1
|
Ghorbani F, Kim M, Ghalandari B, Zhang M, Varma SN, Schöbel L, Liu C, Boccaccini AR. Architecture of β-lactoglobulin coating modulates bioinspired alginate dialdehyde-gelatine/polydopamine scaffolds for subchondral bone regeneration. Acta Biomater 2024; 181:188-201. [PMID: 38642788 DOI: 10.1016/j.actbio.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
In this study, we developed polydopamine (PDA)-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds for subchondral bone regeneration. These polymeric scaffolds were then coated with β-Lactoglobulin (β-LG) at concentrations of 1 mg/ml and 2 mg/ml. Morphological analysis indicated a homogeneous coating of the β-LG layer on the surface of network-like scaffolds. The β-LG-coated scaffolds exhibited improved swelling capacity as a function of the β-LG concentration. Compared to ADA-GEL/PDA scaffolds, the β-LG-coated scaffolds demonstrated delayed degradation and enhanced biomineralization. Here, a lower concentration of β-LG showed long-lasting stability and superior biomimetic hydroxyapatite mineralization. According to the theoretical findings, the single-state, representing the low concentration of β-LG, exhibited a homogeneous distribution on the surface of the PDA, while the dimer-state (high concentration) displayed a high likelihood of uncontrolled interactions. β-LG-coated ADA-GEL/PDA scaffolds with a lower concentration of β-LG provided a biocompatible substrate that supported adhesion, proliferation, and alkaline phosphatase (ALP) secretion of sheep bone marrow mesenchymal stem cells, as well as increased expression of osteopontin (SPP1) and collagen type 1 (COL1A1) in human osteoblasts. These findings indicate the potential of protein-coated scaffolds for subchondral bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study addresses a crucial aspect of osteochondral defect repair, emphasizing the pivotal role of subchondral bone regeneration. The development of polydopamine-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds, coated with β-Lactoglobulin (β-LG), represents a novel approach to potentially enhance subchondral bone repair. β-LG, a milk protein rich in essential amino acids and bioactive peptides, is investigated for its potential to promote subchondral bone regeneration. This research explores computationally and experimentally the influence of protein concentration on the ordered or irregular deposition, unravelling the interplay between coating structure, scaffold properties, and in-vitro performance. This work contributes to advancing ordered protein coating strategies for subchondral bone regeneration, providing a biocompatible solution with potential implications for supporting subsequent cartilage repair.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom; Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, United Kingdom.
| | - Minjoo Kim
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mingjing Zhang
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| | - Swastina Nath Varma
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| | - Lisa Schöbel
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany.
| |
Collapse
|
2
|
Quek J, Vizetto-Duarte C, Teoh SH, Choo Y. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. J Funct Biomater 2024; 15:145. [PMID: 38921519 PMCID: PMC11205181 DOI: 10.3390/jfb15060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The management and reconstruction of critical-sized segmental bone defects remain a major clinical challenge for orthopaedic clinicians and surgeons. In particular, regenerative medicine approaches that involve incorporating stem cells within tissue engineering scaffolds have great promise for fracture management. This narrative review focuses on the primary components of bone tissue engineering-stem cells, scaffolds, the microenvironment, and vascularisation-addressing current advances and translational and regulatory challenges in the current landscape of stem cell therapy for critical-sized bone defects. To comprehensively explore this research area and offer insights for future treatment options in orthopaedic surgery, we have examined the latest developments and advancements in bone tissue engineering, focusing on those of clinical relevance in recent years. Finally, we present a forward-looking perspective on using stem cells in bone tissue engineering for critical-sized segmental bone defects.
Collapse
Affiliation(s)
- Jolene Quek
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Catarina Vizetto-Duarte
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Swee Hin Teoh
- Centre for Advanced Medical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410012, China
| | - Yen Choo
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| |
Collapse
|
3
|
Han Y, Wu Y, Wang F, Li G, Wang J, Wu X, Deng A, Ren X, Wang X, Gao J, Shi Z, Bai L, Su J. Heterogeneous DNA hydrogel loaded with Apt02 modified tetrahedral framework nucleic acid accelerated critical-size bone defect repair. Bioact Mater 2024; 35:1-16. [PMID: 38298451 PMCID: PMC10828543 DOI: 10.1016/j.bioactmat.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Segmental bone defects, stemming from trauma, infection, and tumors, pose formidable clinical challenges. Traditional bone repair materials, such as autologous and allogeneic bone grafts, grapple with limitations including source scarcity and immune rejection risks. The advent of nucleic acid nanotechnology, particularly the use of DNA hydrogels in tissue engineering, presents a promising solution, attributed to their biocompatibility, biodegradability, and programmability. However, these hydrogels, typically hindered by high gelation temperatures (∼46 °C) and high construction costs, limit cell encapsulation and broader application. Our research introduces a novel polymer-modified DNA hydrogel, developed using nucleic acid nanotechnology, which gels at a more biocompatible temperature of 37 °C and is cost-effective. This hydrogel then incorporates tetrahedral Framework Nucleic Acid (tFNA) to enhance osteogenic mineralization. Furthermore, considering the modifiability of tFNA, we modified its chains with Aptamer02 (Apt02), an aptamer known to foster angiogenesis. This dual approach significantly accelerates osteogenic differentiation in bone marrow stromal cells (BMSCs) and angiogenesis in human umbilical vein endothelial cells (HUVECs), with cell sequencing confirming their targeting efficacy, respectively. In vivo experiments in rats with critical-size cranial bone defects demonstrate their effectiveness in enhancing new bone formation. This innovation not only offers a viable solution for repairing segmental bone defects but also opens avenues for future advancements in bone organoids construction, marking a significant advancement in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yafei Han
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yan Wu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fuxiao Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Jian Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiang Wu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Anfu Deng
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaoxiang Ren
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xiuhui Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jie Gao
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhongmin Shi
- National Center for Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Desai B, Assid E, Jacobs G, Dasgupta A, Williams G, Choate WS, Montgomery S, Godshaw B, Suri M, Jones D. Viable cartilage allograft outperforms existing treatments for focal knee cartilage defects. Knee Surg Sports Traumatol Arthrosc 2024; 32:636-644. [PMID: 38391111 DOI: 10.1002/ksa.12074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Viable cartilage allograft (VCA) is a cartilage tissue matrix that contains cryopreserved viable allogeneic cartilage fibres. This study aimed to assess safety and benefits in treating focal knee cartilage defects with VCA. We hypothesized that VCA is a safe single-stage procedure in isolated chondral defects. METHOD In vitro analysis, in vivo studies and a prospective case series were performed. VCA was evaluated in a goat cartilage repair model. Symptomatic International Cartilage Repair Society grade 3/4A lesions of the femoral condyle or patella were implanted with VCA. International Knee Documentation Committee (IKDC), Knee injury and Osteoarthritis Outcome (KOOS) subscales, Lysholm, Short Form-12, Visual Analog Scale and pain frequency levels were assessed. Radiographic and magnetic resonance imaging (MRI) was performed at regular intervals postoperatively. Data were analysed by statisticians to determine the power and significance of the results. RESULTS The goat study confirmed that VCA is effective for cartilage repair. Twenty patients were implanted; the mean age was 28.1 (16-56), the mean body mass index (BMI) was 27.9 ± 5.6 and the mean follow-up was 24.1 months (range = 12.0-36.0 months). Lesions were in either the femoral condyle (7) or patella (13). Lesion sizes ranged from 1.5 to 6.0 cm2 (mean = 4.58 cm2 ). Outcome scores improved from preoperative baseline (POB): IKDC (78.2), Lysholm (89.0), KOOS: Pain (95.8), Symptoms (86.3), ADL (87.8), Sports (85.0) and QOL (75.0). MRI imaging demonstrated excellent osteochondral allograft assimilation. Second-look arthroscopy (two patients) demonstrated complete fill and incorporation (Brittberg scores 11/12). Functional scores were maintained at 24 (M): IKDC (86.24 ± 17.2), Lysholm (87.23 ± 15.0), KOOS: Pain (91.72 ± 17.3), Symptoms (84.92 ± 16.1), ADLs (93.80 ± 16.1), Sports (84.45 ± 27.7), QOL (81.30 ± 20.8). CONCLUSION VCA is an off-the-shelf, single-stage, conformable allogeneic graft that treats chondral defects with no additional fixation. Preclinical and short-term prospective clinical studies show that VCA can safely treat chondral defects with potential advantages to existing options. LEVEL OF EVIDENCE Level IV study.
