1
|
Chou LH, Yang TS, Wong PC, Chen YC. Synergistic effects of platelet-rich fibrin and photobiomodulation on bone regeneration in MC3T3-E1 Preosteoblasts. Photodiagnosis Photodyn Ther 2025; 51:104436. [PMID: 39645012 DOI: 10.1016/j.pdpdt.2024.104436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/10/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Platelet-rich fibrin (PRF) and Photobiomodulation (PBM) are established methods for promoting bone healing. PRF enhances cell proliferation and migration due to its rich concentration of growth factors, while PBM stimulates tissue repair through mitochondrial activation. Despite their efficacies, no in-depth studies have explored the synergistic effects of combining PRF and PBM. METHODS PRF was prepared at 50 % and 100 % concentrations, and PBM was applied using an 830 nm near-infrared laser at a dose of 5 J/cm². Cell viability, migration, and calcium deposition were assessed over seven and fourteen days. RESULTS The combination of PRF and PBM significantly improved cell viability, migration, and calcium deposition, with the most notable effects observed after seven and fourteen days. However, a slight decrease in calcium deposition was noted in the 100 % PRF combined with the PBM group, suggesting a potential feedback mechanism at higher PRF concentrations. CONCLUSIONS This study explores the synergistic effects of PRF and PBM, offering new insights into optimizing bone tissue engineering strategies. The findings highlight the potential of this combined approach in enhancing bone regeneration, although further research is needed to refine the optimal conditions for these therapies.
Collapse
Affiliation(s)
- Ling-Hung Chou
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Tzu-Sen Yang
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chun Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
2
|
Takebe H, Sato H, Mizoguchi T, Hosoya A. Localization of α-smooth muscle actin in osteoblast differentiation during periodontal development. Cell Tissue Res 2025; 399:119-127. [PMID: 39579220 DOI: 10.1007/s00441-024-03940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
α-Smooth muscle actin (α-SMA) is an actin isoform commonly found within vascular smooth muscle cells. Moreover, α-SMA-positive cells are localized in the dental follicle (DF). DF is derived from alveolar bone (AB), cementum, and periodontal ligament (PDL). Therefore, α-SMA-positive cells in the periodontal tissue are speculated to be a marker for mesenchymal stem cells during tooth development. In particular, the mechanism of osteoblast differentiation is not clear. This study demonstrated the fate of α-SMA-positive cells around the tooth germ immunohistochemically. First, α-SMA- and Runx2-positive localization at embryonic days (E) 13, E14, postnatal days (P) 9, and P15 was demonstrated. α-SMA- and Runx2-positive cells were detected in the upper part of the DF at P1. At P9 and P15, α-SMA-positive cells in the PDL were detected in the upper and lower parts. The positive reaction of Runx2 was also localized in the PDL. Then, the distribution of α-SMA-positive cell progeny at P9 and P15 were clarified using α-SMA-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (α-SMA/tomato) mice. It has known that Runx2-positive cells differentiate into osteoblasts. In this study, some Runx2 and α-SMA-positive cells were localized in the DF and PDL. The lineage-tracing analysis demonstrated that the α-SMA/tomato-positive cells expressing Runx2 or Osterix were detected on the AB surface at P15. α-SMA/tomato-positive cells expressing type I collagen were found in the AB matrix. These results indicate that the progeny of the α-SMA-positive cells in the DF could differentiate into osteogenic cells. In conclusion, α-SMA could be a potential marker of progenitor cells that differentiate into osteoblasts.
Collapse
Affiliation(s)
- Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| | - Hanaka Sato
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Toshihide Mizoguchi
- Tokyo Dental College, Oral Health Science Center, 2-9-18 Kanda Misaki-Cho, Chiyodaku, Tokyo, 101-0061, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| |
Collapse
|
3
|
Manoharan S, Ashfaq SS, Perumal E. MicroRNAs in fluorosis pathogenesis: impact on dental, skeletal, and soft tissues. Arch Toxicol 2024; 98:3913-3932. [PMID: 39269498 DOI: 10.1007/s00204-024-03853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Fluoride-induced toxicity (fluorosis) poses a significant health concern globally, affecting millions of individuals. Understanding the molecular mechanisms underlying fluorosis, particularly the role of microRNAs (miRNAs), is crucial for developing effective preventive and therapeutic strategies. This review explores the pivotal role of miRNAs in the pathogenesis of fluorosis, particularly examining its impact on both hard (skeletal and dental) and soft (brain, liver, kidney, heart, and reproductive organs) tissues. Skeletal fluorosis manifests as abnormal bone mineralization and structure, while dental fluorosis affects enamel formation. In vitro and in vivo studies suggest a significant involvement of miRNAs in the progression of these conditions. For skeletal fluorosis, miR-124, miR-155, and miR-200c-3p have been identified as key regulators, while miR-296-5p and miR-214-3p are implicated in dental fluorosis. Moreover, soft tissue fluorosis encompasses a spectrum of adverse effects on various organs, including the brain, liver, kidneys, heart, and reproductive system. In soft tissues, miRNAs, such as miR-124, miR-200c-3p, miR-132, and miR-34b-5p, have been linked to cellular damage and dysfunction. Notably, miRNAs exert their effects through the modulation of critical pathways involved in fluorosis pathology, including Wnt signaling, apoptosis, cell cycle, and autophagy. Understanding the regulatory roles of miRNAs in fluorosis pathogenesis holds promise for identifying biomarkers and therapeutic targets. However, further research is needed to elucidate the molecular mechanisms underlying miRNA-mediated responses to fluoride exposure. Integration of miRNA research into fluorosis studies could facilitate the development of diagnostic tools and therapeutic interventions, thus mitigating the detrimental effects of fluorosis on both hard and soft tissues.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Syed Saadullah Ashfaq
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
4
|
Al-Bogami MM, Alkhorayef M, Sulieman A, Bradley D, Jawad AS, Mageed RA. The clinical assessment of changes in bone density in rheumatoid arthritis patients': Role of DEXA scan and bone turnover biomarkers. Appl Radiat Isot 2024; 211:111373. [PMID: 38851075 DOI: 10.1016/j.apradiso.2024.111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/12/2023] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
In addition to generalised of bone loss and a higher fracture risk, rheumatoid arthritis (RA) causes periarticular bone erosions. Improvements in bone density/erosion and turnover may not go hand in hand with a positive clinical response to biological anti-inflammatory drugs assesed by disease activity score 28 (DAS28) in RA patients. This study aimed to understand how biologic anti-inflammatory drugs affect bone density, erosion, and turnover in RA patients. We examined bone mineral density (BMD) and bone turnover biomarkers. The study population consisted of 62 RA patients, 49 (79%) of whom were female and 13 (21%) of whom were male. The patients ranged in age from 40 to 79 years old. The patients' BMD was measured using a DEXA scan, and their plasma levels of bone turnover biomarkers CTX and osteocalcin were quantified utilizing an ELISA. BMD of the hip and lumbar spine in responder patients rose after therapy by 0.001g/cm2 (0.11 percent, p0.001 vs. before treatment) and 0.0396g/cm2 (3.96 percent, p0.001 vs. before treatment), respectively. Clinically non-responder patients' DAS28 revealed minor reductions in hip BMD values of -0.008g/cm2 (-0.78 percent, p0.001 vs. before therapy), as well as an improvement in lumbar spine BMD of 0.03g/cm2 (3.03 percent, p0.001 vs. before treatment). After 12 weeks of therapy, the CTX levels in responder patients dropped from 164 125 pg/ml to 131 129 pg/ml. Osteocalcin levels in non-responder patients increased substantially from 11.6 ng/ml to 14.9 ng/ml after 12 weeks of therapy compared to baseline (p = 0.01). Treatment with biologic anti-inflammatory medicines decreases widespread bone loss in RA patients' hip and lumbar spine. The beneficial effects of therapy on BMD were not associated with changes in disease activity of RA patients. Changes in plasma levels of bone turnover biomarkers such as sCTX and osteocalcin confirmed the treatment's beneficial effects.
Collapse
Affiliation(s)
- M M Al-Bogami
- Bone and Joint Research Unit, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK.
| | - M Alkhorayef
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, P.O Box 10219 Riyadh 11433, Saudi Arabia
| | - A Sulieman
- Radiological Sciences Department, College of Applied Medical Sciences - Al Ahsa, King Saud bin Abdulaziz University for Health Sciences, Alhofuf, P.O.Box 2477, Al-Ahsa 3198, Saudi Arabia
| | - David Bradley
- Applied Physics and Radiation Technologies Group, CCDCU, Sunway University, Malaysia; School of Mathematics and Physics, University of Surrey, Guildford, United Kingdom
| | - A S Jawad
- Department of Rheumatology, The Royal London Hospital, Mile End Road, London, UK
| | - R A Mageed
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Krasnova O, Neganova I. Assembling the Puzzle Pieces. Insights for in Vitro Bone Remodeling. Stem Cell Rev Rep 2023; 19:1635-1658. [PMID: 37204634 DOI: 10.1007/s12015-023-10558-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
As a highly dynamic organ, bone changes during throughout a person's life. This process is referred to as 'bone remodeling' and it involves two stages - a well-balanced osteoclastic bone resorption and an osteoblastic bone formation. Under normal physiological conditions bone remodeling is highly regulated that ensures tight coupling between bone formation and resorption, and its disruption results in a bone metabolic disorder, most commonly osteoporosis. Though osteoporosis is one of the most prevalent skeletal ailments that affect women and men aged over 40 of all races and ethnicities, currently there are few, if any safe and effective therapeutic interventions available. Developing state-of-the-art cellular systems for bone remodeling and osteoporosis can provide important insights into the cellular and molecular mechanisms involved in skeletal homeostasis and advise better therapies for patients. This review describes osteoblastogenesis and osteoclastogenesis as two vital processes for producing mature, active bone cells in the context of interactions between cells and the bone matrix. In addition, it considers current approaches in bone tissue engineering, pointing out cell sources, core factors and matrices used in scientific practice for modeling bone diseases and testing drugs. Finally, it focuses on the challenges that bone regenerative medicine is currently facing.
Collapse
Affiliation(s)
- O Krasnova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - I Neganova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| |
Collapse
|
6
|
Mofarrah M, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Zarghami N. Potential application of inorganic nano-materials in modulation of macrophage function: Possible application in bone tissue engineering. Heliyon 2023; 9:e16309. [PMID: 37292328 PMCID: PMC10245018 DOI: 10.1016/j.heliyon.2023.e16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
Nanomaterials indicate unique physicochemical properties for drug delivery in osteogenesis. Benefiting from high surface area grades, high volume ratio, ease of functionalization by biological targeting moieties, and small size empower nanomaterials to pass through biological barriers for efficient targeting. Inorganic nanomaterials for bone regeneration include inorganic synthetic polymers, ceramic nanoparticles, metallic nanoparticles, and magnetic nanoparticles. These nanoparticles can effectively modulate macrophage polarization and function, as one of the leading players in osteogenesis. Bone healing procedures in close cooperation with the immune system. Inflammation is one of the leading triggers of the bone fracture healing barrier. Macrophages commence anti-inflammatory signaling along with revascularization in the damaged site to promote the formation of a soft callus, bone mineralization, and bone remodeling. In this review, we will discuss the role of macrophages in bone hemostasis and regeneration. Furthermore, we will summarize the influence of the various inorganic nanoparticles on macrophage polarization and function in the benefit of osteogenesis.
