1
|
Vaibhav K, Gulhane M, Ahluwalia P, Kumar M, Ahluwalia M, Rafiq AM, Amble V, Zabala MG, Miller JB, Goldman L, Mondal AK, Deak F, Kolhe R, Arbab AS, Vale FL. Single episode of moderate to severe traumatic brain injury leads to chronic neurological deficits and Alzheimer's-like pathological dementia. GeroScience 2024; 46:5439-5457. [PMID: 38733547 PMCID: PMC11493938 DOI: 10.1007/s11357-024-01183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the foremost causes of disability and mortality globally. While the scientific and medical emphasis is to save lives and avoid disability during acute period of injury, a severe health problem can manifest years after injury. For instance, TBI increases the risk of cognitive impairment in the elderly. Remote TBI history was reported to be a cause of the accelerated clinical trajectory of Alzheimer's disease-related dementia (ADRD) resulting in earlier onset of cognitive impairment and increased AD-associated pathological markers like greater amyloid deposition and cortical thinning. It is not well understood whether a single TBI event may increase the risk of dementia. Moreover, the cellular signaling pathways remain elusive for the chronic effects of TBI on cognition. We have hypothesized that a single TBI induces sustained neuroinflammation and disrupts cellular communication in a way that results later in ADRD pathology. To test this, we induced TBI in young adult CD1 mice and assessed the behavioral outcomes after 11 months followed by pathological, histological, transcriptomic, and MRI assessment. On MRI scans, these mice showed significant loss of tissue, reduced CBF, and higher white matter injury compared to sham mice. We found these brains showed progressive atrophy, markers of ADRD, sustained astrogliosis, loss of neuronal plasticity, and growth factors even after 1-year post-TBI. Because of progressive neurodegeneration, these mice had motor deficits, showed cognitive impairments, and wandered randomly in open field. We, therefore, conclude that progressive pathology after adulthood TBI leads to neurodegenerative conditions such as ADRD and impairs neuronal functions.
Collapse
Affiliation(s)
- Kumar Vaibhav
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
- Transdisciplinary Research Initiative in Inflammaging and Brain Aging (TRIBA), Augusta University, Augusta, GA, USA.
| | - Mayuri Gulhane
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Manish Kumar
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Meenakshi Ahluwalia
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ashiq M Rafiq
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Vibha Amble
- Center for Undergraduate Research Studies, Augusta University, Augusta, GA, USA
| | - Manuela G Zabala
- Center for Undergraduate Research Studies, Augusta University, Augusta, GA, USA
| | - Jacob B Miller
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Liam Goldman
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ali S Arbab
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
2
|
Poliva O, Herrera C, Sugai K, Whittle N, Leek MR, Barnes S, Holshouser B, Yi A, Venezia JH. Additive effects of mild head trauma, blast exposure, and aging within white matter tracts: A novel Diffusion Tensor Imaging analysis approach. J Neuropathol Exp Neurol 2024; 83:853-869. [PMID: 39053000 DOI: 10.1093/jnen/nlae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Existing diffusion tensor imaging (DTI) studies of neurological injury following high-level blast exposure (hlBE) in military personnel have produced widely variable results. This is potentially due to prior studies often not considering the quantity and/or recency of hlBE, as well as co-morbidity with non-blast head trauma (nbHT). Herein, we compare commonly used DTI metrics: fractional anisotropy and mean, axial, and radial diffusivity, in Veterans with and without history of hlBE and/or nbHT. We use both the traditional method of dividing participants into 2 equally weighted groups and an alternative method wherein each participant is weighted by quantity and recency of hlBE and/or nbHT. While no differences were detected using the traditional method, the alternative method revealed diffuse and extensive changes in all DTI metrics. These effects were quantified within 43 anatomically defined white matter tracts, which identified the forceps minor, middle corpus callosum, acoustic and optic radiations, fornix, uncinate, inferior fronto-occipital and inferior longitudinal fasciculi, and cingulum, as the pathways most affected by hlBE and nbHT. Moreover, additive effects of aging were present in many of the same tracts suggesting that these neuroanatomical effects may compound with age.