Collapse
Affiliation(s)
- Bhumit Desai
- Ochsner Medical Center, Department of Orthopaedic Surgery, New Orleans, Louisiana, USA
| | - Eric Assid
- Ochsner Medical Center, Department of Orthopaedic Surgery, New Orleans, Louisiana, USA
- Ochsner Sports Medicine Institute, University of Queensland, Ochsner Clinical School, New Orleans, Louisiana, USA
| | - Graylin Jacobs
- Ochsner Sports Medicine Institute, University of Queensland, Ochsner Clinical School, New Orleans, Louisiana, USA
| | - Anouska Dasgupta
- MTF (Musculoskeletal Transplant Foundation) Biologics, Edison, New Jersey, USA
| | - Gerard Williams
- Howard University Orthopaedic Hospital, Washington, District of Columbia, USA
| | - Walter Stephen Choate
- Ochsner Medical Center, Department of Orthopaedic Surgery, New Orleans, Louisiana, USA
- Ochsner Sports Medicine Institute, University of Queensland, Ochsner Clinical School, New Orleans, Louisiana, USA
| | - Scott Montgomery
- Ochsner Medical Center, Department of Orthopaedic Surgery, New Orleans, Louisiana, USA
- Ochsner Sports Medicine Institute, University of Queensland, Ochsner Clinical School, New Orleans, Louisiana, USA
| | - Brian Godshaw
- Ochsner Medical Center, Department of Orthopaedic Surgery, New Orleans, Louisiana, USA
- Ochsner Sports Medicine Institute, University of Queensland, Ochsner Clinical School, New Orleans, Louisiana, USA
| | - Misty Suri
- Ochsner Medical Center, Department of Orthopaedic Surgery, New Orleans, Louisiana, USA
- Ochsner Sports Medicine Institute, University of Queensland, Ochsner Clinical School, New Orleans, Louisiana, USA
| | - Deryk Jones
- Ochsner Medical Center, Department of Orthopaedic Surgery, New Orleans, Louisiana, USA
- Ochsner Sports Medicine Institute, University of Queensland, Ochsner Clinical School, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Yang B, Li X, Fu C, Cai W, Meng B, Qu Y, Kou X, Zhang Q. Extracellular vesicles in osteoarthritis of peripheral joint and temporomandibular joint. Front Endocrinol (Lausanne) 2023; 14:1158744. [PMID: 36950682 PMCID: PMC10025484 DOI: 10.3389/fendo.2023.1158744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoarthritis (OA) is a disabling disease with significant morbidity worldwide. OA attacks the large synovial joint, including the peripheral joints and temporomandibular joint (TMJ). As a representative of peripheral joint OA, knee OA shares similar symptoms with TMJ OA. However, these two joints also display differences based on their distinct development, anatomy, and physiology. Extracellular vesicles (EVs) are phospholipid bilayer nanoparticles, including exosomes, microvesicles, and apoptotic bodies. EVs contain proteins, lipids, DNA, micro-RNA, and mRNA that regulate tissue homeostasis and cell-to-cell communication, which play an essential role in the progression and treatment of OA. They are likely to partake in mechanical response, extracellular matrix degradation, and inflammatory regulation during OA. More evidence has shown that synovial fluid and synovium-derived EVs may serve as OA biomarkers. More importantly, mesenchymal stem cell-derived EV shows a therapeutic effect on OA. However, the different function of EVs in these two joints is largely unknown based on their distinct biological characteristic. Here, we reviewed the effects of EVs in OA progression and compared the difference between the knee joint and TMJ, and summarized their potential therapeutic role in the treatment of OA.
Collapse
Affiliation(s)
- Benyi Yang
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xin Li
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
| | - Chaoran Fu
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Wenyi Cai
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
| | - Bowen Meng
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Yan Qu
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xiaoxing Kou
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
- *Correspondence: Qingbin Zhang, ; Xiaoxing Kou,
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
- *Correspondence: Qingbin Zhang, ; Xiaoxing Kou,
| |
Collapse
|
6
|
Islam MS, Ebrahimi-Barough S, Al Mahtab M, Shirian S, Aghayan HR, Arjmand B, Allahverdi A, Ranjbar FE, Sadeg AB, Ai J. Encapsulation of rat bone marrow-derived mesenchymal stem cells (rBMMSCs) in collagen type I containing platelet-rich plasma for osteoarthritis treatment in rat model. Prog Biomater 2022; 11:385-396. [PMID: 36271317 DOI: 10.1007/s40204-022-00200-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of degenerative joint disease, affecting more than 25% of the adults despite its prevalence in the elderly population. Most of the current therapeutic modalities aim at symptomatic treatment which lingers the disease progression. In recent years, regenerative medicine such as stem cell transplantation and tissue engineering has been suggested as a potential curative intervention for OA. The objective of this current study was to assess the safety and efficacy of an injectable tissue-engineered construct composed of rat bone marrow mesenchymal stem cells (rBMMSCs), platelet-rich plasma (PRP), and collagen type I in rat model of OA. To produce collagen type I, PRP and rBMMSCs, male Wistar rats were ethically euthanized. After isolation, culture, expansion and characterization of rBMMSCs, tissue-engineered construct was formed by a combination of appropriate amount of collagen type I, PRP and rBMMSCs. In vitro studies were conducted to evaluate the effect of PRP on chondrogenic differentiation capacity of encapsulated cells. In the following, the tissue-engineered construct was injected in knee joints of rat models of OA (24 rats in 4 groups: OA, OA + MSC, OA + collagen + MSC + PRP, OA + MSC + collagen). After 6 weeks, the animals were euthanized and knee joint histopathology examinations of knee joint samples were performed to evaluate the effect of each treatment on OA. Tissue-engineered construct was successfully manufactured and in vitro assays demonstrated the relevant chondrogenic genes and proteins expression were higher in PRP group than that of others. Histopathological findings of the knee joint samples showed favorable regenerative effect of rBMMSCs + PRP + collagen group compared to others. We introduced an injectable tissue-engineered product composed of rBMMSCs + PRP + collagen with potential regenerative effect on cartilage that has been damaged by OA.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Shefa Neuroscience Research Center, Khatam-Alanbia Hospital, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Allahverdi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Esmaeili Ranjbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amin Bigham Sadeg
- Department of Clinical Sciences, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Shiraz Molecular Pathology Research Center, Dr Daneshbod Path Lab, Shiraz, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Hong IS. Enhancing Stem Cell-Based Therapeutic Potential by Combining Various Bioengineering Technologies. Front Cell Dev Biol 2022; 10:901661. [PMID: 35865629 PMCID: PMC9294278 DOI: 10.3389/fcell.2022.901661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
Stem cell-based therapeutics have gained tremendous attention in recent years due to their wide range of applications in various degenerative diseases, injuries, and other health-related conditions. Therapeutically effective bone marrow stem cells, cord blood- or adipose tissue-derived mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and more recently, induced pluripotent stem cells (iPSCs) have been widely reported in many preclinical and clinical studies with some promising results. However, these stem cell-only transplantation strategies are hindered by the harsh microenvironment, limited cell viability, and poor retention of transplanted cells at the sites of injury. In fact, a number of studies have reported that less than 5% of the transplanted cells are retained at the site of injury on the first day after transplantation, suggesting extremely low (<1%) viability of transplanted cells. In this context, 3D porous or fibrous national polymers (collagen, fibrin, hyaluronic acid, and chitosan)-based scaffold with appropriate mechanical features and biocompatibility can be used to overcome various limitations of stem cell-only transplantation by supporting their adhesion, survival, proliferation, and differentiation as well as providing elegant 3-dimensional (3D) tissue microenvironment. Therefore, stem cell-based tissue engineering using natural or synthetic biomimetics provides novel clinical and therapeutic opportunities for a number of degenerative diseases or tissue injury. Here, we summarized recent studies involving various types of stem cell-based tissue-engineering strategies for different degenerative diseases. We also reviewed recent studies for preclinical and clinical use of stem cell-based scaffolds and various optimization strategies.
