Lateral Sclerosis (ALS), Frontotemporal dementia (FTD) or other dementia, ALS-FTD, and asymptomatic (ASYMP). Methods: Subjects were divided into an ALS Group (ALS/ALS-FTD) and non-ALS Group (FTD/ASYMP) based on initial visit and evaluated at 0, 6, 18, and 30 months with EIM of 4 arm and 4 leg muscles, ALSFRS-R, and MRC scales. The change in EIM from baseline and correlation with the functional scale and strength testing were analyzed. Results: EIM 50kHz phase values significantly declined over time in the ALS group (n = 31) compared to the non-ALS group (FTD/ASYMP) (n = 19). In the ALS group, the decline in EIM was correlated with decline in the ALSFRS-R and MRC scores using within-subject correlations. Conclusion: In clinical trials with small populations of genetically associated ALS such as C9ORF-related ALS, EIM may be a useful quantitative biomarker. We did not detect decline in asymptomatic subjects, but longer term studies may detect early changes in this group.
Collapse
Affiliation(s)
| | - Tianxia Wu
- Clinical Trials Unit, NINDS, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
32
|
Rutkove SB. Electrical impedance myography: MRI-like data without the need for MRI. Muscle Nerve 2020; 61:554-556. [PMID: 32052459 DOI: 10.1002/mus.26832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
33
|
Alix JJP, McDonough HE, Sonbas B, French SJ, Rao DG, Kadirkamanathan V, McDermott CJ, Healey TJ, Shaw PJ. Multi-dimensional electrical impedance myography of the tongue as a potential biomarker for amyotrophic lateral sclerosis. Clin Neurophysiol 2020; 131:799-808. [PMID: 32066098 DOI: 10.1016/j.clinph.2019.12.418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In amyotrophic lateral sclerosis (ALS) bulbar disease biomarkers are lacking. We evaluated a novel tongue electrical impedance myography (EIM) system, utilising both 2D and 3D electrode configurations for detection of tongue pathology. METHODS Longitudinal multi-frequency phase angle spectra were recorded from 41 patients with ALS (baseline, 3 and 6 months) and 30 healthy volunteers (baseline and 6 months). ALS functional rating scale-revised (ALSFRS-R) data and quantitative tongue strength measurements were collected. EIM data were analysed for reliability (intra-class correlation coefficient; ICC) and differences between patients and volunteers ascertained using both univariate (Mann-Whitney U test) and multivariate techniques (feature selection and L2 norm). RESULTS The device produced highly reliable data (pooled ICC: 0.836). Significant EIM differences were apparent between ALS patients and healthy volunteers (P < 0.001). EIM data demonstrated a significant relationship to tongue strength and bulbar ALSFRS-R scores (P < 0.015). The EIM recordings revealed a group level longitudinal change over 6 months and consistently identified patients in whom symptoms or tongue strength changed. CONCLUSIONS The novel EIM tongue system produces reliable data and can differentiate between healthy muscle and ALS-related disease. SIGNIFICANCE Tongue EIM utilising multiple frequencies and electrode configurations has potential as a bulbar disease biomarker in ALS.
Collapse
Affiliation(s)
- James J P Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Clinical Neurophysiology, Sheffield Teaching Hospitals NHS Foundation Trust, UK.
| | - Harry E McDonough
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
| | - Buket Sonbas
- Department of Automatic Control and Systems Engineering, University of Sheffield
| | - Sophie J French
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
| | - D Ganesh Rao
- Department of Clinical Neurophysiology, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | | | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - T Jamie Healey
- Department of Clinical Engineering, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| |
Collapse
|
34
|
Leitner ML, Kapur K, Darras BT, Yang M, Wong B, Dalle Pazze L, Florence J, Buck M, Freedman L, Bohorquez J, Rutkove S, Zaidman C. Electrical impedance myography for reducing sample size in Duchenne muscular dystrophy trials. Ann Clin Transl Neurol 2019; 7:4-14. [PMID: 31876124 PMCID: PMC6952321 DOI: 10.1002/acn3.50958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/16/2023] Open
Abstract
