1
|
Rizzoli R, Chevalley T. Nutrition and Osteoporosis Prevention. Curr Osteoporos Rep 2024; 22:515-522. [PMID: 39322861 PMCID: PMC11499541 DOI: 10.1007/s11914-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE OF REVIEW Osteoporosis affects 50% of women and 20% of men after the age of 50. Fractures are associated with significant morbidity, increased mortality and altered quality of life. Lifestyle measures for fragility fracture prevention include good nutrition including adequate protein and calcium intakes, vitamin D sufficiency, and regular weight bearing physical exercise. RECENT FINDINGS Dietary protein is one of the most important nutritional considerations as it affects bone mineral density, trabecular and cortical microstructure, and bone strength. When calcium intake is sufficient, higher dietary protein intake is associated with lower risk of fracture. Dairy products are a valuable source of calcium and high quality protein. Dairy product consumption, particularly fermented dairy products, are associated with a lower risk of hip fracture and vegan diets are associated with increased fracture risk. Other dietary factors associated with reduced fracture risk include at least 5 servings per day of fruits and vegetables, regular tea drinking, adherence to a Mediterranean diet and other dietary patterns which provide fibers, polyphenols and fermented dairy products. Such dietary patterns may confer health benefits through their effect on gut microbiota composition and/or function. A balanced diet including minerals, protein, fruits and vegetables is an important element in the prevention of osteoporosis and of fragility fracture.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland.
| | - Thierry Chevalley
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland
| |
Collapse
|
2
|
Zhao X, He W, Jakobsen LMA, Panah FM, Barbosa Correia BS, Nielsen DS, Hansen AK, Bertram HC. Influence of dairy matrix on the prebiotic effects of inulin related to gut metabolic activity and bone health. Food Funct 2024. [PMID: 39436286 DOI: 10.1039/d4fo01635a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Inulin is a well-recognized prebiotic ingredient established to modulate the gut microbiome and its metabolic functionality. However, little is known about how the food matrix interacts with the prebiotic efficacy of inulin. The aim of the present study was to investigate the interaction between the food matrix (milk vs. yogurt) and the gut microbiome modulatory effects of inulin and its influence on calcium bioavailability as reflected in bone mineralization. For this purpose, a 6-week dietary intervention was conducted in healthy young growing male rats (n = 36) which received a diet matrix that included: (1) milk, (2) milk supplemented with 5% inulin, (3) yogurt, or (4) yogurt supplemented with 5% inulin. All diets were limited in calcium content and provided a daily intake of 46 mg calcium per rat. We found that inulin fortification of a yogurt diet exerted a larger effect on gut fermentation as reflected in pH and the generation of acetate in the distal part of the intestine and feces compared with inulin fortification of milk. Inulin was also associated with a higher acetate concentration in plasma when supplied in yogurt compared with milk. No effects of inulin supplementation were found on bone parameters. In conclusion, the present study suggested that the prebiotic efficacy of inulin is higher when supplied in a fermented dairy product than milk. However, neither adding inulin to yogurt or milk affected bone mineralization or the bone structure.
Collapse
Affiliation(s)
- Xiaorui Zhao
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark.
| | - Weiwei He
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark.
| | - Louise M A Jakobsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark.
| | - Farhad M Panah
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | | | - Dennis Sandris Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hanne Christine Bertram
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark.
| |
Collapse
|
3
|
Gvozdenović N, Šarac I, Ćorić A, Karan S, Nikolić S, Ždrale I, Milešević J. Impact of Vitamin D Status and Nutrition on the Occurrence of Long Bone Fractures Due to Falls in Elderly Subjects in the Vojvodina Region of Serbia. Nutrients 2024; 16:2702. [PMID: 39203838 PMCID: PMC11356805 DOI: 10.3390/nu16162702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Bone fractures are a significant public health issue among elderly subjects. This study examines the impact of diet and vitamin D status on the risk of long bone fractures due to falls in elderly subjects in Vojvodina, Serbia. Conducted at the University Clinical Center of Vojvodina in autumn/winter 2022-2023, the study included 210 subjects >65 years: 105 (F: 80/M: 15) with long bone fractures due to falls and 105 (F: 80/M: 15) controls. Groups were similar regarding age and BMI. Dietary intakes (by two 24-h recalls) and serum vitamin D levels were analyzed. The fracture group had a significantly lower median daily vitamin D intake (1.4 μg/day vs. 5.8 μg/day), intake of calcium, energy, proteins, fats, fibers, dairy products, eggs, fish, edible fats/oils, and a higher intake of sweets (p < 0.001 for all). Serum vitamin D levels were significantly lower in the fracture group (40.0 nmol/L vs. 76.0 nmol/L, p < 0.001). Logistic regression identified serum vitamin D as the most important protective factor against fractures, and ROC curve analysis indicated that serum vitamin D levels > 50.5 nmol/L decreased fracture risk. Nutritional improvements (increased intake of vitamin D and protein sources such as fish, eggs, and dairy), increased sun exposure, and routine vitamin D supplementation during winter are advised.
Collapse
Affiliation(s)
- Nemanja Gvozdenović
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Center of Vojvodina, 21137 Novi Sad, Serbia
| | - Ivana Šarac
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia;
| | - Andrijana Ćorić
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
| | - Saša Karan
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Center of Vojvodina, 21137 Novi Sad, Serbia
| | - Stanislava Nikolić
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
- Center of Laboratory Medicine, University Clinical Center of Vojvodina, 21137 Novi Sad, Serbia
| | - Isidora Ždrale
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
| | - Jelena Milešević
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia;
| |
Collapse
|
4
|
Coskun M, Babayeva A, Barlas T, Muhittin Yalcin M, Akturk M, Balos Toruner F, Ayhan Karakoc M, Karakan T, Cindoruk M, Yetkin I, Eroglu Altinova A. Relationship between gut microbiome and bone deficits in primary hyperparathyroidism: A proof-of-concept pilot study. J Investig Med 2024; 72:541-552. [PMID: 38641855 DOI: 10.1177/10815589241251695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Parathyroid hormone (PTH) interacts with components of the gut microbiota to exert its bone-regulating effects. This study aimed to investigate the gut microbial composition in patients with primary hyperparathyroidism (PHPT). Nine patients with PHPT and nine age-sex and body mass index-matched healthy controls were included. Gut microbial composition was assessed using 16S rRNA gene amplicon sequencing in both groups at baseline and 1 month after parathyroidectomy in the PHPT group. Data were imported into QIIME-2 and both QIIME-2 and R packages were used for microbiome analysis. Alpha and beta diversities were similar between the groups and remained unchanged after parathyroidectomy. The relative abundance of Subdoligranulum was significantly higher, whereas Ruminococcus, Alloprevotella, Phascolarctobacterium, and Clostridium sensu stricto_1 were significantly lower in PHPT than in controls (p < 0.001). After parathyroidectomy, the relative abundance of Subdoligranulum decreased, and Ruminococcus and Alloprevotella increased (p < 0.001). The PHPT group had lower total femoral and lumbar bone mineral density (BMD) than the controls (p < 0.05). At baseline, Alloprevotella abundance was positively correlated with serum phosphorus and Subdoligranulum was positively correlated with total lumbar BMD. Clostridium sensu stricto_1 was negatively correlated with serum calcium and positively correlated with femoral neck BMD. Postoperatively, Alloprevotella was positively correlated with baseline serum phosphorus and Phascolarctobacterium was positively correlated with distal radius BMD. This study demonstrated that the diversity of the gut microbiome was altered, possibly in response to electrolyte changes in PHPT, both before and after parathyroidectomy.
Collapse
Affiliation(s)
- Meric Coskun
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Afruz Babayeva
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Tugba Barlas
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Mehmet Muhittin Yalcin
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Mujde Akturk
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Fusun Balos Toruner
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Mehmet Ayhan Karakoc
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Tarkan Karakan
- Department of Gastroenterology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Mehmet Cindoruk
- Department of Gastroenterology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ilhan Yetkin
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Alev Eroglu Altinova
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
5
|
El-Sayed A, Kapila D, Taha RSI, El-Sayed S, Mahen MRA, Taha R, Alrubaiy L. The Role of the Gut Microbiome in Inflammatory Bowel Disease: The Middle East Perspective. J Pers Med 2024; 14:652. [PMID: 38929872 PMCID: PMC11204866 DOI: 10.3390/jpm14060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The gut microbiome is of paramount importance in preserving internal balance in the gastrointestinal tract; therefore, disruptions in its regulation have been linked to the development of inflammatory bowel disease (IBD). This article explores the intricate details of the gastrointestinal microbiome as it pertains to inflammatory bowel disease (IBD), with an emphasis on the Middle East. The study reviews the typical gut microbiome, modifications in inflammatory bowel disease (IBD), determinants impacting the gut microbiome of the Middle East, and prospective therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed El-Sayed
- Hillingdon Hospital NHS Trust, London UB8 3NN, UK; (A.E.-S.); (D.K.)
| | - Diya Kapila
- Hillingdon Hospital NHS Trust, London UB8 3NN, UK; (A.E.-S.); (D.K.)
| | - Rama Sami Issa Taha
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
| | | | - Mohd Rafiw Ahmed Mahen
- Department of Medicine, King’s College Hospital London, Dubai P.O. Box 340901, United Arab Emirates;
| | - Roa’a Taha
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
| | - Laith Alrubaiy
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
6
|
Donangelo CM, Cornes R, Sintes C, Bezerra FF. Combined Oral Contraceptives: Association with Serum 25-Hydroxyvitamin D and Calcium and Bone Homeostasis. J Womens Health (Larchmt) 2024; 33:805-815. [PMID: 38417038 DOI: 10.1089/jwh.2023.0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Background: Use of combined oral contraceptives (COCs) has been found to increase serum 25-hydroxyvitamin D [25(OH)D] but effects on calcium and bone homeostasis are unclear. Materials and Methods: Serum 25(OH)D, parathyroid hormone (PTH), alkaline phosphatase (ALK) and estradiol, dietary intake of bone-related nutrients and foods, bone mineral density (BMD), and body fat were compared in adult women (20-35 years; body mass index 21.5 ± 2.3 kg/m2) users (+COC, n = 32) and nonusers (-COC, n = 20) of COC. Biochemical markers were measured by automated assays. BMD at total body (TB), lumbar spine (LS), femoral neck (FN) and trochanter (TR), and body fat, were measured by dual-energy X-ray absorptiometry. Dietary intake was assessed by a food frequency questionnaire. Results: Intake of calcium, dairy foods, and fruits and vegetables, were adequate and did not differ by COC. Mean 25(OH)D was 35% higher in +COC (110.4 ± 27.3 nmol/L, 44.2 ± 1.8 ng/mL) compared with -COC (81.7 ± 22.8 nmol/L, 32.7 ± 2.3 ng/mL; p < 0.001). Mean PTH, ALK, and estradiol were 28%, 12%, and 62% lower, respectively, in +COC compared with -COC (p ≤ 0.05). Mean BMD z-scores (all sites) were adequate and did not differ by COC. There were no correlations between 25(OH)D and dietary, biochemical, and body composition variables. PTH was inversely correlated with TR-BMD z-score in -COC (r = -0.47; p = 0.04), and ALK was inversely correlated with TB-, TR-, and LS-BMD z-scores in -COC (r ≤ -0.43; p ≤ 0.04), but not in +COC. Conclusions: Increased serum 25(OH)D with COC use was paralleled by expected physiologic adjustments in calcium and bone homeostasis, and adequate bone mass status, in nonobese young adult women consuming bone-healthy diets.