Collapse
Affiliation(s)
- Mohsen Mofarrah
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi-Sefidan-Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
7
|
Li Z, Zou J, Chen X. In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209529. [PMID: 36445169 DOI: 10.1002/adma.202209529] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Emerging as a potent anticancer treatment, subcellular targeted cancer therapy has drawn increasing attention, bringing great opportunities for clinical application. Here, two targeting strategies for four main subcellular organelles (mitochondria, lysosome, endoplasmic reticulum, and nucleus), including molecule- and nanomaterial (inorganic nanoparticles, micelles, organic polymers, and others)-based targeted delivery or therapeutic strategies, are summarized. Phototherapy, chemotherapy, radiotherapy, immunotherapy, and "all-in-one" combination therapy are among the strategies covered in detail. Such materials are constructed based on the specific properties and relevant mechanisms of organelles, enabling the elimination of tumors by inducing dysfunction in the corresponding organelles or destroying specific structures. The challenges faced by organelle-targeting cancer therapies are also summarized. Looking forward, a paradigm for organelle-targeting therapy with enhanced therapeutic efficacy compared to current clinical approaches is envisioned.
Collapse
Affiliation(s)
- Zheng Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
8
|
Molecular Biomarkers in Perthes Disease: A Review. Diagnostics (Basel) 2023; 13:diagnostics13030471. [PMID: 36766577 PMCID: PMC9914190 DOI: 10.3390/diagnostics13030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Perthes disease is a juvenile form of osteonecrosis of the femoral head that affects children under the age of 15. One hundred years after its discovery, some light has been shed on its etiology and the biological factors relevant to its etiology and disease severity. METHODS The aim of this study was to summarize the literature findings on the biological factors relevant to the pathogenesis of Perthes disease, their diagnostic and clinical significance, and their therapeutic potential. A special focus on candidate genes as susceptibility factors and factors relevant to clinical severity was made, where studies reporting clinical or preclinical results were considered as the inclusion criteria. PubMed databases were searched by two independent researchers. Sixty-eight articles were included in this review. Results on the factors relevant to vascular involvement and inflammatory molecules indicated as factors that contribute to impaired bone remodeling have been summarized. Moreover, several candidate genes relevant to an active phase of the disease have been suggested as possible biological therapeutic targets. CONCLUSIONS Delineation of molecular biomarkers that underlie the pathophysiological process of Perthes disease can allow for the provision of earlier and more accurate diagnoses of the disease and more precise follow-ups and treatment in the early phases of the disease.
Collapse
|
9
|
Yi X, Hu G, Yang Y, Li J, Jin J, Chang B. Role of MOTS-c in the regulation of bone metabolism. Front Physiol 2023; 14:1149120. [PMID: 37200834 PMCID: PMC10185875 DOI: 10.3389/fphys.2023.1149120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
MOTS-c, a mitochondrial-derived peptide (MDP), is an essential regulatory mediator of cell protection and energy metabolism and is involved in the development of specific diseases. Recent studies have revealed that MOTS-c promotes osteoblast proliferation, differentiation, and mineralization. Furthermore, it inhibits osteoclast production and mediates the regulation of bone metabolism and bone remodeling. Exercise effectively upregulates the expression of MOTS-c, but the specific mechanism of MOTS-c regulation in bone by exercise remains unclear. Therefore, this article reviewed the distribution and function of MOTS-c in the tissue, discussed the latest research developments in the regulation of osteoblasts and osteoclasts, and proposed potential molecular mechanisms for the effect of exercise on the regulation of bone metabolism. This review provides a theoretical reference for establishing methods to prevent and treat skeletal metabolic diseases.
Collapse
Affiliation(s)
- Xuejie Yi
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Guangxuan Hu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jing Li
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Junjie Jin
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
- *Correspondence: Bo Chang,
| |
Collapse
|
10
|
Current Status of the Diagnosis and Management of Osteoporosis. Int J Mol Sci 2022; 23:ijms23169465. [PMID: 36012730 PMCID: PMC9408932 DOI: 10.3390/ijms23169465] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis has been defined as the silent disease of the 21st century, becoming a public health risk due to its severity, chronicity and progression and affecting mainly postmenopausal women and older adults. Osteoporosis is characterized by an imbalance between bone resorption and bone production. It is diagnosed through different methods such as bone densitometry and dual X-rays. The treatment of this pathology focuses on different aspects. On the one hand, pharmacological treatments are characterized by the use of anti-resorptive drugs, as well as emerging regenerative medicine treatments such as cell therapies and the use of bioactive hydrogels. On the other hand, non-pharmacological treatments are associated with lifestyle habits that should be incorporated, such as physical activity, diet and the cessation of harmful habits such as a high consumption of alcohol or smoking. This review seeks to provide an overview of the theoretical basis in relation to bone biology, the existing methods for diagnosis and the treatments of osteoporosis, including the development of new strategies.
Collapse
|
11
|
Zheng CY, Chu XY, Gao CY, Hu HY, He X, Chen X, Yang K, Zhang DL. TAT&RGD Peptide-Modified Naringin-Loaded Lipid Nanoparticles Promote the Osteogenic Differentiation of Human Dental Pulp Stem Cells. Int J Nanomedicine 2022; 17:3269-3286. [PMID: 35924260 PMCID: PMC9342892 DOI: 10.2147/ijn.s371715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Naringin is a naturally occurring flavanone that promotes osteogenesis. Owing to the high lipophilicity, poor in vivo bioavailability, and extensive metabolic alteration upon administration, the clinical efficacy of naringin is understudied. Additionally, information on the molecular mechanism by which it promotes osteogenesis is limited. Methods In this study, we prepared TAT & RGD peptide-modified naringin-loaded nanoparticles (TAT-RGD-NAR-NPs), evaluated their potency on the osteogenic differentiation of human dental pulp stem cells (hDPSCs), and studied its mechanism of action through metabolomic analysis. Results The particle size and zeta potential of TAT-RGD-NAR-NPs were 160.70±2.05 mm and –20.77±0.47mV, respectively. The result of cell uptake assay showed that TAT-RGD-NAR-NPs could effectively enter hDPSCs. TAT-RGD-NAR-NPs had a more significant effect on cell proliferation and osteogenic differentiation promotion. Furthermore, in metabolomic analysis, naringin particles showed a strong influence on the glycerophospholipid metabolism pathway of hDPSCs. Specifically, it upregulated the expression of PLA2G3 and PLA2G1B (two isozymes of phospholipase A2, PLA2), increased the biosynthesis of lysophosphatidic acid (LPA). Conclusion These results suggested that TAT-RGD-NPs might be used for transporting naringin to hDPSCs for modulating stem cell osteogenic differentiation. The metabolomic analysis was used for the first time to elucidate the mechanism by which naringin promotes hDPSCs osteogenesis by upregulating PLA2G3 and PLA2G1B.
Collapse
Affiliation(s)
- Chun-Yan Zheng
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Xiao-Yang Chu
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Chun-Yan Gao
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Hua-Ying Hu
- Birth Defects Prevention and Control Technology Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xin He
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Xu Chen
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Dong-Liang Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Dong-Liang Zhang, Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, 11 Xilahutong Road, Beijing, 100040, People’s Republic of China, Email
| |
Collapse
|
12
|
Yang J, Zhang W, Lai E, Liu W, Lai P, Zou Z, Wang W, Bai X. Deletion of Rheb1 in Osteocytes Leads to Osteopenia Characterized by Reduced Bone Formation and Enhanced Bone Resorption. DNA Cell Biol 2022; 41:683-690. [PMID: 35687365 DOI: 10.1089/dna.2021.0874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ras homologue enriched in brain 1 (Rheb1), an upstream activator of the mechanistic target of rapamycin complex 1 (mTORC1), is known to modulate various cellular processes. However, its impact on bone metabolism in vivo remains unknown. The study aimed at understanding the role of Rheb1 on bone homeostasis. We measured the serum parameters and performed histomorphometry, quantitative real-time polymerase chain reaction, and Western blotting, along with the generation of mouse gene knockout (KO) model, and conducted a microcomputed tomography analysis and tartrate-resistant acid phosphatase staining, to delineate the impacts of Rheb1 on bone homeostasis. In the Rheb1 KO mice, the results showed that Rheb1 KO caused significant damage to the bone microarchitecture, indicating that mTORC1 activity was essential for the regulation of bone homeostasis. Specifically, suppressed mineralization activity in primary osteoblasts and a decreased osteoblast number were observed in the Rheb1 KO mice, demonstrating that loss of Rheb1 led to impaired osteoblastic differentiation. Furthermore, the higher apoptotic ratio in Rheb1-null osteocytes could promote Tnfsf11 expression and lead to an increase in osteoclasts, indicating increased bone resorption activity in the KO mice. The findings confirmed that Rheb1 deletion in osteoblasts/osteocytes led to osteopenia due to impaired bone formation and enhanced bone resorption.
Collapse
Affiliation(s)
- Jun Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wuju Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Eryong Lai
- Oncology Department of the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wen Liu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Pinglin Lai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weidong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xiaochun Bai
- Department of Hepatobiliary and Pancreatic Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Mo Q, Zhang W, Zhu A, Backman LJ, Chen J. Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: current conclusions and controversies. Hum Cell 2022; 35:957-971. [PMID: 35522425 DOI: 10.1007/s13577-022-00711-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/23/2022] [Indexed: 12/09/2022]
Abstract
Treatment of complex bone fracture diseases is still a complicated problem that is urged to be solved in orthopedics. In bone tissue engineering, the use of mesenchymal stromal/stem cells (MSCs) for tissue repair brings hope to the medical field of bone diseases. MSCs can differentiate into osteoblasts and promote bone regeneration. An increasing number of studies show that the inflammatory microenvironment affects the osteogenic differentiation of MSCs. It is shown that TNF-α and IL-1β play different roles in the osteogenic differentiation of MSCs via different signal pathways. The main factors that affect the role of TNF-α and IL-1β in osteogenic differentiation of MSCs include concentration and the source of stem cells (different species and different tissues). This review in-depth analyzes the roles of pro-inflammatory cytokines in the osteogenic differentiation of MSCs and reveals some current controversies to provide a reference of comprehensively understanding.