Collapse
Affiliation(s)
- Oren Poliva
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | | | - Kelli Sugai
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Nicole Whittle
- VA Portland Healthcare System, Portland, OR, United States
| | - Marjorie R Leek
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Samuel Barnes
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Barbara Holshouser
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Alex Yi
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Jonathan H Venezia
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| |
Collapse
|
3
|
Juan SMA, Daglas M, Truong PH, Mawal C, Adlard PA. Alterations in iron content, iron-regulatory proteins and behaviour without tau pathology at one year following repetitive mild traumatic brain injury. Acta Neuropathol Commun 2023; 11:118. [PMID: 37464280 PMCID: PMC10353227 DOI: 10.1186/s40478-023-01603-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI) has increasingly become recognised as a risk factor for the development of neurodegenerative diseases, many of which are characterised by tau pathology, metal dyshomeostasis and behavioural impairments. We aimed to characterise the status of tau and the involvement of iron dyshomeostasis in repetitive controlled cortical impact injury (5 impacts, 48 h apart) in 3-month-old C57Bl6 mice at the chronic (12-month) time point. We performed a battery of behavioural tests, characterised the status of neurodegeneration-associated proteins (tau and tau-regulatory proteins, amyloid precursor protein and iron-regulatory proteins) via western blot; and metal levels using bulk inductively coupled plasma-mass spectrometry (ICP-MS). We report significant changes in various ipsilateral iron-regulatory proteins following five but not a single injury, and significant increases in contralateral iron, zinc and copper levels following five impacts. There was no evidence of tau pathology or changes in tau-regulatory proteins following five impacts, although some changes were observed following a single injury. Five impacts resulted in significant gait deficits, mild anhedonia and mild cognitive deficits at 9-12 months post-injury, effects not seen following a single injury. To the best of our knowledge, we are the first to describe chronic changes in metals and iron-regulatory proteins in a mouse model of r-mTBI, providing a strong indication towards an overall increase in brain iron levels (and other metals) in the chronic phase following r-mTBI. These results bring to question the relevance of tau and highlight the involvement of iron dysregulation in the development and/or progression of neurodegeneration following injury, which may lead to new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Phan H Truong
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Celeste Mawal
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
4
|
Juan SMA, Daglas M, Adlard PA. Altered amyloid precursor protein, tau-regulatory proteins, neuronal numbers and behaviour, but no tau pathology, synaptic and inflammatory changes or memory deficits, at 1 month following repetitive mild traumatic brain injury. Eur J Neurosci 2022; 56:5342-5367. [PMID: 35768153 DOI: 10.1111/ejn.15752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
Repetitive mild traumatic brain injury, commonly experienced following sports injuries, results in various secondary injury processes and is increasingly recognised as a risk factor for the development of neurodegenerative conditions such as chronic traumatic encephalopathy, which is characterised by tau pathology. We aimed to characterise the underlying pathological mechanisms that might contribute to the onset of neurodegeneration and behavioural changes in the less-explored subacute (1-month) period following single or repetitive controlled cortical impact injury (five impacts, 48 h apart) in 12-week-old male and female C57Bl6 mice. We conducted motor and cognitive testing, extensively characterised the status of tau and its regulatory proteins via western blot and quantified neuronal populations using stereology. We report that r-mTBI resulted in neurobehavioural deficits, gait impairments and anxiety-like behaviour at 1 month post-injury, effects not seen following a single injury. R-mTBI caused a significant increase in amyloid precursor protein, an increased trend towards tau phosphorylation and significant changes in kinase/phosphatase proteins that may promote a downstream increase in tau phosphorylation, but no changes in synaptic or neuroinflammatory markers. Lastly, we report neuronal loss in various brain regions following both single and repeat injuries. We demonstrate herein that repeated impacts are required to promote the initiation of a cascade of biochemical events that are consistent with the onset of neurodegeneration subacutely post-injury. Identifying the timeframe in which these changes occur and the pathological mechanisms involved will be crucial for the development of future therapeutics to prevent the onset or mitigate the progression of neurodegeneration following r-mTBI.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
The Association between Skull Bone Fractures and the Mortality Outcomes of Patients with Traumatic Brain Injury. Emerg Med Int 2022; 2022:1296590. [PMID: 35712231 PMCID: PMC9197638 DOI: 10.1155/2022/1296590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Skull fractures are often found in patients with traumatic brain injury (TBI). Although skull fractures may indicate greater force impact and are associated with local or diffuse brain injuries, the prognostic value of skull fractures remains unclear. This retrospective study aimed to assess the association between skull fractures and mortality in patients with TBI. Methods This study included 5,430 TBI patients registered in the trauma registry system from January 2009 to December 2018. Clinical and demographic data including age, sex, trauma mechanisms, comorbidities, Glasgow Coma Scale (GCS) score, abbreviated injury score (AIS)-head, injury severity score (ISS), and in-hospital mortality were acquired. Multiple logistic regression and propensity score matching were used to elucidate the effect of skull fractures on mortality outcomes of TBI patients. Results Compared to TBI patients without skull fracture, patients with skull fractures were predominantly male, younger, had lower GCS upon arrival at the emergency room, and had higher AIS-head, ISS, and in-hospital mortality. The patients with skull fracture had 1.7-fold adjusted odds of mortality (95% confidence interval (CI): 1.27–2.25; p < 0.001) than those without skull fracture, controlling for age, sex, comorbidities, and AIS-head. Additionally, the propensity score-matched analysis of 1,023 selected paired patients revealed that skull fracture was significantly associated with increased 1.4-fold odds of risk for mortality (95% CI: 1.02–1.88; p=0.036). Conclusions Using a propensity score-matched cohort to attenuate the confounding effect of age, comorbidities, and injury severity, skull fracture was identified as a significant independent risk factor for mortality in patients with TBI.