Collapse
Affiliation(s)
| | - Rafael Cornes
- Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | - Celia Sintes
- Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | - Flavia F Bezerra
- Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
7
|
Ji J, Gu Z, Li N, Dong X, Wang X, Yao Q, Zhang Z, Zhang L, Cao L. Gut microbiota alterations in postmenopausal women with osteoporosis and osteopenia from Shanghai, China. PeerJ 2024; 12:e17416. [PMID: 38832037 PMCID: PMC11146318 DOI: 10.7717/peerj.17416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Background The importance of the gut microbiota in maintaining bone homeostasis has been increasingly emphasized by recent research. This study aimed to identify whether and how the gut microbiome of postmenopausal women with osteoporosis and osteopenia may differ from that of healthy individuals. Methods Fecal samples were collected from 27 individuals with osteoporosis (OP), 44 individuals with osteopenia (ON), and 23 normal controls (NC). The composition of the gut microbial community was analyzed by 16S rRNA gene sequencing. Results No significant difference was found in the microbial composition between the three groups according to alpha and beta diversity. At the phylum level, Proteobacteria and Fusobacteriota were significantly higher and Synergistota was significantly lower in the ON group than in the NC group. At the genus level, Roseburia, Clostridia_UCG.014, Agathobacter, Dialister and Lactobacillus differed between the OP and NC groups as well as between the ON and NC groups (p < 0.05). Linear discriminant effect size (LEfSe) analysis results showed that one phylum community and eighteen genus communities were enriched in the NC, ON and OP groups, respectively. Spearman correlation analysis showed that the abundance of the Dialister genus was positively correlated with BMD and T score at the lumbar spine (p < 0.05). Functional predictions revealed that pathways relevant to amino acid biosynthesis, vitamin biosynthesis, and nucleotide metabolism were enriched in the NC group. On the other hand, pathways relevant to metabolites degradation and carbohydrate metabolism were mainly enriched in the ON and OP groups respectively. Conclusions Our findings provide new epidemiologic evidence regarding the relationship between the gut microbiota and postmenopausal bone loss, laying a foundation for further exploration of therapeutic targets for the prevention and treatment of postmenopausal osteoporosis (PMO).
Collapse
Affiliation(s)
- Jiaqing Ji
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengrong Gu
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiong Wang
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Qiang Yao
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| |
Collapse
|
8
|
Olteanu G, Ciucă-Pană MA, Busnatu ȘS, Lupuliasa D, Neacșu SM, Mititelu M, Musuc AM, Ioniță-Mîndrican CB, Boroghină SC. Unraveling the Microbiome-Human Body Axis: A Comprehensive Examination of Therapeutic Strategies, Interactions and Implications. Int J Mol Sci 2024; 25:5561. [PMID: 38791599 PMCID: PMC11122276 DOI: 10.3390/ijms25105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review scrutinizes the intricate interplay between the microbiome and the human body, exploring its multifaceted dimensions and far-reaching implications. The human microbiome, comprising diverse microbial communities inhabiting various anatomical niches, is increasingly recognized as a critical determinant of human health and disease. Through an extensive examination of current research, this review elucidates the dynamic interactions between the microbiome and host physiology across multiple organ systems. Key topics include the establishment and maintenance of microbiota diversity, the influence of host factors on microbial composition, and the bidirectional communication pathways between microbiota and host cells. Furthermore, we delve into the functional implications of microbiome dysbiosis in disease states, emphasizing its role in shaping immune responses, metabolic processes, and neurological functions. Additionally, this review discusses emerging therapeutic strategies aimed at modulating the microbiome to restore host-microbe homeostasis and promote health. Microbiota fecal transplantation represents a groundbreaking therapeutic approach in the management of dysbiosis-related diseases, offering a promising avenue for restoring microbial balance within the gut ecosystem. This innovative therapy involves the transfer of fecal microbiota from a healthy donor to an individual suffering from dysbiosis, aiming to replenish beneficial microbial populations and mitigate pathological imbalances. By synthesizing findings from diverse fields, this review offers valuable insights into the complex relationship between the microbiome and the human body, highlighting avenues for future research and clinical interventions.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Maria-Alexandra Ciucă-Pană
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania;
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
9
|
Ma O, Dutta A, Bliss DW, Nakatsu CH, Weaver CM, Whisner CM. Identifying Gut Microbiome Features that Predict Responsiveness Toward a Prebiotic Capable of Increasing Calcium Absorption: A Pilot Study. Calcif Tissue Int 2024; 114:513-523. [PMID: 38656326 PMCID: PMC11061023 DOI: 10.1007/s00223-024-01201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
Previously, we demonstrated that prebiotics may provide a complementary strategy for increasing calcium (Ca) absorption in adolescents which may improve long-term bone health. However, not all children responded to prebiotic intervention. We determine if certain baseline characteristics of gut microbiome composition predict prebiotic responsiveness. In this secondary analysis, we compared differences in relative microbiota taxa abundance between responders (greater than or equal to 3% increase in Ca absorption) and non-responders (less than 3% increase). Dual stable isotope methodologies were used to assess fractional Ca absorption at the end of crossover treatments with placebo, 10, and 20 g/day of soluble corn fiber (SCF). Microbial DNA was obtained from stool samples collected before and after each intervention. Sequencing of the 16S rRNA gene was used to taxonomically characterize the gut microbiome. Machine learning techniques were used to build a predictive model for identifying responders based on baseline relative taxa abundances. Model output was used to infer which features contributed most to prediction accuracy. We identified 19 microbial features out of the 221 observed that predicted responsiveness with 96.0% average accuracy. The results suggest a simplified prescreening can be performed to determine if a subject's bone health may benefit from a prebiotic. Additionally, the findings provide insight and prompt further investigation into the metabolic and genetic underpinnings affecting calcium absorption during pubertal bone development.
Collapse
Affiliation(s)
- Owen Ma
- Electrical Engineering, Arizona State University, 650 E Tyler Mall, Tempe, AZ, 85281, USA.
| | - Arindam Dutta
- Electrical Engineering, Arizona State University, 650 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Daniel W Bliss
- Electrical Engineering, Arizona State University, 650 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Cindy H Nakatsu
- Agronomy, Purdue University, 915 Mitch Daniels Boulevard, West Lafayette, IN, 10587, USA
| | - Connie M Weaver
- Exercise and Nutritional Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Corrie M Whisner
- Health Solutions, Arizona State University, 500 N 3rd Street, Phoenix, AZ, 85004, USA
| |
Collapse
|
10
|
Chargo NJ, Kang HJ, Das S, Jin Y, Rockwell C, Cho JY, McCabe LR, Parameswaran N. Korean red ginseng extract prevents bone loss in an oral model of glucocorticoid induced osteoporosis in mice. Front Pharmacol 2024; 15:1268134. [PMID: 38533264 PMCID: PMC10963623 DOI: 10.3389/fphar.2024.1268134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
The gut microbiota and barrier function play important roles in bone health. We previously demonstrated that chronic glucocorticoid (GC)-induced bone loss in mice is associated with significant shifts in gut microbiota composition and impaired gut barrier function. Korean Red Ginseng (KRG, Panax Ginseng Meyer, Araliaceae) extract has been shown to prevent glucocorticoid-induced osteoporosis (GIO) in a subcutaneous pellet model in mice, but its effect on gut microbiota and barrier function in this context is not known. The overall goal of this study was to test the effect of KRG extract in a clinically relevant, oral model of GIO and further investigate its role in modulating the gut-bone axis. Growing male mice (CD-1, 8 weeks) were treated with 75 μg/mL corticosterone (∼9 mg/kg/day) or 0.4% ethanol vehicle in the drinking water for 4 weeks. During this 4-week period, mice were treated daily with 500 mg/kg/day KRG extract dissolved in sterile water or an equal amount of sterile water via oral gastric gavage. After 4 weeks of treatment, we assessed bone volume, microbiota composition, gut barrier integrity, and immune cells in the bone marrow (BM) and mesenteric lymph nodes (MLNs). 4 weeks of oral GC treatment caused significant distal femur trabecular bone loss, and this was associated with changes in gut microbiota composition, impaired gut barrier function and altered immune cell composition. Importantly, KRG extract prevented distal femur trabecular bone loss and caused significant alterations in gut microbiota composition but had only modest effects on gut barrier function and immune cell populations. Taken together, these results demonstrate that KRG extract significantly modulates the gut microbiota-bone axis and prevents glucocorticoid-induced bone loss in mice.
Collapse
Affiliation(s)
- Nicholas J. Chargo
- Department of Physiology, Michigan State University, East Lansing, MI, United States
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Ho Jun Kang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Subhashari Das
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Yining Jin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Laura R. McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, United States
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, East Lansing, MI, United States
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Zhang L, Zhao L, Xiao X, Zhang X, He L, Zhang Q. Association of dietary carbohydrate and fiber ratio with postmenopausal bone mineral density and prevalence of osteoporosis: A cross-sectional study. PLoS One 2024; 19:e0297332. [PMID: 38354209 PMCID: PMC10866481 DOI: 10.1371/journal.pone.0297332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND This study aimed to investigate the associations of carbohydrate to dietary fiber ratio with bone mineral density (BMD) and the prevalence of osteoporosis in postmenopausal women. METHODS This cross-sectional study retrieved the data of 2829 postmenopausal women from the National Health and Nutrition Examination Survey (NHANES) database. Weighted univariable logistic regression models were used to investigate the correlations of carbohydrate, dietary fiber, or carbohydrate to fiber ratio with osteoporosis. RESULTS Higher dietary fiber intake was correlated with decreased odds ratio of osteoporosis [odds ratio(OR) = 0.96, 95% confidence interval (CI): 0.93 to 0.99]. The odds ratio of osteoporosis in postmenopausal women was elevated as the increase of carbohydrate to fiber ratio (OR = 1.80, 95%CI: 1.10 to 2.96). Carbohydrate to fiber ratio >17.09 was related to increased odds ratio of osteoporosis (OR = 1.63, 95%CI: 1.04 to 2.56). Compared to the carbohydrate to fiber ratio ≤11.59 group, carbohydrate to fiber ratio >17.09 was associated with decreased total femur BMD (β = -0.015, 95%CI: -0.028 to -0.001) and femur neck BMD (β = -0.020, 95%CI: -0.033 to -0.006) in postmenopausal women. The femur neck BMD in postmenopausal women was decreased with the increase of carbohydrate to fiber ratio (β = -0.015, 95%CI: -0.028 to -0.001). CONCLUSION In postmenopausal women, a high carbohydrate/fiber ratio >17.09 is associated with an increased risk of osteoporosis and lower hip BMD and high fiber intake is associated with less osteoporosis and higher hip BMD.
Collapse
Affiliation(s)
- Lushuang Zhang
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liubiqi Zhao
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyu Xiao
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobin Zhang
- Department of Gynecology, Guangxi Guigang people’s Hospital, Guigang, China
| | - Li He
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Zhang
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Li Z, Wang Q, Huang X, Wu Y, Shan D. Microbiome's role in musculoskeletal health through the gut-bone axis insights. Gut Microbes 2024; 16:2410478. [PMID: 39387683 PMCID: PMC11469435 DOI: 10.1080/19490976.2024.2410478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The interplay between the human microbiome and the musculoskeletal system represents a burgeoning field of research with profound implications for understanding and treating musculoskeletal disorders. This review articulates the pivotal role of the microbiome in modulating bone health, highlighting the gut-bone axis as a critical nexus for potential therapeutic intervention. Through a meticulous analysis of recent clinical research, we underscore the microbiome's influence on osteoporosis, sarcopenia, osteoarthritis, and rheumatoid arthritis, delineating both the direct and indirect mechanisms by which microbiota could impact musculoskeletal integrity and function. Our investigation reveals novel insights into the microbiota's contribution to bone density regulation, hormone production, immune modulation, and nutrient absorption, laying the groundwork for innovative microbiome-based strategies in musculoskeletal disease management. Significantly, we identify the challenges hindering the translation of research into clinical practice, including the limitations of current microbial sequencing techniques and the need for standardized methodologies in microbiome studies. Furthermore, we highlight promising directions for future research, particularly in the realm of personalized medicine, where the microbiome's variability offers unique opportunities for tailored treatment approaches. This review sets a new agenda for leveraging gut microbiota in the diagnosis, prevention, and treatment of musculoskeletal conditions, marking a pivotal step toward integrating microbiome science into clinical musculoskeletal care.