Collapse
Affiliation(s)
- Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Aijing Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87, Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
14
|
Man J, Graham T, Squires-Donelly G, Laslett AL. The effects of microgravity on bone structure and function. NPJ Microgravity 2022; 8:9. [PMID: 35383182 PMCID: PMC8983659 DOI: 10.1038/s41526-022-00194-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Humans are spending an increasing amount of time in space, where exposure to conditions of microgravity causes 1-2% bone loss per month in astronauts. Through data collected from astronauts, as well as animal and cellular experiments conducted in space, it is evident that microgravity induces skeletal deconditioning in weight-bearing bones. This review identifies contentions in current literature describing the effect of microgravity on non-weight-bearing bones, different bone compartments, as well as the skeletal recovery process in human and animal spaceflight data. Experiments in space are not readily available, and experimental designs are often limited due to logistical and technical reasons. This review introduces a plethora of on-ground research that elucidate the intricate process of bone loss, utilising technology that simulates microgravity. Observations from these studies are largely congruent to data obtained from spaceflight experiments, while offering more insights behind the molecular mechanisms leading to microgravity-induced bone loss. These insights are discussed herein, as well as how that knowledge has contributed to studies of current therapeutic agents. This review also points out discrepancies in existing data, highlighting knowledge gaps in our current understanding. Further dissection of the exact mechanisms of microgravity-induced bone loss will enable the development of more effective preventative and therapeutic measures to protect against bone loss, both in space and possibly on ground.
Collapse
Affiliation(s)
- Joey Man
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia.
- Space Technology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia.
| | - Taylor Graham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Georgina Squires-Donelly
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Andrew L Laslett
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia.
- Space Technology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia.
| |
Collapse
|
15
|
Datta HK, Kringen MK, Tuck SP, Salpingidou G, Olstad OK, Gautvik KM, Cockell SJ, Gautvik VT, Prediger M, Wu JJ, Birch MA, Reppe S. Mechanical-Stress-Related Epigenetic Regulation of ZIC1 Transcription Factor in the Etiology of Postmenopausal Osteoporosis. Int J Mol Sci 2022; 23:ijms23062957. [PMID: 35328378 PMCID: PMC8955993 DOI: 10.3390/ijms23062957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/21/2022] Open
Abstract
Mechanical loading exerts a profound influence on bone density and architecture, but the exact mechanism is unknown. Our study shows that expression of the neurological transcriptional factor zinc finger of the cerebellum 1 (ZIC1) is markedly increased in trabecular bone biopsies in the lumbar spine compared with the iliac crest, skeletal sites of high and low mechanical stress, respectively. Human trabecular bone transcriptome analyses revealed a strong association between ZIC1 mRNA levels and gene transcripts characteristically associated with osteoblasts, osteocytes and osteoclasts. This supposition is supported by higher ZIC1 expression in iliac bone biopsies from postmenopausal women with osteoporosis compared with age-matched control subjects, as well as strongly significant inverse correlation between ZIC1 mRNA levels and BMI-adjusted bone mineral density (BMD) (Z-score). ZIC1 promoter methylation was decreased in mechanically loaded vertebral bone compared to unloaded normal iliac bone, and its mRNA levels correlated inversely with ZIC1 promoter methylation, thus linking mechanical stress to epigenetic control of gene expression. The findings were corroborated in cultures of rat osteoblast progenitors and osteoblast-like cells. This study demonstrates for the first time how skeletal epigenetic changes that are affected by mechanical forces give rise to marked alteration in bone cell transcriptional activity and translate to human bone pathophysiology.
Collapse
Affiliation(s)
- Harish K. Datta
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK; (S.P.T.); (M.A.B.)
- Blood Sciences, South Tees Hospitals NHS Foundation Trust, Middlesbrough TS4 3BW, UK
- Correspondence: ; Tel.: +44-01642-854161
| | | | - Stephen P. Tuck
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK; (S.P.T.); (M.A.B.)
| | - Georgia Salpingidou
- Department of Engineering, Faculty of Science, Durham University, Durham DH1 3 LE, UK; (G.S.); (J.J.W.)
| | - Ole K. Olstad
- Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway; (O.K.O.); (S.R.)
| | - Kaare M. Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway; (K.M.G.); (V.T.G.)
| | - Simon J. Cockell
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Vigdis T. Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway; (K.M.G.); (V.T.G.)
| | - Michael Prediger
- Blood Sciences, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Newcastle upon Tyne NE2 4HH, UK;
| | - Jun Jie Wu
- Department of Engineering, Faculty of Science, Durham University, Durham DH1 3 LE, UK; (G.S.); (J.J.W.)
| | - Mark A. Birch
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK; (S.P.T.); (M.A.B.)
| | - Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway; (O.K.O.); (S.R.)
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway; (K.M.G.); (V.T.G.)
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
16
|
Capparè P, Tetè G, Sberna MT, Panina-Bordignon P. The Emerging Role of Stem Cells in Regenerative Dentistry. Curr Gene Ther 2021; 20:259-268. [PMID: 32811413 DOI: 10.2174/1566523220999200818115803] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Progress of modern dentistry is accelerating at a spectacular speed in the scientific, technological and clinical areas. Practical examples are the advancement in the digital field, which has guaranteed an average level of prosthetic practices for all patients, as well as other scientific developments, including research on stem cell biology. Given their plasticity, defined as the ability to differentiate into specific cell lineages with a capacity of almost unlimited self-renewal and release of trophic/immunomodulatory factors, stem cells have gained significant scientific and commercial interest in the last 15 years. Stem cells that can be isolated from various tissues of the oral cavity have emerged as attractive sources for bone and dental regeneration, mainly due to their ease of accessibility. This review will present the current understanding of emerging conceptual and technological issues of the use of stem cells to treat bone and dental loss defects. In particular, we will focus on the clinical application of stem cells, either directly isolated from oral sources or in vitro reprogrammed from somatic cells (induced pluripotent stem cells). Research aimed at further unraveling stem cell plasticity will allow to identify optimal stem cell sources and characteristics, to develop novel regenerative tools in dentistry.
Collapse
Affiliation(s)
- Paolo Capparè
- Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy,Dental School, Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Giulia Tetè
- Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Paola Panina-Bordignon
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Hospital, Milan, Italy,Dental School, Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| |
Collapse
|
17
|
Han L, Du M, Ren F, Mao X. Milk Polar Lipids Supplementation to Obese Rats During Pregnancy and Lactation Benefited Skeletal Outcomes of Male Offspring. Mol Nutr Food Res 2021; 65:e2001208. [PMID: 34008920 DOI: 10.1002/mnfr.202001208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/17/2021] [Indexed: 01/14/2023]
Abstract
SCOPE Dietary intervention to obese dams during pregnancy and lactation period provides avenues for improving metabolic profiles of the offspring. In the current study, the effects of polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to obese dams during pregnancy and lactation on the skeletal outcomes of male offspring are investigated. METHODS AND RESULTS MFGM-PL is supplemented to obese rats induced by high-fat diet during pregnancy and lactation at a dose of 400 mg kg-1 body weight. Results show that maternal MFGM-PL supplementation significantly ameliorates the stunted skeletal growth of male offspring at weaning. In adulthood offspring, maternal MFGM-PL supplementation protects against high-fat diet (HFD)-induced bone microstructure degeneration and bone marrow adipocyte accumulation. Further investigation shows that maternal supplementation of MFGM-PL significantly ameliorates insulin resistance and increases the mRNA expression of growth hormone releasing hormone (GHRH) in the hypothalamus of HFD offspring. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is subsequently enhanced in MFGM-PL + HFD offspring, contributing to the beneficial skeletal outcomes. CONCLUSION The findings suggest that maternal MFGM-PL supplementation of HFD dam during pregnancy and lactation shows desirable effects on fetal skeletal development, with lasting beneficial programming impacts on skeletal outcomes of offspring.
Collapse
Affiliation(s)
- Lihua Han
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Fazheng Ren
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xueying Mao
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
18
|
Lin Z, Nica C, Sculean A, Asparuhova MB. Positive Effects of Three-Dimensional Collagen-Based Matrices on the Behavior of Osteoprogenitors. Front Bioeng Biotechnol 2021; 9:708830. [PMID: 34368101 PMCID: PMC8334008 DOI: 10.3389/fbioe.2021.708830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Recent research has demonstrated that reinforced three-dimensional (3D) collagen matrices can provide a stable scaffold for restoring the lost volume of a deficient alveolar bone. In the present study, we aimed to comparatively investigate the migratory, adhesive, proliferative, and differentiation potential of mesenchymal stromal ST2 and pre-osteoblastic MC3T3-E1 cells in response to four 3D collagen-based matrices. Dried acellular dermal matrix (DADM), hydrated acellular dermal matrix (HADM), non-crosslinked collagen matrix (NCM), and crosslinked collagen matrix (CCM) did all enhance the motility of the osteoprogenitor cells. Compared to DADM and NCM, HADM and CCM triggered stronger migratory response. While cells grown on DADM and NCM demonstrated proliferative rates comparable to control cells grown in the absence of a biomaterial, cells grown on HADM and CCM proliferated significantly faster. The pro-proliferative effects of the two matrices were supported by upregulated expression of genes regulating cell division. Increased expression of genes encoding the adhesive molecules fibronectin, vinculin, CD44 antigen, and the intracellular adhesive molecule-1 was detected in cells grown on each of the scaffolds, suggesting excellent adhesive properties of the investigated biomaterials. In contrast to genes encoding the bone matrix proteins collagen type I (Col1a1) and osteopontin (Spp1) induced by all matrices, the expression of the osteogenic differentiation markers Runx2, Alpl, Dlx5, Ibsp, Bglap2, and Phex was significantly increased in cells grown on HADM and CCM only. Short/clinically relevant pre-coating of the 3D biomaterials with enamel matrix derivative (EMD) or recombinant bone morphogenetic protein-2 (rBMP-2) significantly boosted the osteogenic differentiation of both osteoprogenitor lines on all matrices, including DADM and NCM, indicating that EMD and BMP-2 retained their biological activity after being released from the matrices. Whereas EMD triggered the expression of all osteogenesis-related genes, rBMP-2 upregulated early, intermediate, and late osteogenic differentiation markers except for Col1a1 and Spp1. Altogether, our results support favorable influence of HADM and CCM on the recruitment, growth, and osteogenic differentiation of the osteoprogenitor cell types. Furthermore, our data strongly support the biofunctionalization of the collagen-based matrices with EMD or rBMP-2 as a potential treatment modality for bone defects in the clinical practice.
Collapse
Affiliation(s)
- Zhikai Lin
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Cristina Nica
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Maria B Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Hariri H, St-Arnaud R. Expression and Role of Ubiquitin-Specific Peptidases in Osteoblasts. Int J Mol Sci 2021; 22:ijms22147746. [PMID: 34299363 PMCID: PMC8304380 DOI: 10.3390/ijms22147746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
The ubiquitin-proteasome system regulates biological processes in normal and diseased states. Recent investigations have focused on ubiquitin-dependent modifications and their impacts on cellular function, commitment, and differentiation. Ubiquitination is reversed by deubiquitinases, including ubiquitin-specific peptidases (USPs), whose roles have been widely investigated. In this review, we explore recent findings highlighting the regulatory functions of USPs in osteoblasts and providing insight into the molecular mechanisms governing their actions during bone formation. We also give a brief overview of our work on USP53, a target of PTH in osteoblasts and a regulator of mesenchymal cell lineage fate decisions. Emerging evidence addresses questions pertaining to the complex layers of regulation exerted by USPs on osteoblast signaling. We provide a short overview of our and others' understanding of how USPs modulate osteoblastogenesis. However, further studies using knockout mouse models are needed to fully understand the mechanisms underpinning USPs actions.