Collapse
|
6
|
Juan SMA, Daglas M, Adlard P. Tau pathology, metal dyshomeostasis and repetitive mild traumatic brain injury: an unexplored link paving the way for neurodegeneration. J Neurotrauma 2022; 39:902-922. [PMID: 35293225 DOI: 10.1089/neu.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI), commonly experienced by athletes and military personnel, causes changes in multiple intracellular pathways, one of which involves the tau protein. Tau phosphorylation plays a role in several neurodegenerative conditions including chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder linked to repeated head trauma. There is now mounting evidence suggesting that tau phosphorylation may be regulated by metal ions (such as iron, zinc and copper), which themselves are implicated in ageing and neurodegenerative disorders such as Alzheimer's disease (AD). Recent work has also shown that a single TBI can result in age-dependent and region-specific modulation of metal ions. As such, this review explores the link between TBI, CTE, ageing and neurodegeneration with a specific focus on the involvement of (and interaction between) tau pathology and metal dyshomeostasis. The authors highlight that metal dyshomeostasis has yet to be investigated in the context of repeat head trauma or CTE. Given the evidence that metal dyshomeostasis contributes to the onset and/or progression of neurodegeneration, and that CTE itself is a neurodegenerative condition, this brings to light an uncharted link that should be explored. The development of adequate models of r-mTBI and/or CTE will be crucial in deepening our understanding of the pathological mechanisms that drive the clinical manifestations in these conditions and also in the development of effective therapeutics targeted towards slowing progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Sydney M A Juan
- The Florey Institute of Neuroscience and Mental Health, 56369, 30 Royal Parade, Parkville, Melbourne, Victoria, Australia, 3052;
| | - Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| | - Paul Adlard
- Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| |
Collapse
|
7
|
Tracy BM, Carlin MN, Tyson JW, Schenker ML, Gelbard RB. The 11-Item Modified Frailty Index as a Tool to Predict Unplanned Events in Traumatic Brain Injury. Am Surg 2020; 86:1596-1601. [PMID: 32829642 DOI: 10.1177/0003134820942196] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Frailty has been studied extensively in trauma, but there is minimal research detailing its impact on traumatic brain injury (TBI). We hypothesized that the 11-item modified frailty index (mFI-11) would predict complications and discharge outcomes in patients with TBI. METHODS A retrospective review of our trauma quality improvement program (TQIP) registry was conducted for all patients with TBI. The mFI-11 score was calculated for each patient. Multivariable logistic regression was used to assess the relationship between mFI-11 and cardiovascular, infectious, pulmonary, renal, thromboembolic, and unplanned complications (ie, unplanned intensive care unit [ICU] admission, intubation, or return to the operating room). RESULTS There were 2352 patients with TBI of whom 61.6% (n = 1450) were not frail, 19.3% (n = 454) were mildly frail, and 19.1% (n = 448) were moderately to severely frail. Higher frailty scores were associated with increasing age (P < .0001) and decreasing injury severity score [ISS] (P = 0.001). Higher frailty scores also correlated with increasing rates of a skilled nursing facility/long-term acute care hospital/rehabilitation discharge (P = .0002). On multivariable logistic regression adjusting for age, Glasgow Coma Scale (GCS) score, ISS, mechanism, and sex, moderate to severe frailty increased the odds of acute kidney injury (odds ratio [OR] 2.06, 95% CI 1.07-3.99, P = .03) and any unplanned event (OR 1.6, 95% CI 1.1-2.3, P = .01). CONCLUSION Frailty measured by the mFI-11 is associated with greater rates of discharge to unfavorable locations and increased odds of acute kidney injury and unplanned events among patients with TBI. These findings suggest that frail patients with TBIs require greater vigilance to avoid such unanticipated outcomes.