Collapse
Affiliation(s)
- Zhengrui Li
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wang
- Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dan Shan
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK
- Department of Biobehavioral Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
13
|
Qi W, Ma T, Ji Y, Jia H, Sun Q, Zhang D. Cordymin alleviates osteoporosis induced by hindlimb unloading via regulating the gut - microelements -bone axis --for non-clinical studies. BMC Musculoskelet Disord 2023; 24:932. [PMID: 38041019 PMCID: PMC10691132 DOI: 10.1186/s12891-023-07057-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
INTRODUCTION The purpose of this study was to evaluate the protective effects of cordymin on osteoporosis induced by hindlimb unloading(HLU) in rats and whether cordymin can prevent bone loss from HLU. MATERIALS AND METHODS We employed the hindlimb suspension rats model to mimic physiological changes concomitant with space travel.The mechanical strength in the femoral neck,cancellous bone volume, gut microbiota structure,serum calcium and phosphorus contents, bone mineral content and bone mineral content can be changed after hindlimb unloading. Oral cordymin was administered for 4 weeks,cordymin treatment significantly increased the mechanical strength through elevated bone volume/tissue volume (BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th) and decreased trabecular separation (Tb. Sp). RESULTS Importantly, 16 S rRNA sequencing showed cordymin treatment regulated the various genera that were imbalanced in hindlimb unloading rats. At the same time,The plasma total calcium and inorganic phosphate concentrations in hindlimb unloading rats decreased and bone mineral content in the lumbar vertebrae and femur increased after treatment with cordymin. CONCLUSION These data indicate that the cordymin might exert bone protective effects indirectly via modulating the complex relationship between gut microbiota, microelements and bone loss.
Collapse
Affiliation(s)
- Wei Qi
- Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Tiancheng Ma
- Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Yufei Ji
- Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Hong Jia
- Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Qiang Sun
- Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Dawei Zhang
- Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
- , Xi'an, China.
| |
Collapse
|
14
|
Wang S, Zheng C, Guo D, Chen W, Xie Q, Zhai Q. Dose-related effects of early-life intake of sn-2 palmitate, a specific positionally distributed human milk fatty acid, on the composition and metabolism of the intestinal microbiota. J Dairy Sci 2023; 106:8272-8286. [PMID: 37678794 DOI: 10.3168/jds.2023-23361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 09/09/2023]
Abstract
sn2 Palmitate in human milk plays an important role in the physiological health of infants by reducing mineral loss, improving stool hardness, and relieving constipation. Also, sn-2 palmitate modulates intestinal microbiota. However, it remains unclear whether the effects of sn-2 palmitate on infant gut microbiota are dose-dependent. In this study, we investigated the effects of low, medium, and high doses (600, 1,800, and 5,400 mg/kg body weight, respectively) of sn-2 palmitate on the structure, composition, and metabolic function of intestinal microbes in mice. Our results showed that high doses of sn-2 palmitate significantly modulated α- and β-diversity of the intestinal microbiota. The relative abundance of Lachnospiraceae_NK4A136_group decreased with increasing doses of sn-2 palmitate. In contrast, the abundances of Bacteroidetes phylum, Bacteroides, uncultured_Lachnospiraceae, and uncultured_Muribaculaceae were positively correlated with sn-2 palmitate doses. The number of genes predicted encoding autophagy-yeast, phospholipase D signaling pathway, and pentose and glucuronate interconversion metabolic functions of intestinal microbiota increased with increasing doses of sn-2 palmitate. In addition, low and medium doses of sn-2 palmitate significantly upregulated the arginine and proline metabolic pathways, and high doses of sn-2 palmitate significantly increased purine metabolism. Our results revealed that the effects of sn-2 palmitate intake early in life on the composition and metabolism of the intestinal microbiota of mice showed dose-related differences. The study is expected to provide a scientific basis for the development of infant formulas.
Collapse
Affiliation(s)
- S Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - C Zheng
- Heilongjiang Feihe Dairy Co. Ltd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Haidian, Beijing 100083, China
| | - D Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - W Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Q Xie
- Heilongjiang Feihe Dairy Co. Ltd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Haidian, Beijing 100083, China.
| | - Q Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
15
|
Lin Y, Lourenco JM, Olukosi OA. Effects of xylanase, protease, and xylo-oligosaccharides on growth performance, nutrient utilization, short chain fatty acids, and microbiota in Eimeria-challenged broiler chickens fed high fiber diet. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:430-442. [PMID: 38033611 PMCID: PMC10686808 DOI: 10.1016/j.aninu.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 12/02/2023]
Abstract
A 21-d experiment was conducted to study the effect of xylanase, protease, and xylo-oligosaccharides on growth performance, nutrient utilization, gene expression of nutrient transporters, cecal short-chain fatty acids (SCFA), and cecal microbiota profile of broilers challenged with mixed Eimeria spp. The study utilized 392 zero-d-old male broiler chicks allocated to 8 treatments in a 4 × 2 factorial arrangement, as follows: corn-soybean meal diet with no enzyme (Con); Con plus xylanase alone (XYL); Con plus xylanase combined with protease (XYL + PRO); or Con plus xylo-oligosaccharides (XOS); with or without Eimeria challenge. Diets were based on a high-fiber (100 g/kg soluble fibers and 14 g/kg insoluble fibers) basal diet. At d 15, birds in challenged treatment were gavaged with a solution containing Eimeria maxima, Eimeria acervulina, and Eimeria tenella oocysts. At d 21, birds were sampled. Eimeria depressed (P < 0.01) growth performance and nutrient utilization, whereas supplementation had no effect. There were significant Eimeria × supplementation interactions for the sugar transporters GLUT5 (P = 0.02), SGLT1 (P = 0.01), SGLT4 (P < 0.01), and peptide transporter PepT1 (P < 0.01) in jejunal mucosa. Eimeria challenge increased the expression of GM-CSF2 (P < 0.01) and IL-17 (P = 0.04) but decreased (P = 0.03) IL-1β expression in the cecal tonsil. Eimeria × supplementation interactions for cecal acetate, butyrate, and total SCFA showed that concentrations increased or tended to be greater in the supplemented treatments, but only in non-challenged birds. Birds challenged with Eimeria spp. had higher concentrations of isobutyrate (P < 0.01), isovalerate (P < 0.01), and valerate (P = 0.02) in cecal content. Eimeria challenge significantly (P < 0.01) decreased the microbial richness and diversity, and increased (P < 0.01) the proportion of Anaerostipes butyraticus, Bifidobacterium pseudolongum, and Lactobacillus pontis. In conclusion, Eimeria infection depressed growth performance, nutrient utilization with regulating nutrient transporters. Furthermore, Eimeria challenge shifted the microbial profile and reduced microbial richness and diversity. On the other hand, enzyme supplementation showed limited benefits, which included increased concentrations of SCFA.
Collapse
Affiliation(s)
- Yang Lin
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Jeferson M. Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
16
|
Tetens I, Hare MH, Petersen CF, Stanstrup J, Hitz MF. The Postprandial Calcium Absorption of a Milk-Derived Calcium Permeate - The Acute RENEW Double-Blinded Randomized Controlled Cross-Over Study. J Nutr 2023; 153:3430-3438. [PMID: 37844839 DOI: 10.1016/j.tjnut.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Studies suggest that dairy-derived calcium supplements have additional beneficial properties compared with other calcium supplements in relation to bone health. OBJECTIVES We investigated the postprandial calcium absorption from a milk-derived calcium permeate (CP) compared with calcium carbonate (CC). METHODS In this randomized double-blinded cross-over study, 10 healthy postmenopausal females (age 50-65 y) received maltodextrin (placebo), 800 mg calcium from CP or from CC provided in 6 capsules on separate days. A fasting blood sample was collected at baseline, 60, 120, 240, and 360 min after ingestion. At baseline and 360 min, spot-urine samples were collected. Serum-ionized calcium, intact parathyroid hormone, phosphorus, and magnesium were analyzed, as were urinary calcium, phosphorus, and magnesium. A linear mixed model was applied. RESULTS Serum-ionized calcium concentration after the CC supplement was higher at 240 min compared with the CP supplement [between-group difference; 95% confidence interval (CI): 0.039 mmol/L; 95% CI: 0.017-0.061; P = 0.00078]. Serum-ionized calcium concentration after the CC supplement was significantly higher than placebo at all postprandial time points except at 60 min. Urinary calcium concentration in 360 min spot urine was higher after intake of CC compared with CP [between-group difference; 95% CI: 2.47 mmol/L; 95% CI: 1.90-3.03; P = 0.0042]. CONCLUSIONS Postprandial calcium absorption from CP was lower than that of CC, and concurrently, urinary concentration reflected increased serum appearance by CC compared with CP, highlighting different metabolic responses. The long-term and clinical implications should be studied further.
Collapse
Affiliation(s)
- Inge Tetens
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark.
| | - Majbritt Hybholt Hare
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark; National Research Center for Bone Health, Zealand University Hospital, Køge, Denmark
| | | | - Jan Stanstrup
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Mette Friberg Hitz
- National Research Center for Bone Health, Zealand University Hospital, Køge, Denmark
| |
Collapse
|
17
|
Ruiz-Saavedra S, González Del Rey C, Suárez A, Díaz Y, Zapico A, Arboleya S, Salazar N, Gueimonde M, de Los Reyes-Gavilán CG, González S. Associations of dietary factors and xenobiotic intake with faecal microbiota composition according to the presence of intestinal mucosa damage. Food Funct 2023; 14:9591-9605. [PMID: 37740374 DOI: 10.1039/d3fo01356a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Diet is a major modulator of gut microbiota, which plays a key role in the health status, including colorectal cancer (CRC) development. Several studies and meta-analyses have evidenced an association of certain dietary factors and xenobiotic intake with the incidence of CRC. Nevertheless, how these dietary factors impact the first stages of intestinal mucosa damage is still uncertain. This study aimed at exploring the associations of relevant dietary factors with the gut microbiota of control individuals and subjects diagnosed with intestinal polyps. A total of 60 volunteers were recruited, clinically classified according to colonoscopy criteria and interviewed using food frequency questionnaires (FFQs). The nutritional status of each volunteer was determined and the intake of dietary xenobiotics was quantified. The relative abundance of faecal microbiota taxonomic groups was obtained through 16S rRNA gene sequencing. The association of dietary factors and xenobiotics with faecal microbiota composition showed differences according to the clinical diagnosis group. Our results showed that the intake of red meat (≥50 g day-1) and total polycyclic aromatic hydrocarbons (PAHs) (≥0.75 μg day-1) was associated with a decreased abundance of the family Bacteroidaceae and an increased abundance of Coriobacteriaceae in control subjects. The intake of the heterocyclic amines 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) (≥40 ng day-1) and 2-amino-3,8 dimethylimidazo(4,5,f) quinoxaline (MeIQx) (≥50 ng day-1) was associated with a decreased abundance of Akkermansiaceae in the control diagnosis group. Moreover, N-nitroso compounds (NOCs), nitrites (≥1.69 mg day-1) and N-nitrosodimethylamine (NDMA) (≥0.126 μg day-1) were associated with a decreased abundance of Bifidobacteriaceae. The intake of ethanol (≥12 g day-1) in the polyps group was associated with an increased abundance of Peptostreptococcaceae and a decreased abundance of Veillonellaceae. Moreover, linear regression analyses allowed us to identify ethanol, calcium, bioactive compounds such as flavonoids, stilbenes, cellulose, phenolic acids or total polyphenols, and dietary xenobiotics such as PhIP and MeIQx, the NOC N-nitrosopyrrolidine (NPYR) or the total PAHs as potential predictors of faecal microbiota group abundances. These results indicated that the consumption of milk, red meat, processed meat and ethanol and the intake of polyphenols, dietary PAHs, HAs and NOCs are associated with specific groups of the intestinal microbiota, depending on the clinical diagnosis group.
Collapse
Affiliation(s)
- Sergio Ruiz-Saavedra
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain.
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen González Del Rey
- Anatomical Pathology Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | - Adolfo Suárez
- Digestive Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | - Ylenia Díaz
- Digestive Service, Carmen and Severo Ochoa Hospital, 33819 Cangas del Narcea, Spain
| | - Aida Zapico
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain.
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain.
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain.
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain.
