1
|
Kates SL, Owen JR, Beck CA, Muthukrishnan G, Daiss JL, Golladay GJ. Dilution of humoral immunity: Results from a natural history study of healthy total knee arthroplasty patients. J Orthop Res 2024; 42:2835-2843. [PMID: 39054760 DOI: 10.1002/jor.25942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 07/27/2024]
Abstract
The incidence of prosthetic joint infection (PJI) following elective primary total knee arthroplasty (TKA) is very low but serious risk remains. To identify unknown risk factors, we completed a natural history study of IgG specific for Staphylococcus aureus antigens previously phenotyped as protective (anti-Atl) and pathogenic (anti-Isd). Twenty-five male and 25 female optimized patients 50-85 years of age and BMI 24-39 undergoing primary TKA were prospectively enrolled. Blood sampling was performed preoperatively, postoperative Day 1, and at 2, 6, and 12 weeks, to assess serum cytokine, anti-staphylococcal IgG levels and anti-tetanus toxoid IgG measured via custom Luminex assay. Clinical, demographic, and PROMIS-10 data were collected with outcomes to 2 years postop. All participants completed the study and 2-year follow-up. No patients were readmitted or noted to develop a surgical site infection or serious adverse event, and patient-reported outcomes were improved. Serology revealed a highly significant decrease in six out of eight antibody titers against specific S. aureus antigens on Day 1 (p < 0.0001), five of which normalized to preoperative levels within 2 weeks. These changes were commensurate with a decrease and recovery of anti-tetanus toxoid titers, and a 20% drop in hemoglobin 13.8 ± 1.7 at preop to 11.1 ± 1.8 mg/dL on Day 1 (p < 0.0001). After TKA, a significant decrease in humoral immunity commensurate with blood loss and hemodilution was recorded. This decrease in circulating anti-staphylococcal antibodies in the early postop period may represent a periprosthetic joint infection risk factor for patients.
Collapse
Affiliation(s)
- Stephen L Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John R Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Christopher A Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | | | - John L Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Gregory J Golladay
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
2
|
Bell RD, Cann EA, Mishra B, Valencia M, Zhang Q, Huang M, Yang X, Carli A, Bostrom M, Ivashkiv LB. Staphyloccocus aureus biofilm, in absence of planktonic bacteria, produces factors that activate counterbalancing inflammatory and immune-suppressive genes in human monocytes. J Orthop Res 2024; 42:2582-2592. [PMID: 38922976 PMCID: PMC11481048 DOI: 10.1002/jor.25919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Staphyloccocus aureus (S. aureus) is a major bacterial pathogen in orthopedic periprosthetic joint infection (PJI). S. aureus forms biofilms that promote persistent infection by shielding bacteria from immune cells and inducing an antibiotic-tolerant metabolic state. We developed an in vitro system to study S. aureus biofilm interactions with primary human monocytes in the absence of planktonic bacteria. In line with previous in vivo data, S. aureus biofilm induced expression of inflammatory genes such as TNF and IL1B, and their anti-inflammatory counter-regulator IL10. S. aureus biofilm also activated expression of PD-1 ligands, and IL-1RA, molecules that have the potential to suppress T cell function or differentiation of protective Th17 cells. Gene induction did not require monocyte:biofilm contact and was mediated by a soluble factor(s) produced by biofilm-encased bacteria that was heat resistant and >3 kD in size. Activation of suppressive genes by biofilm was sensitive to suppression by Jak kinase inhibition. These results support an evolving paradigm that biofilm plays an active role in modulating immune responses, and suggest this occurs via production of a soluble vita-pathogen-associated molecular pattern, a molecule that signals microbial viability. Induction of T cell suppressive genes by S. aureus biofilm provides insights into mechanisms that can suppress T cell immunity in PJI.
Collapse
Affiliation(s)
- Richard D Bell
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - E. Abrefi Cann
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Bikash Mishra
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine
| | - Melanie Valencia
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Qiong Zhang
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Mary Huang
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Xu Yang
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Alberto Carli
- Department of Orthopedic Surgery, Hospital for Special Surgery
| | - Mathias Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery
| | - Lionel B Ivashkiv
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine
| |
Collapse
|
3
|
Campbell MJ, Bustamante-Gomez C, Fu Q, Beenken KE, Reyes-Pardo H, Smeltzer MS, O'Brien CA. RANKL-mediated osteoclast formation is required for bone loss in a murine model of Staphylococcus aureus osteomyelitis. Bone 2024; 187:117181. [PMID: 38960295 PMCID: PMC11325436 DOI: 10.1016/j.bone.2024.117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Staphylococcus aureus osteomyelitis leads to extensive bone destruction. Osteoclasts are bone resorbing cells that are often increased in bone infected with S. aureus. The cytokine RANKL is essential for osteoclast formation under physiological conditions but in vitro evidence suggests that inflammatory cytokines may by-pass the requirement for RANKL. The goal of this study was to determine whether RANKL-dependent osteoclast formation is essential for the bone loss that occurs in a murine model of S. aureus osteomyelitis. To this end, humanized-RANKL mice were infected by direct inoculation of S. aureus into a unicortical defect in the femur. Mice were treated with vehicle or denosumab, a human monoclonal antibody that inhibits RANKL, both before and during a 14-day infection period. The severe cortical bone destruction caused by infection was completely prevented by denosumab administration even though the bacterial burden in the femur was not affected. Osteoclasts were abundant near the inoculation site in vehicle-treated mice but absent in denosumab-treated mice. In situ hybridization demonstrated that S. aureus infection potently stimulated RANKL expression in bone marrow stromal cells. The extensive reactive bone formation that occurs in this osteomyelitis model was also reduced by denosumab administration. Lastly, there was a notable lack of osteoblasts near the infection site suggesting that the normal coupling of bone formation to bone resorption was disrupted by S. aureus infection. These results demonstrate that RANKL-mediated osteoclast formation is required for the bone loss that occurs in S. aureus infection and suggest that disruption of the coupling of bone formation to bone resorption may also contribute to bone loss in this condition.
Collapse
Affiliation(s)
- Mara J Campbell
- Department of Microbiology and Immunology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Cecile Bustamante-Gomez
- Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Qiang Fu
- Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Karen E Beenken
- Department of Microbiology and Immunology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Humberto Reyes-Pardo
- Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America; Department of Orthopaedic Surgery, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America.
| | - Charles A O'Brien
- Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America; Department of Orthopaedic Surgery, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America; Central Arkansas Veterans Healthcare System, Little Rock, AR, United States of America.
| |
Collapse
|
4
|
Surendar J, Hackenberg RK, Schmitt-Sánchez F, Ossendorff R, Welle K, Stoffel-Wagner B, Sage PT, Burger C, Wirtz DC, Strauss AC, Schildberg FA. Osteomyelitis is associated with increased anti-inflammatory response and immune exhaustion. Front Immunol 2024; 15:1396592. [PMID: 38736874 PMCID: PMC11082283 DOI: 10.3389/fimmu.2024.1396592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Osteomyelitis (OMS) is a bone infection causing bone pain and severe complications. A balanced immune response is critical to eradicate infection without harming the host, yet pathogens manipulate immunity to establish a chronic infection. Understanding OMS-driven inflammation is essential for disease management, but comprehensive data on immune profiles and immune cell activation during OMS are lacking. Methods Using high-dimensional flow cytometry, we investigated the detailed innate and adaptive systemic immune cell populations in OMS and age- and sex-matched controls. Results Our study revealed that OMS is associated with increased levels of immune regulatory cells, namely T regulatory cells, B regulatory cells, and T follicular regulatory cells. In addition, the expression of immune activation markers HLA-DR and CD86 was decreased in OMS, while the expression of immune exhaustion markers TIM-3, PD-1, PD-L1, and VISTA was increased. Members of the T follicular helper (Tfh) cell family as well as classical and typical memory B cells were significantly increased in OMS individuals. We also found a strong correlation between memory B cells and Tfh cells. Discussion We conclude that OMS skews the host immune system towards the immunomodulatory arm and that the Tfh memory B cell axis is evident in OMS. Therefore, immune-directed therapies may be a promising alternative for eradication and recurrence of infection in OMS, particularly in individuals and areas where antibiotic resistance is a major concern.
Collapse
Affiliation(s)
- Jayagopi Surendar
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Roslind K. Hackenberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Fabio Schmitt-Sánchez
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Robert Ossendorff
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kristian Welle
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Birgit Stoffel-Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Christof Burger
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C. Wirtz
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Andreas C. Strauss
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
5
|
Liu CG, Li DY, Gao X, Ma T, Zhang K, Liu DY. Examining the causal relationship between circulating immune cells and the susceptibility to osteomyelitis: A Mendelian randomization study. Int Immunopharmacol 2024; 131:111815. [PMID: 38492335 DOI: 10.1016/j.intimp.2024.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Osteomyelitis is considered as a deleterious inflammatory condition affecting the bone, primarily attributed to pathogenic infection. However, the underlying factors predisposing individuals to osteomyelitis remain incompletely elucidated. The immune system plays a multifaceted role in the progression of this condition, yet previous observational studies and randomized controlled trials investigating the association between circulating immune cell counts and osteomyelitis have been constrained. In order to address this knowledge gap, we conducted a Mendelian randomization (MR) analysis to evaluate the impact of diverse immune cell counts on the risk of developing osteomyelitis. METHODS In our study, we utilized single nucleotide polymorphisms (SNPs) that have been strongly linked to circulating immune cells or specific lymphocyte subtypes, as identified in large-scale genome-wide association studies (GWAS). These SNPs served as instrumental variables (IVs) for our MR analysis. We employed a more relaxed clumping threshold to conduct MR analysis on several related lymphocyte subtypes. To estimate causal effects, we utilized the Wald ratio, as well as the random-effects inverse variance weighted (IVW) and weighted median (WM) methods. To enhance the credibility of our results, we performed F-statistic calculations and a series of sensitivity analyses. RESULTS Our findings revealed a significant correlation between the absolute count of circulating lymphocytes and the risk of osteomyelitis [odds ratio(OR) 1.20;95 % confidence interval (CI), 1.08-1.32;P = 0.0005]. Furthermore, we identified a causal relationship between the absolute count of CD8+ T cells and susceptibility to osteomyelitis (OR 1.16; 95 % CI, 1.04-1.30; P = 0.0098). Importantly, these findings remained robust across a wide range of sensitivity analyses. CONCLUSION Through our MR analysis, we have provided evidence supporting a causal relationship between genetic predisposition to higher circulating immune cell counts and an increased risk of osteomyelitis. Specifically, our findings highlight the association between elevated CD8+ T cell counts and a heightened susceptibility to osteomyelitis. These results offer valuable insights for the future exploration of immunotherapy approaches in the management of osteomyelitis.
Collapse
Affiliation(s)
- Chun-Gui Liu
- Severe & Poly-trauma Division, Orthopedic Trauma Department, Hong-Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Dong-Yang Li
- Severe & Poly-trauma Division, Orthopedic Trauma Department, Hong-Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xi Gao
- Severe & Poly-trauma Division, Orthopedic Trauma Department, Hong-Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Teng Ma
- Severe & Poly-trauma Division, Orthopedic Trauma Department, Hong-Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Kun Zhang
- Severe & Poly-trauma Division, Orthopedic Trauma Department, Hong-Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - De-Yin Liu
- Severe & Poly-trauma Division, Orthopedic Trauma Department, Hong-Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
6
|
De Soir S, Parée H, Kamarudin NHN, Wagemans J, Lavigne R, Braem A, Merabishvili M, De Vos D, Pirnay JP, Van Bambeke F. Exploiting phage-antibiotic synergies to disrupt Pseudomonas aeruginosa PAO1 biofilms in the context of orthopedic infections. Microbiol Spectr 2024; 12:e0321923. [PMID: 38084971 PMCID: PMC10783084 DOI: 10.1128/spectrum.03219-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Biofilm-related infections are among the most difficult-to-treat infections in all fields of medicine due to their antibiotic tolerance and persistent character. In the field of orthopedics, these biofilms often lead to therapeutic failure of medical implantable devices and urgently need novel treatment strategies. This forthcoming article aims to explore the dynamic interplay between newly isolated bacteriophages and routinely used antibiotics and clearly indicates synergetic patterns when used as a dual treatment modality. Biofilms were drastically more reduced when both active agents were combined, thereby providing additional evidence that phage-antibiotic combinations lead to synergism and could potentially improve clinical outcome for affected patients.
Collapse
Affiliation(s)
- Steven De Soir
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Hortence Parée
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nur Hidayatul Nazirah Kamarudin
- Department of Materials Engineering, Biomaterials and Tissue Engineering Research Group, KU Leuven, Leuven, Belgium
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Annabel Braem
- Department of Materials Engineering, Biomaterials and Tissue Engineering Research Group, KU Leuven, Leuven, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Daniel De Vos
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Liu P, Kang X, Chen X, Luo X, Li C, Wang G. Quercetin targets SarA of methicillin-resistant Staphylococcus aureus to mitigate biofilm formation. Microbiol Spectr 2024; 12:e0272223. [PMID: 38018987 PMCID: PMC10783115 DOI: 10.1128/spectrum.02722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Anti-biofilm is an important strategy against Staphylococcus aureus chronic infection. SarA is a positive regulator of biofilm formation in S. aureus. In this study, we identified the SarA inhibitor quercetin using computer simulation screening. Previous studies have shown that quercetin inhibits biofilm; however, the underlying mechanism remains unknown. This study revealed the inhibitory effect of quercetin on the SarA protein. We also isolated the SarA protein and confirmed its interaction with quercetin in vitro. Besides, the inhibitory effect of quercetin on the transcription and translation levels of the SarA protein was also determined. The effects of quercetin on S. aureus biofilm inhibition and biofilm components were consistent with the changes in the transcription level of biofilm-related genes regulated by SarA. In summary, our study revealed the mechanism by which quercetin affects biofilm formation by inhibiting the transcriptional regulator SarA of S. aureus.