Objective To evaluate the sensitivity of electrical impedance myography (EIM) to disease progression in both ambulatory and non‐ambulatory boys with DMD. Methods and Participants A non‐blinded, longitudinal cohort study of 29 ambulatory and 15 non‐ambulatory boys with DMD and age‐similar healthy boys. Subjects were followed for up to 1 year and assessed using the Myolex® mViewTM EIM system as part of a multicenter study. Results In the ambulatory group, EIM 100 kHz resistance values showed significant change compared to the healthy boys. For example, in lower extremity muscles, the average change in EIM 100 kHz resistance values over 12 months led to an estimated effect size of 1.58. Based on these results, 26 DMD patients/arm would be needed for a 12‐month clinical trial assuming a 50% treatment effect. In non‐ambulatory boys, EIM changes were greater in upper limb muscles. For example, biceps at 100kHz resistance gave an estimated effect size of 1.92 at 12 months. Based on these results, 18 non‐ambulatory DMD patients/arm would be needed for a 12‐month clinical trial assuming a 50% treatment effect. Longitudinal changes in the 100 kHz resistance values for the ambulatory boys correlated with the longitudinal changes in the timed supine‐to‐stand test. EIM was well‐tolerated throughout the study. Interpretation This study supports that EIM 100 kHz resistance is sensitive to DMD progression in both ambulatory and non‐ambulatory boys. Given the technology’s ease of use and broad age range of utility it should be employed as an exploratory endpoint in future clinical therapeutic trials in DMD. Trial Registration: Clincialtrials.gov registration #NCT02340923
Collapse
Affiliation(s)
| | - Kush Kapur
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Michele Yang
- Department of Neurology, Children's Hospital Colorado, Denver, Colorado
| | - Brenda Wong
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Julaine Florence
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | | | | | | | | | - Craig Zaidman
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
35
|
Mortreux M, Semple C, Riveros D, Nagy JA, Rutkove SB. Electrical impedance myography for the detection of muscle inflammation induced by λ-carrageenan. PLoS One 2019; 14:e0223265. [PMID: 31574117 PMCID: PMC6773213 DOI: 10.1371/journal.pone.0223265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Electrical impedance myography (EIM) is a technique for the assessment of muscle health and composition and has been shown to be sensitive to a variety of muscle pathologies including neurogenic atrophy and connective tissue deposition. However, it has been minimally studied in pure inflammation. In this study, we sought to assess EIM sensitivity to experimental inflammation induced by the localized intramuscular injection of λ-carrageenan. A total of 91 mice underwent 1–1000 kHz EIM measurements of gastrocnemius using a needle array, followed by injection of either 0.3% λ-carrageenan in phosphate-buffered saline (PBS) or PBS alone. Animals were then remeasured with EIM at 4, 24, 48, or 72 hours and euthanized and quantitative assessment of muscle histology was performed. Parallel alterations in both 5 and 50 kHz EIM values were identified at 4 and 24 hours, including reductions in phase, reactance, and resistance. In PBS-treated animals these values normalized by 48 hours, whereas substantial reductions in phase and reactance in 5 kHz EIM values persisted at 48 and 72 hours (i.e., values of phase 72 hours post-injection were 6.51 ± 0.40 degrees for λ-carrageenan versus 8.44 ± 0.35 degrees for PBS p<0.001, n = 11 per group). The degree of basophilic area observed in muscle sections by histology correlated to the degree of phase change at these two time points (Rspearman = -0.51, p = 0.0029). Changes in low frequency EIM parameters are sensitive to the presence of inflammatory infiltrates, and have the potential of serving as a simple means of quantifying the presence and extent of muscle inflammation without the need for biopsy.
Collapse
Affiliation(s)
- Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carson Semple
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniela Riveros
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Janice A. Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Kwon H, de Morentin MM, Nagy JA, Rutkove SB, Sanchez B. Approximate complex electrical potential distribution in the monodomain model with unequal conductivity and relative permittivity anisotropy ratios. Physiol Meas 2019; 40:085008. [PMID: 31408853 DOI: 10.1088/1361-6579/ab3aa1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Electrical conductivity and relative permittivity are properties that indicate muscle health and they have different values parallel and perpendicular to the direction of the myofiber, a concept known as anisotropy. When the intrinsic electrical properties of muscle have ratios of anisotropy that are different then there is no analytical solution that can describe the electrical potential distribution in the tissue. APPROACH Here, we present approximate analytical solutions to monodomain equations with unequal anisotropy ratios. For this, we base our analysis on perturbation theory where the electrical potential is approximated by the sum of the zeroth- and first-order terms of an infinite series. MAIN RESULTS The validity of the approach is confirmed using experimental data for healthy and diseased muscle available online. SIGNIFICANCE A better understanding of electrical potential distribution in anisotropic skeletal muscle tissue will allow the development of improved diagnostic tools for neuromuscular diseases.