Collapse
Affiliation(s)
- Brett M Tracy
- 1371 Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA.,Division of Acute Care Surgery, Grady Memorial Hospital, Atlanta, Georgia, USA
| | - Margo N Carlin
- 1371 Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA.,Division of Acute Care Surgery, Grady Memorial Hospital, Atlanta, Georgia, USA
| | - James W Tyson
- Department of Surgery, Mercer University School of Medicine, Macon, GA, USA
| | - Mara L Schenker
- Division of Acute Care Surgery, Grady Memorial Hospital, Atlanta, Georgia, USA.,1371 Department of Orthopaedic Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Rondi B Gelbard
- 1371 Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA.,Division of Acute Care Surgery, Grady Memorial Hospital, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Xiong C, Hanafy S, Chan V, Hu ZJ, Sutton M, Escobar M, Colantonio A, Mollayeva T. Comorbidity in adults with traumatic brain injury and all-cause mortality: a systematic review. BMJ Open 2019; 9:e029072. [PMID: 31699721 PMCID: PMC6858248 DOI: 10.1136/bmjopen-2019-029072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Comorbidity in traumatic brain injury (TBI) has been recognised to alter the clinical course of patients and influence short-term and long-term outcomes. We synthesised the evidence on the effects of different comorbid conditions on early and late mortality post-TBI in order to (1) examine the relationship between comorbid condition(s) and all-cause mortality in TBI and (2) determine the influence of sociodemographic and clinical characteristics of patients with a TBI at baseline on all-cause mortality. DESIGN Systematic review. DATA SOURCES Medline, Central, Embase, PsycINFO and bibliographies of identified articles were searched from May 1997 to January 2019. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Included studies met the following criteria: (1) focused on comorbidity as it related to our outcome of interest in adults (ie, ≥18 years of age) diagnosed with a TBI; (2) comorbidity was detected by any means excluding self-report; (3) reported the proportion of participants without comorbidity and (4) followed participants for any period of time. DATA EXTRACTION AND SYNTHESIS Two independent reviewers extracted the data and assessed risk of bias using the Quality in Prognosis Studies tool. Data were synthesised through tabulation and qualitative description. RESULTS A total of 27 cohort studies were included. Among the wide range of individual comorbid conditions studied, only low blood pressure was a consistent predictors of post-TBI mortality. Other consistent predictors were traditional sociodemographic risk factors. Higher comorbidity scale, scores and the number of comorbid conditions were not consistently associated with post-TBI mortality. CONCLUSIONS Given the high number of comorbid conditions that were examined by the single studies, research is required to further substantiate the evidence and address conflicting findings. Finally, an enhanced set of comorbidity measures that are suited for the TBI population will allow for better risk stratification to guide TBI management and treatment. PROSPERO REGISTRATION NUMBER CRD42017070033.
Collapse
Affiliation(s)
- Chen Xiong
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- KITE-Toronto Rehab-University Health Network, Toronto, Ontario, Canada
- Acquired Brain Injury Research Lab, University of Toronto, Toronto, Ontario, Canada
| | - Sara Hanafy
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- KITE-Toronto Rehab-University Health Network, Toronto, Ontario, Canada
- Acquired Brain Injury Research Lab, University of Toronto, Toronto, Ontario, Canada
| | - Vincy Chan
- KITE-Toronto Rehab-University Health Network, Toronto, Ontario, Canada
- Acquired Brain Injury Research Lab, University of Toronto, Toronto, Ontario, Canada
| | - Zheng Jing Hu
- KITE-Toronto Rehab-University Health Network, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mitchell Sutton
- KITE-Toronto Rehab-University Health Network, Toronto, Ontario, Canada
| | - Michael Escobar
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Angela Colantonio
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- KITE-Toronto Rehab-University Health Network, Toronto, Ontario, Canada
- Acquired Brain Injury Research Lab, University of Toronto, Toronto, Ontario, Canada
- Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Tatyana Mollayeva
- KITE-Toronto Rehab-University Health Network, Toronto, Ontario, Canada
- Acquired Brain Injury Research Lab, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Kaup AR, Toomey R, Bangen KJ, Delano-Wood L, Yaffe K, Panizzon MS, Lyons MJ, Franz CE, Kremen WS. Interactive Effect of Traumatic Brain Injury and Psychiatric Symptoms on Cognition among Late Middle-Aged Men: Findings from the Vietnam Era Twin Study of Aging. J Neurotrauma 2019; 36:338-347. [PMID: 29978738 PMCID: PMC6338572 DOI: 10.1089/neu.2018.5695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI), post-traumatic stress disorder (PTSD), and depressive symptoms each increase the risk for cognitive impairment in older adults. We investigated whether TBI has long-term associations with cognition in late middle-aged men, and examined the role of current PTSD/depressive symptoms. Participants were 953 men (ages 56-66) from the Vietnam Era Twin Study of Aging (VETSA), who were classified by presence or absence of (1) history of TBI and (2) current elevated psychiatric symptoms (defined as PTSD or depressive symptoms above cutoffs). TBIs had occurred an average of 35 years prior to assessment. Participants completed cognitive testing examining nine domains. In mixed-effects models, we tested the effect