Collapse
Affiliation(s)
- Panpan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xinyun Kang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xiaohui Chen
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xiaofeng Luo
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Caixia Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Guiqin Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
8
|
Wang M, Zheng Y, Yin C, Dai S, Fan X, Jiang Y, Liu X, Fang J, Yi B, Zhou Q, Wang T. Recent Progress in antibacterial hydrogel coatings for targeting biofilm to prevent orthopedic implant-associated infections. Front Microbiol 2023; 14:1343202. [PMID: 38188584 PMCID: PMC10768665 DOI: 10.3389/fmicb.2023.1343202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
The application of orthopedic implants for bone tissue reconstruction and functional restoration is crucial for patients with severe bone fractures and defects. However, the abiotic nature of orthopedic implants allows bacterial adhesion and colonization, leading to the formation of bacterial biofilms on the implant surface. This can result in implant failure and severe complications such as osteomyelitis and septic arthritis. The emergence of antibiotic-resistant bacteria and the limited efficacy of drugs against biofilms have increased the risk of orthopedic implant-associated infections (OIAI), necessitating the development of alternative therapeutics. In this regard, antibacterial hydrogels based on bacteria repelling, contact killing, drug delivery, or external assistance strategies have been extensively investigated for coating orthopedic implants through surface modification, offering a promising approach to target biofilm formation and prevent OIAI. This review provides an overview of recent advancements in the application of antibacterial hydrogel coatings for preventing OIAI by targeting biofilm formation. The topics covered include: (1) the mechanisms underlying OIAI occurrence and the role of biofilms in exacerbating OIAI development; (2) current strategies to impart anti-biofilm properties to hydrogel coatings and the mechanisms involved in treating OIAI. This article aims to summarize the progress in antibacterial hydrogel coatings for OIAI prevention, providing valuable insights and facilitating the development of prognostic markers for the design of effective antibacterial orthopedic implants.
Collapse
Affiliation(s)
- Mengxuan Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yawen Zheng
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuqiang Yin
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiyou Dai
- Department of Bone Joint and Sports Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Xiao Fan
- Department of Bone Joint and Sports Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Ying Jiang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuequan Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junqiang Fang
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Bingcheng Yi
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, Wuhan, China
| | - Ting Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Zhang S, Yang H, Wang M, Mantovani D, Yang K, Witte F, Tan L, Yue B, Qu X. Immunomodulatory biomaterials against bacterial infections: Progress, challenges, and future perspectives. Innovation (N Y) 2023; 4:100503. [PMID: 37732016 PMCID: PMC10507240 DOI: 10.1016/j.xinn.2023.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Bacterial infectious diseases are one of the leading causes of death worldwide. Even with the use of multiple antibiotic treatment strategies, 4.95 million people died from drug-resistant bacterial infections in 2019. By 2050, the number of deaths will reach 10 million annually. The increasing mortality may be partly due to bacterial heterogeneity in the infection microenvironment, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants. In addition, the complexity of the immune microenvironment at different stages of infection makes biomaterials with direct antimicrobial activity unsatisfactory for the long-term treatment of chronic bacterial infections. The increasing mortality may be partly attributed to the biomaterials failing to modulate the active antimicrobial action of immune cells. Therefore, there is an urgent need for effective alternatives to treat bacterial infections. Accordingly, the development of immunomodulatory antimicrobial biomaterials has recently received considerable interest; however, a comprehensive review of their research progress is lacking. In this review, we focus mainly on the research progress and future perspectives of immunomodulatory antimicrobial biomaterials used at different stages of infection. First, we describe the characteristics of the immune microenvironment in the acute and chronic phases of bacterial infections. Then, we highlight the immunomodulatory strategies for antimicrobial biomaterials at different stages of infection and their corresponding advantages and disadvantages. Moreover, we discuss biomaterial-mediated bacterial vaccines' potential applications and challenges for activating innate and adaptive immune memory. This review will serve as a reference for future studies to develop next-generation immunomodulatory biomaterials and accelerate their translation into clinical practice.
Collapse
Affiliation(s)
- Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charite Medical University, Assmannshauser Strasse 4–6, 14197 Berlin, Germany
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
10
|
Li M, Shi X, Wu Y, Qi B, Zhang C, Wang B, Zhang B, Xu Y. Pmepa1 knockdown alleviates SpA-induced pyroptosis and osteogenic differentiation inhibition of hBMSCs via p38MAPK/NLRP3 axis. Int Immunopharmacol 2023; 124:110843. [PMID: 37634444 DOI: 10.1016/j.intimp.2023.110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Osteomyelitis is a refractory bone infectious disease, which usually results in progressive bone destruction and bone loss. The invasion of pathogens and subsequent inflammatory response could damage bone marrow mesenchymal stem cells (BMSCs) and inhibit osteogenic differentiation, and finally aggravate uncontrolled bone remodeling in osteomyelitis by affecting bone formation. Exploring the mechanisms of BMSCs injury and osteogenic differentiation inhibition may would help us to find potential therapeutic targets. METHOD Firstly, staphylococcal protein A (SpA)-treated human bone marrow mesenchymal stem cells (hBMSCs) were used to construct cell models of osteomyelitis. Secondly, transcriptome sequencing was performed to screen differentially expressed genes and then verified the expression of target genes. Next, in vitro experiments were conducted to explore the functions and mechanisms of prostate transmembrane protein androgen induced 1 (Pmepa1) in SpA-treated hBMSCs. Finally, the rat model of osteomyelitis was established to provide an auxiliary validation of the in vitro experimental results. RESULTS We found that SpA treatment induced inflammatory injury and inhibited osteogenic differentiation in hBMSCs, then the transcriptome sequencing and further detection results showed that Pmepa1 was significantly upregulated in this process. Functionally, Pmepa1 knockdown alleviated inflammatory injury and promoted osteogenic differentiation in SpA-treated hBMSCs. Among them, it was demonstrated that Pmepa1 knockdown exerted cytoprotective effects by alleviating pyroptosis of SpA-infected hBMSCs. Furthermore, recovery experiments revealed that Pmepa1 knockdown reversed SpA-mediated adverse effects by downregulating the p38MAPK/NLRP3 axis. Finally, the detection results of rat femoral osteomyelitis showed that the expression of Pmepa1 was up-regulated, and the expression trends of other indicators including p38MAPK, NLRP3, and caspase-1 were also consistent with the in vitro model. CONCLUSION Pmepa1 knockdown alleviates SpA-induced pyroptosis and inhibition of osteogenic differentiation in hBMSCs by downregulating p38MAPK/NLRP3 signaling axis. Modulating the expression of Pmepa1 may be a potential strategy to ameliorate osteomyelitis.
Collapse
Affiliation(s)
- Mingjun Li
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangwen Shi
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yipeng Wu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Baochuang Qi
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Chaoqun Zhang
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Bin Wang
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Bihuan Zhang
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yongqing Xu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China.
| |
Collapse
|
11
|
Baertl S, Gens L, Nehrbass D, Sumrall ET, Zeiter S, Mannala GK, Rupp M, Walter N, Richards RG, Moriarty TF, Alt V. Staphylococcus aureus From an Acute Fracture-related Infection Displays Important Bacteriological and Histopathologic Differences From a Chronic Equivalent in a Murine Bone Infection Model. Clin Orthop Relat Res 2023; 481:2044-2060. [PMID: 37439643 PMCID: PMC10499069 DOI: 10.1097/corr.0000000000002753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/05/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Staphylococcus aureus is the leading pathogen in fracture-related infection. Previous in vitro experiments, in vivo testing in wax moth larvae, and genomic analysis of clinical S. aureu s isolates from fracture-related infection identified low-virulence (Lo-SA5464) and high-virulence (Hi-SA5458) strains. These findings correlated with acute fracture-related infection induced by Hi-SA5458, whereas Lo-SA5464 caused a chronic fracture-related infection in its human host. However, it remains unclear whether and to what extent the causative pathogen is attributable to these disparities in fracture-related infections. QUESTION/PURPOSE Are there differences in the course of infection when comparing these two different clinical isolates in a murine fracture-related infection model, as measured by (1) clinical observations of weight loss, (2) quantitative bacteriology, (3) immune response, and (4) radiographic and histopathologic morphology? METHODS Twenty-five (including one replacement animal) female (no sex-specific influences expected), skeletally mature C57Bl/6N inbred mice between 20 and 28 weeks old underwent femoral osteotomy stabilized by titanium locking plates. Fracture-related infection was established by inoculation of high-virulence S. aureus EDCC 5458 (Hi-SA5458) or low-virulence S. aureus EDCC 5464 (Lo-SA5464) in the fracture gap. Each of these groups consisted of 12 randomly assigned animals. Mice were euthanized 4 and 14 days postsurgery, resulting in six animals per group and timepoint. The severity and progression of infection were assessed in terms of clinical observation of weight loss, quantitative bacteriology, quantitative serum cytokine levels, qualitative analysis of postmortem radiographs, and semiquantitative histopathologic evaluation. RESULTS For clinical observations of weight change, no differences were seen at Day 4 between Hi-SA5458- and Lo-SA5464-infected animals (mean -0.6 ± 0.1 grams versus -0.8 ± 0.2 grams, mean difference -0.2 grams [95% CI -0.8 to 0.5 grams]; p =0.43), while at 14 days, the Hi-SA5458 group lost more weight than the Lo-SA5464 group (mean -1.55 ± 0.2 grams versus -0.8 ± 0.3 grams; mean difference 0.7 grams [95% CI 0.2 to 1.3 grams]; p = 0.02). Quantitative bacteriological results 4 days postoperatively revealed a higher bacterial load in soft tissue samples in Hi-SA5458-infected animals than in the Lo-SA5464-infected cohort (median 6.8 x 10 7 colony-forming units [CFU]/g, range 2.2 x 10 7 to 2.1 x 10 9 CFU/g versus median 6.0 x 10 6 CFU/g, range 1.8 x 10 5 to 1.3 x 10 8 CFU/g; difference of medians 6.2 x 10 7 CFU/g; p = 0.03). At both timepoints, mice infected with the Hi-SA5458 strain also displayed higher proportions of bacterial dissemination into organs than Lo-SA5464-infected animals (67% [24 of 36 organs] versus 14% [five of 36 organs]; OR 12.0 [95% CI 3.7 to 36]; p < 0.001). This was accompanied by a pronounced proinflammatory response on Day 14, indicated by increased serum cytokine levels of interleukin-1β (mean 9.0 ± 2.2 pg/mL versus 5.3 ± 1.5 pg/mL; mean difference 3.6 pg/mL [95% CI 2.0 to 5.2 pg/mL]; p < 0.001), IL-6 (mean 458.6 ± 370.7 pg/mL versus 201.0 ±89.6 pg/mL; mean difference 257.6 pg/mL [95% CI 68.7 to 446.5 pg/mL]; p = 0.006), IL-10 (mean 15.9 ± 3.5 pg/mL versus 9.9 ± 1.0 pg/mL; mean difference 6.0 pg/mL [95% CI 3.2 to 8.7 pg/mL]; p < 0.001), and interferon-γ (mean 2.7 ± 1.9 pg/mL versus 0.8 ± 0.3 pg/mL; mean difference 1.8 pg/mL [95% CI 0.5 to 3.1 pg/mL]; p = 0.002) in Hi-SA5458-infected compared with Lo-SA5464-infected animals. The semiquantitative histopathologic assessment on Day 4 revealed higher grades of granulocyte infiltration in Hi-SA5458-infected animals (mean grade 2.5 ± 1.0) than in Lo-SA5464-infected animals (mean grade 1.8 ± 1.4; mean difference 0.7 [95% CI 0.001 to 1.4]; p = 0.0498). On Day 14, bone healing at the fracture site was present to a higher extent in Lo-SA5464-infected animals than in Hi-SA5458-infected animals (mean grade 0.2 ± 0.4 versus 1.8 ± 1.2; mean difference -1.6 [95% CI -2.8 to -0.5]; p = 0.008). CONCLUSION Similar to septic infection in a human host, infection with Hi-SA5458 in this murine model was characterized by a higher bacterial load, more-pronounced systemic dissemination, and stronger systemic and local inflammation. Thus, there is strong support for the idea that pathogenic virulence plays a crucial role in fracture-related infections. To confirm our observations, future studies should focus on characterizing S. aureus virulence at the genomic and transcriptomic levels in more clinical isolates and patients. Comparing knockout and wildtype strains in vitro and in vivo, including the S. aureus strains studied, could confirm our findings and identify the genomic features responsible for S. aureus virulence in fracture-related infections. CLINICAL RELEVANCE For translational use, virulence profiles of S. aureus may be useful in guiding treatment decisions in the future. Once specific virulence targets are identified, one approach to fracture-related infections with high-virulence strains might be the development of antivirulence agents, particularly to treat or prevent septic dissemination. For fracture-related infections with low virulence, prolonged antimicrobial therapy or exchange of an indwelling implant might be beneficial owing to slower growth and persistence capacity.