Collapse
Affiliation(s)
- In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Seongnam, South Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Seongnam, South Korea
- *Correspondence: In-Sun Hong,
| |
Collapse
|
8
|
Regeneration of Articular Cartilage Using Membranes of Polyester Scaffolds in a Rabbit Model. Pharmaceutics 2022; 14:pharmaceutics14051016. [PMID: 35631602 PMCID: PMC9143412 DOI: 10.3390/pharmaceutics14051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
One promising method for cartilage regeneration involves combining known methods, such as the microfracture technique with biomaterials, e.g., scaffolds (membranes). The most important feature of such implants is their appropriate rate of biodegradation, without the production of toxic metabolites. This study presents work on two different membranes made of polyester (L-lactide-co-ε-caprolactone-PLCA) named “PVP and “Z”. The difference between them was the use of different pore precursors—polyvinylpyrrolidone in the “PVP” scaffold and gelatin in the “Z” scaffold. These were implemented in the articular cartilage defects of rabbit knee joints (defects were created for the purpose of the study). After 8, 16, and 24 weeks of observation, and the subsequent termination of the animals, histopathology and gel permeation chromatography (GPC) examinations were performed. Statistical analysis proved that the membranes support the regeneration process. GPC testing proved that the biodegradation process is progressing exponentially, causing the membranes to degrade at the appropriate time. The surgical technique we used meets all the requirements without causing the membrane to migrate after implantation. The “PVP” membrane is better due to the fact that after 24 weeks of observation there was a statistical trend for higher histological ratings. It is also better because it is easier to implant due to its lower fragility then membrane “Z”. We conclude that the selected membranes seem to support the regeneration of articular cartilage in the rabbit model.
Collapse
|
9
|
Abd El-Rahman SS, Amer MS, Hassan MH, Fahmy HM, Shamaa AA. Repair of experimentally induced femoral chondral defect in a rabbit model using Lyophilized growth promoting factor extracted from horse blood platelets (L-GF equina). Injury 2022; 53:1375-1384. [PMID: 35144808 DOI: 10.1016/j.injury.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/02/2023]
Abstract
Lyophilized equine platelet derived growth factors (LGF) is a novel advanced platelet rich protein growth factor. It has been successfully applied in various fields of regenerative medicine to treat a variety of inflammatory and degenerative musculoskeletal conditions. Our study aimed to evaluate the efficacy of intraarticularly injected LGF for the remedy of articular cartilage injury, commonly characterized by progressive pain and loss of joint function in osteoarthritic rabbits. Full-thickness cylindrical cartilage defects were generated in both femoral condylar articular surfaces in twenty rabbits. The left joint of all animals was injected with the adjuvant as a self-control negative, while the right joint was injected by LGF. Four- and eight-weeks post-surgery, the femoral condyles were harvested, and assessed grossly, microscopically and immunohistochemically. Cytokines (TNF-α, IL-1β, PDGF and TGF-β1) contents of the chondral defects were quantified by ELISA as well as the gene expression of Col I and Col II via RT-qPCR. The LGF treated defects showed significant higher ICRS (International cartilage repair society) healing scores of cartilaginous regeneration with a significant higher histological healing score on using O'Driscoll histological scoring system. Additionally, LGF significantly lowered the levels of the pro-inflammatory cytokines TNF-α and IL-1β. It also significantly increased the anabolic and angiogenic growth factors (PDGF and TGF-β1), and significantly elevated the expression of chondrogenic-related marker genes; Col I and Col II. The current study reveals that LGF improves chondral healing and thus it can be a superior nominee as an adjunctive therapy to positively influence regeneration of chondral defects in osteoarthritic patients.
Collapse
Affiliation(s)
| | - Mohammed S Amer
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Marwa H Hassan
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Hossam M Fahmy
- Clinical Laboratory and Blood Bank Department, Faculty of Medicine, Ain Shams University, Egypt
| | - Ashraf A Shamaa
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
10
|
Barlian A, Saputri DHA, Hernando A, Khoirinaya C, Prajatelistia E, Tanoto H. Spidroin striped micropattern promotes chondrogenic differentiation of human Wharton's jelly mesenchymal stem cells. Sci Rep 2022; 12:4837. [PMID: 35319008 PMCID: PMC8941093 DOI: 10.1038/s41598-022-08982-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Cartilage tissue engineering, particularly micropattern, can influence the biophysical properties of mesenchymal stem cells (MSCs) leading to chondrogenesis. In this research, human Wharton’s jelly MSCs (hWJ-MSCs) were grown on a striped micropattern containing spider silk protein (spidroin) from Argiope appensa. This research aims to direct hWJ-MSCs chondrogenesis using micropattern made of spidroin bioink as opposed to fibronectin that often used as the gold standard. Cells were cultured on striped micropattern of 500 µm and 1000 µm width sizes without chondrogenic differentiation medium for 21 days. The immunocytochemistry result showed that spidroin contains RGD sequences and facilitates cell adhesion via integrin β1. Chondrogenesis was observed through the expression of glycosaminoglycan, type II collagen, and SOX9. The result on glycosaminoglycan content proved that 1000 µm was the optimal width to support chondrogenesis. Spidroin micropattern induced significantly higher expression of SOX9 mRNA on day-21 and SOX9 protein was located inside the nucleus starting from day-7. COL2A1 mRNA of spidroin micropattern groups was downregulated on day-21 and collagen type II protein was detected starting from day-14. These results showed that spidroin micropattern enhances chondrogenic markers while maintains long-term upregulation of SOX9, and therefore has the potential as a new method for cartilage tissue engineering.