Collapse
Affiliation(s)
- H Kwon
- College of Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Stålberg E, van Dijk H, Falck B, Kimura J, Neuwirth C, Pitt M, Podnar S, Rubin DI, Rutkove S, Sanders DB, Sonoo M, Tankisi H, Zwarts M. Standards for quantification of EMG and neurography. Clin Neurophysiol 2019; 130:1688-1729. [DOI: 10.1016/j.clinph.2019.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
|
38
|
Freeborn TJ, Fu B. Time-course bicep tissue bio-impedance changes throughout a fatiguing exercise protocol. Med Eng Phys 2019; 69:109-115. [PMID: 31056402 DOI: 10.1016/j.medengphy.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
This study investigated the localized electrical-impedance changes in the biceps tissues throughout a fatiguing exercise protocol. During the protocol, 17 subjects performed 10 sets of bicep curl repetitions at either 60% or 75% of their one-repetition maximum weight until task failure. The localized tissue impedance (resistance, reactance, phase angle) was measured at 10 kHz, 50 kHz, and 100 kHz immediately after each of 10 sets for comparison against the baseline pre-fatigue measures. A trend of decreasing resistance and reactance magnitude were observed, with greater changes occurring as the protocol progressed. Statistical testing demonstrated statistically significant changes in resistance, reactance, and phase angle for both groups of participants. The significant changes in resistance were observed at earlier time-points than the reactance and phase angle changes for both groups.
Collapse
Affiliation(s)
- Todd J Freeborn
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Bo Fu
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
39
|
Permittivity of ex vivo healthy and diseased murine skeletal muscle from 10 kHz to 1 MHz. Sci Data 2019; 6:37. [PMID: 31000708 PMCID: PMC6472406 DOI: 10.1038/s41597-019-0045-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
A better understanding of the permittivity property of skeletal muscle is essential for the development of new diagnostic tools and approaches for neuromuscular evaluation. However, there remain important knowledge gaps in our understanding of this property in healthy and diseased skeletal muscle, which hinder its translation into clinical application. Here, we report the permittivity of gastrocnemius muscle in healthy wild type mice and murine models of spinal muscular atrophy, muscular dystrophy, diabetes, amyotrophic lateral sclerosis and in a model of myofiber hypertrophy. Data were measured ex vivo from 10 kHz to 1 MHz using the four-electrode impedance technique. Additional quantitative histology information were obtained. Ultimately, the normative data reported will offer the scientific community the opportunity to develop more accurate models for the validation and prediction of experimental observations in both pre-clinical and clinical neuromuscular disease research. Design Type(s) | physiological data analysis objective • strain comparison design • ex vivo design | Measurement Type(s) | permittivity property | Technology Type(s) | impedance analyzer | Factor Type(s) | temporal_instant • frequency • Mouse Model • experimental condition | Sample Characteristic(s) | Mus musculus • skeletal muscle tissue |
Machine-accessible metadata file describing the reported data (ISA-Tab format)
Collapse
|
40
|
Kwon H, Guasch M, Nagy JA, Rutkove SB, Sanchez B. New electrical impedance methods for the in situ measurement of the complex permittivity of anisotropic skeletal muscle using multipolar needles. Sci Rep 2019; 9:3145. [PMID: 30816169 PMCID: PMC6395651 DOI: 10.1038/s41598-019-39277-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/21/2019] [Indexed: 01/24/2023] Open
Abstract
This paper provides a rigorous analysis on the measurement of the permittivity of two-dimensional anisotropic biological tissues such as skeletal muscle using the four-electrode impedance technique. The state-of-the-art technique requires individual electrodes placed at the same depth in contact with the anisotropic material, e.g. using monopolar needles. In this case, the minimum of measurements in different directions needed to estimate the complex permittivity and its anisotropy direction is 3, which translates into 12 monopolar needle insertions (i.e. 3 directions × 4 electrodes in each direction). Here, we extend our previous work and equip the reader with 8 new methods for multipolar needles, where 2 or more electrodes are spaced along the needle's shaft in contact with the tissue at different depths. Using multipolar needles, the new methods presented reduce the number of needle insertions by a factor of 2 with respect to the available methods. We illustrate the methods with numerical simulations and new experiments on ex vivo ovine skeletal muscle (n = 3). Multi-frequency longitudinal and transverse permittivity data from 30 kHz to 1 MHz is made publicly available in the supplementary material. The methods presented here for multipolar needles bring closer the application of needle electrical impedance to patients with neuromuscular diseases.
Collapse
Affiliation(s)
- H Kwon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215-5491, USA. .,College of Science of & Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| | - M Guasch
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215-5491, USA
| | - J A Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215-5491, USA
| | - S B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215-5491, USA
| | - B Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215-5491, USA.