Collapse
Affiliation(s)
- Susanne Baertl
- Regensburg University Medical Center, Department of Trauma Surgery, Regensburg, Germany
- AO Research Institute Davos, Davos-Platz, Switzerland
| | - Lena Gens
- AO Research Institute Davos, Davos-Platz, Switzerland
| | - Dirk Nehrbass
- AO Research Institute Davos, Davos-Platz, Switzerland
| | - Eric T. Sumrall
- AO Research Institute Davos, Davos-Platz, Switzerland
- Harvard Medical School, Department of Microbiology, Boston, MA, USA
| | | | | | - Markus Rupp
- Regensburg University Medical Center, Department of Trauma Surgery, Regensburg, Germany
| | - Nike Walter
- Regensburg University Medical Center, Department of Trauma Surgery, Regensburg, Germany
| | | | | | - Volker Alt
- Regensburg University Medical Center, Department of Trauma Surgery, Regensburg, Germany
| |
Collapse
|
12
|
Tian L, Tan Z, Yang Y, Liu S, Yang Q, Tu Y, Chen J, Guan H, Fan L, Yu B, Chen X, Hu Y. In situ sprayed hydrogels containing resiquimod-loaded liposomes reduce chronic osteomyelitis recurrence by intracellular bacteria clearance. Acta Biomater 2023; 169:209-227. [PMID: 37516419 DOI: 10.1016/j.actbio.2023.07.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
At present, surgical debridement and systematic administration of antibiotics represent the mainstay of treatment for chronic osteomyelitis. However, it is now understood that Staphylococcus aureus (S. aureus) can survive within excessively polarized M2 macrophages and evade antibiotics, accounting for the high recurrence of chronic osteomyelitis. Effective treatments for intracellular infection have rarely been reported. Herein, we designed an in situ sprayed liposomes hydrogels spray with macrophage-targeted effects and the ability to reverse polarization and eradicate intracellular bacteria to reduce the recurrence of osteomyelitis. Resiquimod (R848)-loaded and phosphatidylserine (PS)-coating nanoliposomes were introduced into fibrinogen and thrombin to form the PSL-R848@Fibrin spray. Characterization and phagocytosis experiments were performed to confirm the successful preparation of the PSL-R848@Fibrin spray. Meanwhile, in vitro cell experiments validated its ability to eliminate intracellular S. aureus by reprogramming macrophages from the M2 to the M1 phenotype. Additionally, we established a chronic osteomyelitis rat model to simulate the treatment and recurrence process. Histological analysis demonstrated a significant increase in M1 macrophages and the elimination of intracellular bacteria. Imaging revealed a significant decrease in osteomyelitis recurrence. Overall, the liposome hydrogels could target macrophages to promote antibacterial properties against intracellular infection and reduce the recurrence of chronic osteomyelitis, providing the foothold for improving the outcomes of this patient population. STATEMENT OF SIGNIFICANCE: Chronic osteomyelitis remains a high recurrence although undergoing traditional treatment of debridement and antibiotics. S. aureus can survive within the excessively polarized M2 macrophages to evade the effects of antibiotics. However, few studies have sought to investigate effective intracellular bacteria eradication. Herein, we designed a macrophage-targeted R848-containing liposomes fibrin hydrogels spray (PSL-R848@Fibrin) that can reprogram polarization of macrophages and eradicate intracellular bacteria for osteomyelitis treatment. With great properties of rapid gelation, strong adhesion, high flexibility and fit-to-shape capacity, the facile-operated immunotherapeutic in-situ-spray fibrin hydrogels exhibited huge promise of reversing polarization and fighting intracellular infections. Importantly, we revealed a hitherto undocumented treatment strategy for reducing the recurrence of chronic osteomyelitis and potentially improving the prognosis of chronic osteomyelitis patients.
Collapse
Affiliation(s)
- Liangjie Tian
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Zilin Tan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Shencai Liu
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Qingfeng Yang
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yuesheng Tu
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Jialan Chen
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Hongye Guan
- Department of Orthopedic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Lei Fan
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| | - Xianhui Chen
- Department of Orthopedic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China.
| | - Yanjun Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
13
|
Karau MJ, Mandrekar J, Lehoux D, Schuch R, Cassino C, Patel R. In vitro activity of exebacase against methicillin-resistant Staphylococcus aureus biofilms on orthopedic Kirschner wires. BMC Res Notes 2023; 16:209. [PMID: 37697424 PMCID: PMC10496330 DOI: 10.1186/s13104-023-06468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Orthopedic foreign body-associated infection can be difficult to treat due to the formation of biofilms protecting microorganisms from both antimicrobials and the immune system. Exebacase is an antistaphylococcal lysin (cell wall hydrolase) under consideration for local treatment for biofilm-based infections caused by methicillin-resistant Staphylococcus aureus (MRSA). To determine the activity of exebacase, we formed MRSA biofilms on orthopedic Kirschner wires and exposed them to varying concentrations (0.098, 0.98, 9.8 mg/ml) of exebacase and/or daptomycin over 24 h. The biofilm consisted of 5.49 log10 colony forming units (cfu)/K-wire prior to treatment and remained steady throughout the experiment. Exebacase showed significant biofilm reduction at all timepoints (up to 5.78 log10 cfu/K-wire; P < 0.0495) compared to the controls at all concentrations and all time points with bactericidal activity (> 3 log10 cfu/K-wire reduction) observed for up to 12 h for the 0.098 and 0.98 mg/ml concentrations and at 24 h for 9.8 mg/ml. Daptomycin showed significant biofilm reduction, although non-bactericidal, at all time points for 0.98 and 9.8 mg/ml and at 4 and 8 h with 0.098 mg/ml (P < 0.0495). This study supports further evaluation of local administration of exebacase as a potential treatment for orthopedic implant infections.
Collapse
Affiliation(s)
- Melissa J Karau
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jay Mandrekar
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Cara Cassino
- Stony Point Life Sciences Consulting, LLC, Benson, VT, 05743, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Song CS, Zhang P, Lin QR, Hu YY, Pan CQ, Jiang N, Hu YJ. Nitric oxide synthase 2 genetic variation rs2297514 associates with a decreased susceptibility to extremity post-traumatic osteomyelitis in a Chinese Han population. Front Cell Infect Microbiol 2023; 13:1177830. [PMID: 37465758 PMCID: PMC10350522 DOI: 10.3389/fcimb.2023.1177830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Background Previous studies have indicated that nitric oxide synthase 2 (NOS2) genetic variations are involved in delayed fracture healing and fracture non-union. Whether these genetic variants associate with the development of osteomyelitis (OM) remains unclear. Here, we analyzed the potential relationships between NOS2 genetic variations and the risk of developing post-traumatic OM (PTOM) in a Chinese Han population. Methods Altogether 704 participants, including 336 PTOM patients and 368 healthy controls, were genotyped of rs2297514 and rs2248814 of the NOS2 gene using the SNaPshot genotyping method. Results Outcomes showed that the frequency of allele C of rs2297514 in the patient group was significantly lower than that in the control group (48.7% vs. 54.5%, P = 0.029, OR = 0.792, 95% CI 0.642 - 0.976). In addition, significant associations were found between rs2297514 and susceptibility to PTOM by the recessive model (P = 0.007, OR = 0.633, 95% CI 0.453 - 0.884), and the homozygous model (P = 0.039, OR = 0.648, 95% CI 0.429 - 0.979). Moreover, patients with the CC genotype of rs2297514 had lower inflammatory biomarkers levels than the TT genotype, especially for the C-reactive protein (CRP) level (median: 4.1 mg/L vs. 8.9 mg/L, P = 0.027). However, no significant relationship was noted between rs2248814 and the risk of developing PTOM. Conclusion In this Chinese cohort, rs2297514 is correlated with a decreased risk of PTOM development, with genotype CC as a protective factor.
Collapse
Affiliation(s)
- Chen-sheng Song
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing-rong Lin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying-yu Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hospital Management, Southern Medical University, Guangzhou, China
| | - Chun-qiu Pan
- Department of Emergency Trauma Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-jun Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Martínez-Canseco C, Franco-Bourland RE, González-Huerta N, Paredes-Espinosa MA, Giono-Cerezo S, Sánchez-Chapul L, Paniagua-Pérez R, Valdez-Mijares R, Hernández-Flores C. Detection and expression of SapS, a class C nonspecific acid phosphatase with O-phospho-Ltyrosine- phosphatase activity, in Staphylococcus aureus isolates from patients with chronic osteomyelitis. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:200-212. [PMID: 37433170 PMCID: PMC10515701 DOI: 10.7705/biomedica.6604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 03/28/2023] [Indexed: 07/13/2023]
Abstract
INTRODUCTION The identity of Staphylococcus aureus virulence factors involved in chronic osteomyelitis remains unresolved. SapS is a class C non-specific acid phosphatase and a well-known virulence factor that has been identified in S. aureus strain 154 but in protein extracts from rotting vegetables. OBJECTIVE To identify the SapS gene and characterize the activity of SapS from S. aureus strains: 12 isolates from bone infected samples of patients treated for chronic osteomyelitis and 49 from a database with in silico analysis of complete bacterial genomes. MATERIALS AND METHODS The SapS gene was isolated and sequenced from 12 S. aureus clinical isolates and two reference strains; 49 S. aureus strains and 11 coagulase-negative staphylococci were tested using in silico PCR. Culture media semi-purified protein extracts from the clinical strains were assayed for phosphatase activity with p-nitro-phenylphosphate, O-phospho-L-tyrosine, O-phospho-L-serine, and OphosphoL-threonine in conjunction with various phosphatase inhibitors. RESULTS SapS was detected in the clinical and in-silico S. aureus strains, but not in the in silico coagulase-negative staphylococci strains. Sec-type I lipoprotein-type N-terminal signal peptide sequences; secreted proteins, and aspartate bipartite catalytic domains coding sequences were found in the SapS nucleotide and amino acid sequence analysis. SapS dephosphorylated with p-nitro-phenyl-phosphate and ophosphoLtyrosine were selectively resistant to tartrate and fluoride, but sensitive to vanadate and molybdate. CONCLUSION SapS gene was found in the genome of the clinical isolates and the in silico Staphylococcus aureus strains. SapS shares biochemical similarities with known virulent bacterial, such as protein tyrosine phosphatases, suggesting it may be a virulence factor in chronic osteomyelitis.
Collapse
Affiliation(s)
- Carlos Martínez-Canseco
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - Rebecca E Franco-Bourland
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - Norma González-Huerta
- Servicio de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - Marco Antonio Paredes-Espinosa
- Servicio de Bioterio y Cirugía Experimental, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - Silvia Giono-Cerezo
- Laboratorio de Bacteriología Médica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México.
| | - Laura Sánchez-Chapul
- Laboratorio de Enfermedades Neuromusculares, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - Rogelio Paniagua-Pérez
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - René Valdez-Mijares
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - Cecilia Hernández-Flores
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| |
Collapse
|
16
|
Seebach E, Kraus FV, Elschner T, Kubatzky KF. Staphylococci planktonic and biofilm environments differentially affect osteoclast formation. Inflamm Res 2023:10.1007/s00011-023-01745-9. [PMID: 37329360 DOI: 10.1007/s00011-023-01745-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 06/19/2023] Open
Abstract
INTRODUCTION The pathophysiology of chronic implant-related bone infections is characterized by an increase in osteoclast numbers and enhanced bone resorption. Biofilms are a major reason for chronicity of such infections as the biofilm matrix protects bacteria against antibiotics and impairs the function of immune cells. Macrophages are osteoclast precursor cells and therefore linked to inflammation and bone destruction. OBJECTIVE AND METHOD Investigations on the impact of biofilms on the ability of macrophages to form osteoclasts are yet missing and we, therefore, analyzed the effect of Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) planktonic and biofilm environments on osteoclastogenesis using RAW 264.7 cells and conditioned media (CM). RESULTS Priming with the osteoclastogenic cytokine RANKL before CM addition enabled the cells to differentiate into osteoclasts. This effect was highest in SE planktonic or SA biofilm CM. Simultaneous stimulation with CM and RANKL, however, suppressed osteoclast formation and resulted in formation of inflammation-associated multinucleated giant cells (MGCs) which was most pronounced in SE planktonic CM. CONCLUSION Our data indicate that the biofilm environment and its high lactate levels are not actively promoting osteoclastogenesis. Hence, the inflammatory immune response against planktonic bacterial factors through Toll-like receptors seems to be the central cause for the pathological osteoclast formation. Therefore, immune stimulation or approaches that aim at biofilm disruption need to consider that this might result in enhanced inflammation-mediated bone destruction.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Franziska V Kraus
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Department of Internal Medicine 5 - Hematology Oncology Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Tabea Elschner
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Institute for Cardiovascular Sciences and Institute of Neurovascular Cell Biology (INVZ), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
17
|
Seebach E, Elschner T, Kraus FV, Souto-Carneiro M, Kubatzky KF. Bacterial and Metabolic Factors of Staphylococcal Planktonic and Biofilm Environments Differentially Regulate Macrophage Immune Activation. Inflammation 2023:10.1007/s10753-023-01824-3. [PMID: 37212952 PMCID: PMC10359233 DOI: 10.1007/s10753-023-01824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023]
Abstract
Biofilm formation is a leading cause for chronic implant-related bone infections as biofilms shield bacteria against the immune system and antibiotics. Additionally, biofilms generate a metabolic microenvironment that shifts the immune response towards tolerance. Here, we compared the impact of the metabolite profile of bacterial environments on macrophage immune activation using Staphylococcus aureus (SA) and epidermidis (SE) conditioned media (CM) of planktonic and biofilm cultures. The biofilm environment had reduced glucose and increased lactate concentrations. Moreover, the expression of typical immune activation markers on macrophages was reduced in the biofilm environment compared to the respective planktonic CM. However, all CM caused a predominantly pro-inflammatory macrophage cytokine response with a comparable induction of Tnfa expression. In biofilm CM, this was accompanied by higher levels of anti-inflammatory Il10. Planktonic CM, on the other hand, induced an IRF7 mediated Ifnb gene expression which was absent in the biofilm environments. For SA but not for SE planktonic CM, this was accompanied by IRF3 activation. Stimulation of macrophages with TLR-2/-9 ligands under varying metabolic conditions revealed that, like in the biofilm setting, low glucose concentration reduced the Tnfa to Il10 mRNA ratio. However, the addition of extracellular L-lactate but not D-lactate increased the Tnfa to Il10 mRNA ratio upon TLR-2/-9 stimulation. In summary, our data indicate that the mechanisms behind the activation of macrophages differ between planktonic and biofilm environments. These differences are independent of the metabolite profiles, suggesting that the production of different bacterial factors is ultimately more important than the concentrations of glucose and lactate in the environment.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Tabea Elschner
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Current address: Institute for Cardiovascular Sciences & Institute of Neurovascular Cell Biology (INVZ), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Franziska V Kraus
- Department of Internal Medicine 5 - Hematology Oncology Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Margarida Souto-Carneiro
- Department of Internal Medicine 5 - Hematology Oncology Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Shao M, Bigham A, Yousefiasl S, Yiu CKY, Girish YR, Ghomi M, Sharifi E, Sezen S, Nazarzadeh Zare E, Zarrabi A, Rabiee N, Paiva-Santos AC, Del Turco S, Guo B, Wang X, Mattoli V, Wu A. Recapitulating Antioxidant and Antibacterial Compounds into a Package for Tissue Regeneration: Dual Function Materials with Synergistic Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207057. [PMID: 36775954 DOI: 10.1002/smll.202207057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/18/2023] [Indexed: 05/11/2023]
Abstract
Oxidative damage and infection can prevent or delay tissue repair. Moreover, infection reinforces reactive oxygen species (ROS) formation, which makes the wound's condition even worse. Therefore, the need for antioxidant and antibacterial agents is felt for tissue regeneration. There are emerging up-and-coming biomaterials that recapitulate both properties into a package, offering an effective solution to turn the wound back into a healing state. In this article, the principles of antioxidant and antibacterial activity are summarized. The review starts with biological aspects, getting the readers to familiarize themselves with tissue barriers against infection. This is followed by the chemistry and mechanism of action of antioxidant and antibacterial materials (dual function). Eventually, the outlook and challenges are underlined to provide where the dual-function biomaterials are and where they are going in the future. It is expected that the present article inspires the designing of dual-function biomaterials to more advanced levels by providing the fundamentals and comparative points of view and paving the clinical way for these materials.