Collapse
Affiliation(s)
- Anggraini Barlian
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia. .,Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia.
| | - Dinda Hani'ah Arum Saputri
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Adriel Hernando
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Candrani Khoirinaya
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Ekavianty Prajatelistia
- Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Hutomo Tanoto
- Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| |
Collapse
|
11
|
Ruediger T, Horbert V, Reuther A, Kumar Kalla P, Burgkart RH, Walther M, Kinne RW, Mika J. Thickness of the Stifle Joint Articular Cartilage in Different Large Animal Models of Cartilage Repair and Regeneration. Cartilage 2021; 13:438S-452S. [PMID: 33269611 PMCID: PMC8721693 DOI: 10.1177/1947603520976763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Regulatory guidelines for preclinical cartilage repair studies suggest large animal models (e.g., sheep, goat, [mini]-pig, or horse) to obtain results representative for humans. However, information about the 3-dimensional thickness of articular cartilage at different implantation sites in these models is limited. DESIGN To identify the most suitable site for experimental surgery, cartilage thickness at the medial femoral condyle (MFC), lateral femoral condyle (LFC), and trochlea in ovine, caprine, and porcine cadaver stifle joints was systematically measured using hematoxylin-eosin staining of 6 µm paraffin sections and software-based image analysis. RESULTS Regarding all ventral-dorsal regions of the MFC, goat showed the thickest articular cartilage (maximal mean thickness: 1299 µm), followed by sheep (1096 µm) and mini-pig (604 µm), with the highest values in the most ventral and dorsal regions. Also for the LFC, the most ventral regions showed the thickest cartilage in goat (maximal mean thickness: 1118 µm), followed by sheep (678 µm) and mini-pig (607 µm). Except for the mini-pig, however, the cartilage thickness on the LFC was consistently lower than that on the MFC. The 3 species also differed along the transversal measuring points on the MFC and LFC. In contrast, there were no consistent differences for the regional cartilage thickness of the trochlea among goat and sheep (≥780 µm) and mini-pig (≤500 µm). CONCLUSIONS Based on their cartilage thickness, experimental defects on goat and sheep MFC may be viable options for preclinical cartilage repair studies, in addition to well-established horse models.
Collapse
Affiliation(s)
- Tina Ruediger
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH,
Eisenberg, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH,
Eisenberg, Germany
| | - Anne Reuther
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH,
Eisenberg, Germany
| | - Pavan Kumar Kalla
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH,
Eisenberg, Germany
| | - Rainer H. Burgkart
- Biomechanics Laboratory, Chair of
Orthopedics and Sport Orthopedics, Technische Universität München, Munich,
Germany
| | - Mario Walther
- Department of Medical Statistics,
Computer Sciences and Documentation, Jena University Hospital, Jena, Germany,Ernst-Abbe-Hochschule Jena, University
of Applied Sciences, Jena, Germany
| | - Raimund W. Kinne
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH,
Eisenberg, Germany,Raimund W. Kinne, Experimental Rheumatology
Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken
Eisenberg GmbH, Klosterlausnitzer Straße 81, Eisenberg, 07607, Germany.
| | - Joerg Mika
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH,
Eisenberg, Germany
| |
Collapse
|
12
|
Puzzitiello RN, Dubin J, Menendez ME, Moverman MA, Pagani NR, Drager J, Salzler MJ. Public Opinion and Expectations of Stem Cell Therapies in Orthopaedics. Arthroscopy 2021; 37:3510-3517.e2. [PMID: 34126222 DOI: 10.1016/j.arthro.2021.05.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/03/2021] [Accepted: 05/28/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To explore public opinion, understanding, and preferences regarding the use of stem cell therapies for the treatment of joint and tendon pathologies using online crowdsourcing. METHODS A 30-question survey was completed by 931 members of the public using Amazon Mechanical Turk, a validated crowdsourcing method. Outcomes included perceptions and preferences regarding the use of stem cells therapies for the nonsurgical treatment of orthopaedic conditions. Sociodemographic factors and a validated assessment of health literacy were collected. Inclusion criteria were adult participants 18 years or older, residence within the United States, and a valid Social Security number. Multivariable logistic regression modeling was used to determine population characteristics associated with the belief that stem cells represent the most effective treatment for long-standing joint or tendon disorders. RESULTS Most respondents reported that stem cell therapies have convincing evidence to support their use for orthopaedic conditions (84.5%) and are approved and regulated by the Food and Drug Administration (65%). About three-quarters of respondents reported that stem cells can stop the progression of and alleviate pain from arthritis or damaged tendons, and over half (53.5%) reported that stem cells can cure arthritis. Factors with the greatest influence on respondents' decision to receive stem cell therapies are research supporting their safety and effectiveness and doctor recommendation. However, 63.3% of respondents stated that they would consider stem cells if their doctor recommended it, regardless of evidence supporting their effectiveness, and over half would seek another doctor if their orthopaedic surgeon did not offer this treatment option. CONCLUSIONS The public's limited understanding regarding the current evidence associated with stem cell therapies for osteoarthritis and tendinous pathologies may contribute to unrealistic expectations and misinformed decisions. This study highlights the importance of patient education and expectation setting, as well as evidence transparency, as stem cell therapies become increasingly accessible. LEVEL OF EVIDENCE Level IV, case series.
Collapse
Affiliation(s)
- Richard N Puzzitiello
- Department of Orthopaedic Surgery, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, U.S.A.; New England Baptist Hospital, Boston, Massachusetts, U.S.A
| | | | - Mariano E Menendez
- Department of Orthopaedic Surgery, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, U.S.A.; New England Baptist Hospital, Boston, Massachusetts, U.S.A
| | - Michael A Moverman
- Department of Orthopaedic Surgery, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, U.S.A.; New England Baptist Hospital, Boston, Massachusetts, U.S.A
| | - Nicholas R Pagani
- Department of Orthopaedic Surgery, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, U.S.A.; New England Baptist Hospital, Boston, Massachusetts, U.S.A
| | - Justin Drager
- Department of Orthopaedic Surgery, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, U.S.A
| | - Matthew J Salzler
- Department of Orthopaedic Surgery, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, U.S.A..
| |
Collapse
|
13
|
Tamaddon M, Blunn G, Xu W, Alemán Domínguez ME, Monzón M, Donaldson J, Skinner J, Arnett TR, Wang L, Liu C. Sheep condyle model evaluation of bone marrow cell concentrate combined with a scaffold for repair of large osteochondral defects. Bone Joint Res 2021; 10:677-689. [PMID: 34665001 PMCID: PMC8559972 DOI: 10.1302/2046-3758.1010.bjr-2020-0504.r1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aims Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of large osteochondral defects when compared to the scaffold alone. Methods The ovine femoral condyle model was used. Bone marrow was aspirated, concentrated, and used intraoperatively with a collagen/hydroxyapatite scaffold to fill the osteochondral defects (n = 6). Tissue regeneration was then assessed versus the scaffold-only group (n = 6). Histological staining of cartilage with alcian blue and safranin-O, changes in chondrogenic gene expression, microCT, peripheral quantitative CT (pQCT), and force-plate gait analyses were performed. Lymph nodes and blood were analyzed for safety. Results The results six months postoperatively showed that there were no significant differences in bone regrowth and mineral density between BMC-treated animals and controls. A significant upregulation of messenger RNA (mRNA) for types I and II collagens in the BMC group was observed, but there were no differences in the formation of hyaline-like cartilage between the groups. A trend towards reduced sulphated glycosaminoglycans (sGAG) breakdown was detected in the BMC group but this was not statistically significant. Functional weightbearing was not affected by the inclusion of BMC. Conclusion Our results indicated that the addition of BMC to scaffold is safe and has some potentially beneficial effects on osteochondral-tissue regeneration, but not on the functional endpoint of orthopaedic interest. Cite this article: Bone Joint Res 2021;10(10):677–689.