of TBI on cognition including for interactions between TBI and elevated psychiatric symptoms. Models adjusted for age, pre-morbid cognitive ability assessed at average age 20 years, apolipoprotein E genotype, and substance abuse; 33% (n = 310) of participants had TBI, mostly mild and remote; and 23% (n = 72) of those with TBI and 18% (n = 117) without TBI had current elevated psychiatric symptoms. TBI and psychiatric symptoms had interactive effects on cognition, particularly executive functioning. Group comparison analyses showed that men with both TBI and psychiatric symptoms demonstrated deficits primarily in executive functioning. Cognition was largely unaffected in men with either risk factor in isolation. Among late middle-aged men, the combination of even mild and very remote TBI with current elevated psychiatric symptoms is associated with deficits in executive function and related abilities. Future longitudinal studies should investigate how TBI and psychiatric factors interact to impact brain aging.
Collapse
Affiliation(s)
- Allison R. Kaup
- Research Service, San Francisco VA Health Care System and Department of Psychiatry, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California.,Address correspondence to: Allison R. Kaup, PhD, Research Service, San Francisco VA Health Care System and Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, 4150 Clement Street (116B), San Francisco, CA, 94121
| | - Rosemary Toomey
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Katherine J. Bangen
- Veterans Affairs San Diego Healthcare System, San Diego, California.,Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Lisa Delano-Wood
- Veterans Affairs San Diego Healthcare System, San Diego, California.,Department of Psychiatry, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, La Jolla, California
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California San Francisco and San Francisco VA Health Care System, San Francisco, California
| | - Matthew S. Panizzon
- Veterans Affairs San Diego Healthcare System, San Diego, California.,Department of Psychiatry, University of California, San Diego, La Jolla, California.,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California
| | - Michael J. Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Carol E. Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, California.,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California
| | - William S. Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, California.,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California
| |
Collapse
|
10
|
Mendoza-Ruvalcaba NM, Arias-Merino ED, Flores-Villavicencio ME, Rodríguez-Díaz M, Díaz-García IF. Cognitive Aging. Gerontology 2018. [DOI: 10.5772/intechopen.71551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
11
|
Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Raikwar SP, Iyer SS, Bhagavan SM, Beladakere-Ramaswamy S, Zaheer A. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis. Front Neurosci 2017; 11:703. [PMID: 29302258 PMCID: PMC5733004 DOI: 10.3389/fnins.2017.00703] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Govindhasamy P. Selvakumar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Ramasamy Thangavel
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Mohammad E. Ahmed
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Smita Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sudhanshu P. Raikwar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Shankar S. Iyer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Sachin M. Bhagavan
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Swathi Beladakere-Ramaswamy
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Asgar Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| |
Collapse
|
12
|
Yrondi A, Brauge D, LeMen J, Arbus C, Pariente J. Depression and sports-related concussion: A systematic review. Presse Med 2017; 46:890-902. [PMID: 28919268 DOI: 10.1016/j.lpm.2017.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/03/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
CONTEXT Head injuries are risk factors for chronic depressive disorders, but this association remains poorly explored with regards to concussion. OBJECTIVES The objective of this review was to evaluate the incidence of depressive symptoms and depression after sports-related concussion. We also endeavored to identify the response elements regarding the pathophysiology of these symptoms. METHODS A systematic search of PubMed and Embase was conducted focusing on papers published until 1st December, 2016, according to PRISMA criteria The following MESH terms were used: (concussion or traumatic brain injury) and sport and (depression or depressive disorder). RESULTS A depressive disorder can appear immediately after a concussion: depressive symptoms seem to be associated with the symptoms of the concussion itself. A depressive disorder can also appear later, and is often linked to the frequency and number of concussions. Furthermore, the existence of a mood disorder prior to a concussion can contribute to the onset of a depressive disorder after a concussion. LIMITS There is an overall limit concerning the definition of a depressive disorder. In addition, when these studies had controls, they were often compared to high-level athletes; yet, practicing sport regularly is a protective factor against mood pathologies. CONCLUSIONS Depressive symptoms after a concussion seem to be associated with postconcussion symptoms. Repeat concussions can contribute to later-onset major depressive disorders. However, playing sports can protect against major depressive disorders: thus, it is essential to evaluate concussions as accurately as possible.