Collapse
Affiliation(s)
- Minmin Shao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou, 325000, P. R. China
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), 80125, Naples, Italy
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, 999077, P. R. China
| | - Yarabahally R Girish
- Centre for Research and Innovations, School of Natural Sciences, BGSIT, Adichunchanagiri University, B.G. Nagara, Mandya District, Mandya, Karnataka, 571448, India
| | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Serena Del Turco
- National Research Council, Institute of Clinical Physiology, 56124, Pisa, Italy
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, 56025, Pontedera, Pisa, Italy
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, P. R. China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, 56025, Pontedera, Pisa, Italy
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
| |
Collapse
|
19
|
Li S, Jiang H, Wang S, Li Y, Guo D, Zhan J, Li Q, Meng H, Chen A, Chen L, Dai X, Li X, Xing W, Li L, Fei J. Fibulin-2: A potential regulator of immune dysfunction after bone trauma. Immun Inflamm Dis 2023; 11:e846. [PMID: 37249292 PMCID: PMC10161779 DOI: 10.1002/iid3.846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVES To reveal the relationship between the fibulin-2 protein and immune dysfunction after bone trauma. METHODS Individuals who were admitted to the study were divided into a bone trauma group, a recovered from bone trauma group and a volunteer without bone trauma group based on the reason for admission. Fibulin-2 levels in the three groups were compared. Fibulin-2-knockout (fibulin-2-/- ) mice and wild-type (WT) mice were used to detect susceptibility to infection. Hematoxylin and eosin (HE) staining and immunohistochemical staining were employed to observe pathological changes in each organ from fibulin-2-/- mice and WT mice. RESULTS In total, 132 patients were enrolled in this study. The fibulin-2 level in the bone trauma group was lower than that in the recovered bone trauma group (3.39 ± 1.41 vs. 4.30 ± 1.38 ng/mL, t = 2.948, p < .05) and also lower than that in the volunteers without bone trauma group (3.39 ± 1.41 vs. 4.73 ± 1.67 ng/mL, t = 4.135, p < .05). Fibulin-2-/- mice are more prone to infection. Compared with those in WT mice, spleen function and thymus function in fibulin-2-/- mice were impaired. Immunohistochemical staining revealed that compared with those in WT mice, significantly fewer CD4+ T cells, CD8+ T cells, and CD19+ B cells were noted in the spleen and thymus of fibulin-2-/- mice. CONCLUSIONS The plasma fibulin-2 level was lower in patients with bone trauma. Decreased fibulin-2 is associated with immune dysfunction after bone trauma.
Collapse
Affiliation(s)
- Shidan Li
- Department of Orthopaedics, State Key Laboratory of Trauma, Burn and Combined Injury, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Hao Jiang
- Department of OrthopaedicsAffiliated Hospital of Southwest Medical UniversityLuzhouPeople's Republic of China
| | - Shaochuan Wang
- Department of Orthopaedics, State Key Laboratory of Trauma, Burn and Combined Injury, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Youbin Li
- Department of Orthopaedics, State Key Laboratory of Trauma, Burn and Combined Injury, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Debin Guo
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Jijie Zhan
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Qiaohui Li
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Hao Meng
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Ankang Chen
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Limin Chen
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Xiaoyan Dai
- Department of Cancer Center, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Xiaoming Li
- Department of Military Traffic Injury Prevention, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Wei Xing
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Lei Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Jun Fei
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| |
Collapse
|
20
|
Cai Y, Chen X, Huang C, Chen Y, Zhang C, Huang Z, Zhang W, Tang Y, Fang X. Alteration of m 6A-Tagged RNA Profiles in Bone Originated from Periprosthetic Joint Infection. J Clin Med 2023; 12:jcm12082863. [PMID: 37109200 PMCID: PMC10146075 DOI: 10.3390/jcm12082863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Periprosthetic joint infection (PJI) is a devastating complication. This study aimed to unravel the veil of the N6-methyladenine (m6A) modification in PJI. Synovium, synovial fluid, sonication fluid and bone samples were collected intraoperatively from Staphylococcus aureus PJI and aseptic failure (AF) patients. The overall m6A level was detected by the m6A RNA methylation quantification kit, and the expression of m6A-related genes was quantified by real-time PCR and Western blot. Finally, an epitranscriptomic microarray and bioinformatics analysis were performed. We showed that there was a significant difference in overall m6A level between the PJI group and the AF group (PJI group had a higher overall m6A level). The expression level of METTL3 was higher in the PJI group than that in the AF group. There were 2802 differential m6A-modified mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differential m6A-modified mRNAs were significantly enriched in the NOD-like receptor signaling pathway, Th17 cell differentiation and the IL-17 signaling pathway, which indicates that the m6A modification might be involved in the processes of infection and immune response, bone metabolism and programmed cell death in PJI. In summary, the present work demonstrated that m6A modification plays a role in PJI and might be a therapeutic target for developing effective treatment strategies.
Collapse
Affiliation(s)
- Yuanqing Cai
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of Orthopaedics, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou 363000, China
| | - Xiaoqing Chen
- Department of Orthopaedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Changyu Huang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Yang Chen
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Chaofan Zhang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Zida Huang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Wenming Zhang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Yusen Tang
- Department of Orthopaedics, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou 363000, China
| | - Xinyu Fang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
21
|
Chen X, Zhang Q, Song T, Zhang W, Yang Y, Duan N, Cong F. Vitamin D deficiency triggers intrinsic apoptosis by impairing SPP1-dependent antiapoptotic signaling in chronic hematogenous osteomyelitis. Gene 2023; 870:147388. [PMID: 37024063 DOI: 10.1016/j.gene.2023.147388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023]
Abstract
Chronic hematogenous osteomyelitis (CHOM) is a common bone disease characterized by the development of sequestra after bacterial infection. Emerging evidence has shown that vitamin D (VD) deficiency raises the risk of osteomyelitis, but the underlying mechanisms remain obscure. Here, we establish a CHOM model in VD diet-deficient mice by intravenous inoculation of Staphylococcus aureus. Whole-genome microarray analyses using osteoblast cells isolated from sequestra reveal significant downregulation of SPP1 (secreted phosphoprotein 1). Molecular basis investigations show that VD sufficiency activates the VDR/RXR (VD receptor/retinoid X receptor) heterodimer to recruit NCOA1 (nuclear receptor coactivator 1) and transactivate SPP1 in healthy osteoblast cells. Secreted SPP1 binds to the cell surface molecule CD40 to activate serine/threonine-protein kinase Akt1, which then phosphorylates forkhead box O3a (FOXO3a), blocking FOXO3a-mediated transcription. By contrast, VD deficiency impairs the NCOA1-VDR/RXR-mediated overexpression of SPP1, leading to the inactivation of Akt1 and the accumulation of FOXO3a. FOXO3a then upregulates the expression of the apoptotic genes BAX (Bcl2-associated X-protein), BID (BH3 interacting death domain), and BIM (Bcl2-interacting mediator of cell death), to induce apoptosis. Administration of the NCOA1 inhibitor gossypol to the CHOM mice also promotes the occurrence of sequestra. VD supplementation can reactivate the SPP1-dependent antiapoptotic signaling and improve the outcomes of CHOM. Collectively, our data reveal that VD deficiency promotes bone destruction in CHOM by the removal of SPP1-dependent antiapoptotic signaling.
Collapse
Affiliation(s)
- Xun Chen
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Qian Zhang
- The department of surgery room, Xi'an Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Tao Song
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Wentao Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yan Yang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Ning Duan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Fei Cong
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
22
|
Ashar H, Ranjan A. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms. Pharmacol Ther 2023; 244:108393. [PMID: 36965581 DOI: 10.1016/j.pharmthera.2023.108393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
High intensity focused ultrasound (HIFU) is a non-invasive and non-ionizing sonic energy-based therapeutic technology for inducing thermal and non-thermal effects in tissues. Depending on the parameters, HIFU can ablate tissues by heating them to >55 °C to induce denaturation and coagulative necrosis, improve radio- and chemo-sensitizations and local drug delivery from nanoparticles at moderate hyperthermia (~41-43 °C), and mechanically fragment cells using acoustic cavitation (also known as histotripsy). HIFU has already emerged as an attractive modality for treating human prostate cancer, veterinary cancers, and neuromodulation. Herein, we comprehensively review the role of HIFU in enhancing drug delivery and immunotherapy in soft and calcified tissues. Specifically, the ability of HIFU to improve adjuvant treatments from various classes of drugs is described. These crucial insights highlight the opportunities and challenges of HIFU technology and its potential to support new clinical trials and translation to patients.
Collapse
Affiliation(s)
- Harshini Ashar
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
23
|
Maimaiti Z, Li Z, Xu C, Fu J, Hao LB, Chen JY, Chai W. Host Immune Regulation in Implant-Associated Infection (IAI): What Does the Current Evidence Provide Us to Prevent or Treat IAI? Bioengineering (Basel) 2023; 10:bioengineering10030356. [PMID: 36978747 PMCID: PMC10044746 DOI: 10.3390/bioengineering10030356] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The number of orthopedic implants for bone fixation and joint arthroplasty has been steadily increasing over the past few years. However, implant-associated infection (IAI), a major complication in orthopedic surgery, impacts the quality of life and causes a substantial economic burden on patients and societies. While research and study on IAI have received increasing attention in recent years, the failure rate of IAI has still not decreased significantly. This is related to microbial biofilms and their inherent antibiotic resistance, as well as the various mechanisms by which bacteria evade host immunity, resulting in difficulties in diagnosing and treating IAIs. Hence, a better understanding of the complex interactions between biofilms, implants, and host immunity is necessary to develop new strategies for preventing and controlling these infections. This review first discusses the challenges in diagnosing and treating IAI, followed by an extensive review of the direct effects of orthopedic implants, host immune function, pathogenic bacteria, and biofilms. Finally, several promising preventive or therapeutic alternatives are presented, with the hope of mitigating or eliminating the threat of antibiotic resistance and refractory biofilms in IAI.