Collapse
Affiliation(s)
- Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, London, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Wei Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, China
| | | | - Mario Monzón
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - James Donaldson
- Knee and Hip Unit, Royal National Orthopaedic Hospital, London, UK
| | - John Skinner
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, London, UK.,Knee and Hip Unit, Royal National Orthopaedic Hospital, London, UK
| | - Timothy R Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, London, UK
| |
Collapse
|
14
|
Chen T, Weng W, Liu Y, Aspera-Werz RH, Nüssler AK, Xu J. Update on Novel Non-Operative Treatment for Osteoarthritis: Current Status and Future Trends. Front Pharmacol 2021; 12:755230. [PMID: 34603064 PMCID: PMC8481638 DOI: 10.3389/fphar.2021.755230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability which results in a reduced quality of life. Due to the avascular nature of cartilage, damaged cartilage has a finite capacity for healing or regeneration. To date, conservative management, including physical measures and pharmacological therapy are still the principal choices offered for OA patients. Joint arthroplasties or total replacement surgeries are served as the ultimate therapeutic option to rehabilitate the joint function of patients who withstand severe OA. However, these approaches are mainly to relieve the symptoms of OA, instead of decelerating or reversing the progress of cartilage damage. Disease-modifying osteoarthritis drugs (DMOADs) aiming to modify key structures within the OA joints are in development. Tissue engineering is a promising strategy for repairing cartilage, in which cells, genes, and biomaterials are encompassed. Here, we review the current status of preclinical investigations and clinical translations of tissue engineering in the non-operative treatment of OA. Furthermore, this review provides our perspective on the challenges and future directions of tissue engineering in cartilage regeneration.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Yang Liu
- Department of Clinical Sciences, Orthopedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Romina H Aspera-Werz
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas K Nüssler
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Fazaeli H, Kalhor N, Naserpour L, Davoodi F, Sheykhhasan M, Hosseini SKE, Rabiei M, Sheikholeslami A. A Comparative Study on the Effect of Exosomes Secreted by Mesenchymal Stem Cells Derived from Adipose and Bone Marrow Tissues in the Treatment of Osteoarthritis-Induced Mouse Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9688138. [PMID: 34616850 PMCID: PMC8490078 DOI: 10.1155/2021/9688138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exosomes as extracellular vesicles (EVs) are nanoscale intercellular messengers secreted from cells to deliver biological signals. Today, exosomes have become a new field of research in regenerative medicine and are considered as potential therapies to control inflammation and wound healing and enhance and improve healing in many diseases. Given the global burden of osteoarthritis (OA) as the fastest-growing health condition and one of the major causes of physical disability in the aging population, research to establish EVs as therapeutic products can meet the basic clinical needs in the management of osteoarthritis and provide a therapeutic solution. OBJECTIVES The present study is aimed at evaluating the regenerative potentials of the exosomes secreted from adipose and bone marrow tissue-derived mesenchymal stem cells (AD- and BM-MSCs) in ameliorating the symptoms of OA. METHOD In this experimental study, AD- and BM-MSCs were isolated and cultured in the laboratory until passage 3. Finally, these cells' secreted exosomes were isolated from their conditioned medium. Ciprofloxacin-induced OA mouse models underwent intra-articular injection of exosomes from AD-MSCs and BM-MSCs. Finally, the expression levels of collagen I and II, sox9, and aggrecan genes using real-time PCR, histological analysis, and immunohistochemical (IHC) studies were performed. RESULTS Real-time PCR data showed that although the expression level of collagen type II was lower in both exosome-treated groups than the normal, but it was significantly increased in comparison with the sham and OA, with higher expression in BM-Exo rather than AD-Exo group. Similarly, the histological staining and IHC results have provided almost identical data, emphasizing on better therapeutic effect of BM-MSCs-exosome than AD-MSCs-exosome. CONCLUSION BM-MSCs secreted exosomes in comparison with AD-MSCs could be considered as a better therapeutic option to improve osteoarthritis and exhibit potential as a disease-modifying osteoarthritis cell-free product.
Collapse
Affiliation(s)
- Hoda Fazaeli
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Leila Naserpour
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Faezeh Davoodi
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | | | - Mohammad Rabiei
- Department of Biology, Faculty of Science, Azad Islamic University of Qom, Qom, Iran
| | - Azar Sheikholeslami
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| |
Collapse
|
16
|
Alahdal M, Zhang H, Huang R, Sun W, Deng Z, Duan L, Ouyang H, Wang D. Potential efficacy of dendritic cell immunomodulation in the treatment of osteoarthritis. Rheumatology (Oxford) 2021; 60:507-517. [PMID: 33249512 DOI: 10.1093/rheumatology/keaa745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Dendritic cells (DCs) are a cluster of heterogeneous antigen-presenting cells that play a pivotal role in both innate and adaptive immune responses. Rare reports have discussed their role in OA immunopathogenesis. Recently, DCs derived from the synovial fluid of OA mice were shown to have increased expression of toll-like receptors. Moreover, from in vitro studies it was concluded that DCs derived from OA patients had secreted high levels of inflammatory cytokines. Likewise, a significant increase in CD123+BDCA-2 plasmacytoid DCs has been observed in the synovial fluid of OA patients. Furthermore, DCs have a peripheral tolerance potential and can become regulatory under specific circumstances. This could be exploited as a promising tool to eliminate immunoinflammatory manifestations in OA disease. In this review, the potential roles DCs could play in OA pathogenesis have been described. In addition, suggestions for the development of new immunotherapeutic strategies involving intra-articular injections of tolerogenic plasmacytoid DCs for treating OA inflammations have been made.