| |
Collapse
|
41
|
Roy B, Darras BT, Zaidman CM, Wu JS, Kapur K, Rutkove SB. Exploring the relationship between electrical impedance myography and quantitative ultrasound parameters in Duchenne muscular dystrophy. Clin Neurophysiol 2019; 130:515-520. [PMID: 30772764 DOI: 10.1016/j.clinph.2019.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Accepted: 01/13/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Quantitative ultrasound (QUS), including grayscale level analysis (GLA) and quantitative backscatter analysis (QBA), and electrical impedance myography (EIM) have been proposed as biomarkers in Duchenne muscular dystrophy (DMD). However, the relationship between these methods has not been assessed. METHODS QUS values (including GLA and QBA) and several EIM measures were recorded from six muscles in 36 DMD and 29 healthy boys between ages 5 and 13 years at baseline, 6-months, and 12-months. RESULTS In the DMD boys, a moderate correlation was noted between QUS and EIM parameters, with the strongest correlations being identified for averaged muscle values. Of the individual muscles, biceps brachii and deltoid showed the strongest correlations. For example, in biceps, the QBA/EIM correlation coefficient (Spearman rho) was ≥0.70 (p < 0.01). Importantly, changes in QUS values over 12 months also correlated moderately with changes in EIM parameters and EIM/QBA rho values mostly varied between -0.53 and -0.70 (p ≤ 0.02). No significant correlations were identified in the healthy boys. CONCLUSIONS A moderate correlation of QUS with EIM in DMD boys suggests that the two technologies provide related data but are sensitive to different pathological features of muscle. SIGNIFICANCE The use of both technologies jointly in assessing DMD progression and response to therapy should be considered.
Collapse
Affiliation(s)
- Bhaskar Roy
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | - Jim S Wu
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kush Kapur
- Boston Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
42
|
Garcia-Santibanez R, Burford M, Bucelli RC. Hereditary Motor Neuropathies and Amyotrophic Lateral Sclerosis: a Molecular and Clinical Update. Curr Neurol Neurosci Rep 2018; 18:93. [DOI: 10.1007/s11910-018-0901-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Kapur K, Nagy JA, Taylor RS, Sanchez B, Rutkove SB. Estimating Myofiber Size With Electrical Impedance Myography: a Study In Amyotrophic Lateral Sclerosis MICE. Muscle Nerve 2018; 58:713-717. [PMID: 30175407 DOI: 10.1002/mus.26187] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION A method for quantifying myofiber size noninvasively would find wide use, including primary diagnosis and evaluating response to therapy. METHODS Using prediction algorithms, including the least absolute shrinkage and selection operator, we applied multifrequency electrical impedance myography (EIM) to amyotrophic lateral sclerosis superoxide dismutase 1 G93A mice of different ages and assessed myofiber size histologically. RESULTS Multifrequency EIM data provided highly accurate predictions of myofiber size, with a root mean squared error (RMSE) of only 14% in mean myofiber area (corresponding to ± 207 µm2 for a mean area of 1,488 µm2 ) and an RMSE of only 8.8% in predicting the coefficient of variation in fiber size distribution. DISCUSSION This impedance-based approach provides predictive variables to assess myofiber size and distribution with good accuracy, particularly in diseases in which myofiber atrophy is the predominant histological feature, without the requirement for biopsy or burdensome quantification. Muscle Nerve 58: 713-717, 2018.
Collapse
Affiliation(s)
- Kush Kapur
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janice A Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, TCC-810, Boston, Massachusetts, 02215, USA
| | - Rebecca S Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, TCC-810, Boston, Massachusetts, 02215, USA
| | - Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, TCC-810, Boston, Massachusetts, 02215, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, TCC-810, Boston, Massachusetts, 02215, USA
| |
Collapse
|
44
|
Electrical impedance myography as a biomarker of myostatin inhibition with ActRIIB-mFc: a study in wild-type mice. Future Sci OA 2018; 4:FSO308. [PMID: 30057785 PMCID: PMC6060391 DOI: 10.4155/fsoa-2018-0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Aim: We sought to determine the sensitivity of electrical impedance myography (EIM) to myofiber hypertrophy induced by treatment with various doses of ActRIIB-mFc, an inhibitor of myostatin signaling. Methods: Wild-type C57BL/6 J mice (n = 40, male) were treated with three different doses of ActRIIB-mFc (i.e., RAP-031) or vehicle twice weekly for 5 weeks. End point assessments included gastrocnemius EIM, force measurements, muscle mass and myofiber size quantification. Results: ActRIIB-mFc increased body mass, muscle mass and myofiber size across all doses. Alterations in EIM 50 kHz phase and center frequency (fc) were also present, with trends in a dose-dependent fashion. Significant correlations between EIM parameters and myofiber/functional data were identified. Conclusion: EIM outcomes can serve as effective biomarkers of myostatin signaling inhibition, demonstrating a dose sensitivity and correlation to standard assessments. We were interested in studying the sensitivity of a technique, called electrical impedance myography (EIM), to noninvasively assess the size of muscle fibers. In this technique a minute electrical current is used to probe the tissue. To do so, we gave a drug (ActRIIB-mFc) to mice that enlarges muscle fibers at three different doses. We were able to show that the EIM technique was able to detect this differential effect and functional changes induced by the drug correlated to the EIM data. This work suggests that EIM will be useful as a noninvasive marker muscle health.
Collapse
|