Collapse
Affiliation(s)
- Antoine Yrondi
- CHU Toulouse-Purpan, Psychiatry and medical psychology department, 330, avenue de Grande-Bretagne, 31059 Toulouse, France; UPS, Université de Toulouse, TONIC, Toulouse NeuroImaging Center, 31024 Toulouse cedex 3, France; CHU Toulouse, Federation Hospitalo-Universitaire, Cognitive, Psychiatric and Sensory Disabilities, 31059 Toulouse, France.
| | - David Brauge
- CHU Toulouse, Federation Hospitalo-Universitaire, Cognitive, Psychiatric and Sensory Disabilities, 31059 Toulouse, France; CHU Toulouse-Purpan, Neurosurgery department, 31059 Toulouse, France
| | - Johanne LeMen
- CHU Toulouse, Federation Hospitalo-Universitaire, Cognitive, Psychiatric and Sensory Disabilities, 31059 Toulouse, France; CHU Toulouse-Purpan, Neurology department, 31059 Toulouse, France
| | - Christophe Arbus
- CHU Toulouse-Purpan, Psychiatry and medical psychology department, 330, avenue de Grande-Bretagne, 31059 Toulouse, France; UPS, Université de Toulouse, TONIC, Toulouse NeuroImaging Center, 31024 Toulouse cedex 3, France; CHU Toulouse, Federation Hospitalo-Universitaire, Cognitive, Psychiatric and Sensory Disabilities, 31059 Toulouse, France
| | - Jérémie Pariente
- UPS, Université de Toulouse, TONIC, Toulouse NeuroImaging Center, 31024 Toulouse cedex 3, France; CHU Toulouse, Federation Hospitalo-Universitaire, Cognitive, Psychiatric and Sensory Disabilities, 31059 Toulouse, France; CHU Toulouse-Purpan, Neurology department, 31059 Toulouse, France
| |
Collapse
|
13
|
Hoffer BJ, Pick CG, Hoffer ME, Becker RE, Chiang YH, Greig NH. Repositioning drugs for traumatic brain injury - N-acetyl cysteine and Phenserine. J Biomed Sci 2017; 24:71. [PMID: 28886718 PMCID: PMC5591517 DOI: 10.1186/s12929-017-0377-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most common causes of morbidity and mortality of both young adults of less than 45 years of age and the elderly, and contributes to about 30% of all injury deaths in the United States of America. Whereas there has been a significant improvement in our understanding of the mechanism that underpin the primary and secondary stages of damage associated with a TBI incident, to date however, this knowledge has not translated into the development of effective new pharmacological TBI treatment strategies. Prior experimental and clinical studies of drugs working via a single mechanism only may have failed to address the full range of pathologies that lead to the neuronal loss and cognitive impairment evident in TBI and other disorders. The present review focuses on two drugs with the potential to benefit multiple pathways considered important in TBI. Notably, both agents have already been developed into human studies for other conditions, and thus have the potential to be rapidly repositioned as TBI therapies. The first is N-acetyl cysteine (NAC) that is currently used in over the counter medications for its anti-inflammatory properties. The second is (-)-phenserine ((-)-Phen) that was originally developed as an experimental Alzheimer's disease (AD) drug. We briefly review background information about TBI and subsequently review literature suggesting that NAC and (-)-Phen may be useful therapeutic approaches for TBI, for which there are no currently approved drugs.