Collapse
Affiliation(s)
- Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hui Zhang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China.,School of Medicine, University of South China, Hengyang, China
| | - Rongxiang Huang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China.,School of Medicine, University of South China, Hengyang, China
| | - Wei Sun
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhiqin Deng
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
17
|
Niedermair T, Lukas C, Li S, Stöckl S, Craiovan B, Brochhausen C, Federlin M, Herrmann M, Grässel S. Influence of Extracellular Vesicles Isolated From Osteoblasts of Patients With Cox-Arthrosis and/or Osteoporosis on Metabolism and Osteogenic Differentiation of BMSCs. Front Bioeng Biotechnol 2020; 8:615520. [PMID: 33425878 PMCID: PMC7785908 DOI: 10.3389/fbioe.2020.615520] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Studies with extracellular vesicles (EVs), including exosomes, isolated from mesenchymal stem cells (MSC) indicate benefits for the treatment of musculoskeletal pathologies as osteoarthritis (OA) and osteoporosis (OP). However, little is known about intercellular effects of EVs derived from pathologically altered cells that might influence the outcome by counteracting effects from “healthy” MSC derived EVs. We hypothesize, that EVs isolated from osteoblasts of patients with hip OA (coxarthrosis/CA), osteoporosis (OP), or a combination of both (CA/OP) might negatively affect metabolism and osteogenic differentiation of bone-marrow derived (B)MSCs. Methods: Osteoblasts, isolated from bone explants of CA, OP, and CA/OP patients, were compared regarding growth, viability, and osteogenic differentiation capacity. Structural features of bone explants were analyzed via μCT. EVs were isolated from supernatant of naïve BMSCs and CA, OP, and CA/OP osteoblasts (osteogenic culture for 35 days). BMSC cultures were stimulated with EVs and subsequently, cell metabolism, osteogenic marker gene expression, and osteogenic differentiation were analyzed. Results: Trabecular bone structure was different between the three groups with lowest number and highest separation in the CA/OP group. Viability and Alizarin red staining increased over culture time in CA/OP osteoblasts whereas growth of osteoblasts was comparable. Alizarin red staining was by trend higher in CA compared to OP osteoblasts after 35 days and ALP activity was higher after 28 and 35 days. Stimulation of BMSC cultures with CA, OP, and CA/OP EVs did not affect proliferation but increased caspase 3/7-activity compared to unstimulated BMSCs. BMSC viability was reduced after stimulation with CA and CA/OP EVs compared to unstimulated BMSCs or stimulation with OP EVs. ALP gene expression and activity were reduced in BMSCs after stimulation with CA, OP, and CA/OP EVs. Stimulation of BMSCs with CA EVs reduced Alizarin Red staining by trend. Conclusion: Stimulation of BMSCs with EVs isolated from CA, OP, and CA/OP osteoblasts had mostly catabolic effects on cell metabolism and osteogenic differentiation irrespective of donor pathology and reflect the impact of tissue microenvironment on cell metabolism. These catabolic effects are important for understanding differences in effects of EVs on target tissues/cells when harnessing them as therapeutic drugs.
Collapse
Affiliation(s)
- Tanja Niedermair
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Christoph Lukas
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Shushan Li
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Sabine Stöckl
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Benjamin Craiovan
- Chair of Arthroplasty, Center for Orthopaedics and Trauma Surgery, University Hospital Giessen and Marburg GmbH, Marburg, Germany
| | | | - Marianne Federlin
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Marietta Herrmann
- IInterdisciplinary Center for Clinical Research (IZKF), Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg and Bernhard-Heine-Center for Locomotion Research, University of Würzburg, Würzburg, Germany
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| |
Collapse
|
18
|
Systematic Postoperative Assessment of a Minimally-Invasive Sheep Model for the Treatment of Osteochondral Defects. Life (Basel) 2020; 10:life10120332. [PMID: 33297497 PMCID: PMC7762399 DOI: 10.3390/life10120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 11/26/2022] Open
Abstract
To assess the clinical course of a sheep stifle joint model for osteochondral (OC) defects, medial femoral condyles (MFC) were exposed without patella luxation using medial parapatellar skin (3–4 cm) and deep incisions (2–3 cm). Two defects (7 mm diameter; 10 mm depth; OC punch) were left empty or refilled with osteochondral autologous transplantation cylinders (OATS) and explanted after six weeks. Incision-to-suture time, anesthesia time, and postoperative wound or impairment scores were compared to those in sham-operated animals. Implant performance was assessed by X-ray, micro-computed tomography, histology, and immunohistology (collagens 1, 2; aggrecan). There were no surgery-related infections or patellar luxations. Operation, anesthesia, and time to complete stand were short (0.5, 1.4, and 1.5 h, respectively). The wound trauma score was low (0.4 of maximally 4; day 7). Empty-defect and OATS animals reached an impairment score of 0 significantly later than sham animals (7.4 and 4.0 days, respectively, versus 1.5 days). Empty defects showed incomplete healing and dedifferentiation/heterotopic differentiation; OATS-filled defects displayed advanced bone healing with remaining cartilage gaps and orthotopic expression of bone and cartilage markers. Minimally-invasive, medial parapatellar surgery of OC defects on the sheep MFC allows rapid and low-trauma recovery and appears well-suited for implant testing.
Collapse
|
19
|
Sriwatananukulkit O, Tawonsawatruk T, Rattanapinyopituk K, Luangwattanawilai T, Srikaew N, Hemstapat R. Scaffold-Free Cartilage Construct from Infrapatellar Fat Pad Stem Cells for Cartilage Restoration. Tissue Eng Part A 2020; 28:199-211. [PMID: 32972295 DOI: 10.1089/ten.tea.2020.0167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Once damaged, the articular cartilage has a very limited intrinsic capacity for self-renewal due to its avascular nature. If left untreated, damaged cartilage can lead to progressive degeneration of bone and eventually causes pain. Infrapatellar fat pad adipose-derived mesenchymal stromal cells (IPFP-ASCs) has a potential role for cartilage restoration. However, the therapeutic role for IPFP-ASCs remains to be evaluated in an appropriate osteochondral defect model. Thus, this study aimed to investigate the potential of using a three-dimensional (3D) cartilage construct of IPFP-ASCs as a promising source of cells to restore articular cartilage and to attenuate pain associated with the cartilage defect in an osteochondral defect model. The chondrogenic differentiation potential of the 3D cartilage construct derived from IPFP-ASCs was determined before implantation and postimplantation by gene expression and immunohistochemistry analysis. Pain-related behavior was also assessed by using a weight-bearing test. A significant pain-associated with the osteochondral defect was observed in this model in all groups postinduction; however, this pain can spontaneously resolve within 3 weeks postimplantation regardless of implantation of IPFP-ASCs constructs. The expression of SOX9 and COL2A1 genes in addition to protein expression were strongly expressed in 3D construct IPFP-ASCs. The existence of mature chondrocytes, along with significant (p < 0.05) positive immunostaining for type II collagen and aggrecan, were identified in the implanted site for up to 12 weeks compared with the untreated group, indicating hyaline cartilage regeneration. Taken together, this study demonstrated the successful outcome of osteochondral regeneration with scaffold-free IPFP-ASCs constructs in an osteochondral defect rat model. It provides novel and interesting insights into the current hypothesis that 3D construct IPFP-ASCs may offer potential benefits as an alternative approach to repair the cartilage defect. Impact statement This study provides evidence of using the human 3D scaffold-free infrapatellar fat pad adipose-derived mesenchymal stromal cells (IPFP-ASCs) construct to restore the full-thickness osteochondral defect in a rat model. This study showed that chondrogenic features of the construct could be retained for up to 12 weeks postimplantation. The results of this proof-of-concept study support that human 3D scaffold-free IPFP-ASCs construct has potential benefits in promoting the hyaline-like native cartilage restoration, which may be beneficial as a tissue-specific stem cell for cell-based cartilage therapy. There are several clinical advantages of IPFP-ASC including ease and minimal invasive harvesting, chondrogenic inducible property, and tissue-specific progenitors in the knee.