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Sonia González
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
18
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
19
|
Evenepoel P, Stenvinkel P, Shanahan C, Pacifici R. Inflammation and gut dysbiosis as drivers of CKD-MBD. Nat Rev Nephrol 2023; 19:646-657. [PMID: 37488276 DOI: 10.1038/s41581-023-00736-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Two decades ago, Kidney Disease: Improving Global Outcomes coined the term chronic kidney disease-mineral and bone disorder (CKD-MBD) to describe the syndrome of biochemical, bone and extra-skeletal calcification abnormalities that occur in patients with CKD. CKD-MBD is a prevalent complication and contributes to the excessively high burden of fractures and cardiovascular disease, loss of quality of life and premature mortality in patients with CKD. Thus far, therapy has focused primarily on phosphate retention, abnormal vitamin D metabolism and parathyroid hormone disturbances, but these strategies have largely proved unsuccessful, thus calling for paradigm-shifting concepts and innovative therapeutic approaches. Interorgan crosstalk is increasingly acknowledged to have an important role in health and disease. Accordingly, mounting evidence suggests a role for both the immune system and the gut microbiome in bone and vascular biology. Gut dysbiosis, compromised gut epithelial barrier and immune cell dysfunction are prominent features of the uraemic milieu. These alterations might contribute to the inflammatory state observed in CKD and could have a central role in the pathogenesis of CKD-MBD. The emerging fields of osteoimmunology and osteomicrobiology add another level of complexity to the pathogenesis of CKD-MBD, but also create novel therapeutic opportunities.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Herestraat, Leuven, Belgium.
| | - Peter Stenvinkel
- Department of Renal Medicine M99, Karolinska University Hospital, Stockholm, Sweden
| | - Catherine Shanahan
- British Heart Foundation Centre of Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory Microbiome Research Center, and Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
20
|
Fu Z, Chen X, Xu C, Li G, Wu Y, Liu Q, Weng Z, Yan Q, Wang G, Gu A. Association of gut microbiota composition and craniosynostosis. Transl Pediatr 2023; 12:1464-1475. [PMID: 37692543 PMCID: PMC10485648 DOI: 10.21037/tp-23-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Background Gut microbiota has been reported to be associated with a series of metabolic diseases including metabolic bone disease. However, study about gut microbiota and craniosynostosis (CS) is very rare. We aim to investigate the gut microbiota composition in CS patients and assess the possible relationship. Methods A total of 30 infants with CS and 30 infants with non-CS treated in Children's Hospital of Nanjing Medical University of Jiangsu Province from June 2021 to March 2022 were finally included in this study. All processing and analysis are carried out using 16S ribosomal RNA (rRNA) high-throughput gene sequencing. Results The CS group have significantly lower levels of family, genus, and species than non-CS group (all P<0.05). Furthermore, Staphylococcales and Lactobacillales at the order level, Enterococcaceae and Staphylococcaceae at the family level, and Enterococcus and Staphylococcus at the genus level were significantly enriched in the CS group (all P<0.05). Additionally, functional prediction showed that six metabolic pathways significantly differed between the two groups (all P<0.05). Of those, pathways involving polycyclic aromatic hydrocarbon degradation (P=0.030) and penicillin and cephalosporin biosynthesis (P=0.027) were more abundant in CS group than in non-CS group. Conclusions Gut microbiota was statistically associated with the development of CS, and several taxa and specific functional pathways with significantly altered abundance have been identified in CS patients. These findings can provide clues for the study on the mechanism and early diagnosis of CS.
Collapse
Affiliation(s)
- Zuqiang Fu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
- School of Public Health, Southeast University, Nanjing, China
| | - Xiu Chen
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Guang Li
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuying Wu
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qing Yan
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Gang Wang
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
- School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Very low carbohydrate ketogenic diet (KD) therapy has been associated with skeletal demineralization in children with drug-resistant epilepsy, but the cause of this association is unclear. Recently, interest in the KD has grown owing to its potential benefits for other illnesses including cancer, type 2 diabetes, obesity, and polycystic kidney disease. Summaries of the best available evidence regarding effects of a KD on skeletal health are lacking. RECENT FINDINGS Recent rodent studies found that a KD can harm the growing skeleton, which corroborates most but not all studies in pediatric patients. Proposed mechanisms include chronic metabolic acidosis and depressed osteoanabolic hormones. Relative to other weight-reducing diets, a weight-reducing KD for treatment of obesity and/or type 2 diabetes in adults has not been associated with adverse skeletal effects. By contrast, recent evidence suggests that adaptation to a eucaloric KD may impair bone remodeling in elite adult athletes. Discrepancies in the literature may relate to differences between study populations and in diet formulation. SUMMARY Attention to skeletal health is warranted when using KD therapy given the uncertainty in the literature and suggestive harms in certain populations. Future research should focus on potential mechanisms of injury.
Collapse
Affiliation(s)
- Cora M Best
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Simon Hsu
- Division of Nephrology, Department of Medicine
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
22
|
Choppa VSR, Kim WK. A Review on Pathophysiology, and Molecular Mechanisms of Bacterial Chondronecrosis and Osteomyelitis in Commercial Broilers. Biomolecules 2023; 13:1032. [PMID: 37509068 PMCID: PMC10377700 DOI: 10.3390/biom13071032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Modern day broilers have a great genetic potential to gain heavy bodyweights with a huge metabolic demand prior to their fully mature ages. Moreover, this made the broilers prone to opportunistic pathogens which may enter the locomotory organs under stress causing bacterial chondronecrosis and osteomyelitis (BCO). Such pathogenic colonization is further accelerated by microfractures and clefts that are formed in the bones due to rapid growth rate of the broilers along with ischemia of blood vessels. Furthermore, there are several pathways which alter bone homeostasis like acute phase response, and intrinsic and extrinsic cell death pathways. In contrast, all the affected birds may not exhibit clinical lameness even with the presence of lameness associated factors causing infection. Although Staphylococcus, E. coli, and Enterococcus are considered as common bacterial pathogens involved in BCO, but there exist several other non-culturable bacteria. Any deviation from maintaining a homeostatic environment in the gut might lead to bacterial translocation through blood followed by proliferation of pathogenic bacteria in respective organs including bones. It is important to alleviate dysbiosis of the blood which is analogous to dysbiosis in the gut. This can be achieved by supplementing pro, pre, and synbiotics which helps in providing a eubiotic environment abating the bacterial translocation that was studied to the incidence of BCO. This review focused on potential and novel biomarkers, pathophysiological mechanism, the economic significance of BCO, immune mechanisms, and miscellaneous factors causing BCO. In addition, the role of gut microbiomes along with their diversity and cell culture models from compact bones of chicken in better understanding of BCO were explored.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
23
|
Zhou D, Song C, Mei Y, Cheng K, Liu F, Cai W, Gao S, Wang Z, Liu Z. A review of Duhuo Jisheng decoction mechanisms in intervertebral disc degeneration in vitro and animal studies. J Orthop Surg Res 2023; 18:436. [PMID: 37322524 DOI: 10.1186/s13018-023-03869-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) has become a serious public health problem, placing a heavy burden on society and the healthcare system. Its pathogenesis is not completely clear and may be closely related to mechanical damage, inflammatory factors, oxidative stress and death of nucleus pulposus cells (NPCs). The treatment of IVDD mainly includes conservative treatment and surgery. Conservative treatment is based on hormonal and anti-inflammatory drugs and massage techniques, which can relieve the pain symptoms to a certain extent, but cannot solve the problem from the root cause. Surgical treatment is mainly by removing the herniated nucleus pulposus, but it is more traumatic for IVDD patients, expensive and not suitable for all patients. Therefore, it is extremely important to clarify the pathogenesis of IVDD, to find an effective and convenient treatment and to further elaborate its mechanism of action. The effectiveness of traditional Chinese medicine in the treatment of IVDD has been well demonstrated in clinical medical research. We have been working on the Chinese herbal formula Duhuo Jisheng Decoction, which is a common formula for the treatment of degenerative disc disease. Not only does it have significant clinical effects, but it also has few adverse effects. At present, we found that its mechanism of action mainly involves regulation of inflammatory factors, reduction of apoptosis and pyroptosis of NPCs, inhibition of extracellular matrix degradation, improvement of intestinal flora, etc. However, a few relevant articles have yet comprehensively and systematically summarized the mechanisms by which they exert their effect. Therefore, this paper will comprehensively and systematically explain on it. This is of great clinical significance and social value for elucidating the pathogenesis of IVDD and improving the symptoms of patients, and will provide a theoretical basis and scientific basis for the treatment of IVDD with traditional Chinese medicine.
Collapse
Affiliation(s)
- Daqian Zhou
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Chao Song
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yongliang Mei
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Fei Liu
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Weiye Cai
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Silong Gao
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Zhenlong Wang
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Luzhou Longmatan District People's Hospital, Luzhou, Sichuan Province, China.
| |
Collapse
|
24
|
Inchingolo AM, Patano A, Di Pede C, Inchingolo AD, Palmieri G, de Ruvo E, Campanelli M, Buongiorno S, Carpentiere V, Piras F, Settanni V, Viapiano F, Hazballa D, Rapone B, Mancini A, Di Venere D, Inchingolo F, Fatone MC, Palermo A, Minetti E, Lorusso F, Scarano A, Sauro S, Tartaglia GM, Bordea IR, Dipalma G, Malcangi G. Autologous Tooth Graft: Innovative Biomaterial for Bone Regeneration. Tooth Transformer® and the Role of Microbiota in Regenerative Dentistry. A Systematic Review. J Funct Biomater 2023; 14:jfb14030132. [PMID: 36976056 PMCID: PMC10058341 DOI: 10.3390/jfb14030132] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Different biomaterials, from synthetic products to autologous or heterologous grafts, have been suggested for the preservation and regeneration of bone. The aim of this study is to evaluate the effectiveness of autologous tooth as a grafting material and examine the properties of this material and its interactions with bone metabolism. PubMed, Scopus, Cochrane Library, and Web of Science were searched to find articles addressing our topic published from 1 January 2012 up to 22 November 2022, and a total of 1516 studies were identified. Eighteen papers in all were considered in this review for qualitative analysis. Demineralized dentin can be used as a graft material, since it shows high cell compatibility and promotes rapid bone regeneration by striking an ideal balance between bone resorption and production; it also has several benefits, such as quick recovery times, high-quality newly formed bone, low costs, no risk of disease transmission, the ability to be performed as an outpatient procedure, and no donor-related postoperative complications. Demineralization is a crucial step in the tooth treatment process, which includes cleaning, grinding, and demineralization. Since the presence of hydroxyapatite crystals prevents the release of growth factors, demineralization is essential for effective regenerative surgery. Even though the relationship between the bone system and dysbiosis has not yet been fully explored, this study highlights an association between bone and gut microbes. The creation of additional scientific studies to build upon and enhance the findings of this study should be a future objective of scientific research.
Collapse
Affiliation(s)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | | | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Merigrazia Campanelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Silvio Buongiorno
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Vincenzo Carpentiere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: (F.I.); (M.C.F.); Tel.: +39-331-211-1104 (F.I.); +39-3479914635 (M.C.F.)
| | - Maria Celeste Fatone
- PTA Trani-ASL BT, Viale Padre Pio, 76125 Trani, Italy
- Correspondence: (F.I.); (M.C.F.); Tel.: +39-331-211-1104 (F.I.); +39-3479914635 (M.C.F.)
| | - Andrea Palermo
- College of Medicine and Dentistry Birmingham, University of Birmingham, Birmingham B4 6BN, UK
| | - Elio Minetti
- Department of Biomedical, Surgical, and Dental Science, Università Degli Studi di Milano, 20122 Milan, Italy
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Salvatore Sauro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20100 Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
25
|
Kwiecień M, Jachimowicz-Rogowska K, Krupa W, Winiarska-Mieczan A, Krauze M. Effects of Dietary Supplementation of L-Carnitine and Mannan-Oligosaccharides on Growth Performance, Selected Carcass Traits, Content of Basic and Mineral Components in Liver and Muscle Tissues, and Bone Quality in Turkeys. Animals (Basel) 2023; 13:770. [PMID: 36830557 PMCID: PMC9951985 DOI: 10.3390/ani13040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The study aimed to determine the effect of L-carnitine and Bio-Mos administration on selected production performance, slaughter parameters, elemental and mineral content of liver, breast and thigh muscles, and physical, morphometric, strength and bone mineral composition parameters of turkeys. The experiment was conducted on 360 six-week-old Big-6 turkey females, randomly divided into three groups of 120 birds each (six replicates of 20 birds). The turkeys of the control group were fed standard feed without additives; group II was fed with drinking water, a preparation containing L-carnitine at a dose of 0.83 mL/L, while group III was provided mixed feed with 0.5% Bio-Mos. The addition of L-carnitine and Bio-Mos increased body weight at 16 weeks (p = 0.047) and reduced the proportion of fat in the breast muscle (p = 0.029) and liver (p = 0.027). It also modified the content of some minerals in breast muscle, thigh muscle, liver, and bone. Furthermore, the addition of L-carnitine and Bio-Mos increased bone mass and length and modified the value of selected morphometric and strength parameters. The results indicate a positive effect of the applied feed additives on selected rearing indices and carcass quality while improving the elasticity and fracture toughness of the femur. There is a need for further research to determine optimal doses of L-carnitine and Bio-Mos in poultry nutrition.