Collapse
Affiliation(s)
- Zulipikaer Maimaiti
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhuo Li
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chi Xu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jun Fu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Bo Hao
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Ji-Ying Chen
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
- Correspondence: (J.-Y.C.); (W.C.)
| | - Wei Chai
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
- Correspondence: (J.-Y.C.); (W.C.)
| |
Collapse
|
24
|
Sabater-Martos M, Verdejo MA, Morata L, Muñoz-Mahamud E, Guerra-Farfan E, Martinez-Pastor JC, Soriano A. Antimicrobials in polymethylmethacrylate: from prevention to prosthetic joint infection treatment: basic principles and risk of resistance. ARTHROPLASTY 2023; 5:12. [PMID: 36864538 PMCID: PMC9983184 DOI: 10.1186/s42836-023-00166-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/16/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Excellent revisions about antibiotic-loaded bone cement (ALBC) have been recently published. In the present article, we review the principles and limitations of local antibiotic delivery in the context of recent advances in the pathogenesis of prosthetic joint infections (PJI), with particular attention paid to the potential association between ALBC and antimicrobial resistance. MAIN BODY Recalcitrance of PJI is related to the ability of pathogens to adapt to particular environments present in bone tissue and protect themselves from host immunity in different ways. Accordingly, delivery of high local antimicrobial concentrations using ALBC is needed. Most relevant clinical data showing the efficacy of ALBC for PJI prophylaxis and treatment are reviewed, and we dissected the limitations on the basis of the recent findings from animal models and suggested that aminoglycosides, in particular, could not be the best option. One of the major concerns associated with ALBC is the emergence of resistance because of theoretical prolonged exposure to low antibiotic concentrations. We summarize the mechanisms for the selection of resistant microorganisms, and we critically reviewed the evidence from animal models and clinical data from observational and registry studies and concluded that there is no evidence to support this association. CONCLUSION While waiting for better evidence from well-designed clinical trials, ALBC shows a beneficial effect as a prophylaxis in arthroplasty, and to avoid the colonization of spacers used for two-stage revision in patients with PJI. Experimental models and clinical evidence suggest the need to achieve high local antimicrobial concentrations to obtain the highest prophylactic and therapeutic effect. The current evidence does not support the risk of increasing resistance with use of ALBC. In the future, it is necessary to evaluate new carriers and different antimicrobials to improve clinical outcomes.
Collapse
Affiliation(s)
- Marta Sabater-Martos
- Department of Orthopedics and Traumatology, Hospital Clínic of Barcelona, Carrer Villarroel 170, 08036, Barcelona, Spain.
| | - Miguel A. Verdejo
- grid.410458.c0000 0000 9635 9413Department of Infectious Diseases, Hospital Clínic of Barcelona, Carrer Villarroel 170, 08036 Barcelona, Spain
| | - Laura Morata
- grid.410458.c0000 0000 9635 9413Department of Infectious Diseases, Hospital Clínic of Barcelona, Carrer Villarroel 170, 08036 Barcelona, Spain
| | - Ernesto Muñoz-Mahamud
- grid.410458.c0000 0000 9635 9413Department of Orthopedics and Traumatology, Hospital Clínic of Barcelona, Carrer Villarroel 170, 08036 Barcelona, Spain
| | - Ernesto Guerra-Farfan
- grid.411083.f0000 0001 0675 8654Department of Orthopedics and Traumatology, Hospital Vall d’Hebron of Barcelona, Passeig de la Vall d’Hebron 119, 08035 Barcelona, Spain
| | - Juan C. Martinez-Pastor
- grid.410458.c0000 0000 9635 9413Department of Orthopedics and Traumatology, Hospital Clínic of Barcelona, Carrer Villarroel 170, 08036 Barcelona, Spain
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Carrer Villarroel 170, 08036, Barcelona, Spain. .,University of Barcelona, CIBERINF, Carrer Casanova 143, 08036, Barcelona, Spain.
| |
Collapse
|
25
|
Popa M, Anastasescu M, Stefan LM, Prelipcean AM, Calderon Moreno J. Antibacterial Activity and Cell Viability of Biomimetic Magnesian Calcite Coatings on Biodegradable Mg. J Funct Biomater 2023; 14:jfb14020098. [PMID: 36826897 PMCID: PMC9963250 DOI: 10.3390/jfb14020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Mg is a material of choice for biodegradable implants. The main challenge for using Mg in temporary implants is to provide protective surfaces that mitigate its rapid degradation in biological fluids and also confer sufficient cytocompatibility and bacterial resistance to Mg-coated surfaces. Even though carbonate mineralization is the most important source of biominerals, such as the skeletons and shells of many marine organisms, there has been little success in the controlled growth of carbonate layers by synthetic processes. We present here the formation mechanism, antibacterial activity, and cell viability of magnesian calcite biomimetic coatings grown on biodegradable Mg via a green, one-step route. Cell compatibility assessment showed cell viability higher than 80% after 72 h using fibroblast cells (NCTC, clone L929) and higher than 60% after 72 h using human osteoblast-like cells (SaOS-2); the cells displayed a normal appearance and a density similar to the control sample. Antimicrobial potential evaluation against both Gram-positive (Staphylococcus aureus (ATCC 25923)) and Gram-negative (Pseudomonas aeruginosa (ATCC 27853)) strains demonstrated that the coated samples significantly inhibited bacterial adhesion and biofilm formation compared to the untreated control. Calcite coatings grown on biodegradable Mg by a single coating process showed the necessary properties of cell compatibility and bacterial resistance for application in surface-modified Mg biomaterials for temporary implants.
Collapse
Affiliation(s)
- Monica Popa
- Oxide Compounds and Materials Science Laboratory, “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- Surface Chemistry and Catalysis Laboratory, “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Laura M. Stefan
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Ana-Maria Prelipcean
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Jose Calderon Moreno
- Surface Chemistry and Catalysis Laboratory, “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
- Correspondence:
| |
Collapse
|
26
|
Neutralization of Staphylococcus aureus Protein A Prevents Exacerbated Osteoclast Activity and Bone Loss during Osteomyelitis. Antimicrob Agents Chemother 2023; 67:e0114022. [PMID: 36533935 PMCID: PMC9872667 DOI: 10.1128/aac.01140-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Osteomyelitis caused by Staphylococcus aureus is an important and current health care problem worldwide. Treatment of this infection frequently fails not only due to the increasing incidence of antimicrobial-resistant isolates but also because of the ability of S. aureus to evade the immune system, adapt to the bone microenvironment, and persist within this tissue for decades. We have previously demonstrated the role of staphylococcal protein A (SpA) in the induction of exacerbated osteoclastogenesis and increased bone matrix degradation during osteomyelitis. The aim of this study was to evaluate the potential of using anti-SpA antibodies as an adjunctive therapy to control inflammation and bone damage. By using an experimental in vivo model of osteomyelitis, we demonstrated that the administration of an anti-SpA antibody by the intraperitoneal route prevented excessive inflammatory responses in the bone upon challenge with S. aureus. Ex vivo assays indicated that blocking SpA reduced the priming of osteoclast precursors and their response to RANKL. Moreover, the neutralization of SpA was able to prevent the differentiation and activation of osteoclasts in vivo, leading to reduced expression levels of cathepsin K, reduced expression of markers associated with abnormal bone formation, and decreased trabecular bone loss during osteomyelitis. Taken together, these results demonstrate the feasibility of using anti-SpA antibodies as an antivirulence adjunctive therapy that may prevent the development of pathological conditions that not only damage the bone but also favor bacterial escape from antimicrobials and the immune system.
Collapse
|
27
|
Tuon FF, Suss PH, Telles JP, Dantas LR, Borges NH, Ribeiro VST. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics (Basel) 2023; 12:87. [PMID: 36671287 PMCID: PMC9854895 DOI: 10.3390/antibiotics12010087] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a microorganism frequently associated with implant-related infections, owing to its ability to produce biofilms. These infections are difficult to treat because antimicrobials must cross the biofilm to effectively inhibit bacterial growth. Although some antibiotics can penetrate the biofilm and reduce the bacterial load, it is important to understand that the results of routine sensitivity tests are not always valid for interpreting the activity of different drugs. In this review, a broad discussion on the genes involved in biofilm formation, quorum sensing, and antimicrobial activity in monotherapy and combination therapy is presented that should benefit researchers engaged in optimizing the treatment of infections associated with S. aureus biofilms.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Joao Paulo Telles
- AC Camargo Cancer Center, Infectious Diseases Department, São Paulo 01525-001, São Paulo, Brazil
| | - Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Nícolas Henrique Borges
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| |
Collapse
|
28
|
Ghosh S, Webster TJ. Bioinspired advanced nanomaterials for infection control and promotion of bone growth. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
29
|
Costa RC, Nagay BE, Dini C, Borges MHR, Miranda LFB, Cordeiro JM, Souza JGS, Sukotjo C, Cruz NC, Barão VAR. The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants. Adv Colloid Interface Sci 2023; 311:102805. [PMID: 36434916 DOI: 10.1016/j.cis.2022.102805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.
Collapse
Affiliation(s)
- Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Luís F B Miranda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Jairo M Cordeiro
- Department of Dentistry, Centro Universitário das Faculdades Associadas de Ensino (UNIFAE), Sāo Joāo da Boa Vista, Sāo Paulo 13870-377, Brazil
| | - Joāo G S Souza
- Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil; Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA
| | - Nilson C Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology, Sāo Paulo State University (UNESP), Sorocaba, Sāo Paulo 18087-180, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil.
| |
Collapse
|
30
|
Sulaiman R, Trizna E, Kolesnikova A, Khabibrakhmanova A, Kurbangalieva A, Bogachev M, Kayumov A. Antimicrobial and Biofilm-Preventing Activity of l-Borneol Possessing 2(5H)-Furanone Derivative F131 against S. aureus—C. albicans Mixed Cultures. Pathogens 2022; 12:pathogens12010026. [PMID: 36678375 PMCID: PMC9866062 DOI: 10.3390/pathogens12010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Candida albicans and Staphylococcus aureus are human pathogens that are able to form mixed biofilms on the surface of mucous membranes, implants and catheters. In biofilms, these pathogens have increased resistance to antimicrobials, leading to extreme difficulties in the treatment of mixed infections. The growing frequency of mixed infections caused by S. aureus and C. albicans requires either the development of new antimicrobials or the proposal of alternative approaches to increase the efficiency of conventional ones. Here, we show the antimicrobial, biofilm-preventing and biofilm-eradicating activity of 2(5H)-furanone derivative F131, containing an l-borneol fragment against S. aureus-C. albicans mixed biofilms. Furanone F131 is also capable of inhibiting the formation of monospecies and mixed biofilms by S. aureus and C. albicans. The minimal biofilm-prevention concentration (MBPC) of this compound was 8-16 μg/mL for S. aureus and C. albicans mono- and two-species biofilms. While the compound demonstrates slightly lower activity compared to conventional antimicrobials (gentamicin, amikacin, fluconazole, terbinafine and benzalkonium chloride), F131 also increases the antimicrobial activity of fluconazole-gentamicin and benzalkonium chloride against mixed biofilms of S. aureus-C. albicans, thus reducing MBPC of fluconazole-gentamicin by 4-16 times and benzalkonium chloride twofold. F131 does not affect the transcription of the MDR1, CDR1 and CDR2 genes, thus suggesting a low risk of micromycete resistance to this compound. Altogether, combined use of antibiotics with a F131 could be a promising option to reduce the concentration of fluconazole used in antiseptic compositions and reduce the toxic effect of benzalkonium chloride and gentamicin. This makes them an attractive starting point for the development of alternative antimicrobials for the treatment of skin infections caused by S. aureus-C. albicans mixed biofilms.
Collapse
Affiliation(s)
- Rand Sulaiman
- Laboratory of Molecular Genetics of Microorganisms, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elena Trizna
- Laboratory of Molecular Genetics of Microorganisms, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alena Kolesnikova
- Laboratory of Molecular Genetics of Microorganisms, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alsu Khabibrakhmanova
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Mikhail Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 197022 St. Petersburg, Russia
| | - Airat Kayumov
- Laboratory of Molecular Genetics of Microorganisms, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence:
| |
Collapse
|
31
|
Cai Y, Huang C, Chen X, Chen Y, Huang Z, Zhang C, Zhang W, Fang X. The role of Staphylococcus aureus small colony variants in intraosseous invasion and colonization in periprosthetic joint infection. Bone Joint Res 2022; 11:843-853. [PMID: 36453022 PMCID: PMC9792874 DOI: 10.1302/2046-3758.1112.bjr-2021-0590.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
AIMS This study aimed to explore the role of small colony variants (SCVs) of Staphylococcus aureus in intraosseous invasion and colonization in patients with periprosthetic joint infection (PJI). METHODS A PJI diagnosis was made according to the MusculoSkeletal Infection Society (MSIS) for PJI. Bone and tissue samples were collected intraoperatively and the intracellular invasion and intraosseous colonization were detected. Transcriptomics of PJI samples were analyzed and verified by polymerase chain reaction (PCR). RESULTS SCVs can be isolated from samples collected from chronic PJIs intraoperatively. Transmission electron microscopy (TEM) and immunofluorescence (IF) showed that there was more S. aureus in bone samples collected from chronic PJIs, but much less in bone samples from acute PJIs, providing a potential mechanism of PJI. Immunofluorescence results showed that SCVs of S. aureus were more likely to invade osteoblasts in vitro. Furthermore, TEM and IF also demonstrated that SCVs of S. aureus were more likely to invade and colonize in vivo. Cluster analysis and principal component analysis (PCA) showed that there were substantial differences in gene expression profiles between chronic and acute PJI. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these differentially expressed genes were enriched to chemokine-related signal pathways. PCR also verified these results. CONCLUSION Our study has shown that the S. aureus SCVs have a greater ability to invade and colonize in bone, resulting in S. aureus remaining in bone tissues long-term, thus explaining the pathogenesis of chronic PJI.Cite this article: Bone Joint Res 2022;11(12):843-853.