Collapse
Affiliation(s)
| | | | - Kasem Rattanapinyopituk
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Narongrit Srikaew
- Research Centre, Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand
| | - Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
20
|
Kabir W, Di Bella C, Jo I, Gould D, Choong PFM. Human Stem Cell Based Tissue Engineering for In Vivo Cartilage Repair: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:74-93. [PMID: 32729380 DOI: 10.1089/ten.teb.2020.0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pure chondral defects represent the most clinically significant articular cartilage injuries. To inform the development of clinically suitable tissue-engineering strategies for chondral repair using cells from a human patient, the combination of human stem cells (HSCs), biomaterial scaffolds, and growth factors has been widely harnessed in preclinical animal models. Due to the large heterogeneity in study designs and outcome reporting in such studies, we aimed to systematically review literature pertaining to HSC based tissue engineering strategies in animal models of chondral repair such that trends may be identified and the utility of HSCs in chondral repair can be elucidated. An extensive search strategy was carried out through PubMed, MEDLINE, and EMBASE databases to identify relevant studies. Initially the title and abstract of 787 studies were screened after which inclusion and exclusion criteria sorted 56 studies for full-text evaluation. Following full text review, a final number of 22 articles were included. Out of 22 included studies, 16 used scaffold implantation, 2 used cell pellet implantation, and 4 used intra-articular injection to administer HSCs to the region of chondral defects. HSC-containing implants outperformed scaffold-only or untreated control groups in both large and small animals for chondral regeneration. Umbilical cord mesenchymal stem cells and hyaluronic acid-containing scaffolds emerged as popular stem cell and scaffold choices, respectively. However, the short analysis timepoints post cell implantation was a key limitation in many studies. This review highlights the versatility of HSCs in achieving chondral regeneration in vivo and the enhancement of chondral repair through the selection of appropriate three-dimensional scaffolds and growth factors which are essential to support cell growth, attachment, migration, and extracellular matrix synthesis. Considerable heterogeneity exists in outcome reporting, and only one article reported biomechanical evaluation of neocartilage. Standardized outcome reporting systems that include comprehensive biomechanical testing protocols should be utilized in future in vivo studies of cartilage tissue engineering as the biomechanical quality of neocartilage is of great functional significance.
Collapse
Affiliation(s)
- Wassif Kabir
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.,BioFab3D, Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Fitzroy, Australia
| | - Claudia Di Bella
- BioFab3D, Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Fitzroy, Australia.,Department of Orthopaedics, St. Vincent's Hospital, Fitzroy, Victoria, Australia.,Department of Surgery, University of Melbourne, Clinical Sciences Building, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Imkyeong Jo
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Gould
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Peter F M Choong
- BioFab3D, Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Fitzroy, Australia.,Department of Orthopaedics, St. Vincent's Hospital, Fitzroy, Victoria, Australia.,Department of Surgery, University of Melbourne, Clinical Sciences Building, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
21
|
Song Y, Zhang J, Xu H, Lin Z, Chang H, Liu W, Kong L. Mesenchymal stem cells in knee osteoarthritis treatment: A systematic review and meta-analysis. J Orthop Translat 2020; 24:121-130. [PMID: 32913710 PMCID: PMC7452318 DOI: 10.1016/j.jot.2020.03.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Stem cells are considered to be one of the greatest potential treatments to cure degenerative diseases. Stem cells injection for knee osteoarthritis (OA) is still a relatively new treatment and has not yet gained popularity. So, the effectiveness, safety and potential of mesenchymal stem cells (MSCs) for knee OA treatment is worthy to be explored. Explore the effectiveness and safety of mesenchymal stem cells (MSCs) in the treatment of knee osteoarthritis. We collected clinical trials using MSCs as treatment for knee OA (before April 2019), including randomized controlled trials (RCTs), retrospective studies and cohort studies. We searched PubMed, EMBASE, Cochrane Library, Web of Science and the ClinicalTrials.gov with keywords (Mesenchymal stem cells [MSCs], Knee osteoarthritis, Effectiveness and Safety), and then performed a systematic review and cumulative metaanalysis of all RCTs and retrospective comparative studies. To evaluate the effectiveness and safety of MSC in knee OA treatment, we applied visual analog scale score, Western Ontario and McMaster Universities Osteo-arthritis Index and adverse events. We included 15 RCTs, two retrospective studies and two cohort studies including a total of 584 knee OA patients in this study. We demonstrated that MSC treatment could significantly decrease visual analog scale in a 12-month follow-up study compared with controls (p < 0.001). MSC therapy also showed significant decreases in Western Ontario and McMaster Universities Osteoarthritis Index scores after the 6-month follow-up (p < 0.001). MSC therapy showed no difference compared with controls (p > 0.05) in adverse events. We suggest that MSC therapy could serve as an effective and safe therapy for clinical application in OA treatment. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This study provided the best available evidence and a wider perspective to MSCs application in the management of knee OA. MSCs therapy will have great translational potential in the clinical treatment of various degenerative diseases once optimum formula and explicit target population are identified.
Collapse
Affiliation(s)
- Yancheng Song
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Corresponding author. Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Rd., Yuexiu District, 510000, Guangzhou, China.
| | - Junhui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hualiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhujian Lin
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hong Chang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ling Kong
- Department of Basic Research & International Cooperation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Corresponding author. Department of Basic Research & International Cooperation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.
| |
Collapse
|
22
|
Veber M, Vogler J, Knežević M, Barlič A, Drobnič M. Combination of Filtered Bone Marrow Aspirate and Biomimetic Scaffold for the Treatment of Knee Osteochondral Lesions: Cellular and Early Clinical Results of a Single Centre Case Series. Tissue Eng Regen Med 2020; 17:375-386. [PMID: 32329022 DOI: 10.1007/s13770-020-00253-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Osteochondral injury is a very common orthopaedic pathology, mainly affecting young, active population, with limited current treatment options. Herein we are presenting cellular and early clinical data of a patient series treated for chronic osteochondral lesions in the knee with a filter-based intra-operative bone marrow aspirate (BMA) separation device. METHODS Fifteen patients with chronic knee osteochondral lesions (60% females, 19-59 years) were included in this prospective case series. Filtered BMA (f-BMA), containing mesenchymal stem/stromal cells (MSCs), was combined with a biomimetic collagen-hydroxyapatite scaffold (CHAS) and implanted into the site of the lesion. Harvested BMA and post-separation f-BMA were analysed for blood cell counts, flow cytometry, and fibroblast colony forming units (CFU-Fs). Patients were followed for serious adverse events and graft failures. Clinical evaluation was assessed using the knee injury and osteoarthritis outcome score (KOOS). In 8 patients a magnetic resonance imaging (MRI)/arthroscopy were performed. RESULTS Cell suspension contained 0.027% CD271+ CD45- 7-AAD- cells, 0.15% CD73+ CD90+ CD105+ cells and 0.0012% CFU-Fs of all nucleated cells with 86% viability. Filtration process resulted in 12.8 (4.0-40.8) fold enrichment in terms of CFU-F content in comparison to initial BMA. No serious adverse events related directly to the osteochondral treatment were reported. After an average follow-up of 20 months (14-25) all KOOS subscales (Symptoms/Pain/Daily activities/Sport and recreation/Quality of life) increased significantly from pre-operative 55/56/67/30/30 to post-operative 73/76/79/51/52 (p values < 0.05), respectively. MRI or arthroscopic evaluation revealed nearly normal to normal overall International Cartilage Repair Society assessment in 7/8 patients. CONCLUSION The filter-based BMA separation procedure significantly increased the frequency of mesenchymal stem/stromal cells (MSCs), however their concentration was not increased. The clinical evaluation revealed high safety profile of the treatment and resulted in improved clinical status of the patients.