Collapse
Affiliation(s)
- Małgorzata Kwiecień
- Department of Animal Nutrition, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Department of Bromatology and Food Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| | - Wanda Krupa
- Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| | - Magdalena Krauze
- Department of Biochemistry and Toxicology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| |
Collapse
|
26
|
Liu T, Yu H, Wang S, Li H, Du X, He X. Chondroitin sulfate alleviates osteoporosis caused by calcium deficiency by regulating lipid metabolism. Nutr Metab (Lond) 2023; 20:6. [PMID: 36747190 PMCID: PMC9901125 DOI: 10.1186/s12986-023-00726-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023] Open
Abstract
The use of non-drug intervention for calcium deficiency has attracted attention in recent years. Although calcium carbonate is the preferred raw material for calcium supplementation, there are few reports on the mechanism of the combined action of chondroitin sulfate and calcium to alleviate osteoporosis from the perspective of gut microbiota and metabolomics. In this study, a rat model of osteoporosis was established by feeding a low-calcium diet. The intestinal microbiota abundance, fecal and plasma metabolite expression levels of rats fed a basal diet, a low-calcium diet, a low-calcium diet plus calcium carbonate, and a low-calcium diet plus chondroitin sulfate were compared. The results showed that compared with the low calcium group, the calcium content and bone mineral density of femur were significantly increased in the calcium carbonate and chondroitin sulfate groups. 16 S rRNA sequencing and metabolomics analysis showed that chondroitin sulfate intervention could reduce short-chain fatty acid synthesis of intestinal flora, slow down inflammatory response, inhibit osteoclast differentiation, promote calcium absorption and antioxidant mechanism, and alleviate osteoporosis in low-calcium feeding rats. Correlation analysis showed that the selected intestinal flora was significantly correlated with metabolites enriched in feces and plasma. This study provides scientific evidence of the potential impact of chondroitin sulfate as a dietary supplement for patients with osteoporosis.
Collapse
Affiliation(s)
- Tianshu Liu
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Hai Yu
- grid.272242.30000 0001 2168 5385Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, 104-0045 Japan ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Shuai Wang
- grid.27255.370000 0004 1761 1174Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jining, 250012 Shandong China
| | - Huimin Li
- grid.27255.370000 0004 1761 1174Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.506261.60000 0001 0706 7839National Human Genetic Resources Center; National Research Institute for Health and Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Xinyiran Du
- grid.449428.70000 0004 1797 7280College of Stomatology, Jining Medical University, Jining, 272067 Shandong China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012, Shandong, China.
| |
Collapse
|
27
|
Biruete A, Chen NX, Metzger CE, Srinivasan S, O’Neill K, Fallen PB, Fonseca A, Wilson HE, de Loor H, Evenepoel P, Swanson KS, Allen MR, Moe SM. The Dietary Fermentable Fiber Inulin Alters the Intestinal Microbiome and Improves Chronic Kidney Disease Mineral-Bone Disorder in a Rat Model of CKD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526093. [PMID: 36778372 PMCID: PMC9915522 DOI: 10.1101/2023.01.29.526093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Dietary fiber is important for a healthy diet, but intake is low in CKD patients and the impact this has on the manifestations of CKD-Mineral Bone Disorder (MBD) is unknown. Methods The Cy/+ rat with progressive CKD was fed a casein-based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non-fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30 and ~15 % of normal kidney function). We assessed CKD-MBD, cecal microbiota, and serum gut-derived uremic toxins. Two-way ANOVA was used to evaluate the effect of age and inulin diet, and their interaction. Results In CKD animals, dietary inulin led to changes in microbiota alpha and beta diversity at 30 and 32 weeks, with higher relative abundance of several taxa, including Bifidobacterium and Bacteroides , and lower Lactobacillus . Inulin reduced serum levels of gut-derived uremic toxins, phosphate, and parathyroid hormone, but not fibroblast growth factor-23. Dietary inulin decreased aorta and cardiac calcification and reduced left ventricular mass index and cardiac fibrosis. Bone turnover and cortical bone parameters were improved with inulin; however, bone mechanical properties were not altered. Conclusions The addition of the fermentable fiber inulin to the diet of CKD rats led to changes in the gut microbiota composition, lowered gut-derived uremic toxins, and improved most parameters of CKD-MBD. Future studies should assess this fiber as an additive therapy to other pharmacologic and diet interventions in CKD. Significance Statement Dietary fiber has well established beneficial health effects. However, the impact of fermentable dietary fiber on the intestinal microbiome and CKD-MBD is poorly understood. We used an animal model of progressive CKD and demonstrated that the addition of 10% of the fermentable fiber inulin to the diet altered the intestinal microbiota and lowered circulating gut-derived uremic toxins, phosphorus, and parathyroid hormone. These changes were associated with improved cortical bone parameters, lower vascular calcification, and reduced cardiac hypertrophy, fibrosis and calcification. Taken together, dietary fermentable fiber may be a novel additive intervention to traditional therapies of CKD-MBD.
Collapse
|
28
|
Wu KC, Cao S, Weaver CM, King NJ, Patel S, Kim TY, Black DM, Kingman H, Shafer MM, Rogers SJ, Stewart L, Carter JT, Posselt AM, Schafer AL. Intestinal Calcium Absorption Decreases After Laparoscopic Sleeve Gastrectomy Despite Optimization of Vitamin D Status. J Clin Endocrinol Metab 2023; 108:351-360. [PMID: 36196648 PMCID: PMC10091486 DOI: 10.1210/clinem/dgac579] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/30/2022] [Indexed: 01/20/2023]
Abstract
CONTEXT Laparoscopic sleeve gastrectomy (LSG), now the most commonly performed bariatric operation, is a highly effective treatment for obesity. While Roux-en-Y gastric bypass is known to impair intestinal fractional calcium absorption (FCA) and negatively affect bone metabolism, LSG's effects on calcium homeostasis and bone health have not been well characterized. OBJECTIVE We determined the effect of LSG on FCA, while maintaining robust 25-hydroxyvitamin D (25OHD) levels and recommended calcium intake. DESIGN, SETTING, PARTICIPANTS Prospective pre-post observational cohort study of 35 women and men with severe obesity undergoing LSG. MAIN OUTCOMES FCA was measured preoperatively and 6 months postoperatively with a gold-standard dual stable isotope method. Other measures included calciotropic hormones, bone turnover markers, and bone mineral density (BMD) by dual-energy X-ray absorptiometry and quantitative computed tomography. RESULTS Mean ± SD FCA decreased from 31.4 ± 15.4% preoperatively to 16.1 ± 12.3% postoperatively (P < 0.01), while median (interquartile range) 25OHD levels were 39 (32-46) ng/mL and 36 (30-46) ng/mL, respectively. Concurrently, median 1,25-dihydroxyvitamin D level increased from 60 (50-82) pg/mL to 86 (72-107) pg/mL (P < 0.01), without significant changes in parathyroid hormone or 24-hour urinary calcium levels. Bone turnover marker levels increased substantially, and areal BMD decreased at the proximal femur. Those with lower postoperative FCA had greater areal BMD loss at the total hip (ρ = 0.45, P < 0.01). CONCLUSIONS FCA decreases after LSG, with a concurrent rise in bone turnover marker levels and decline in BMD, despite robust 25OHD levels and with recommended calcium intake. Decline in FCA could contribute to negative skeletal effects following LSG.
Collapse
Affiliation(s)
- Karin C Wu
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Sisi Cao
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Connie M Weaver
- Department of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Nicole J King
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Sheena Patel
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Tiffany Y Kim
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Dennis M Black
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Hillary Kingman
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Martin M Shafer
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Stanley J Rogers
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Lygia Stewart
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Surgical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Jonathan T Carter
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Andrew M Posselt
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anne L Schafer
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
29
|
Jie L, Ma Z, Gao Y, Shi X, Yu L, Mao J, Wang P. The mechanism of palmatine-mediated intestinal flora and host metabolism intervention in OA-OP comorbidity rats. Front Med (Lausanne) 2023; 10:1153360. [PMID: 37153081 PMCID: PMC10159182 DOI: 10.3389/fmed.2023.1153360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
Background ErXian decoction is a Chinese herbal compound that can prevent and control the course of osteoarthritis (OA) and osteoporosis (OP). OP and OA are two age-related diseases that often coexist in elderly individuals, and both are associated with dysregulation of the gut microbiome. In the initial study, Palmatine (PAL) was obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and network pharmacological screening techniques, followed by 16S rRNA sequencing and serum metabolomics of intestinal contents, to explore the mechanism of PAL in the treatment of OA and OP. Methods The rats selected for this study were randomly divided into three groups: a sham group, an OA-OP group and a PAL group. The sham group was intragastrically administered normal saline solution, and the PLA group was treated with PAL for 56 days. Through microcomputed tomography (micro-CT), ELISA, 16S rRNA gene sequencing and non-targeted metabonomics research, we explored the potential mechanism of intestinal microbiota and serum metabolites in PAL treatment of OA-OP rats. Results Palmatine significantly repair bone microarchitecture of rat femur in OA-OP rats and improved cartilage damage. The analysis of intestinal microflora showed that PAL could also improve the intestinal microflora disorder of OA-OP rats. For example, the abundance of Firmicutes, Bacteroidota, Actinobacteria, Lactobacillus, unclassified_f_Lachnospiraceae, norank_f_Muribaculaceae, Lactobacillaceae, Lachnospiraceae and Muribaculaceae increased after PAL intervention. In addition, the results of metabolomics data analysis showed that PAL also change the metabolic status of OA-OP rats. After PAL intervention, metabolites such as 5-methoxytryptophol, 2-methoxy acetaminophen sulfate, beta-tyrosine, indole-3-carboxylic acid-O-sulfate and cyclodopa glucoside increased. Association analysis of metabolomics and gut microbiota (GM) showed that the communication of multiple flora and different metabolites played an important role in OP and OA. Conclusion Palmatine can improve cartilage degeneration and bone loss in OA-OP rats. The evidence we provided supports the idea that PAL improves OA-OP by altering GM and serum metabolites. In addition, the application of GM and serum metabolomics correlation analysis provides a new strategy for uncovering the mechanism of herbal treatment for bone diseases.