Collapse
Affiliation(s)
- Hadla Hariri
- Research Centre, Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada;
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - René St-Arnaud
- Research Centre, Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada;
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1A4, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada
- Correspondence: ; Tel.: +514-282-7155; Fax: +514-842-5581
| |
Collapse
|
20
|
Fracture Healing Research-Shift towards In Vitro Modeling? Biomedicines 2021; 9:biomedicines9070748. [PMID: 34203470 PMCID: PMC8301383 DOI: 10.3390/biomedicines9070748] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 01/07/2023] Open
Abstract
Fractures are one of the most frequently occurring traumatic events worldwide. Approximately 10% of fractures lead to bone healing disorders, resulting in strain for affected patients and enormous costs for society. In order to shed light into underlying mechanisms of bone regeneration (habitual or disturbed), and to develop new therapeutic strategies, various in vivo, ex vivo and in vitro models can be applied. Undeniably, in vivo models include the systemic and biological situation. However, transferability towards the human patient along with ethical concerns regarding in vivo models have to be considered. Fostered by enormous technical improvements, such as bioreactors, on-a-chip-technologies and bone tissue engineering, sophisticated in vitro models are of rising interest. These models offer the possibility to use human cells from individual donors, complex cell systems and 3D models, therefore bridging the transferability gap, providing a platform for the introduction of personalized precision medicine and finally sparing animals. Facing diverse processes during fracture healing and thus various scientific opportunities, the reliability of results oftentimes depends on the choice of an appropriate model. Hence, we here focus on categorizing available models with respect to the requirements of the scientific approach.
Collapse
|
21
|
Wang B, Yang J, Fan L, Wang Y, Zhang C, Wang H. Osteogenic effects of antihypertensive drug benidipine on mouse MC3T3-E1 cells in vitro. J Zhejiang Univ Sci B 2021; 22:410-420. [PMID: 33973422 DOI: 10.1631/jzus.b2000628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypertension is a prevalent systemic disease in the elderly, who can suffer from several pathological skeletal conditions simultaneously, including osteoporosis. Benidipine (BD), which is widely used to treat hypertension, has been proved to have a beneficial effect on bone metabolism. In order to confirm the osteogenic effects of BD, we investigated its osteogenic function using mouse MC3T3-E1 preosteoblast cells in vitro. The proliferative ability of MC3T3-E1 cells was significantly associated with the concentration of BD, as measured by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay and cell cycle assay. With BD treatment, the osteogenic differentiation and maturation of MC3T3-E1 cells were increased, as established by the alkaline phosphatase (ALP) activity test, matrix mineralized nodules formation, osteogenic genetic test, and protein expression analyses. Moreover, our data showed that the BMP2/Smad pathway could be the partial mechanism for the promotion of osteogenesis by BD, while BD might suppress the possible function of osteoclasts through the OPG/RANKL/RANK (receptor activator of nuclear factor-κB (NF-κB)) pathway. The hypothesis that BD bears a considerable potential in further research on its dual therapeutic effect on hypertensive patients with poor skeletal conditions was proved within the limitations of the present study.
Collapse
Affiliation(s)
- Baixiang Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Jiakang Yang
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Lijie Fan
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Yu Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Chenqiu Zhang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China.
| |
Collapse
|
22
|
Li X, Jiang J, Yang Z, Jin S, Lu X, Qian Y. Galangin suppresses RANKL-induced osteoclastogenesis via inhibiting MAPK and NF-κB signalling pathways. J Cell Mol Med 2021; 25:4988-5000. [PMID: 33939240 PMCID: PMC8178255 DOI: 10.1111/jcmm.16430] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023] Open
Abstract
Osteoclasts play a critical role in osteoporosis; thus, inhibiting osteoclastogenesis is a therapeutic strategy for osteoporosis. Galangin, a natural bioflavonoid extracted from a traditional Chinese herb, possesses a variety of biological activities, including anti‐inflammation and anti‐oxidation. However, its effects on osteoporosis have not been elucidated. In this study, we found that galangin treatment dose‐dependently decreased osteoclastogenesis in bone marrow–derived macrophages (BMMs). Moreover, during osteoclastogenesis, osteoclast‐specific genes, such as tartrate‐resistant acid phosphatase (TRAP), cathepsin K (CtsK), ATPase, H + transporting, lysosomal V0 subunit D2 (V‐ATPase d2) and dendritic cell–specific transmembrane protein (DC‐STAMP), were down‐regulated by galangin treatment. Furthermore, the results of the pit formation assay and F‐actin ring staining revealed impaired osteoclastic bone resorption in the galangin‐treated group compared with that in the control group. Additionally, galangin treatment also inhibited the phosphorylation of p38 and ERK of MAPK signalling pathway, as well as downstream factors of NFATc1, C‐Jun and C‐Fos. Consistent with our in vitro results, galangin suppressed lipopolysaccharide (LPS)‐induced bone resorption via inhibition of osteoclastogenesis. Taken together, our findings provide evidence that galangin is a promising natural compound for the treatment of osteoporosis and may be associated with the inhibition of MAPK and NF‐κB signalling pathways.
Collapse
Affiliation(s)
- Xiucheng Li
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Jiawei Jiang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Zhifan Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Songtao Jin
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Xuanyuan Lu
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| |
Collapse
|
23
|
Zhou S, Li G, Zhou T, Zhang S, Xue H, Geng J, Liu W, Sun Y. The role of IFT140 in early bone healing of tooth extraction sockets. Oral Dis 2021; 28:1188-1197. [PMID: 33682229 DOI: 10.1111/odi.13833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Primary cilium is a key organelle of regulating bone development and maintenance. The aim of this study is to investigate whether ciliary intraflagellar transporter protein 140 (IFT140) plays a positive role in extraction socket healing by promoting bone formation. MATERIALS AND METHODS A left maxillary first molar extraction model was established using 6-week-old Ift140flox/flox (Ctrl group) and Ift140flox/flox , Osx-cre (cKO group) mice. The maxillary bone samples from 1, 2, and 3 weeks were postoperatively evaluated by micro-CT, molecular biology, and histomorphometry analysis. Alveolar bone marrow stromal cells (aBMSCs) from 4-week-old mice were cultured in vitro and tested for proliferation and osteogenic ability. RESULTS Ciliated cells were predominantly observed in the early socket healing stage with highly expressed ciliary protein IFT140. Compared with the Ctrl group, the healing of extraction sockets in the cKO group was significantly delayed. The proliferation and osteogenic differentiation ability of aBMSCs were reduced in the cKO group. CONCLUSION IFT140 has a facilitating role in the early osteogenesis of extraction socket healing and is involved in regulating the proliferation and osteogenic differentiation of aBMSCs.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Gongchen Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - Tingting Zhou
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shuai Zhang
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Hui Xue
- Department of Stomatology, The First Affiliated Hospital of Qiqihaer Medical University, Qiqihaer, China
| | - Jiangyu Geng
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Wenjing Liu
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yao Sun
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
24
|
Di Zanni E, Palagano E, Lagostena L, Strina D, Rehman A, Abinun M, De Somer L, Martire B, Brown J, Kariminejad A, Balasubramaniam S, Baynam G, Gurrieri F, Pisanti MA, De Maggio I, Abboud MR, Chiesa R, Burren CP, Villa A, Sobacchi C, Picollo A. Pathobiologic Mechanisms of Neurodegeneration in Osteopetrosis Derived From Structural and Functional Analysis of 14 ClC-7 Mutants. J Bone Miner Res 2021; 36:531-545. [PMID: 33125761 DOI: 10.1002/jbmr.4200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
ClC-7 is a chloride-proton antiporter of the CLC protein family. In complex with its accessory protein Ostm-1, ClC-7 localizes to lysosomes and to the osteoclasts' ruffled border, where it plays a critical role in acidifying the resorption lacuna during bone resorption. Gene inactivation in mice causes severe osteopetrosis, neurodegeneration, and lysosomal storage disease. Mutations in the human CLCN7 gene are associated with diverse forms of osteopetrosis. The functional evaluation of ClC-7 variants might be informative with respect to their pathogenicity, but the cellular localization of the protein hampers this analysis. Here we investigated the functional effects of 13 CLCN7 mutations identified in 13 new patients with severe or mild osteopetrosis and a known ADO2 mutation. We mapped the mutated amino acid residues in the homology model of ClC-7 protein, assessed the lysosomal colocalization of ClC-7 mutants and Ostm1 through confocal microscopy, and performed patch-clamp recordings on plasma-membrane-targeted mutant ClC-7. Finally, we analyzed these results together with the patients' clinical features and suggested a correlation between the lack of ClC-7/Ostm1 in lysosomes and severe neurodegeneration. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eleonora Di Zanni
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica (CNR-IBF), Dulbecco Telethon Laboratory, Genoa, Italy
| | - Eleonora Palagano
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Laura Lagostena
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica (CNR-IBF), Dulbecco Telethon Laboratory, Genoa, Italy
| | - Dario Strina
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Asma Rehman
- UMB Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA
| | - Mario Abinun
- Department of Pediatric Immunology, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lien De Somer
- Department of Pediatric Rheumatology, University Hospital Leuven, Leuven, Belgium
| | | | - Justin Brown
- Department of Pediatrics, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia.,Department of Pediatric Endocrinology and Diabetes, Monash Children's Hospital, Monash Health, Clayton, Australia
| | | | - Shanti Balasubramaniam
- Department of Metabolic Medicine and Rheumatology, Perth Children's Hospital, Perth, Australia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Subiaco, Australia.,Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia.,Telethon Kids Institute and Division of Pediatrics, School of Health and Medical Sciences, University of Western Australia, Perth, Australia.,Faculty of Medicine, Notre Dame University, Fremantle, Australia
| | | | - Maria A Pisanti
- Medical Genetics Unit, "Antonio Cardarelli" Hospital, Naples, Italy
| | - Ilaria De Maggio
- Medical Genetics Unit, "Antonio Cardarelli" Hospital, Naples, Italy
| | - Miguel R Abboud
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Robert Chiesa
- Bone Marrow Transplantation Department, Great Ormond Street Hospital for Children, London, UK
| | - Christine P Burren
- Department of Pediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK.,Bristol Medical School, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anna Villa
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Sobacchi
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Alessandra Picollo
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica (CNR-IBF), Dulbecco Telethon Laboratory, Genoa, Italy
| |
Collapse
|
25
|
Chai Y, Su J, Hong W, Zhu R, Cheng C, Wang L, Zhang X, Yu B. Antenatal Corticosteroid Therapy Attenuates Angiogenesis Through Inhibiting Osteoclastogenesis in Young Mice. Front Cell Dev Biol 2020; 8:601188. [PMID: 33384997 PMCID: PMC7769874 DOI: 10.3389/fcell.2020.601188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Antenatal corticosteroid therapy (ACT) has been shown to reduce morbidity and mortality rates in preterm delivery, but the fetus is more likely to face the risk of low bone mineralization and low fetal linear growth. However, the mechanism of ACT inducing low bone mineralization remains largely unknown. Pre-osteoclasts, which play an important role in angiogenesis and osteogenesis, are specifically regulating type H vessels (CD31hiEmcnhi) and vessel formation by secreting platelet-derived growth factor-BB (PDGF-BB). We find that the number of pre-osteoclasts and POC-secreted PDGF-BB is dramatically decreased in ACT mice, contributing to the reduction in type H vessels and bone mineralization during the mouse offspring. Quantitative analyses of micro-computed tomography show that the ACT mice have a significant reduction in the mass of trabecular bone relative to the control group. Mononuclear pre-osteoclasts in trabecular bone decreased in ACT mice, which leads to the amount of PDGF-BB reduced and attenuates type H vessel formation. After sorting the Rank+ osteoclast precursors using flow cytometry, we show that the enhancer of zeste homolog 2 (Ezh2) expression is decreased in Rank+ osteoclast precursors in ACT mice. Consistent with the flow data, by using small molecule Ezh2 inhibitor GSK126, we prove that Ezh2 is required for osteoclast differentiation. Downregulating the expression of Ezh2 in osteoclast precursors would reduce PDGF-BB production. Conditioned medium from osteoclast precursor cultures treated with GSK126 inhibited endothelial tube formation, whereas conditioned medium from vehicle group stimulated endothelial tube formation. These results indicate Ezh2 expression of osteoclast precursors is suppressed after ACT, which reduced the pre-osteoclast number and PDGF-BB secretion, thus inhibiting type H vessel formation and ACT-associated low bone mineralization.