Collapse
Affiliation(s)
- Yuanqing Cai
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an, China,Department of Orthopedic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Changyu Huang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Department of Orthopedic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoqing Chen
- Department of Orthopaedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yang Chen
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Department of Orthopedic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zida Huang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Department of Orthopedic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chaofan Zhang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Department of Orthopedic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenming Zhang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Department of Orthopedic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xinyu Fang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Department of Orthopedic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, China, Xinyu Fang. E-mail:
| |
Collapse
|
32
|
González-Martín M, Silva V, Poeta P, Corbera JA, Tejedor-Junco MT. Microbiological aspects of osteomyelitis in veterinary medicine: drawing parallels to the infection in human medicine. Vet Q 2022; 42:1-11. [PMID: 34936853 PMCID: PMC8725753 DOI: 10.1080/01652176.2021.2022244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Osteomyelitis is a challenging infectious disease affecting humans and animals. It is difficult to diagnose because, in many cases, symptoms are non-specific and, for example in implant-related cases, can appear long time after surgery. In addition to this, it is also difficult to treat due to the need to find the appropriate antibiotic regime and delivery system to reach the site of infection and to avoid development of bacterial resistance. The central purpose of this review is to compare the microbiological aspects of osteomyelitis in human and veterinary medicine, with the aim of improving the microbiological diagnosis and treatment of this infection in animals. Furthermore, the study of osteomyelitis in animals may help to improve the development of animal models for testing new treatments in humans. Host factors and underlying conditions have been studied mainly in humans, although aspects as immunodeficiency have been described in some veterinary cases. Even when Staphylococcus aureus is still considered the most prevalent causing microorganism, this prevalence should be reviewed using molecular diagnostic techniques, and this could affect treatment options. New approaches to treatment include local delivery of antibiotics using different biomaterials, antimicrobial photodynamic therapy, and new antimicrobial compounds. We would like to remark the need of large, high-quality clinical trials and of the development of guides for the diagnosis and treatment of osteomyelitis in different animal species.
Collapse
Affiliation(s)
- Margarita González-Martín
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Caparica, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Caparica, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Juan Alberto Corbera
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Animal Pathology, Animal Production and Food Science and Technology, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - María Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
33
|
Billings C, Rifkin R, Abouelkhair M, Jones RD, Bow A, Kolape J, Rajeev S, Kania S, Anderson DE. In vitro and in vivo assessment of caprine origin Staphylococcus aureus ST398 strain UTCVM1 as an osteomyelitis pathogen. Front Cell Infect Microbiol 2022; 12:1015655. [PMID: 36726643 PMCID: PMC9885270 DOI: 10.3389/fcimb.2022.1015655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus (SA) is a significant and well-recognized causative organism of bacterial osteomyelitis. Osteomyelitis is an inflammatory bone disease characterized by progressive bone destruction and loss. This disease causes significant morbidity and mortality to the patient and poses therapeutic challenges for clinicians. To improve the efficacy of therapeutic strategies to combat bacterial osteomyelitis, there is a need to define the molecular epidemiology of bacterial organisms more clearly and further the understanding of the pathogenesis of SA osteomyelitis. We conducted in vitro characterization of the pathogenic capabilities of an isolate of SA ST398 derived from a clinical case of osteomyelitis in a goat. We also report a rodent mandibular defect model to determine the ability of ST398 to cause reproducible osteomyelitis. Our results indicate that ST398 can invade and distort pre-osteoblastic cells in culture, induce significant inflammation and alter expression of osteoregulatory cytokines. We also demonstrate the ability of ST398 to induce osteomyelitis in a rat mandibular model. When compiled, these data support ST398 as a competent osteomyelitis pathogen.
Collapse
Affiliation(s)
- Caroline Billings
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States,*Correspondence: Caroline Billings,
| | - Rebecca Rifkin
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Mohamed Abouelkhair
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Rebekah Duckett Jones
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Austin Bow
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Jaydeep Kolape
- Advanced Microscopy and Imaging Center, University of Tennessee, Knoxville, TN, United States
| | - Sreekumari Rajeev
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Stephen Kania
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - David E. Anderson
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
34
|
Ford CA, Hurford IM, Fulbright LE, Curry JM, Peek CT, Spoonmore TJ, Cruz Victorio V, Johnson JR, Peck SH, Cassat JE. Loss of Vhl alters trabecular bone loss during S. aureus osteomyelitis in a cell-specific manner. Front Cell Infect Microbiol 2022; 12:985467. [PMID: 36204648 PMCID: PMC9530664 DOI: 10.3389/fcimb.2022.985467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/29/2022] [Indexed: 01/07/2023] Open
Abstract
Osteomyelitis, or bone infection, is a major complication of accidental trauma or surgical procedures involving the musculoskeletal system. Staphylococcus aureus is the most frequently isolated pathogen in osteomyelitis and triggers significant bone loss. Hypoxia-inducible factor (HIF) signaling has been implicated in antibacterial immune responses as well as bone development and repair. In this study, the impact of bone cell HIF signaling on antibacterial responses and pathologic changes in bone architecture was explored using genetic models with knockout of either Hif1a or a negative regulator of HIF-1α, Vhl. Deletion of Hif1a in osteoblast-lineage cells via Osx-Cre (Hif1aΔOB ) had no impact on bacterial clearance or pathologic changes in bone architecture in a model of post-traumatic osteomyelitis. Knockout of Vhl in osteoblast-lineage cells via Osx-Cre (VhlΔOB ) caused expected increases in trabecular bone volume per total volume (BV/TV) at baseline and, intriguingly, did not exhibit an infection-mediated decline in trabecular BV/TV, unlike control mice. Despite this phenotype, bacterial burdens were not affected by loss of Vhl. In vitro studies demonstrated that transcriptional regulation of the osteoclastogenic cytokine receptor activator of NF-κB ligand (RANKL) and its inhibitor osteoprotegerin (OPG) is altered in osteoblast-lineage cells with knockout of Vhl. After observing no impact on bacterial clearance with osteoblast-lineage conditional knockouts, a LysM-Cre model was used to generate Hif1aΔMyeloid and VhlΔMyeloid mouse models to explore the impact of myeloid cell HIF signaling. In both Hif1aΔMyeloid and VhlΔMyeloid models, bacterial clearance was not impacted. Moreover, minimal impacts on bone architecture were observed. Thus, skeletal HIF signaling was not found to impact bacterial clearance in our mouse model of post-traumatic osteomyelitis, but Vhl deletion in the osteoblast lineage was found to limit infection-mediated trabecular bone loss, possibly via altered regulation of RANKL-OPG gene transcription.
Collapse
Affiliation(s)
- Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ian M. Hurford
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Laura E. Fulbright
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jacob M. Curry
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher T. Peek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Thomas J. Spoonmore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Virginia Cruz Victorio
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua R. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sun H. Peck
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E. Cassat
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
35
|
Morita Y, Saito M, Rangel-Moreno J, Franchini AM, Owen JR, Martinez JC, Daiss JL, de Mesy Bentley KL, Kates SL, Schwarz EM, Muthukrishnan G. Systemic IL-27 administration prevents abscess formation and osteolysis via local neutrophil recruitment and activation. Bone Res 2022; 10:56. [PMID: 36028492 PMCID: PMC9418173 DOI: 10.1038/s41413-022-00228-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Interleukin-27 is a pleiotropic cytokine whose functions during bacterial infections remain controversial, and its role in patients with S. aureus osteomyelitis is unknown. To address this knowledge gap, we completed a clinical study and observed elevated serum IL-27 levels (20-fold higher, P < 0.05) in patients compared with healthy controls. Remarkably, IL-27 serum levels were 60-fold higher in patients immediately following septic death than in uninfected patients (P < 0.05), suggesting a pathogenic role of IL-27. To test this hypothesis, we evaluated S. aureus osteomyelitis in WT and IL-27Rα-/- mice with and without exogenous IL-27 induction by intramuscular injection of rAAV-IL-27p28 or rAAV-GFP, respectively. We found that IL-27 was induced at the surgical site within 1 day of S. aureus infection of bone and was expressed by M0, M1 and M2 macrophages and osteoblasts but not by osteoclasts. Unexpectedly, exogenous IL-27p28 (~2 ng·mL-1 in serum) delivery ameliorated soft tissue abscesses and peri-implant bone loss during infection, accompanied by enhanced local IL-27 expression, significant accumulation of RORγt+ neutrophils at the infection site, a decrease in RANK+ cells, and compromised osteoclast formation. These effects were not observed in IL-27Rα-/- mice compared with WT mice, suggesting that IL-27 is dispensable for immunity but mediates redundant immune and bone cell functions during infection. In vitro studies and bulk RNA-seq of infected tibiae showed that IL-27 increased nos1, nos2, il17a, il17f, and rorc expression but did not directly stimulate chemotaxis. Collectively, these results identify a novel phenomenon of IL-27 expression by osteoblasts immediately following S. aureus infection of bone and suggest a protective role of systemic IL-27 in osteomyelitis.
Collapse
Affiliation(s)
- Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Motoo Saito
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Anthony M Franchini
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John R Owen
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - John C Martinez
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - John L Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephen L Kates
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
36
|
Cordeiro JM, Barão VAR, de Avila ED, Husch JFA, Yang F, van den Beucken JJJP. Tailoring Cu 2+-loaded electrospun membranes with antibacterial ability for guided bone regeneration. BIOMATERIALS ADVANCES 2022; 139:212976. [PMID: 35882133 DOI: 10.1016/j.bioadv.2022.212976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/23/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Copper (Cu)-loaded electrospun membranes were tailored for guided bone regeneration (GBR), targeting the stimulation of innate cells active in bone growth and the prevention of bacterial infections. Functional GBR membranes were produced via an electrospinning set-up using a silk-based solution associated with polyethylene oxide (Silk/PEO - control). Experimental groups were loaded with copper oxide using varying weight percentages (0.05 % to 1 % of CuO). The morphological, structural, chemical, and mechanical properties of membranes were evaluated. Direct and indirect in vitro cytocompatibility experiments were performed with primary human bone mesenchymal stem cells and primary human umbilical vein endothelial cells. The antibacterial potential of membranes was tested with Staphylococcus aureus and Fusobacterium nucleatum biofilm. CuO was successfully incorporated into membranes as clusters without compromising their mechanical properties for clinical applicability. Increased Cu concentrations generated membranes with thinner nanofibers, greater pore areas, and stronger antimicrobial effect (p < 0.01). Cu2+ ion was released from the nanofiber membranes during 1 week, showing higher release in acidic conditions. CuO 0.1 % and CuO 0.05 % membranes were able to support and stimulate cell adhesion and proliferation (p < 0.05), and favor angiogenic responses of vascular cells. In addition, detailed quantitative and qualitative analysis determined that amount of the attached biofilm was reduced on the tailored functional Cu2+-loaded GBR membrane. Importantly, these qualities represent a valuable strategy to improve the bone regeneration process and diminish the risk of bacterial infections.
Collapse
Affiliation(s)
- Jairo M Cordeiro
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, the Netherlands.
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Johanna F A Husch
- Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | - Fang Yang
- Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | | |
Collapse
|
37
|
Garcia-Moreno M, Jordan PM, Günther K, Dau T, Fritzsch C, Vermes M, Schoppa A, Ignatius A, Wildemann B, Werz O, Löffler B, Tuchscherr L. Osteocytes Serve as a Reservoir for Intracellular Persisting Staphylococcus aureus Due to the Lack of Defense Mechanisms. Front Microbiol 2022; 13:937466. [PMID: 35935196 PMCID: PMC9355688 DOI: 10.3389/fmicb.2022.937466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic staphylococcal osteomyelitis can persist for long time periods causing bone destruction. The ability of Staphylococcus aureus to develop chronic infections is linked to its capacity to invade and replicate within osteoblasts and osteocytes and to switch to a dormant phenotype called small colony variants. Recently, osteocytes were described as a main reservoir for this pathogen in bone tissue. However, the mechanisms involved in the persistence of S. aureus within these cells are still unknown. Here, we investigated the interaction between S. aureus and osteoblasts or osteocytes during infection. While osteoblasts are able to induce a strong antimicrobial response and eliminate intracellular S. aureus, osteocytes trigger signals to recruit immune cells and enhance inflammation but fail an efficient antimicrobial activity to clear the bacterial infection. Moreover, we found that extracellular signals from osteocytes enhance intracellular bacterial clearance by osteoblasts. Even though both cell types express Toll-like receptor (TLR) 2, the main TLR responsible for S. aureus detection, only osteoblasts were able to increase TLR2 expression after infection. Additionally, proteomic analysis indicates that reduced intracellular bacterial killing activity in osteocytes is related to low antimicrobial peptide expression. Nevertheless, high levels of lipid mediators and cytokines were secreted by osteocytes, suggesting that they can contribute to inflammation. Taken together, our results demonstrate that osteocytes contribute to severe inflammation observed in osteomyelitis and represent the main niche for S. aureus persistence due to their poor capacity for intracellular antimicrobial response.