Collapse
Affiliation(s)
- Lishi Jie
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenyuan Ma
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifan Gao
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoqing Shi
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Likai Yu
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Mao
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Peimin Wang,
| |
Collapse
|
30
|
Awuti K, Wang X, Sha L, Leng X. Exploring the regulatory mechanism of osteoporosis based on intestinal flora: A review. Medicine (Baltimore) 2022; 101:e32499. [PMID: 36596003 PMCID: PMC9803483 DOI: 10.1097/md.0000000000032499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is 1 of the common diseases of bone metabolism in clinic. With the aging of the population in China, osteoporosis is becoming more and more serious, and it has become 1 of the major public health problems. However, traditional therapies, such as calcium therapy and estrogen therapy, can cause serious adverse effects and damage to the body when ingested over a long period of time. Therefore, there is an urgent need to explore alternative therapies with less side effects in clinical practice. Intestinal flora is a hot topic of research in recent years. It has been studied in inflammatory bowel disease, diabetes, depression and so on. Recently, intestinal flora has received increasing attention in the pathways regulating bone metabolism. This paper contains a review of recent studies related to osteoporosis and gut flora in terms of its metabolites, immune, endocrine, and brain-gut axis pathways. The strong association between intestinal flora and bone metabolism suggests, to some extent, that intestinal flora can be a potential target for osteoporosis prevention and treatment, providing new ideas and therapies for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Kasimu Awuti
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Xukai Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Liquan Sha
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- * Liquan Sha, The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130117, China ()
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| |
Collapse
|
31
|
Wang J, Wu S, Zhang Y, Yang J, Hu Z. Gut microbiota and calcium balance. Front Microbiol 2022; 13:1033933. [PMID: 36713159 PMCID: PMC9881461 DOI: 10.3389/fmicb.2022.1033933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/30/2022] [Indexed: 12/31/2022] Open
Abstract
Microorganisms living on the surface and inside the human body play an important role in the physiological activities of the human body. The largest microecosystem in the human body is the gut microbiome. Calcium disorders are found in many diseases. For example, patients with chronic renal insufficiency present with secondary hyperparathyroidism, which is caused by a calcium imbalance in the body. In addition, calcium dysregulation may affect lipid metabolism in the liver through the calmodulator pathway, leading to cirrhosis, etc. Currently, a considerable number of probiotics have been proven to enhance the body's absorption of calcium. This paper reviews the effects of intestinal flora and related factors such as short-chain fatty acids, estrogen, immune factors and vitamin D on calcium balance.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, BeiJing, China
| | - Shuang Wu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yinshan Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiao Yang
- Department of Pathology, Changsha Medical School, Changsha, Hunan, China,*Correspondence: Jiao Yang,
| | - Zhongliang Hu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China,Zhongliang Hu,
| |
Collapse
|
32
|
Marathe SJ, Snider MA, Flores-Torres AS, Dubin PJ, Samarasinghe AE. Human matters in asthma: Considering the microbiome in pulmonary health. Front Pharmacol 2022; 13:1020133. [PMID: 36532717 PMCID: PMC9755222 DOI: 10.3389/fphar.2022.1020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/15/2022] [Indexed: 07/25/2023] Open
Abstract
Microbial communities form an important symbiotic ecosystem within humans and have direct effects on health and well-being. Numerous exogenous factors including airborne triggers, diet, and drugs impact these established, but fragile communities across the human lifespan. Crosstalk between the mucosal microbiota and the immune system as well as the gut-lung axis have direct correlations to immune bias that may promote chronic diseases like asthma. Asthma initiation and pathogenesis are multifaceted and complex with input from genetic, epigenetic, and environmental components. In this review, we summarize and discuss the role of the airway microbiome in asthma, and how the environment, diet and therapeutics impact this low biomass community of microorganisms. We also focus this review on the pediatric and Black populations as high-risk groups requiring special attention, emphasizing that the whole patient must be considered during treatment. Although new culture-independent techniques have been developed and are more accessible to researchers, the exact contribution the airway microbiome makes in asthma pathogenesis is not well understood. Understanding how the airway microbiome, as a living entity in the respiratory tract, participates in lung immunity during the development and progression of asthma may lead to critical new treatments for asthma, including population-targeted interventions, or even more effective administration of currently available therapeutics.
Collapse
Affiliation(s)
- Sandesh J. Marathe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Division of Pulmonology, Allergy-Immunology, and Sleep, Memphis, TN, United States
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN, United States
| | - Mark A. Snider
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Division of Emergency Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Armando S. Flores-Torres
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN, United States
| | - Patricia J. Dubin
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Division of Pulmonology, Allergy-Immunology, and Sleep, Memphis, TN, United States
| | - Amali E. Samarasinghe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Division of Pulmonology, Allergy-Immunology, and Sleep, Memphis, TN, United States
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN, United States
| |
Collapse
|
33
|
He Y, Chen Y. The potential mechanism of the microbiota-gut-bone axis in osteoporosis: a review. Osteoporos Int 2022; 33:2495-2506. [PMID: 36169678 DOI: 10.1007/s00198-022-06557-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
Osteoporosis is the prevalent metabolic bone disease characterized by a decrease in bone quantity and/or quality and an increase in skeletal fragility, which increases susceptibility to fractures. Osteoporotic fractures severely affect the patients' quality of life and mortality. A plethora of evidences have suggested that the alterations in gut microbiome are associated with the changes in bone mass and microstructure. We summarized pre-clinical and clinical studies to elucidate the underlying mechanism of gut microbiota in osteoporosis. Probiotics, prebiotics, and traditional Chinese medicine may reverse the gut microbiota dysbiosis and consequently improve bone metabolism. However, the causality of gut microbiota on bone metabolism need to be investigated more in depth. In the present review, we focused on the potential mechanism of the microbiota-gut-bone axis and the positive therapeutic effect of probiotics, prebiotics, and traditional Chinese medicine on osteoporosis. Overall, the current scientific literatures support that the gut microbiota may be a novel therapeutic target in treatment of osteoporosis and fracture prevention.
Collapse
Affiliation(s)
- Yinxi He
- Department of Orthopaedic Trauma, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yanxia Chen
- Department of Endocrinology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
34
|
Wang H, Bu X, Chen F, Wang Y, Chen Y. Resistant dextrin protects against pathological bone loss in ovariectomized rats and inhibits RANKL-induced osteoclastogenesis. Histol Histopathol 2022; 37:1127-1141. [PMID: 35801271 DOI: 10.14670/hh-18-492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Osteoporosis is a common disease in postmenopausal women characterized by systemic bone mass loss, microstructure fragility and increased incidence of fractures. Resistant dextrin (RD) is a soluble fiber with beneficial metabolic effects. However, the beneficial effect of RD in osteoporosis remains to be determined. METHODS In this study, we investigated the effect of dietary RD supplement on osteoporosis in ovariectomized (OVX) rats. Both the control (sham) and OVX group rats were gavaged with RD (10 g/kg/d) or equal amount of saline for 12 weeks, and histological and biomechanical analyses were conducted to evaluate bone microstructure and strength. Furthermore, we also evaluated the effects of RD on osteoclastogenesis in bone marrow macrophages (BMMs) by detecting the expression of osteoclast-related genes using qRT-PCR and Western blot analysis. RESULTS The results showed that in OVX rats the bone strength and microstructure characteristics were significantly improved with RD supplement for 12 weeks. Additionally, the mRNA and protein expression of osteoclast markers, such as CTSK, NF-κB and NFATC1, were significantly down-regulated in BMMs isolated from RD supplement group. RD also suppressed RANKL-induced osteoclastogenesis in BMMs. CONCLUSION These findings suggest that RD ameliorates osteoporosis in OVX rats by inhibiting osteoclast differentiation. RD suppresses RANKL-induced osteoclastogenesis possibly through modulating Akt and NF-κB signaling pathways. These data indicate that a dietary supplement of RD might serve as an intervention strategy for menopausal osteoporosis.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Health Care, People's Hospital of Rizhao, Rizhao, Shandong, PR China
| | - Xiaojie Bu
- Department of Health Care, People's Hospital of Rizhao, Rizhao, Shandong, PR China
| | - Fulian Chen
- Department of Endocrinology, Affiliated Yidu Central Hospital of Weifang Medical College, Weifang, Shandong, PR China
| | - Yan Wang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, PR China
| | - Yao Chen
- Department of Clinical Nutrition, People's Hospital of Rizhao, Rizhao, Shandong, PR China.
| |
Collapse
|
35
|
Zhang YW, Cao MM, Li YJ, Lu PP, Dai GC, Zhang M, Wang H, Rui YF. Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function. J Orthop Translat 2022; 37:46-60. [PMID: 36196151 PMCID: PMC9520092 DOI: 10.1016/j.jot.2022.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Osteoporosis (OP) is a systemic metabolic bone disease characterized by decreased bone mass and destruction of bone microstructure, which tends to result in enhanced bone fragility and related fractures. The postmenopausal osteoporosis (PMOP) has a relatively high proportion, and numerous studies reveal that estrogen-deficiency is related to the imbalance of gut microbiota (GM), impaired intestinal mucosal barrier function and enhanced inflammatory reactivity. However, the underlying mechanisms remain unclear and the existing interventions are also scarce. Methods In this study, we established a mouse model induced by ovariectomy (OVX) and conducted fecal microbiota transplantation (FMT) by gavage every day for 8 weeks. Subsequently, the bone mass and microarchitecture of mice were evaluated by the micro computed tomography (Micro-CT). The intestinal permeability, pro-osteoclastogenic cytokines expression, osteogenic and osteoclastic activities were detected by the immunohistological analysis, histological examination, enzyme-linked immunosorbent assay (ELISA) and western blot analysis accordingly. Additionally, the composition and abundance of GM were assessed by 16S rRNA sequencing and the fecal short chain fatty acids (SCFAs) level was measured by metabolomics. Results Our results demonstrated that FMT inhibited the excessive osteoclastogenesis and prevented the OVX-induced bone loss. Specifically, compared with the OVX group, FMT enhanced the expressions of tight junction proteins (zonula occludens protein 1 (ZO-1) and Occludin) and suppressed the release of pro-osteoclastogenic cytokines (tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)). Furthermore, FMT also optimized the composition and abundance of GM, and increased the fecal SCFAs level (mainly acetic acid and propionic acid). Conclusions Collectively, based on GM-bone axis, FMT prevented the OVX-induced bone loss by correcting the imbalance of GM, improving the SCFAs level, optimizing the intestinal permeability and suppressing the release of pro-osteoclastogenic cytokines, which may be an alternative option to serve as a promising candidate for the prevention and treatment of PMOP in the future. The translational potential of this article This study indicates the ingenious involvement of GM-bone axis in PMOP and the role of FMT in reshaping the status of GM and ameliorating the bone loss in OVX-induced mice. FMT might serve as a promising candidate for the prevention and treatment of PMOP in the future.
Collapse
|
36
|
Damani JJ, De Souza MJ, VanEvery HL, Strock NCA, Rogers CJ. The Role of Prunes in Modulating Inflammatory Pathways to Improve Bone Health in Postmenopausal Women. Adv Nutr 2022; 13:1476-1492. [PMID: 34978320 PMCID: PMC9526830 DOI: 10.1093/advances/nmab162] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/31/2021] [Accepted: 12/30/2021] [Indexed: 01/28/2023] Open
Abstract
The prevalence of osteoporosis among women aged 50 y and older is expected to reach 13.6 million by 2030. Alternative nonpharmaceutical agents for osteoporosis, including nutritional interventions, are becoming increasingly popular. Prunes (dried plums; Prunus domestica L.) have been studied as a potential whole-food dietary intervention to mitigate bone loss in preclinical models of osteoporosis and in osteopenic postmenopausal women. Sixteen preclinical studies using in vivo rodent models of osteopenia or osteoporosis have established that dietary supplementation with prunes confers osteoprotective effects both by preventing and reversing bone loss. Increasing evidence from 10 studies suggests that, in addition to antiresorptive effects, prunes exert anti-inflammatory and antioxidant effects. Ten preclinical studies have found that prunes and/or their polyphenol extracts decrease malondialdehyde and NO secretion, increase antioxidant enzyme expression, or suppress NF-κB activation and proinflammatory cytokine production. Two clinical trials have investigated the impact of dried plum consumption (50-100 g/d for 6-12 mo) on bone health in postmenopausal women and demonstrated promising effects on bone mineral density and bone biomarkers. However, less is known about the impact of prune consumption on oxidative stress and inflammatory mediators in humans and their possible role in modulating bone outcomes. In this review, the current state of knowledge on the relation between inflammation and bone health is outlined. Findings from preclinical and clinical studies that have assessed the effect of prunes on oxidative stress, inflammatory mediators, and bone outcomes are summarized, and evidence supporting a potential role of prunes in modulating inflammatory and immune pathways is highlighted. Key future directions to bridge the knowledge gap in the field are proposed.