Collapse
Affiliation(s)
- Yu Chai
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianwen Su
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weisheng Hong
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Runjiu Zhu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiyu Cheng
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Computed Tomography Diagnostic of Uncommon Case of Osteopetrosis in 80-Year-Old Man-Case Report. MEDICINA-LITHUANIA 2020; 56:medicina56100518. [PMID: 33023136 PMCID: PMC7601162 DOI: 10.3390/medicina56100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022]
Abstract
Background and Objectives: During osteopetrosis course, impaired bone remodeling induces skeletal osteosclerosis and abnormally dense bones, which, however, are brittle and susceptible to low-energy fractures. In this study, radiological evaluation and densitometric measurements of several bones of the skeleton in one of the oldest patients in the world suffering from osteopetrosis was presented. Materials and Methods: Volumetric bone mineral density measurements of the examined bones in an 80-year-old man were performed using two different quantitative computed tomography techniques. Results: The obtained results show higher values of the volumetric bone mineral density of the trabecular bone in lumbar spine than in the cortical bone compartment. T-score and Z-score in this patient reached values of 27–28 and 31–32, respectively. Conclusions: The obtained densitometric data may serve for further diagnostic purposes of osteopetrosis. As documented, the severity of the osteosclerotic changes of bones were higher in this patient than in most other described cases. Moreover, radiological signs diagnosed in this patient were characteristic for all types of osteopetrosis making this case very uncommon.
Collapse
|
27
|
Cellular responses to deproteinized bovine bone mineral biofunctionalized with bone-conditioned medium. Clin Oral Investig 2020; 25:2159-2173. [PMID: 32870390 PMCID: PMC7966141 DOI: 10.1007/s00784-020-03528-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVES The aim of the study was to investigate whether the osteoinductive properties of bone-conditioned medium (BCM) harvested from cortical bone chips within a clinically relevant short-term period can enhance the biologic characteristics of deproteinized bovine bone mineral (DBBM) in vitro. MATERIALS AND METHODS To assess the biofunctionalization of DBBM, the adhesive, proliferative, and differentiation properties of mesenchymal stromal ST2, pre-osteoblastic MC3T3-E1, and primary bone-derived cells grown on BCM-coated DBBM were examined by crystal violet staining of adherent cells, BrdU ELISA, and qRT-PCR, respectively. RESULTS BCM extracted within 20 min or 24 h in either Ringer's solution (BCM-RS) or RS mixed with autologous serum (BCM-RS + S) increased the adhesive properties of all three cell types seeded on DBBM. The 20-min BCM-RS preparation appeared more potent than the 24-h preparation. BCM-RS made within 20 min or 24 h had strong pro-proliferative effects on all cell types grown on DBBM. RS + S alone exhibited a considerable pro-proliferative effect, suggesting an impact of the serum on cellular growth. DBBM coated with BCM-RS or BCM-RS + S, made within 20 min or 24 h each, caused a significant induction of osteogenic differentiation marker expression with a higher potency of the BCM-RS + S. Finally, a strong additive effect of fresh bone chips combined with BCM-coated DBBM on the osteogenic differentiation of the three cell types was observed. CONCLUSIONS Altogether, the data strongly support the biofunctionalization of DBBM with BCM extracted within a clinically relevant time window of 20 min. CLINICAL RELEVANCE Pre-activation of non-osteoinductive biomaterials with BCM, prepared from autologous bone chips during a guided bone regeneration (GBR) procedure, bears the potential of an optimal treatment modality for bone defects in daily practice.
Collapse
|
28
|
Mandal CC. Osteolytic metastasis in breast cancer: effective prevention strategies. Expert Rev Anticancer Ther 2020; 20:797-811. [PMID: 32772585 DOI: 10.1080/14737140.2020.1807950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Breast cancer is the most common cancer in women throughout the world. Patients who are diagnosed early generally have better prognosis and survivability. Indeed, advanced stage breast cancer often develops osteolytic metastases, leading to bone destruction. Although there are select drugs available to treat bone metastatic disease, these drugs have shown limited success. AREA COVERED This paper emphasizes updated mechanisms of bone remodeling and osteolytic bone metastases of breast cancer. This article also aims to explore the potential of novel natural and synthetic therapeutics in the effective prevention of breast cancer-induced osteolysis and osteolytic metastases of breast cancer. EXPERT OPINION Targeting TGFβ and BMP signaling pathways, along with osteoclast activity, appears to be a promising therapeutic strategy in the prevention of breast cancer-induced osteolytic bone destruction and metastatic growth at bone metastatic niches. Pilot studies in animal models suggest various natural and synthetic compounds and monoclonal antibodies as putative therapeutics in the prevention of breast cancer stimulated osteolytic activity. However, comprehensive pre-clinical studies demonstrating the PK/PD and in-depth understanding of molecular mechanism(s) by which these potential molecules exhibit anti-tumor growth and anti-osteolytic activity are still required to develop effective therapies against breast cancer-induced osteolytic bone disease.
Collapse
Affiliation(s)
- Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan , Ajmer, India
| |
Collapse
|
29
|
Abstract
Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion. Cite this article: Bone Joint Res 2019;9(1):1–14.
Collapse
|
30
|
Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater 2020; 103:196-212. [PMID: 31857259 DOI: 10.1016/j.actbio.2019.12.020] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Increasing evidence has suggested that paracrine mechanisms might be involved in the underlying mechanism of mesenchymal stem cells (MSCs) transplantation, and exosomes are an important component of this paracrine role. However, MSCs are usually exposed to normoxia (21% O2) in vitro but experience large differences in oxygen concentration in the body under hypoxia. Indeed, hypoxic precondition of MSCs can enhance their paracrine effects. The main purpose of this study was to determine whether exosomes derived from MSCs under hypoxia (Hypo-Exos) exhibit greater effects on bone fracture healing than those under normoxia (Exos). Using in vivo bone fracture model and in vitro experiments including cell proliferation assay, cell migration assay and so on, we confirmed that Hypo-Exos administration promoted angiogenesis, proliferation and migration to a greater extent when compared to Exos. Furthermore, utilizing a series in vitro and in vivo gain and loss of function experiments, we confirmed a functional role for exosomal miR-126 in the process of bone fracture healing. Meanwhile, we found that knockdown of hypoxia inducible factor 1 (HIF-1α) resulted in a significant decrease of miR-126 in MSCs and exosomes, thereby abolishing the effects of Hypo-Exos. In conclusion, our results demonstrated a mechanism by which Hypo-Exos promote bone fracture healing through exosomal miR-126. Moreover, hypoxia preconditioning mediated enhanced production of exosomal miR-126 through the activation of HIF-1α. Hypoxia preconditioning represents an effective and promising method for the optimization of the therapeutic actions of MSC-derived exosomes for bone fracture healing. STATEMENT OF SIGNIFICANCE: Studies have confirmed that transplantation of exosomes exhibit similar therapeutic effects and functional properties to directly-transplanted stem cells but have less significant adverse effects. However, during in vitro culture conditions, MSCs are usually exposed to normoxia (21% O2) which is very different to the oxygen concentrations found in the body under natural physiological conditions. Our results demonstrated a mechanism by which Hypo-Exos promote bone fracture healing through exosomal miR-126 and the SPRED1/Ras/Erk signaling pathway. Moreover, hypoxia preconditioning mediated enhanced production of exosomal miR-126 through the activation of HIF-1α. Hypoxia preconditioning represents an effective and promising method for the optimization of the therapeutic actions of MSC-derived exosomes for bone fracture healing.
Collapse
|
31
|
Zhang HY, Zeng QF, Bai SP, Wang JP, Ding XM, Xuan Y, Su ZW, Applegate TJ, Zhang KY. Calcium affects sternal mass by effects on osteoclast differentiation and function in meat ducks fed low nutrient density diets. Poult Sci 2019; 98:4313-4326. [PMID: 31237335 DOI: 10.3382/ps/pez348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Genetic progress and increasing nutrient density for greater body mass and meat yield in poultry has inadvertently led to an imbalance between pectorales mass and sternal development which may or may not be detrimental to productivity and welfare. Slowing weight gain while promoting bone mineralization could positively influence sternal health. Thus, the present study aimed to evaluate the effect of graded calcium (Ca) supplementation in low nutrient density (LND) diets on sternal mass and bone turnover in meat ducks. Male meat ducks (720, 15-day-old) were randomly assigned and fed a standard nutrient density positive control (PC) diet, and 4 LND diets with 0.5, 0.7, 0.9, and 1.1% Ca, respectively. Metabolic energy (ME) was reduced in the LND by 9.5 and 16.3% at 15-35 D and 36-56 D compared to PC diet, respectively, while maintaining proportionate essential nutrient proportions to energy similar as in the PC diet. Although the 0.9% Ca LND diet decreased body weight and sternal dimension, it increased the relative sternum weight, the trabecular bone volume/tissue volume (BV/TV) and Ca content of the sternum compared with PC diet. Feeding 0.7% or more Ca with the LND diet significantly increased the mineral content, bone density, BV/TV, and trabecular number of the sternum for 49-days-old ducks. Furthermore, the LND diet with 0.7% or more Ca-increased osteocyte-specific gene mRNA and osteoprotegerin (OPG) expression, and it blocked the expression of cathepsin K and decreased osteoclasts number per bone surface. Tartrate-resistant acid phosphatase (TRAP) staining also revealed that the addition 0.7% or more Ca to the LND diet significantly decreased the number of osteoclasts compared with the 0.5% Ca LND diet. Meanwhile TRAP activity in serum was significantly decreased in 0.7% or more Ca-treated groups. We concluded that LND diet with 0.7% or more Ca may maintain optimal sternal mass through suppressing bone resorption for meat duck.