Collapse
Affiliation(s)
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Kerstin Günther
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Therese Dau
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Christian Fritzsch
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Monika Vermes
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Astrid Schoppa
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
- *Correspondence: Lorena Tuchscherr,
| |
Collapse
|
38
|
Pan Y, Wang J, Jiang Z, Guo Q, Zhang Z, Li J, Hu Y, Wang L. Zoledronate combined metal-organic frameworks for bone-targeting and drugs deliveries. Sci Rep 2022; 12:12290. [PMID: 35854057 PMCID: PMC9296467 DOI: 10.1038/s41598-022-15941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022] Open
Abstract
Medicine treatments for bone-related diseases such as osteoporosis, bone metastasis, osteomyelitis, and osteolysis are often limited by insufficient drug concentration at the lesion sites owing to the low perfusion of bone tissue. A carrier that can deliver multiple bone destruction site-targeting drugs is required to address this limitation. Here, we reported a novel bone-targeting nano-drug delivery platform formed by the integration of zoledronate (ZOL) and zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. The ZOL mixed zeolitic imidazolate framework (ZZF) nanoparticles were synthesized in water at room temperature (25 °C), where many biomacromolecules could maintain their activity. This allowed the ZZF nanoparticles to adapt the encapsulation ability and pH response release property from ZIF-8 and the excellent bone targeting performance of ZOL simultaneously. Considering the ease of preparation and biomacromolecule-friendly drug delivery of this nano platform, it may be useful in treating bone-related diseases.
Collapse
Affiliation(s)
- Yixiao Pan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Zichao Jiang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Yihe Hu
- Department of Orthopedics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China.
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China. .,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China. .,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
39
|
Sherchand SP, Adhikari RP, Muthukrishnan G, Kanipakala T, Owen JR, Xie C, Aman MJ, Proctor RA, Schwarz EM, Kates SL. Evidence of Neutralizing and Non-Neutralizing Anti-Glucosaminidase Antibodies in Patients With S. Aureus Osteomyelitis and Their Association With Clinical Outcome Following Surgery in a Clinical Pilot. Front Cell Infect Microbiol 2022; 12:876898. [PMID: 35923804 PMCID: PMC9339635 DOI: 10.3389/fcimb.2022.876898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/20/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus osteomyelitis remains a very challenging condition; recent clinical studies have shown infection control rates following surgery/antibiotics to be ~60%. Additionally, prior efforts to produce an effective S. aureus vaccine have failed, in part due to lack of knowledge of protective immunity. Previously, we demonstrated that anti-glucosaminidase (Gmd) antibodies are protective in animal models but found that only 6.7% of culture-confirmed S. aureus osteomyelitis patients in the AO Clinical Priority Program (AO-CPP) Registry had basal serum levels (>10 ng/ml) of anti-Gmd at the time of surgery (baseline). We identified a small subset of patients with high levels of anti-Gmd antibodies and adverse outcomes following surgery, not explained by Ig class switching to non-functional isotypes. Here, we aimed to test the hypothesis that clinical cure following surgery is associated with anti-Gmd neutralizing antibodies in serum. Therefore, we first optimized an in vitro assay that quantifies recombinant Gmd lysis of the M. luteus cell wall and used it to demonstrate the 50% neutralizing concentration (NC50) of a humanized anti-Gmd mAb (TPH-101) to be ~15.6 μg/ml. We also demonstrated that human serum deficient in anti-Gmd antibodies can be complemented by TPH-101 to achieve the same dose-dependent Gmd neutralizing activity as purified TPH-101. Finally, we assessed the anti-Gmd physical titer and neutralizing activity in sera from 11 patients in the AO-CPP Registry, who were characterized into four groups post-hoc. Group 1 patients (n=3) had high anti-Gmd physical and neutralizing titers at baseline that decreased with clinical cure of the infection over time. Group 2 patients (n=3) had undetectable anti-Gmd antibodies throughout the study and adverse outcomes. Group 3 (n=3) had high titers +/- neutralizing anti-Gmd at baseline with adverse outcomes. Group 4 (n=2) had low titers of non-neutralizing anti-Gmd at baseline with delayed high titers and adverse outcomes. Collectively, these findings demonstrate that both neutralizing and non-neutralizing anti-Gmd antibodies exist in S. aureus osteomyelitis patients and that screening for these antibodies could have a value for identifying patients in need of passive immunization prior to surgery. Future prospective studies to test the prognostic value of anti-Gmd antibodies to assess the potential of passive immunization with TPH-101 are warranted.
Collapse
Affiliation(s)
| | | | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | | | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - M. Javad Aman
- Integrated BioTherapeutics, Inc., Rockville, MD, United States
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
40
|
Kim BC, Kim H, Lee HS, Kim SH, Cho DH, Jung HJ, Bhatia SK, Yune PS, Joo HS, Kim JS, Kim W, Yang YH. 4-Chloro-2-Isopropyl-5-Methylphenol Exhibits Antimicrobial and Adjuvant Activity against Methicillin-Resistant Staphylococcus aureus. J Microbiol Biotechnol 2022; 32:730-739. [PMID: 35586930 PMCID: PMC9628901 DOI: 10.4014/jmb.2203.03054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes severe infections and poses a global healthcare challenge. The utilization of novel molecules which confer synergistical effects to existing MRSA-directed antibiotics is one of the well-accepted strategies in lieu of de novo development of new antibiotics. Thymol is a key component of the essential oil of plants in the Thymus and Origanum genera. Despite the absence of antimicrobial potency, thymol is known to inhibit MRSA biofilm formation. However, the anti-MRSA activity of thymol analogs is not well characterized. Here, we assessed the antimicrobial activity of several thymol derivatives and found that 4-chloro-2-isopropyl-5-methylphenol (chlorothymol) has antimicrobial activity against MRSA and in addition it also prevents biofilm formation. Chlorothymol inhibited staphyloxanthin production, slowed MRSA motility, and altered bacterial cell density and size. This compound also showed a synergistic antimicrobial activity with oxacillin against highly resistant S. aureus clinical isolates and biofilms associated with these isolates. Our results demonstrate that chlorinated thymol derivatives should be considered as a new lead compound in anti-MRSA therapeutics.
Collapse
Affiliation(s)
- Byung Chan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyerim Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Soo Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Do-Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Philip S. Yune
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hwang-Soo Joo
- Department of Biotechnology, College of Engineering, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07226, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea,
W. Kim Phone: +82-2-3277-3372 Fax: +82-2-3277-4527 E-mail:
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding authors Y.-H. Yang Phone: +82-2-3277-3372 Fax: +82-2-3437-8360 E-mail:
| |
Collapse
|
41
|
Liu S, Hon K, Bouras GS, Psaltis AJ, Shearwin K, Wormald PJ, Vreugde S. APTC-C-SA01: A Novel Bacteriophage Cocktail Targeting Staphylococcus aureus and MRSA Biofilms. Int J Mol Sci 2022; 23:ijms23116116. [PMID: 35682794 PMCID: PMC9181636 DOI: 10.3390/ijms23116116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
The high infection and mortality rate of methicillin-resistant Staphylococcus aureus (MRSA) necessitates the urgent development of new treatment strategies. Bacteriophages (phages) have several advantages compared to antibiotics for the treatment of multi-drug-resistant bacterial infections, and thus provide a promising alternative to antibiotics. Here, S. aureus phages were isolated from patients and environmental sources. Phages were characterized for stability, morphology and genomic sequence and their bactericidal activity against the biofilm form of methicillin-susceptible Staphylococcus aureus (MSSA) and MRSA was investigated. Four S. aureus phages were isolated and tested against 51 MSSA and MRSA clinical isolates and reference strains. The phages had a broad host range of 82−94% individually and of >98% when combined and could significantly reduce the viability of S. aureus biofilms. The phages had a latent period of ≤20 min and burst size of >11 plaque forming units (PFU)/infected cell. Transmission electron microscopy (TEM) identified phages belonging to the family of Myoviridae. Genomic sequencing indicated the lytic nature of all four phages, with no identified resistance or virulence genes. The 4 phages showed a high complementarity with 49/51 strains (96%) sensitive to at least 2/4 phages tested. Furthermore, the frequency of bacteriophage insensitive mutant (BIM) generation was lower when the phages were combined into the phage cocktail APTC-C-SA01 than for bacteria exposed to each of the phages alone. In conclusion, APTC-C-SA01, containing four lytic S. aureus phages has the potential for further development as a treatment against MSSA and MRSA infections.
Collapse
Affiliation(s)
- Sha Liu
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA 5011, Australia; (S.L.); (K.H.); (G.S.B.); (A.J.P.); (P.-J.W.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Karen Hon
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA 5011, Australia; (S.L.); (K.H.); (G.S.B.); (A.J.P.); (P.-J.W.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - George Spyro Bouras
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA 5011, Australia; (S.L.); (K.H.); (G.S.B.); (A.J.P.); (P.-J.W.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Alkis James Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA 5011, Australia; (S.L.); (K.H.); (G.S.B.); (A.J.P.); (P.-J.W.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Keith Shearwin
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA 5011, Australia; (S.L.); (K.H.); (G.S.B.); (A.J.P.); (P.-J.W.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA 5011, Australia; (S.L.); (K.H.); (G.S.B.); (A.J.P.); (P.-J.W.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Correspondence: ; Tel.: +61-8-8222-6928
| |
Collapse
|
42
|
Massaccesi L, Galliera E, Pellegrini A, Banfi G, Corsi Romanelli MM. Osteomyelitis, Oxidative Stress and Related Biomarkers. Antioxidants (Basel) 2022; 11:antiox11061061. [PMID: 35739958 PMCID: PMC9220672 DOI: 10.3390/antiox11061061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/30/2022] Open
Abstract
Bone is a very dynamic tissue, subject to continuous renewal to maintain homeostasis through bone remodeling, a process promoted by two cell types: osteoblasts, of mesenchymal derivation, are responsible for the deposition of new material, and osteoclasts, which are hematopoietic cells, responsible for bone resorption. Osteomyelitis (OM) is an invasive infectious process, with several etiological agents, the most common being Staphylococcus aureus, affecting bone or bone marrow, and severely impairing bone homeostasis, resulting in osteolysis. One of the characteristic features of OM is a strong state of oxidative stress (OS) with severe consequences on the delicate balance between osteoblastogenesis and osteoclastogenesis. Here we describe this, analyzing the effects of OS in bone remodeling and discussing the need for new, easy-to-measure and widely available OS biomarkers that will provide valid support in the management of the disease.
Collapse
Affiliation(s)
- Luca Massaccesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.G.); (M.M.C.R.)
- Correspondence: ; Tel.: +39-0250316027
| | - Emanuela Galliera
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.G.); (M.M.C.R.)
- IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy;
| | - Antonio Pellegrini
- Centre for Reconstructive Surgery and Osteoarticular Infections, IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy;
| | - Giuseppe Banfi
- IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy;
| | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.G.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| |
Collapse
|
43
|
Billings C, Anderson DE. Role of Animal Models to Advance Research of Bacterial Osteomyelitis. Front Vet Sci 2022; 9:879630. [PMID: 35558882 PMCID: PMC9087578 DOI: 10.3389/fvets.2022.879630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Osteomyelitis is an inflammatory bone disease typically caused by infectious microorganisms, often bacteria, which causes progressive bone destruction and loss. The most common bacteria associated with chronic osteomyelitis is Staphylococcus aureus. The incidence of osteomyelitis in the United States is estimated to be upwards of 50,000 cases annually and places a significant burden upon the healthcare system. There are three general categories of osteomyelitis: hematogenous; secondary to spread from a contiguous focus of infection, often from trauma or implanted medical devices and materials; and secondary to vascular disease, often a result of diabetic foot ulcers. Independent of the route of infection, osteomyelitis is often challenging to diagnose and treat, and the effect on the patient's quality of life is significant. Therapy for osteomyelitis varies based on category and clinical variables in each case. Therapeutic strategies are typically reliant upon protracted antimicrobial therapy and surgical interventions. Therapy is most successful when intensive and initiated early, although infection may recur months to years later. Also, treatment is accompanied by risks such as systemic toxicity, selection for antimicrobial drug resistance from prolonged antimicrobial use, and loss of form or function of the affected area due to radical surgical debridement or implant removal. The challenges of diagnosis and successful treatment, as well as the negative impacts on patient's quality of life, exemplify the need for improved strategies to combat bacterial osteomyelitis. There are many in vitro and in vivo investigations aimed toward better understanding of the pathophysiology of bacterial osteomyelitis, as well as improved diagnostic and therapeutic strategies. Here, we review the role of animal models utilized for the study of bacterial osteomyelitis and their critically important role in understanding and improving the management of bacterial osteomyelitis.
Collapse
|
44
|
Loft JA, Møller DL, Thudium RF, Knudsen JD, Ostrowski SR, Andersen ÅB, Nielsen SD. The Induced Immune Response in Patients With Infectious Spondylodiscitis: A Prospective Observational Cohort Study. Front Immunol 2022; 13:858934. [PMID: 35360000 PMCID: PMC8963848 DOI: 10.3389/fimmu.2022.858934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Infectious spondylodiscitis is a rare infection of the intervertebral disc and the adjacent vertebral bodies that often disseminates and requires long-term antibiotic therapy. Immunologic profiling of patients with infectious spondylodiscitis could allow for a personalized medicine strategy. We aimed to examine the induced immune response in patients with infectious spondylodiscitis during and after antibiotic therapy. Furthermore, we explored potential differences in the induced immune response depending on the causative pathogen and the dissemination of the disease. Methods This was a prospective observational cohort study that enrolled patients with infectious spondylodiscitis between February 2018 and August 2020. A blood sample was collected at baseline, after four to six weeks of antibiotic therapy (during antibiotic therapy), and three to seven months after end of antibiotic therapy (post-infection). The induced immune response was assessed using the standardized functional immune assay TruCulture®. We used a panel of three immune cell stimuli (lipopolysaccharide, Resiquimod and polyinosinic:polycytodylic acid) and an unstimulated control. For each stimulus, the induced immune response was assessed by measuring the released concentration of Interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12p40, IL-17A, Interferon-γ (IFN-γ) and Tumor necrosis factor-α (TNF-α) in pg/mL. Results In total, 49 patients with infectious spondylodiscitis were included. The induced immune responses were generally lower than references at baseline, but the cytokine release increased in patients after treatment with antibiotic therapy. Post-infection, most of the released cytokine concentrations were within the reference range. No significant differences in the induced immune responses based on stratification according to the causative pathogen or dissemination of disease were found. Conclusion We found lower induced immune responses in patients with infectious spondylodiscitis at baseline. However, post-infection, the immune function normalized, indicating that an underlying immune deficiency is not a prominent factor for spondylodiscitis. We did not find evidence to support the use of induced immune responses as a tool for prediction of the causative pathogen or disease dissemination, and other methods should be explored to guide optimal treatment of patients with infectious spondylodiscitis.