Collapse
Affiliation(s)
- Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael E Hoffer
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University, Taipei, Taiwan
| | - Nigel H Greig
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
14
|
Chan V, Mollayeva T, Ottenbacher KJ, Colantonio A. Clinical profile and comorbidity of traumatic brain injury among younger and older men and women: a brief research notes. BMC Res Notes 2017; 10:371. [PMID: 28789695 PMCID: PMC5549298 DOI: 10.1186/s13104-017-2682-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/22/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Comorbid disorders influence the course and outcomes of rehabilitation following traumatic brain injury (TBI), yet sex- and age-related disparities in the frequency distribution of these disorders remain poorly understood. We aimed to describe comorbid disorders by the International Classification of Diseases in patients with TBI undergoing inpatient rehabilitation in Ontario, Canada over a 3-year period, by sex and age, and discuss their potential impact on rehabilitation outcomes. RESULTS The percentage of TBI patients with one or more comorbid disorder is higher among older (≥65 years) men and women than among those who are younger or middle-aged (<65 years). Among younger and middle-aged patients, multiple injuries and trauma, mental health conditions, and nervous system disorders were the most prevalent comorbidities. In older patients, circulatory, endocrine, nutritional, metabolic, and immune disorders were the most prevalent comorbidities. Our results suggest that a multisystem view of rehabilitation of men and women with TBI across age categories is needed to reflect the complex clinical profile of TBI patients undergoing rehabilitation.
Collapse
Affiliation(s)
- Vincy Chan
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario Canada
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario Canada
| | - Tatyana Mollayeva
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario Canada
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario Canada
| | - Kenneth J. Ottenbacher
- Division of Rehabilitation Science, Center for Recovery, Physical Activity and Nutrition, School of Health Professions, University of Texas Medical Branch, Galveston, Texas USA
| | - Angela Colantonio
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario Canada
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
15
|
Scheller A, Bai X, Kirchhoff F. The Role of the Oligodendrocyte Lineage in Acute Brain Trauma. Neurochem Res 2017; 42:2479-2489. [PMID: 28702713 DOI: 10.1007/s11064-017-2343-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 01/10/2023]
Abstract
An acute brain injury is commonly characterized by an extended cellular damage. The post-injury process of scar formation is largely determined by responses of various local glial cells and blood-derived immune cells. The role of astrocytes and microglia have been frequently reviewed in the traumatic sequelae. Here, we summarize the diverse contributions of oligodendrocytes (OLs) and their precursor cells (OPCs) in acute injuries. OLs at the lesion site are highly sensitive to a damaging insult, provoked by Ca2+ overload after hyperexcitation originating from increased levels of transmitters. At the lesion site, differentiating OPCs can replace injured oligodendrocytes to guarantee proper myelination that is instrumental for healthy brain function. In contrast to finally differentiated and non-dividing OLs, OPCs are the most proliferative cells of the brain and their proliferation rate even increases after injury. There exist even evidence that OPCs might also generate some type of astrocyte beside OLs. Thereby, OPCs can contribute to the generation and maintenance of the glial scar. In the future, detailed knowledge of the molecular cues that help to prevent injury-evoked glial cell death and that control differentiation and myelination of the oligodendroglial lineage will be pivotal in developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
| |
Collapse
|
16
|
Lourenço CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radic Biol Med 2017; 108:668-682. [PMID: 28435052 DOI: 10.1016/j.freeradbiomed.2017.04.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide (•NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which •NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of •NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which •NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in aging, traumatic brain injury, epilepsy and age-associated neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, suggesting that a shift in cellular redox balance may contribute to divert •NO bioactivity from regulation to dysfunction.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
17
|
Motocross-associated head and spine injuries in adult patients evaluated in an emergency department. Am J Emerg Med 2017; 35:1485-1489. [PMID: 28499787 DOI: 10.1016/j.ajem.2017.04.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Motor vehicle-related injuries (including off-road) are the leading cause of traumatic brain injury (TBI) and acute traumatic spinal cord injury in the United States. OBJECTIVES To describe motocross-related head and spine injuries of adult patients presenting to an academic emergency department (ED). METHODS We performed an observational cohort study of adult ED patients evaluated for motocross-related injuries from 2010 through 2015. Electronic health records were reviewed and data extracted using a standardized review process. RESULTS A total of 145 motocross-related ED visits (143 unique patients) were included. Overall, 95.2% of patients were men with a median age of 25years. Sixty-seven visits (46.2%) were associated with head or spine injuries. Forty-three visits (29.7%) were associated with head injuries, and 46 (31.7%) were associated with spine injuries. Among the 43 head injuries, 36 (83.7%) were concussions. Seven visits (16.3%) were associated with at least 1 head abnormality identified by computed tomography, including skull fracture (n=2), subdural hematoma (n=1), subarachnoid hemorrhage (n=4), intraparenchymal hemorrhage (n=3), and diffuse axonal injury (n=3). Among the 46 spine injuries, 32 (69.6%) were acute spinal fractures. Seven patients (4.9%) had clinically significant and persistent neurologic injuries. One patient (0.7%) died, and 3 patients had severe TBIs. CONCLUSION Adult patients evaluated in the ED after motocross trauma had high rates of head and spine injuries with considerable morbidity and mortality. Almost half had head or spine injuries (or both), with permanent impairment for nearly 5% and death for 0.7%.