Collapse
Affiliation(s)
- H Y Zhang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Q F Zeng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - S P Bai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - J P Wang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - X M Ding
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Y Xuan
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Z W Su
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - T J Applegate
- Department of Poultry Science, University of Georgia, 110 Cedar ST. Athens, GA 30602
| | - K Y Zhang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
32
|
Ansari M. Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater 2019; 8:223-237. [PMID: 31768895 PMCID: PMC6930319 DOI: 10.1007/s40204-019-00125-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Nowadays, bone diseases and defects as a result of trauma, cancers, infections and degenerative and inflammatory conditions are increasing. Consequently, bone repair and replacement have been developed with improvement of orthopedic technologies and biomaterials of superior properties. This review paper is intended to sum up and discuss the most relevant studies performed in the field of bone biology and bone regeneration approaches. Therefore, the bone tissue regeneration was investigated by synthetic substitutes, scaffolds incorporating active molecules, nanomedicine, cell-based products, biomimetic fibrous and nonfibrous substitutes, biomaterial-based three-dimensional (3D) cell-printing substitutes, bioactive porous polymer/inorganic composites, magnetic field and nano-scaffolds with stem cells and bone-biomaterials interface studies.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| |
Collapse
|
33
|
Kumar G, Roger PM. From Crosstalk between Immune and Bone Cells to Bone Erosion in Infection. Int J Mol Sci 2019; 20:E5154. [PMID: 31627424 PMCID: PMC6834200 DOI: 10.3390/ijms20205154] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Bone infection and inflammation leads to the infiltration of immune cells at the site of infection, where they modulate the differentiation and function of osteoclasts and osteoblasts by the secretion of various cytokines and signal mediators. In recent years, there has been a tremendous effort to understand the cells involved in these interactions and the complex pathways of signal transduction and their ultimate effect on bone metabolism. These crosstalk mechanisms between the bone and immune system finally emerged, forming a new field of research called osteoimmunology. Diseases falling into the category of osteoimmunology, such as osteoporosis, periodontitis, and bone infections are considered to have a significant implication in mortality and morbidity of patients, along with affecting their quality of life. There is a much-needed research focus in this new field, as the reported data on the immunomodulation of immune cells and their signaling pathways seems to have promising therapeutic benefits for patients.
Collapse
Affiliation(s)
- Gaurav Kumar
- Unité 576, Institut National de la Santé et de la Recherche Médicale, 06200 Nice, France.
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Pierre-Marie Roger
- Unité 576, Institut National de la Santé et de la Recherche Médicale, 06200 Nice, France.
- Service d'Infectiologie, Hôpital Archet 1, Centre Hospitalier Universitaire de Nice, Université de Nice Sophia-Antipolis, 06200 Nice, France.
| |
Collapse
|
34
|
Xu T, Luo Y, Kong F, Lv B, Zhao S, Chen J, Liu W, Cheng L, Zhou Z, Zhou Z, Huang Y, Li L, Zhao X, Qian D, Fan J, Yin G. GIT1 is critical for formation of the CD31 hiEmcn hi vessel subtype in coupling osteogenesis with angiogenesis via modulating preosteoclasts secretion of PDGF-BB. Bone 2019; 122:218-230. [PMID: 30853660 DOI: 10.1016/j.bone.2019.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptor kinase 2 interacting protein-1 (GIT1) is a scaffold protein that plays a vital role in bone modeling and remodeling during osteogenesis coupled with angiogenesis. Recent studies have shown that a specialized subset of vascular endothelium strongly positive for CD31 and Endomucin (CD31hiEmcnhi) is coupled with anabolic bone formation. Based on our previous finding that GIT1 knockout (GIT1 KO) mice have impaired angiogenesis and bone formation, we hypothesized that GIT1 affects formation of the CD31hiEmcnhi vessel subtype. In the current study, GIT1 knockout (GIT1 KO) mice displayed a significant decrease in trabecular bone mass and CD31hiEmcnhi vessel number, compared to their wild-type counterparts. In the fracture healing mouse model, GIT1 KO mice contained a lower number of CD31hiEmcnhi vessels in fracture callus at days 7 and 14. However, no significant differences in the number of preosteoclasts in bone marrow, trabecular bone and callus in GIT1 KO mice were observed, compared with wild-type mice. Notably, concentrations of serum platelet-derived growth factor-BB(PDGF-BB) secreted by preosteoclasts associated with CD31hiEmcnhi vessel formation were lower in GIT1 KO mice. In addition, PDGF-BB-associated expression of phosphorylated extracellular signal-regulated kinase- 1/2 (ERK1/2) and specificity protein 1 (SP1) was significantly decreased in preosteoclasts of GIT1 KO mice. These results collectively suggest that GIT1 is a critical participant in formation of the CD31hiEmcnhi vessel subtype, highlighting a novel biologic function of this scaffold protein in preosteoclasts.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - YongJun Luo
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - FanQi Kong
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Bin Lv
- Department of Orthopedics, The Affiliated People's Hospital with Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - ShuJie Zhao
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Jian Chen
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Wei Liu
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Lin Cheng
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Zheng Zhou
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - ZhiMin Zhou
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - YiFan Huang
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - LinWei Li
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Xuan Zhao
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - DingFei Qian
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Jin Fan
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China.
| | - GuoYong Yin
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China.
| |
Collapse
|
35
|
Li L, Lv SS, Wang C, Yue H, Zhang ZL. Novel CLCN7 mutations cause autosomal dominant osteopetrosis type II and intermediate autosomal recessive osteopetrosis. Mol Med Rep 2019; 19:5030-5038. [PMID: 30942407 DOI: 10.3892/mmr.2019.10123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Osteopetrosis refers to a group of rare genetic bone diseases that are clinically characterized by increased bone mass and fragility. The principal pathogenic defect in patients with chloride channel 7 (CLCN7) gene‑dependent osteopetrosis is reduced osteoclast activity, which leads to decreased bone resorption. Mutations in the CLCN7 gene result in autosomal dominant osteopetrosis type II (ADO‑II), autosomal recessive osteopetrosis (ARO) and intermediate ARO (IARO). In the present study, eight mutations in the CLCN7 gene were identified in six patients with familial osteopetrosis and one patient with sporadic osteopetrosis. Heterozygous mutations c.856C>T (R286W), c.2236T>G (Y746D), c.296A>G (Y99C) and c.937G>A (E313K), and a splice mutation (c.2232‑2A>G) in the CLCN7 gene were detected in patients with ADO‑II. A homozygous mutation c.2377G>C (G793R), and a compound heterozygous mutation c.1409C>T (P470L) and c.647_648dupTG (K217X) were detected in two Chinese families with IARO. Among these mutations, two heterozygous mutations (c.2236T>G and c.2232‑2A>G), one homozygous mutation (c.2377G>C) and the compound heterozygous mutation (c.1409C>T and c.647_648dupTG) are novel, to the best of our knowledge. The present findings not only broaden the allelic spectrum of CLCN7 mutations, but also provide increased knowledge of the clinical phenotypes observed in Chinese patients with osteopetrosis.
Collapse
Affiliation(s)
- Li Li
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Shan-Shan Lv
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Chun Wang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Hua Yue
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zhen-Lin Zhang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
36
|
The potential risks of C-C chemokine receptor 5-edited babies in bone development. Bone Res 2019; 7:4. [PMID: 30701110 PMCID: PMC6351561 DOI: 10.1038/s41413-019-0044-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 12/27/2022] Open
|
37
|
Deubiquitinating Enzymes and Bone Remodeling. Stem Cells Int 2018; 2018:3712083. [PMID: 30123285 PMCID: PMC6079350 DOI: 10.1155/2018/3712083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/29/2018] [Indexed: 02/05/2023] Open
Abstract
Bone remodeling, which is essential for bone homeostasis, is controlled by multiple factors and mechanisms. In the past few years, studies have emphasized the role of the ubiquitin-dependent proteolysis system in regulating bone remodeling. Deubiquitinases, which are grouped into five families, remove ubiquitin from target proteins and are involved in several cell functions. Importantly, a number of deubiquitinases mediate bone remodeling through regulating differentiation and/or function of osteoblast and osteoclasts. In this review, we review the functions and mechanisms of deubiquitinases in mediating bone remodeling.
Collapse
|
38
|
Stem Cells in Dentistry: Types of Intra- and Extraoral Tissue-Derived Stem Cells and Clinical Applications. Stem Cells Int 2018; 2018:4313610. [PMID: 30057624 PMCID: PMC6051054 DOI: 10.1155/2018/4313610] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/05/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Stem cells are undifferentiated cells, capable of renewing themselves, with the capacity to produce different cell types to regenerate missing tissues and treat diseases. Oral facial tissues have been identified as a source and therapeutic target for stem cells with clinical interest in dentistry. This narrative review report targets on the several extraoral- and intraoral-derived stem cells that can be applied in dentistry. In addition, stem cell origins are suggested in what concerns their ability to differentiate as well as their particular distinguishing quality of convenience and immunomodulatory for regenerative dentistry. The development of bioengineered teeth to replace the patient's missing teeth was also possible because of stem cell technologies. This review will also focus our attention on the clinical application of stem cells in dentistry. In recent years, a variety of articles reported the advantages of stem cell-based procedures in regenerative treatments. The regeneration of lost oral tissue is the target of stem cell research. Owing to the fact that bone imperfections that ensue after tooth loss can result in further bone loss which limit the success of dental implants and prosthodontic therapies, the rehabilitation of alveolar ridge height is prosthodontists' principal interest. The development of bioengineered teeth to replace the patient's missing teeth was also possible because of stem cell technologies. In addition, a “dental stem cell banking” is available for regenerative treatments in the future. The main features of stem cells in the future of dentistry should be understood by clinicians.