Collapse
Affiliation(s)
- Janhavi J Damani
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Hannah L VanEvery
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nicole C A Strock
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
37
|
Mineral-Enriched Postbiotics: A New Perspective for Microbial Therapy to Prevent and Treat Gut Dysbiosis. Biomedicines 2022; 10:biomedicines10102392. [PMID: 36289654 PMCID: PMC9599024 DOI: 10.3390/biomedicines10102392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Postbiotics are non-viable probiotic preparations that confer a health benefit on the host. In the last years, scientific literature has proved that postbiotics have health-promoting features and technological advantages compared to probiotics, augmenting their full potential application in the food and pharmaceutical industries. The current work comprehensively summarizes the benefits and potential applications of postbiotics and essential mineral-enriched biomass and proposes a new strategy for microbial therapy—mineral-enriched postbiotics. We hypothesize and critically review the relationship between micronutrients (calcium, magnesium, iron, zinc, selenium) and postbiotics with gut microbiota, which has been barely explored yet, and how the new approach could be involved in the gut microbiome modulation to prevent and treat gut dysbiosis. Additionally, the bioactive molecules and minerals from postbiotics could influence the host mineral status, directly or through gut microbiota, which increases the mineral bioavailability. The review increases our understanding of the health improvements of mineral-enriched postbiotics, including antioxidant functions, highlighting their perspective on microbial therapy to prevent and threaten gut-related diseases.
Collapse
|
38
|
Dahshan D, Gallagher N, Workman A, Perdue J, Aikens J, Schmicker T, Shuler FD. Targeting the Gut Microbiome for Inflammation and Pain Management in Orthopedic Conditions. Orthopedics 2022; 45:e226-e234. [PMID: 35700403 DOI: 10.3928/01477447-20220608-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human gut microbiome can be altered with probiotics, prebiotics, synbiotics, and anti-inflammatory foods and spices as part of an evidence-based strategy that targets inflammation and pain in common orthopedic conditions. Implementing these strategies avoids adverse effects associated with nonsteroidal anti-inflammatory drugs and minimizes the potential for opioid use. This review focuses exclusively on human trials studying the effects of gut microbiome alterations to address pain and inflammatory markers in common orthopedic conditions: osteoarthritis, rheumatoid arthritis, fractures/osteoporosis, and bone pain associated with chemotherapy. Individualized supplementation strategies can be further explored with the information in this review. [Orthopedics. 2022;45(5):e226-e234.].
Collapse
|
39
|
Gu Q, Yin Y, Yan X, Liu X, Liu F, McClements DJ. Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: A review. Adv Colloid Interface Sci 2022; 309:102781. [DOI: 10.1016/j.cis.2022.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
|
40
|
Cornes R, Sintes C, Peña A, Albin S, O'Brien KO, Abrams SA, Donangelo CM. Daily Intake of a Functional Synbiotic Yogurt Increases Calcium Absorption in Young Adult Women. J Nutr 2022; 152:1647-1654. [PMID: 35411924 DOI: 10.1093/jn/nxac088] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Foods containing both prebiotics and probiotics (synbiotics) might enhance calcium bioavailability. OBJECTIVES We investigated the acute effect in young adult women on calcium absorption of consuming (185 mL) a synbiotic yogurt (SYN) containing inulin (4 g) and Lactobacillus rhamnosus GG (>1 × 107 CFU/mL) compared with a control yogurt (CON). METHODS Adult normal-weight women (25.0 ± 3.5 y, n = 30) participated in a 3-wk crossover study testing daily consumption of SYN compared with CON. Habitual dietary intake, bone mineral density (BMD), calcium biomarkers, and serum 25-hydroxyvitamin D were measured at baseline. Calcium absorption was tested after each phase of the study using a 42Ca oral tracer. Cumulative tracer recovery was measured in 0-4-h, 0-24-h, and 0-36-h urine pools collected postdosing. The SYN/CON tracer ratio from the timed urine pools was the primary outcome. A beneficial response to SYN was defined as 0-36-h SYN/CON tracer ratio >1. RESULTS Net 42Ca recovered increased over time in each of the SYN and CON urine pools postdosing (Friedman, P < 0.001), with a trend for higher 42Ca recovery in the 0-36-h urine pool postdosing in the SYN (1.14%) compared with the CON (0.90%) study (Wilcoxon, P = 0.07). For CON, the majority of total tracer was recovered in the 0-24-h pool (86%), whereas for SYN only 50% of total tracer was recovered in the 0-24-h pool (Friedman, P = 0.001). The SYN/CON tracer ratio in the 0-36-h pool (1.24) was >1 (Wilcoxon, P = 0.015). About two-thirds (n = 19) of women studied responded to the SYN treatment. Responders had higher vegetable intake (P = 0.03), tended to have higher potassium and calcium intakes (P ≤ 0.08), and had higher total body BMD (P = 0.09), than nonresponders. CONCLUSIONS Short-term daily consumption of a synbiotic yogurt enhanced calcium absorption relative to a control yogurt in adult women. Given the observed time delays in tracer recovery, enhancement of calcium absorption likely occurred in the large intestine.The study was registered at clinicaltrials.gov (study registration ID: NCT03420716).
Collapse
Affiliation(s)
- Rafael Cornes
- Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | - Celia Sintes
- Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | - Amparo Peña
- Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | - Santiago Albin
- Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | | | - Steven A Abrams
- Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
41
|
Yan Q, Cai L, Guo W. New Advances in Improving Bone Health Based on Specific Gut Microbiota. Front Cell Infect Microbiol 2022; 12:821429. [PMID: 35860378 PMCID: PMC9289272 DOI: 10.3389/fcimb.2022.821429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/01/2022] [Indexed: 12/31/2022] Open
Abstract
The gut microbiota has been shown to play an important role in the pathogenesis of various diseases, including metabolic diseases, cardiovascular diseases, and cancer. Recent studies suggest that the gut microbiota is also closely associated with bone metabolism. However, given the high diversity of the gut microbiota, the effects of different taxa and compositions on bone are poorly understood. Previous studies demonstrated that the mechanisms underlying the effects of the gut microbiota on bone mainly include its modulation of nutrient absorption, intestinal permeability, metabolites (such as short-chain amino acids), immune responses, and hormones or neurotransmitters (such as 5-hydroxytryptamine). Several studies found that external interventions, such as dietary changes, improved bone health and altered the composition of the gut microbiota. This review summarises the beneficial gut bacteria and explores how dietary, natural, and physical factors alter the diversity and composition of the gut microbiota to improve bone health, thereby providing potential new insight into the prevention of osteoporosis.
Collapse
|
42
|
Zhang P, Zhou Y, Chen G, Li J, Wang B, Lu X. Potential association of bone mineral density loss with cognitive impairment and central and peripheral amyloid-β changes: a cross-sectional study. BMC Musculoskelet Disord 2022; 23:626. [PMID: 35773707 PMCID: PMC9245236 DOI: 10.1186/s12891-022-05580-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND There is some evidence in the literature that older adults with cognitive impairments have a higher risk for falls and osteoporotic hip fractures. Currently, the associations between bone health and cognitive health have not been extensively studied. Thus, the present cross-sectional study aims to investigate the relationship between markers of bone loss and cognitive performance in older adults with and without osteopenia as well as older adults with cognitive impairments (i.e., Alzheimer's disease [AD]). METHODS Sixty-two non-osteopenia participants and one hundred three osteopenia participants as the cohort 1 and 33 cognitively normal non-AD participants and 39 AD participants as the cohort 2 were recruited. To assess cognitive and bone health, hip bone mineral density (BMD) and cognitive performance (via Minimal Mental State Examination [MMSE] and/or Auditory Verbal Learning Test-delayed recall [AVLT-DR]) were assessed. Furthermore, in cohort 1, plasma amyloid-β (Aβ) levels, and in cohort 2, cerebrospinal fluid (CSF) Aβ levels were determined. RESULTS We observed that (1) compared with non-osteopenia participants, BMD values (t = - 22.806; 95%CI: - 1.801, - 1.484; p < 0.001), MMSE scores (t = - 5.392; 95%CI: - 3.260, - 1.698; p < 0.001), and AVLT-DR scores (t = - 4.142; 95%CI: - 2.181, - 0.804; p < 0.001), plasma Aβ42 levels (t = - 2.821; 95%CI: - 1.737, - 0.305; p = 0.01), and Aβ42/40 ratio (t = - 2.020; 95%CI: - 0.009, - 0.001; p = 0.04) were significantly lower in osteopenia participants; (2) plasma Aβ42/40 ratio showed a mediate effect for the association between BMD values and the performance of cognitive function in osteopenia participants by mediation analysis, adjusting age, sex, years of education, and body mass index (BMI); (3) BMD values (95%CI: - 1.085, 0.478; p < 0.001) were significantly reduced in AD participants as compared with cognitively normal non-AD participants; (4) in AD participants, the interactive effects of BMD and CSF Aβ42/40 ratio on MMSE scores was found by regression analysis, controlling age, sex, years of education, and BMI; (5) BMD can distinguish AD participants from cognitively normal non-AD participants with AUC of 0.816 and distinguish participants with the cognitive impairment from cognitively normal participants with AUC of 0.794. CONCLUSION Our findings suggest a relationship between bone health and cognitive health. Given the correlations between BMD and important markers of cognitive health (e.g., central and peripheral pathological change of Aβ), BMD might serve as a promising and easy-accessible biomarker. However, more research is needed to further substantiate our findings.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Yi Zhou
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Gang Chen
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Jun Li
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Bangjun Wang
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Xinyan Lu
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China.
| |
Collapse
|
43
|
Chen Y, Wang X, Zhang C, Liu Z, Li C, Ren Z. Gut Microbiota and Bone Diseases: A Growing Partnership. Front Microbiol 2022; 13:877776. [PMID: 35602023 PMCID: PMC9121014 DOI: 10.3389/fmicb.2022.877776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota is key to human health and disease. Convincing studies have demonstrated that dysbiosis in the commensal gut microbiota is associated with intestinal and extra-intestinal diseases. Recent explorations have significantly contributed to the understanding of the relationship between gut microbiota and bone diseases (osteoporosis, osteoarthritis, rheumatoid arthritis, and bone cancer). Gut microbiota and its metabolites may become associated with the development and progression of bone disorders owing to their critical role in nutrient absorption, immunomodulation, and the gut–brain–bone axis (regulation hormones). In this work, we review the recent developments addressing the effect of gut microbiota modulation on skeletal diseases and explore a feasible preventive approach and therapy for bone diseases.