Collapse
|
18
|
Ouyang W, Yan Q, Zhang Y, Fan Z. Moderate injury in motor-sensory cortex causes behavioral deficits accompanied by electrophysiological changes in mice adulthood. PLoS One 2017; 12:e0171976. [PMID: 28196142 PMCID: PMC5308857 DOI: 10.1371/journal.pone.0171976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/30/2017] [Indexed: 11/18/2022] Open
Abstract
Moderate traumatic brain injury (TBI) in children often happen when there’s a sudden blow to the frontal bone, end with long unconscious which can last for hours and progressive cognitive deficits. However, with regard to the influences of moderate TBI during children adulthood, injury-induced alterations of locomotive ability, long-term memory performance, and hippocampal electrophysiological firing changes have not yet been fully identified. In this study, lateral fluid percussion (LFP) method was used to fabricate moderate TBI in motor and somatosensory cortex of the 6-weeks-old mice. The motor function, learning and memory function, extracellular CA1 neural spikes were assessed during acute and subacute phase. Moreover, histopathology was performed on day post injury (DPI) 16 to evaluate the effect of TBI on tissue and cell morphological changes in cortical and hippocampal CA1 subregions. After moderate LFP injury, the 6-weeks-old mice showed severe motor deficits at the early stage in acute phase but gradually recovered later during adulthood. At the time points in acute and subacute phase after TBI, novel object recognition (NOR) ability and spatial memory functions were consistently impaired in TBI mice; hippocampal firing frequency and burst probability were hampered. Analysis of the altered burst firing shows a clear hippocampal theta rhythm drop. These electrophysiological impacts were associated with substantially lowered NOR preference as compared to the sham group during adulthood. These results suggest that moderate TBI introduced at motorsenory cortex in 6-weeks-old mice causes obvious motor and cognitive deficits during their adulthood. While the locomotive ability progressively recovers, the cognitive deficits persisted while the mice mature as adult mice. The cognitive deficits may be attributed to the general suppressing of whole neural network, which could be labeled by marked reduction of excitability in hippocampal CA1 subregion.
Collapse
Affiliation(s)
- Wei Ouyang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- * E-mail:
| | - Qichao Yan
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yu Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhiheng Fan
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
19
|
Brunden KR, Lee VMY, Smith AB, Trojanowski JQ, Ballatore C. Altered microtubule dynamics in neurodegenerative disease: Therapeutic potential of microtubule-stabilizing drugs. Neurobiol Dis 2016; 105:328-335. [PMID: 28012891 DOI: 10.1016/j.nbd.2016.12.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 02/04/2023] Open
Abstract
Many neurodegenerative diseases are characterized by deficiencies in neuronal axonal transport, a process in which cellular cargo is shuttled with the aid of molecular motors from the cell body to axonal termini and back along microtubules (MTs). Proper axonal transport is critical to the normal functioning of neurons, and impairments in this process could contribute to the neuronal damage and death that is characteristic of neurodegenerative disease. Although the causes of axonal transport abnormalities may vary among the various neurodegenerative conditions, in many cases it appears that the transport deficiencies result from a diminution of axonal MT stability. Here we review the evidence of MT abnormalities in a number of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and traumatic brain injury, and highlight the potential benefit of MT-stabilizing agents in improving axonal transport and nerve function in these diseases. Moreover, we discuss the challenges associated with the utilization of MT-stabilizing drugs as therapeutic candidates for neurodegenerative conditions.
Collapse
Affiliation(s)
- Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Amos B Smith
- Department of Chemistry, School of Arts and Science, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
20
|
Ascenzi P, di Masi A, Leboffe L, Fiocchetti M, Nuzzo MT, Brunori M, Marino M. Neuroglobin: From structure to function in health and disease. Mol Aspects Med 2016; 52:1-48. [DOI: 10.1016/j.mam.2016.10.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
|