Collapse
|
39
|
Accardi F, Toscani D, Costa F, Aversa F, Giuliani N. The Proteasome and Myeloma-Associated Bone Disease. Calcif Tissue Int 2018; 102:210-226. [PMID: 29080972 DOI: 10.1007/s00223-017-0349-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022]
Abstract
Bone disease is the hallmark of multiple myeloma (MM), a hematological malignancy characterized by osteolytic lesions due to a severe uncoupled and unbalanced bone remodeling with pronounced osteoblast suppression. Bone metastasis is also a frequent complication of solid tumors including advanced breast or prostate cancer. In the past years, the ubiquitin-proteasome pathway has been proved critical in regulating the balance between bone formation and bone resorption. Proteasome inhibitors (PIs) are a new class of drugs, currently used in the treatment of MM, that affect both tumor cells and bone microenvironment. Particularly, PIs stimulate osteoblast differentiation by human mesenchymal stromal cells and increase bone regeneration in mice. Interestingly, in vitro data indicate that PIs block MM-induced osteoblast and osteocyte cell death by targeting both apoptosis and autophagy. The preclinical data are supported by the following effects observed in MM patients treated with PIs: increase of bone alkaline phosphatase levels, normalization of the markers of bone turnover, and reduction of the skeletal-related events. Moreover, the histomorphometric data indicate that the treatment with bortezomib stimulates osteoblast formation and maintains osteocyte viability in MM patients. This review updates the evidence on the effects of PIs on bone remodeling and on cancer-induced bone disease while focusing on MM bone disease.
Collapse
Affiliation(s)
- Fabrizio Accardi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Hematology and BMT Center, "Azienda Ospedaliero, Universitaria di Parma", Via Gramsci 14, 43126, Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Federica Costa
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Franco Aversa
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Hematology and BMT Center, "Azienda Ospedaliero, Universitaria di Parma", Via Gramsci 14, 43126, Parma, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
- Hematology and BMT Center, "Azienda Ospedaliero, Universitaria di Parma", Via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
40
|
Kang HR, da Costa Fernandes CJ, da Silva RA, Constantino VRL, Koh IHJ, Zambuzzi WF. Mg-Al and Zn-Al Layered Double Hydroxides Promote Dynamic Expression of Marker Genes in Osteogenic Differentiation by Modulating Mitogen-Activated Protein Kinases. Adv Healthc Mater 2018; 7. [PMID: 29280352 DOI: 10.1002/adhm.201700693] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/14/2017] [Indexed: 01/14/2023]
Abstract
The effect of LDH samples comprised of chloride anions intercalated between positive layers of magnesium/aluminum (Mg-Al LDH) or zinc/aluminum (Zn-Al LDH) chemical composition on pre-osteoblast performance is investigated. Non-cytotoxic concentrations of both LDHs modulated pre-osteoblast adhesion by triggering cytoskeleton rearrangement dependent on recruiting of Cofilin, which is modulated by the inhibition of the Protein Phosphatase 2A (PP2A), culminating in osteoblast differentiation with a significant increase of osteogenic marker genes. The alkaline phosphatase (ALP) and bone sialoprotein (BSP) are significantly up-modulated by both LDHs; however, Mg-Al LDH nanomaterial promoted even more significance than both experimental controls, while the phosphorylations of mitogen-activated protein kinase (MAPKs)- extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinase (JNK) significantly increased. MAPK signaling is necessary to activate Runt-related transcription factor 2 (RUNX2) gene. Concomitantly, it is also investigated whether challenged osteoblasts are able to modulate osteoclastogenesis by investigating both osteoprotegerin (OPG) and Receptor activator of nuclear factor kappa-ligand (RANKL) in this model; a dynamic reprogramming of both these genes is found, suggesting LDHs in modulating osteoclastogenesis. These results suggest that LDHs interfere in bone remodeling, and they can be considered as nanomaterials in graft-based bone healing or drug-delivery materials for bone disorders.
Collapse
Affiliation(s)
- Ha Ram Kang
- Laboratorio de Bioensaios e Dinâmica Celular; Departamento de Química e Bioquímica; Instituto de Biociências; Universidade Estadual Paulista-UNESP; campus Botucatu São Paulo CEP 18618-970 Brazil
| | - Célio Junior da Costa Fernandes
- Laboratorio de Bioensaios e Dinâmica Celular; Departamento de Química e Bioquímica; Instituto de Biociências; Universidade Estadual Paulista-UNESP; campus Botucatu São Paulo CEP 18618-970 Brazil
| | - Rodrigo Augusto da Silva
- Laboratorio de Bioensaios e Dinâmica Celular; Departamento de Química e Bioquímica; Instituto de Biociências; Universidade Estadual Paulista-UNESP; campus Botucatu São Paulo CEP 18618-970 Brazil
| | - Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental; Instituto de Química; Universidade de São Paulo-USP; Av. Prof. Lineu Prestes 748 São Paulo CEP 05508-000 Brazil
| | - Ivan Hong Jun Koh
- Departamento de Cirurgia; Universidade Federal de São Paulo-UNIFESP; Rua Botucatu 740 CEP 04023-900 São Paulo Brazil
| | - Willian F. Zambuzzi
- Laboratorio de Bioensaios e Dinâmica Celular; Departamento de Química e Bioquímica; Instituto de Biociências; Universidade Estadual Paulista-UNESP; campus Botucatu São Paulo CEP 18618-970 Brazil
| |
Collapse
|
41
|
Yamada S, Wallingford MC, Borgeia S, Cox TC, Giachelli CM. Loss of PiT-2 results in abnormal bone development and decreased bone mineral density and length in mice. Biochem Biophys Res Commun 2018; 495:553-559. [PMID: 29133259 PMCID: PMC5739526 DOI: 10.1016/j.bbrc.2017.11.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/31/2023]
Abstract
Normal bone mineralization requires phosphate oversaturation in bone matrix vesicles, as well as normal regulation of phosphate metabolism via the interplay among bone, intestine, and kidney. In turn, derangement of phosphate metabolism greatly affects bone function and structure. The type III sodium-dependent phosphate transporters, PiT-1 and PiT-2, are believed to be important in tissue phosphate metabolism and physiological bone formation, but their requirement and molecular roles in bone remain poorly investigated. In order to decipher the role of PiT-2 in bone, we examined normal bone development, growth, and mineralization in global PiT-2 homozygous knockout mice. PiT-2 deficiency resulted in reduced vertebral column, femur, and tibia length as well as mandibular dimensions. Micro-computed tomography analysis revealed that bone mineral density in the mandible, femur, and tibia were decreased, indicating that maintenance of bone function and structure is impaired in both craniofacial and long bones of PiT-2 deficient mice. Both cortical and trabecular thickness and mineral density were reduced in PiT-2 homozygous knockout mice compared with wild-type mice. These results suggest that PiT-2 is involved in normal bone development and growth and plays roles in cortical and trabecular bone metabolism feasibly by regulating local phosphate transport and mineralization processes in the bone. Further studies that evaluate bone cell-specific loss of PiT-2 are now warranted and may yield insight into complex mechanisms of bone development and growth, leading to identification of new therapeutic options for patients with bone diseases.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Mary C Wallingford
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Suhaib Borgeia
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Timothy C Cox
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
42
|
Teti A, Econs MJ. Osteopetroses, emphasizing potential approaches to treatment. Bone 2017; 102:50-59. [PMID: 28167345 DOI: 10.1016/j.bone.2017.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022]
Abstract
Osteopetroses are a heterogeneous group of rare genetic bone diseases sharing the common hallmarks of reduced osteoclast activity, increased bone mass and high bone fragility. Osteoclasts are bone resorbing cells that contribute to bone growth and renewal through the erosion of the mineralized matrix. Alongside the bone forming activity by osteoblasts, osteoclasts allow the skeleton to grow harmonically and maintain a healthy balance between bone resorption and formation. Osteoclast impairment in osteopetroses prevents bone renewal and deteriorates bone quality, causing atraumatic fractures. Osteopetroses vary in severity and are caused by mutations in a variety of genes involved in bone resorption or in osteoclastogenesis. Frequent signs and symptoms include osteosclerosis, deformity, dwarfism and narrowing of the bony canals, including the nerve foramina, leading to hematological and neural failures. The disease is autosomal, with only one extremely rare form associated so far to the X-chromosome, and can have either recessive or dominant inheritance. Recessive ostepetroses are generally lethal in infancy or childhood, with a few milder forms clinically denominated intermediate osteopetroses. Dominant osteopetrosis is so far associated only with mutations in the CLCN7 gene and, although described as a benign form, it can be severely debilitating, although not at the same level as recessive forms, and can rarely result in reduced life expectancy. Severe osteopetroses due to osteoclast autonomous defects can be treated by Hematopoietic Stem Cell Transplant (HSCT), but those due to deficiency of the pro-osteoclastogenic cytokine, RANKL, are not suitable for this procedure. Likewise, it is unclear as to whether HSCT, which has high intrinsic risks, results in clinical improvement in autosomal dominant osteopetrosis. Therefore, there is an unmet medical need to identify new therapies and studies are currently in progress to test gene and cell therapies, small interfering RNA approach and novel pharmacologic treatments.
Collapse
Affiliation(s)
- Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio-Coppito 2, 67100 L'Aquila, Italy.
| | - Michael J Econs
- Department of Medicine, Indiana University, 1120 W. Michigan St., Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University, 1120 W. Michigan St., Indianapolis, IN 46202, USA.
| |
Collapse
|
43
|
Pathria MN, Chung CB, Resnick DL. Acute and Stress-related Injuries of Bone and Cartilage: Pertinent Anatomy, Basic Biomechanics, and Imaging Perspective. Radiology 2017; 280:21-38. [PMID: 27322971 DOI: 10.1148/radiol.16142305] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bone or cartilage, or both, are frequently injured related to either a single episode of trauma or repetitive overuse. The resulting structural damage is varied, governed by the complex macroscopic and microscopic composition of these tissues. Furthermore, the biomechanical properties of both cartilage and bone are not uniform, influenced by the precise age and activity level of the person and the specific anatomic location within the skeleton. Of the various histologic components that are found in cartilage and bone, the collagen fibers and bundles are most influential in transmitting the forces that are applied to them, explaining in large part the location and direction of the resulting internal stresses that develop within these tissues. Therefore, thorough knowledge of the anatomy, physiology, and biomechanics of normal bone and cartilage serves as a prerequisite to a full understanding of both the manner in which these tissues adapt to physiologic stresses and the patterns of tissue failure that develop under abnormal conditions. Such knowledge forms the basis for more accurate assessment of the diverse imaging features that are encountered following acute traumatic and stress-related injuries to the skeleton. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Mini N Pathria
- From the Department of Radiology (M.N.P.) and Radiology Service, VA San Diego Healthcare System (C.B.C.), UC San Diego Medical Center, 200 W Arbor Dr, San Diego, CA 92103; and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| | - Christine B Chung
- From the Department of Radiology (M.N.P.) and Radiology Service, VA San Diego Healthcare System (C.B.C.), UC San Diego Medical Center, 200 W Arbor Dr, San Diego, CA 92103; and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| | - Donald L Resnick
- From the Department of Radiology (M.N.P.) and Radiology Service, VA San Diego Healthcare System (C.B.C.), UC San Diego Medical Center, 200 W Arbor Dr, San Diego, CA 92103; and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| |
Collapse
|
44
|
Cappariello A, Ponzetti M, Rucci N. The "soft" side of the bone: unveiling its endocrine functions. Horm Mol Biol Clin Investig 2017; 28:5-20. [PMID: 27107839 DOI: 10.1515/hmbci-2016-0009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/12/2016] [Indexed: 12/27/2022]
Abstract
Bone has always been regarded as a merely structural tissue, a "hard" scaffold protecting all of its "soft" fellows, while they did the rest of the work. In the last few decades this concept has totally changed, and new findings are starting to portray bone as a very talkative tissue that is capable not only of being regulated, but also of regulating other organs. In this review we aim to discuss the endocrine regulation that bone has over whole-body homeostasis, with emphasis on energy metabolism, male fertility, cognitive functions and phosphate (Pi) metabolism. These delicate tasks are mainly carried out by two known hormones, osteocalcin (Ocn) and fibroblast growth factor 23 (FGF23) and possibly other hormones that are yet to be found. The extreme plasticity and dynamicity of bone allows a very fine tuning over the actions these hormones exert, portraying this tissue as a full-fledged endocrine organ, in addition to its classical roles. In conclusion, our findings suggest that bone also has a "soft side", and is daily taking care of our entire organism in ways that were unknown until the last few years.