Collapse
Affiliation(s)
- Yu Chen
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlei Zhang
- Bone Tumour and Bone Disease Department II, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Zhiyong Liu
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Li
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhigang Ren,
| |
Collapse
|
44
|
Orwoll ES, Parimi N, Wiedrick J, Lapidus J, Napoli N, Wilkinson JE, Huttenhower C, Langsetmo L, Kiel DP. Analysis of the Associations Between the Human Fecal Microbiome and Bone Density, Structure, and Strength: The Osteoporotic Fractures in Men (MrOS) Cohort. J Bone Miner Res 2022; 37:597-607. [PMID: 35119137 PMCID: PMC9605688 DOI: 10.1002/jbmr.4518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 11/08/2022]
Abstract
In preclinical models, the composition and function of the gut microbiota have been linked to bone growth and homeostasis, but there are few available data from studies of human populations. In a hypothesis-generating experiment in a large cohort of community-dwelling older men (n = 831; age range, 78-98 years), we explored the associations between fecal microbial profiles and bone density, microarchitecture, and strength measured with total hip dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HRpQCT) (distal radius, distal and diaphyseal tibia). Fecal samples were collected and the 16S rRNA gene V4 hypervariable region sequenced. Sequences were bioinformatically processed through the DADA2 pipeline and then taxonomically assigned using SILVA. Generalized linear models as implemented in microbiome multivariable association with linear models (MaAsLin 2) were used to test for associations between skeletal measures and specific microbial genera. The abundances of four bacterial genera were weakly associated with bone density, structure, or strength (false discovery rate [FDR] ≤ 0.05), and the measured directions of associations of genera were generally consistent across multiple bone measures, supporting a role for microbiota on skeletal homeostasis. However, the associated effect sizes were small (log2 fold change < ±0.35), limiting power to confidently identify these associations even with high resolution skeletal imaging phenotypes, and we assessed the resulting implications for the design of future cohort-based studies. As in analogous examples from genomewide association studies, we find that larger cohort sizes will likely be needed to confidently identify associations between the fecal microbiota and skeletal health relying on 16S sequencing. Our findings bolster the view that the gut microbiome is associated with clinically important measures of bone health, while also indicating the challenges in the design of cohort-based microbiome studies. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eric S Orwoll
- Department of Medicine, Oregon Health & Sciences University, Portland, OR, USA
| | - Neeta Parimi
- San Francisco Coordinating Center, San Francisco, CA, USA
| | - Jack Wiedrick
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Jodi Lapidus
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA.,Oregon Health & Science University - Portland State University School of Public Health, Portland, OR, USA
| | - Nicola Napoli
- Department of Medicine, Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy.,Division of Bone and Mineral Diseases, Washington University, St Louis, MO, USA
| | - Jeremy E Wilkinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lisa Langsetmo
- School of Public Health, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT & Harvard, Cambridge, MA, USA
| |
Collapse
|
45
|
Arnold M, Rajagukguk YV, Sidor A, Kulczyński B, Brzozowska A, Suliburska J, Wawrzyniak N, Gramza-Michałowska A. Innovative Application of Chicken Eggshell Calcium to Improve the Functional Value of Gingerbread. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074195. [PMID: 35409876 PMCID: PMC8998295 DOI: 10.3390/ijerph19074195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
Food waste, such as eggshell, can be an environmental problem if it is not properly managed. One of the ways to solve this is by using the eggshell as the cheap calcium source in food products. Polish gingerbread fortified with chicken eggshell powder (ESP) calcium was developed to solve the eggshell waste problem and to reduce the risk of osteoporosis. This study focused on the effect of ESP addition on basic composition, sensory evaluation, and antioxidative activity of gingerbread. Two samples of gingerbread without and with 3% (w/w of wheat flour) ESP, with controlled green tea powder (4% w/w of white chocolate) were analyzed. Results of the research showed that the addition of 3% ESP significantly increased the ash and calcium content (p < 0.05) without changing the appearance, aroma, texture, taste profiles, and the hedonic score of gingerbread. The gingerbread samples were then stored for 2 months and were analyzed every month. The hedonic evaluation of the aroma of both gingerbread samples decreased significantly (p < 0.05) during storage. During 2 months of storage, the antioxidative activity of gingerbread fortified with 3% ESP was not significantly different compared to the control (p > 0.05), particularly in ABTS and ORACFL assay. The ABTS, DPPH, and ORACFL assays showed decreasing antioxidative activity during storage, which was also in accordance with decreasing total phenolic content of both gingerbread samples. In PCL assay, the lipid-soluble antioxidant activity in gingerbread with 3% ESP was significantly higher during 2 months of storage, compared to the control (p < 0.05). The developed product might be a potential alternative to improve the calcium (26% daily value (DV) recommendation per 100 g) and antioxidant intake in order to prevent calcium deficiency. Gingerbread enriched with an organic source of calcium may become an innovative product to reduce the risk of developing osteoporosis in the elderly population, having potential health and economic significance, given the incidence of osteoporosis and the costs of treating this disease.
Collapse
Affiliation(s)
- Marcellus Arnold
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
| | - Yolanda Victoria Rajagukguk
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
| | - Andrzej Sidor
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
| | - Bartosz Kulczyński
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland;
| | - Natalia Wawrzyniak
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland;
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
- Correspondence: ; Tel.: +48-61-848-7327
| |
Collapse
|
46
|
Wu KC, Cao S, Weaver CM, King NJ, Patel S, Kingman H, Sellmeyer DE, McCauley K, Li D, Lynch SV, Kim TY, Black DM, Shafer MM, Özçam M, Lin DL, Rogers SJ, Stewart L, Carter JT, Posselt AM, Schafer AL. Prebiotic to Improve Calcium Absorption in Postmenopausal Women After Gastric Bypass: A Randomized Controlled Trial. J Clin Endocrinol Metab 2022; 107:1053-1064. [PMID: 34888663 PMCID: PMC8947782 DOI: 10.1210/clinem/dgab883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The adverse skeletal effects of Roux-en-Y gastric bypass (RYGB) are partly caused by intestinal calcium absorption decline. Prebiotics, such as soluble corn fiber (SCF), augment colonic calcium absorption in healthy individuals. OBJECTIVE We tested the effects of SCF on fractional calcium absorption (FCA), biochemical parameters, and the fecal microbiome in a post-RYGB population. METHODS Randomized, double-blind, placebo-controlled trial of 20 postmenopausal women with history of RYGB a mean 5 years prior; a 2-month course of 20 g/day SCF or maltodextrin placebo was taken orally. The main outcome measure was between-group difference in absolute change in FCA (primary outcome) and was measured with a gold standard dual stable isotope method. Other measures included tolerability, adherence, serum calciotropic hormones and bone turnover markers, and fecal microbial composition via 16S rRNA gene sequencing. RESULTS Mean FCA ± SD at baseline was low at 5.5 ± 5.1%. Comparing SCF to placebo, there was no between-group difference in mean (95% CI) change in FCA (+3.4 [-6.7, +13.6]%), nor in calciotropic hormones or bone turnover markers. The SCF group had a wider variation in FCA change than placebo (SD 13.4% vs 7.0%). Those with greater change in microbial composition following SCF treatment had greater increase in FCA (r2 = 0.72, P = 0.05). SCF adherence was high, and gastrointestinal symptoms were similar between groups. CONCLUSION No between-group differences were observed in changes in FCA or calciotropic hormones, but wide CIs suggest a variable impact of SCF that may be due to the degree of gut microbiome alteration. Daily SCF consumption was well tolerated. Larger and longer-term studies are warranted.
Collapse
Affiliation(s)
- Karin C Wu
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Sisi Cao
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Human Sciences, the Ohio State University, Columbus, OH 43210, USA
| | - Connie M Weaver
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Nicole J King
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Sheena Patel
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Hillary Kingman
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Deborah E Sellmeyer
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Kathryn McCauley
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Danny Li
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Susan V Lynch
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tiffany Y Kim
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Dennis M Black
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Martin M Shafer
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mustafa Özçam
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Din L Lin
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stanley J Rogers
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Lygia Stewart
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Surgical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Jonathan T Carter
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Andrew M Posselt
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anne L Schafer
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
47
|
Greenbaum J, Lin X, Su KJ, Gong R, Shen H, Shen J, Xiao HM, Deng HW. Integration of the Human Gut Microbiome and Serum Metabolome Reveals Novel Biological Factors Involved in the Regulation of Bone Mineral Density. Front Cell Infect Microbiol 2022; 12:853499. [PMID: 35372129 PMCID: PMC8966780 DOI: 10.3389/fcimb.2022.853499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
While the gut microbiome has been reported to play a role in bone metabolism, the individual species and underlying functional mechanisms have not yet been characterized. We conducted a systematic multi-omics analysis using paired metagenomic and untargeted serum metabolomic profiles from a large sample of 499 peri- and early post-menopausal women to identify the potential crosstalk between these biological factors which may be involved in the regulation of bone mineral density (BMD). Single omics association analyses identified 22 bacteria species and 17 serum metabolites for putative association with BMD. Among the identified bacteria, Bacteroidetes and Fusobacteria were negatively associated, while Firmicutes were positively associated. Several of the identified serum metabolites including 3-phenylpropanoic acid, mainly derived from dietary polyphenols, and glycolithocholic acid, a secondary bile acid, are metabolic byproducts of the microbiota. We further conducted a supervised integrative feature selection with respect to BMD and constructed the inter-omics partial correlation network. Although still requiring replication and validation in future studies, the findings from this exploratory analysis provide novel insights into the interrelationships between the gut microbiome and serum metabolome that may potentially play a role in skeletal remodeling processes.
Collapse
Affiliation(s)
- Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kuan-Jui Su
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Rui Gong
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong-Mei Xiao
- Center of Systems Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
48
|
Barone M, D'Amico F, Brigidi P, Turroni S. Gut microbiome-micronutrient interaction: The key to controlling the bioavailability of minerals and vitamins? Biofactors 2022; 48:307-314. [PMID: 35294077 PMCID: PMC9311823 DOI: 10.1002/biof.1835] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022]
Abstract
Micronutrients, namely, vitamins and minerals, are necessary for the proper functioning of the human body, and their deficiencies can have dramatic short- and long-term health consequences. Among the underlying causes, certainly a reduced dietary intake and/or poor absorption in the gastrointestinal tract play a key role in decreasing their bioavailability. Recent evidence from clinical and in vivo studies suggests an increasingly important contribution from the gut microbiome. Commensal microorganisms can in fact regulate the levels of micronutrients, both by intervening in the biosynthetic processes and by modulating their absorption. This short narrative review addresses the pivotal role of the gut microbiome in influencing the bioavailability of vitamins (such as A, B, C, D, E, and K) and minerals (calcium, iron, zinc, magnesium, and phosphorous), as well as the impact of these micronutrients on microbiome composition and functionality. Personalized microbiome-based intervention strategies could therefore constitute an innovative tool to counteract micronutrient deficiencies by modulating the gut microbiome toward an eubiotic configuration capable of satisfying the needs of our organism, while promoting general health.
Collapse
Affiliation(s)
- Monica Barone
- Microbiomics Unit, Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| |
Collapse
|
49
|
Guan Z, Luo L, Liu S, Guan Z, Zhang Q, Li X, Tao K. The Role of Depletion of Gut Microbiota in Osteoporosis and Osteoarthritis: A Narrative Review. Front Endocrinol (Lausanne) 2022; 13:847401. [PMID: 35418947 PMCID: PMC8996773 DOI: 10.3389/fendo.2022.847401] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis and osteoarthritis are common diseases in an aging society, are considered metabolic diseases, and affect the quality of life of older adults. In addition, the gut microbiome is considered an additional organ to regulate bone metabolism. In the past decade, people have been studying the relationship between gut microbiota and bone metabolism. The role and mechanism of the gut microbiota in regulating bone metabolism is very important to improve the development of osteoporosis and osteoarthritis. Depletion of the gut microbiota as a method of studying the role of the gut microbiota was provided strategies to enhance the role of the gut microbiota in regulating osteoporosis and osteoarthritis. In this review, we discuss how depletion of the gut microbiota affects osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Liying Luo
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengfu Liu
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kun Tao, ; Zhiqiang Guan, ; Qinggang Zhang, ; Xu Li,
| | - Qinggang Zhang
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
- *Correspondence: Kun Tao, ; Zhiqiang Guan, ; Qinggang Zhang, ; Xu Li,
| | - Xu Li
- Spine Center, Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Kun Tao, ; Zhiqiang Guan, ; Qinggang Zhang, ; Xu Li,
| | - Kun Tao
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
- *Correspondence: Kun Tao, ; Zhiqiang Guan, ; Qinggang Zhang, ; Xu Li,
| |
Collapse
|
50
|
Sharma V, Malla MA, Kori RK, Yadav RS, Azam Z. Applications of Metagenomics for Unrevealing the Extended Horizons of Microbiota Prevalence from Soil to Human Health. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phylogenetic analysis of different ecosystems has shown that the number of microbial communities in a single sample exceeds their cultured counterparts. Microbes have been found throughout nature and can thrive in adverse conditions. Besides inhabiting diverse environments, they also play a key role in the maintenance of the ecosystem. Most of these microbes are either unculturable or difficult to culture with conventional culturing methods. Metagenomics is an emerging field of science that has been in the light for a decade and offers a potential way to assess microbial diversity. The development of metagenomics opens new ways to study genetic material directly from the environmental samples. DNA sequencing and synthesis technologies are making it possible to read and write entire genomes. The huge amount of data obtained from genome sequencing inevitably requires bioinformatics tools to handle and further process them for analysis. Advances in DNA sequencing and high-performance computing have brought about exemplar improvement in metagenomics, allowing in-depth study of the largely unexplored frontier of microbial life. This culture-independent method provides extensive information regarding the structure, composition, and function of the diverse assemblages of the environmental microbes. The current review presents an overview of the technical aspects of metagenomics along with its diverse applications.
Collapse
|