Collapse
Affiliation(s)
- Josefine Amalie Loft
- Viro-Immunology Research Unit, Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Dina Leth Møller
- Viro-Immunology Research Unit, Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rebekka Faber Thudium
- Viro-Immunology Research Unit, Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jenny Dahl Knudsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Åse Bengård Andersen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Surgical Gastroenterology and Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- *Correspondence: Susanne Dam Nielsen,
| |
Collapse
|
45
|
Xu L, Song H, Ren Y, Fang J, Zhou C, Zhang H, Meng X, Cheng G, Zhuo R, Qin C. Antibiotic-Impregnated Calcium Sulfate vs. Wound Irrigation-Suction to Treat Chronic Calcaneal Osteomyelitis. Foot Ankle Int 2022; 43:331-342. [PMID: 34719970 DOI: 10.1177/10711007211049768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Chronic osteomyelitis of calcaneus is not rare but is very hard to treat. Irrigation-suction and antibiotic-impregnated calcium sulfate following debridement are commonly used in managing chronic osteomyelitis, but their effects have rarely been compared. We aimed to compare the effectiveness of antibiotic-impregnated calcium sulfate with irrigation-suction in the treatment of patients with chronic calcaneal osteomyelitis. METHODS From January 2011 to June 2018, adult patients at our institute with chronic osteomyelitis receiving treatment of either antibiotic-impregnated calcium sulfate (CS group) or irrigation-suction (IS group) following thorough debridement were screened and selected according to the inclusion and exclusion criteria. The clinical presentation, laboratory tests, complications, and the ultimate single-staged cure rate and recurrence were compared. RESULTS A total of 61 patients, including 41 in the CS group and 20 in the IS group, were included in our study. Of the patients, 85.4% in the CS group and 60.0% in the IS group (P = .006) were successfully cured in the single stage, respectively, without infection recurrence. Lower infection recurrence rates with shorter hospital stay were found in the CS group than the IS group. Inflammatory biomarkers after surgery with both treatments were slightly decreased and not significantly different from preoperative or between-groups postoperative. Exudate from incision was found primarily in the CS group. CONCLUSION This study demonstrates that both antibiotic-impregnated calcium sulfate and irrigation-suction after careful and thorough surgical debridement are generally effective in treating chronic calcaneal osteomyelitis. Antibiotic-impregnated calcium sulfate achieved a higher single-staged cure rate but was associated with an increased postoperative wound exudate. LEVEL OF EVIDENCE Level III, retrospective cohort study.
Collapse
Affiliation(s)
- Lei Xu
- Department of Orthopedics and Traumatology, Guangdong Second Provincial General Hospital, the Second Clinical Medical School of Southern Medical University, 466 Xingang Road C., Haizhu District, Guangzhou, 510317, China
| | - Huijuan Song
- Department of Nursing, Southern Medical University Nanfang Hospital, No.1838, Guangzhou Ave. North, Baiyun District, Guangzhou, China
| | - Ying Ren
- Department of Orthopedics and Traumatology, Guangdong Second Provincial General Hospital, the Second Clinical Medical School of Southern Medical University, 466 Xingang Road C., Haizhu District, Guangzhou, 510317, China.,Department of Nursing, Southern Medical University Nanfang Hospital, No.1838, Guangzhou Ave. North, Baiyun District, Guangzhou, China
| | - Jia Fang
- Department of Orthopedics and Traumatology, Guangdong Second Provincial General Hospital, the Second Clinical Medical School of Southern Medical University, 466 Xingang Road C., Haizhu District, Guangzhou, 510317, China
| | - Chunhao Zhou
- Department of Orthopedics and Traumatology, Guangdong Second Provincial General Hospital, the Second Clinical Medical School of Southern Medical University, 466 Xingang Road C., Haizhu District, Guangzhou, 510317, China
| | - Hongan Zhang
- Department of Orthopedics and Traumatology, Guangdong Second Provincial General Hospital, the Second Clinical Medical School of Southern Medical University, 466 Xingang Road C., Haizhu District, Guangzhou, 510317, China
| | - Xiangqing Meng
- Department of Orthopedics and Traumatology, Guangdong Second Provincial General Hospital, the Second Clinical Medical School of Southern Medical University, 466 Xingang Road C., Haizhu District, Guangzhou, 510317, China
| | - Guoyun Cheng
- Department of Orthopedics and Traumatology, Guangdong Second Provincial General Hospital, the Second Clinical Medical School of Southern Medical University, 466 Xingang Road C., Haizhu District, Guangzhou, 510317, China
| | - Ribo Zhuo
- Department of Orthopedics and Traumatology, Guangdong Second Provincial General Hospital, the Second Clinical Medical School of Southern Medical University, 466 Xingang Road C., Haizhu District, Guangzhou, 510317, China
| | - Chenghe Qin
- Department of Orthopedics and Traumatology, Guangdong Second Provincial General Hospital, the Second Clinical Medical School of Southern Medical University, 466 Xingang Road C., Haizhu District, Guangzhou, 510317, China.,Department of Orthopedics and Traumatology, Southern Medical University Nanfang Hospital, No.1838, Guangzhou Ave. North, Baiyun District, Guangzhou, China
| |
Collapse
|
46
|
Hou H, Li Y, Jin Y, Chen S, Long J, Duan G, Yang H. The crafty opponent: the defense systems of Staphylococcus aureus and response measures. Folia Microbiol (Praha) 2022; 67:233-243. [PMID: 35149955 DOI: 10.1007/s12223-022-00954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/29/2022] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus is a serious threat to public health. S. aureus infection can cause acute or long-term persistent infections that are often resistant to antibiotics and are associated with high morbidity and death. Understanding the defensive systems of S. aureus can help clinicians make the best use of antimicrobial drugs and can also help with antimicrobial stewardship. The mechanisms and clinical implications of S. aureus defense systems, as well as potential response systems, were discussed in this study. Because resistance to all currently available antibiotics is unavoidable, new medicines are always being developed. Alternative techniques, such as anti-virulence and bacteriophage therapies, are being researched and may become major tools in the fight against staphylococcal infections in the future, in addition to the development of new small compounds that affect cell viability.
Collapse
Affiliation(s)
- Hongjie Hou
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yang Li
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
47
|
Chen Y, Huang C, Chen X, Cai Y, Li W, Fang X, Zhang W. Bone protein analysis via label-free quantitative proteomics in patients with periprosthetic joint infection. J Proteomics 2022; 252:104448. [PMID: 34883267 DOI: 10.1016/j.jprot.2021.104448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Periprosthetic joint infection (PJI) is a catastrophic complication of arthroplasty. The treatment of PJI often requires multiple operations and long-term use of antibiotics, making PJI a substantial health and economic burden for patients. Therefore, there is an urgent need to elucidate the pathological mechanism of PJI to explore new therapeutic methods. This study aimed to explore proteomics changes in bone tissue around the prosthesis during PJI development, to explain the pathological mechanism and to provide new treatment ideas. Ten patients who underwent revision surgery at our institution were included: 5 patients with Staphylococcus aureus PJI and 5 patients with aseptic failure. The proteomics changes in bone tissues after PJI were investigated by label-free quantitative proteomics, and the pathways affected by the differential proteins were analyzed by GO annotation, GO enrichment analysis, KEGG enrichment analysis and protein-protein interaction network analysis. We identified 435 differentially expressed proteins (DEPs), with 213 upregulated and 222 downregulated proteins. Analysis revealed activation of immune-related pathways, such as complement and coagulation cascades, phagocytosis, and neutrophil activation, and inhibition of energy metabolism pathways represented by the TCA cycle. We also observed an altered balance between osteoblasts and osteoclasts during S. aureus PJI. We hope that these processes will reveal new treatment ideas. SIGNIFICANCE: PJI is a catastrophic complication of arthroplasty. When infection occurs, bacteria may invade periprosthetic bone tissue to escape immunity and cause damage. So far, only few studies focused on the changes of proteomics associated to PJI. This is the first study to describe the proteomics changes of periprosthetic bone tissue of patients with PJI. We found that the pathological process of S. aureus PJI mainly involves activation of the immune system, decreased energy metabolism, and an altered balance of osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Changyu Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoqing Chen
- Department of Orthopedic Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yuanqing Cai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wenbo Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinyu Fang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Wenming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
48
|
Role of Implantable Drug Delivery Devices with Dual Platform Capabilities in the Prevention and Treatment of Bacterial Osteomyelitis. Bioengineering (Basel) 2022; 9:bioengineering9020065. [PMID: 35200418 PMCID: PMC8869141 DOI: 10.3390/bioengineering9020065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022] Open
Abstract
As medicine advances and physicians are able to provide patients with innovative solutions, including placement of temporary or permanent medical devices that drastically improve quality of life of the patient, there is the persistent, recurring problem of chronic bacterial infection, including osteomyelitis. Osteomyelitis can manifest as a result of traumatic or contaminated wounds or implant-associated infections. This bacterial infection can persist as a result of inadequate treatment regimens or the presence of biofilm on implanted medical devices. One strategy to mitigate these concerns is the use of implantable medical devices that simultaneously act as local drug delivery devices (DDDs). This classification of device has the potential to prevent or aid in clearing chronic bacterial infection by delivering effective doses of antibiotics to the area of interest and can be engineered to simultaneously aid in tissue regeneration. This review will provide a background on bacterial infection and current therapies as well as current and prospective implantable DDDs, with a particular emphasis on local DDDs to combat bacterial osteomyelitis.
Collapse
|
49
|
Sun Y, Yang Y, Jiang W, Bai H, Liu H, Wang J. In Vivo Antibacterial Efficacy of Nanopatterns on Titanium Implant Surface: A Systematic Review of the Literature. Antibiotics (Basel) 2021; 10:antibiotics10121524. [PMID: 34943736 PMCID: PMC8698789 DOI: 10.3390/antibiotics10121524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Bionic surface nanopatterns of titanium (Ti) materials have excellent antibacterial effects in vitro for infection prevention. To date, there is a lack of knowledge about the in vivo bactericidal outcomes of the nanostructures on the Ti implant surfaces. Methods: A systematic review was performed using the PubMed, Embase, and Cochrane databases to better understand surface nanoscale patterns’ in vivo antibacterial efficacy. The inclusion criteria were preclinical studies (in vivo) reporting the antibacterial activity of nanopatterns on Ti implant surface. Ex vivo studies, studies not evaluating the antibacterial activity of nanopatterns or surfaces not modified with nanopatterns were excluded. Results: A total of five peer-reviewed articles met the inclusion criteria. The included studies suggest that the in vivo antibacterial efficacy of the nanopatterns on Ti implants’ surfaces seems poor. Conclusions: Given the small number of literature results, the variability in experimental designs, and the lack of reporting across studies, concluding the in vivo antibacterial effectiveness of nanopatterns on Ti substrates’ surfaces remains a big challenge. Surface coatings using metallic or antibiotic elements are still practical approaches for this purpose. High-quality preclinical data are still needed to investigate the in vivo antibacterial effects of the nanopatterns on the implant surface.
Collapse
Affiliation(s)
- Yang Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Yang Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
- Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Disease, The Second Hospital of Jilin University, Changchun 130041, China
| | - Weibo Jiang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Haotian Bai
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
- Correspondence:
| |
Collapse
|
50
|
Rosman CWK, van Dijl JM, Sjollema J. Interactions between the foreign body reaction and Staphylococcus aureus biomaterial-associated infection. Winning strategies in the derby on biomaterial implant surfaces. Crit Rev Microbiol 2021; 48:624-640. [PMID: 34879216 DOI: 10.1080/1040841x.2021.2011132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterial-associated infections (BAIs) are an increasing problem where antibiotic therapies are often ineffective. The design of novel strategies to prevent or combat infection requires a better understanding of how an implanted foreign body prevents the immune system from eradicating surface-colonizing pathogens. The objective of this review is to chart factors resulting in sub-optimal clearance of Staphylococcus aureus bacteria involved in BAIs. To this end, we first describe three categories of bacterial mechanisms to counter the host immune system around foreign bodies: direct interaction with host cells, modulation of intercellular communication, and evasion of the immune system. These mechanisms take place in a time frame that differentiates sterile foreign body reactions, BAIs, and soft tissue infections. In addition, we identify experimental interventions in S. aureus BAI that may impact infectious mechanisms. Most experimental treatments modulate the host response to infection or alter the course of BAI through implant surface modulation. In conclusion, the first week after implantation and infection is crucial for the establishment of an S. aureus biofilm that resists the local immune reaction and antibiotic treatment. Although established and chronic S. aureus BAI is still treatable and manageable, the focus of interventions should lie on this first period.
Collapse
Affiliation(s)
- Colin W K Rosman
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|