Collapse
|
45
|
Hu CH, Sui BD, Du FY, Shuai Y, Zheng CX, Zhao P, Yu XR, Jin Y. miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep 2017; 7:43191. [PMID: 28240263 PMCID: PMC5327426 DOI: 10.1038/srep43191] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/20/2017] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro. However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21-/-) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21-/- mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo. Besides, miR-21-/- mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21-/- mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis.
Collapse
Affiliation(s)
- Cheng-Hu Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Fang-Ying Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, China
| | - Yi Shuai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Pan Zhao
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, Shaanxi 710032, China
| | - Xiao-Rui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, China,
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi 710032, China,Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, Shaanxi 710032, China,
| |
Collapse
|
46
|
Gandhi D, Naoghare PK, Bafana A, Kannan K, Sivanesan S. Fluoride-Induced Oxidative and Inflammatory Stress in Osteosarcoma Cells: Does It Affect Bone Development Pathway? Biol Trace Elem Res 2017; 175:103-111. [PMID: 27234253 DOI: 10.1007/s12011-016-0756-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/20/2016] [Indexed: 12/30/2022]
Abstract
Oxidative stress is reported to negatively affect osteoblast cells. Present study reports oxidative and inflammatory signatures in fluoride-exposed human osteosarcoma (HOS) cells, and their possible association with the genes involved in osteoblastic differentiation and bone development pathways. HOS cells were challenged with sublethal concentration (8 mg/L) of sodium fluoride for 30 days and analyzed for transcriptomic expression. In total, 2632 transcripts associated with several biological processes were found to be differentially expressed. Specifically, genes involved in oxidative stress, inflammation, osteoblastic differentiation, and bone development pathways were found to be significantly altered. Variation in expression of key genes involved in the abovementioned pathways was validated through qPCR. Expression of serum amyloid A1 protein, a key regulator of stress and inflammatory pathways, was validated through western blot analysis. This study provides evidence that chronic oxidative and inflammatory stress may be associated with the fluoride-induced impediment in osteoblast differentiation and bone development.
Collapse
Affiliation(s)
- Deepa Gandhi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Pravin K Naoghare
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Amit Bafana
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Krishnamurthi Kannan
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Saravanadevi Sivanesan
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.
| |
Collapse
|
47
|
Zhang W, Liu C, Hai B, Du G, Wang H, Leng H, Xu Y, Song C. A Convenient In Vivo Model Using Small Interfering RNA Silencing to Rapidly Assess Skeletal Gene Function. PLoS One 2016; 11:e0167222. [PMID: 27893850 PMCID: PMC5125699 DOI: 10.1371/journal.pone.0167222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
It is difficult to study bone in vitro because it contains various cell types that engage in cross-talk. Bone biologically links various organs, and it has thus become increasingly evident that skeletal physiology must be studied in an integrative manner in an intact animal. We developed a model using local intraosseous small interfering RNA (siRNA) injection to rapidly assess the effects of a target gene on the local skeletal environment. In this model, 160-g male Sprague-Dawley rats were treated for 1-2 weeks. The left tibia received intraosseous injection of a parathyroid hormone 1 receptor (Pth1r) or insulin-like growth factor 1 receptor (Igf-1r) siRNA transfection complex loaded in poloxamer 407 hydrogel, and the right tibia received the same volume of control siRNA. All the tibias received an intraosseous injection of recombinant human parathyroid hormone (1-34) (rhPTH (1-34)) or insulin-like growth factor-1 (IGF-1). Calcein green and alizarin red were injected 6 and 2 days before euthanasia, respectively. IGF-1R and PTH1R expression levels were detected via RT-PCR assays and immunohistochemistry. Bone mineral density (BMD), microstructure, mineral apposition rates (MARs), and strength were determined by dual-energy X-ray absorptiometry, micro-CT, histology and biomechanical tests. The RT-PCR and immunohistochemistry results revealed that IGF-1R and PTH1R expression levels were dramatically diminished in the siRNA-treated left tibias compared to the right tibias (both p<0.05). Using poloxamer 407 hydrogel as a controlled-release system prolonged the silencing effect of a single dose of siRNA; the mRNA expression levels of IGF-1R were lower at two weeks than at one week (p<0.01). The BMD, bone microstructure parameters, MAR and bone strength were significantly decreased in the left tibias compared to the right tibias (all p<0.05). This simple and convenient local intraosseous siRNA injection model achieved gene silencing with very small quantities of siRNA over a short treatment period (≤7 days).
Collapse
Affiliation(s)
- Wen Zhang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Can Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Bao Hai
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Guohong Du
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Hong Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Huijie Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Yingsheng Xu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Chunli Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
48
|
Gigliotti CL, Boggio E, Clemente N, Shivakumar Y, Toth E, Sblattero D, D’Amelio P, Isaia GC, Dianzani C, Yagi J, Rojo JM, Chiocchetti A, Boldorini R, Bosetti M, Dianzani U. ICOS-Ligand Triggering Impairs Osteoclast Differentiation and Function In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2016; 197:3905-3916. [DOI: 10.4049/jimmunol.1600424] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/20/2016] [Indexed: 02/02/2023]
|
49
|
Fernandes MH, Gomes PDS. Bone Cells Dynamics during Peri-Implantitis: a Theoretical Analysis. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2016; 7:e6. [PMID: 27833731 PMCID: PMC5100646 DOI: 10.5037/jomr.2016.7306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The present manuscript aims a detailed characterization of the bone cells dynamics during physiological bone remodelling and, subsequently, to address the cellular and molecular mechanisms that play a fundamental role in the immune-inflammatory-induced uncoupled bone remodelling observed in peri-implantitis. RESULTS An intimate relationship between the immune system and bone is acknowledged to be determinant for bone tissue remodelling and integrity. Due to the close interaction of immune and bone cells, the two systems share a number of surface receptors, cytokines, signalling pathways and transcription factors that are involved in mutual regulatory mechanisms. This physiological equilibrium is disturbed in pathological conditions, as verified in peri-implantitis establishment and development. Activation of the innate and adaptive immune response, challenged by the local bacterial infection, induces the synthesis of high levels of a variety of pro- and anti-inflammatory cytokines that disturb the normal functioning of the bone cells, by uncoupling bone resorption and formation, ending up with a net alveolar bone loss and subsequent implant failure. Most data points to an immune-inflammatory induced osteoclast differentiation and function, as the major underlying mechanism to the uncoupled bone resorption to bone formation. Further, the disturbed functioning of osteoblasts, reflected by the possible expression of a fibro-osteoblastic phenotype, may also play a role. CONCLUSIONS Alveolar bone loss is a hallmark of peri-implantitis. A great deal of data is still needed on the cellular and humoral crosstalk in the context of an integrated view of the osteoimmunologic interplay occurring in the peri-implantitis environment subjacent to the bone loss outcome.
Collapse
|
50
|
Yala S, Boustta M, Gallet O, Hindié M, Carreiras F, Benachour H, Sidane D, Khireddine H. New synthesis method of HA/P(D,L)LA composites: study of fibronectin adsorption and their effects in osteoblastic behavior for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:140. [PMID: 27534400 DOI: 10.1007/s10856-016-5756-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
A novel synthetic method to synthesize hydroxyapatite/poly (D,L) lactic acid biocomposite is presented in this study by mixing only the precursors hydroxyapatite and (D,L) LA monomer without adding neither solvent nor catalyst. Three compositions were successfully synthesized with the weight ratios of 1/1, 1/3, and 3/5 (hydroxyapatite/(D,L) lactic acid), and the grafting efficiency of poly (D,L) lactic acid on hydroxyapatite surface reaches up to 84 %. Scanning electron microscopy and Fourier transform infrared spectroscopy showed that the hydroxyapatite particles were successfully incorporated into the poly (D,L) lactic acid polymer and X ray diffraction analysis showed that hydroxyapatite preserved its crystallinity after poly (D,L) lactic acid grafting. Differential scanning calorimetry shows that Tg of hydroxyapatite/poly (D,L) lactic acid composite is less than Tg of pure poly (D,L) lactic acid, which facilitates the shaping of the composite obtained. The addition of poly (D,L) lactic acid improves the adsorption properties of hydroxyapatite for fibronectin extracellular matrix protein. Furthermore, the presence of poly (D,L) lactic acid on hydroxyapatite surface coated with fibronectin enhanced pre-osteoblast STRO-1 adhesion and cell spreading. These results show the promising potential of hydroxyapatite/poly (D,L) lactic acid composite as a bone substitute material for orthopedic applications and bone tissue engineering.
Collapse
Affiliation(s)
- Sabeha Yala
- Laboratoire de Génie de l'Environnement, Faculté de Technologie, Université de Bejaia, Bejaia, 06000, Algeria.
| | - Mahfoud Boustta
- Institut des Biomolécules Max Mousseron, UMR CNRS 5247, CRBA, Faculté des Sciences, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, Montpellier cedex 5, 34093, France
| | - Olivier Gallet
- ERRMECe, Université de Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, Cergy-Pontoise Cedex, 95302, France
| | - Mathilde Hindié
- ERRMECe, Université de Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, Cergy-Pontoise Cedex, 95302, France
| | - Franck Carreiras
- ERRMECe, Université de Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, Cergy-Pontoise Cedex, 95302, France
| | - Hamanou Benachour
- ERRMECe, Université de Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, Cergy-Pontoise Cedex, 95302, France
| | - Djahida Sidane
- Laboratoire de Génie de l'Environnement, Faculté de Technologie, Université de Bejaia, Bejaia, 06000, Algeria
| | - Hafit Khireddine
- Laboratoire de Génie de l'Environnement, Faculté de Technologie, Université de Bejaia, Bejaia, 06000, Algeria
| |
Collapse
|