Collapse
Affiliation(s)
| | - Jan Vogler
- Department of Orthopedic Surgery, University Medical Centre Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | | | | | - Matej Drobnič
- Department of Orthopedic Surgery, University Medical Centre Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.,Chair of Orthopedics, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
23
|
Cartilage Tissue-Mimetic Pellets with Multifunctional Magnetic Hyaluronic Acid-Graft-Amphiphilic Gelatin Microcapsules for Chondrogenic Stimulation. Polymers (Basel) 2020; 12:polym12040785. [PMID: 32252253 PMCID: PMC7240739 DOI: 10.3390/polym12040785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Articular cartilage defect is a common disorder caused by sustained mechanical stress. Owing to its nature of avascular, cartilage had less reconstruction ability so there is always a need for other repair strategies. In this study, we proposed tissue-mimetic pellets composed of chondrocytes and hyaluronic acid-graft-amphiphilic gelatin microcapsules (HA-AGMCs) to serve as biomimetic chondrocyte extracellular matrix (ECM) environments. The multifunctional HA-AGMC with specific targeting on CD44 receptors provides excellent structural stability and demonstrates high cell viability even in the center of pellets after 14 days culture. Furthermore, with superparamagnetic iron oxide nanoparticles (SPIOs) in the microcapsule shell of HA-AGMCs, it not only showed sound cell guiding ability but also induced two physical stimulations of static magnetic field(S) and magnet-derived shear stress (MF) on chondrogenic regeneration. Cartilage tissue-specific gene expressions of Col II and SOX9 were upregulated in the present of HA-AGMC in the early stage, and HA-AGMC+MF+S held the highest chondrogenic commitments throughout the study. Additionally, cartilage tissue-mimetic pellets with magnetic stimulation can stimulate chondrogenesis and sGAG synthesis.
Collapse
|
24
|
Huang R, Li W, Zhao Y, Yang F, Xu M. Clinical efficacy and safety of stem cell therapy for knee osteoarthritis: A meta-analysis. Medicine (Baltimore) 2020; 99:e19434. [PMID: 32176071 PMCID: PMC7220405 DOI: 10.1097/md.0000000000019434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/11/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We performed a meta-analysis of the efficacy and safety of stem cell therapy as a clinical treatment of knee osteoarthritis. This meta-analysis is expected to provide evidence of the efficacy of stem cell therapy, which is currently controversial, as a conservative treatment for knee osteoarthritis. METHODS An online search for relevant articles was conducted in the PubMed, EMBASE, and Cochrane Library databases. The search terms were "stem cells" and "osteoarthritis." We conducted a quality assessment of the included articles and extracted the following indicators: Visual Analogue Scale (VAS) score, Subjective International Knee Documentation Committee (IKDC) score, Western Ontario and McMaster Universities (WOMAC) subscales, and adverse events. The RevMan5.3 software was used for determining effect sizes. RESULTS Nine randomized controlled trials involving 339 patients were included. VAS score and IKDC score from baseline to 24 months were improved in the stem cell therapy group compared to those in the control group. However, no significant difference was observed between the 2 groups in IKDC score changes from baseline to 6 and 12 months, as well as in WOMAC-Pain, WOMAC-Stiffness, and WOMAC-Physical Function score changes at each visit point. CONCLUSION Stem cell therapy is certainly superior to traditional treatments in the conservative treatment of KOA; it considerably reduces pain with no obvious additional side effects.
Collapse
Affiliation(s)
- Rui Huang
- Department of neurosurgery, The Second Hospital of Jilin University
| | - Wei Li
- Department of pediatrics, The First Hospital of Jilin University
| | - Ying Zhao
- Department of hand surgery, The Second Hospital of Jilin University
| | - Fan Yang
- College of Mathematics, Jilin University
| | - Meng Xu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Wu T, Chen Y, Liu W, Tong KL, Suen CWW, Huang S, Hou H, She G, Zhang H, Zheng X, Li J, Zha Z. Ginsenoside Rb1/TGF-β1 loaded biodegradable silk fibroin-gelatin porous scaffolds for inflammation inhibition and cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110757. [PMID: 32279738 DOI: 10.1016/j.msec.2020.110757] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/15/2020] [Indexed: 01/06/2023]
Abstract
Creating a microenvironment with low inflammation and favorable for the chondrogenic differentiation of endogenous stem cells plays an essential role in cartilage repairing. In the present study, we design a novel ginsenoside Rb1/TGF-β1 loaded silk fibroin-gelatin porous scaffold (GSTR) with the function of attenuating inflammation and promoting chondrogenesis. The scaffold has porous microstructure, proper mechanical strength, degradation rate and sustained release of Rb1 and TGF-β1. Rat bone marrow-derived mesenchymal stem cells (rBMSCs) seeded into GSTR scaffolds are homogeneously distributed and display a higher proliferation rate than non-loaded scaffolds (GS). GSTR scaffolds promote the chondrogenic differentiation of rBMSCs and suppress the expression of inflammation genes. Under the stimulation of IL-1β, the inflammation level of the chondrocytes seeded in GSTR scaffolds is also significantly down-regulated. Moreover, GSTR scaffolds implanted into the osteochondral defects in rats effectively promote the regeneration of hyaline cartilage 12 weeks after surgery when compared with other groups. It is demonstrated that this scaffold loaded with Rb1 and TGF-β1 can synergistically create a microenvironment favorable for cartilage regeneration by promoting the chondrogenesis and suppressing the inflammation levels in vivo. These results prove it has a great potential to develop this Rb1/TGF-β1 releasing scaffold into a novel and promising therapeutic for cartilage repair.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Yuanfeng Chen
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China.
| | - Wenping Liu
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Kui Leung Tong
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Chun-Wai Wade Suen
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Shusen Huang
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Huige Hou
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Guorong She
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Huantian Zhang
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Xiaofei Zheng
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Jieruo Li
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China.
| | - Zhengang Zha
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China.
| |
Collapse
|
26
|
Mahmoudi Z, Mohammadnejad J, Razavi Bazaz S, Abouei Mehrizi A, Saidijam M, Dinarvand R, Ebrahimi Warkiani M, Soleimani M. Promoted chondrogenesis of hMCSs with controlled release of TGF-β3 via microfluidics synthesized alginate nanogels. Carbohydr Polym 2020; 229:115551. [DOI: 10.1016/j.carbpol.2019.115551] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022]
|
27
|
Vidoni C, Ferraresi A, Secomandi E, Vallino L, Gardin C, Zavan B, Mortellaro C, Isidoro C. Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells. Cell Commun Signal 2019; 17:98. [PMID: 31426798 PMCID: PMC6701103 DOI: 10.1186/s12964-019-0414-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIM Autophagy is a macromolecular degradation process playing a pivotal role in the maintenance of stem-like features and in the morpho-functional remodeling of the tissues undergoing differentiation. In this work we investigated the involvement of autophagy in the osteogenic differentiation of mesenchymal stem cells originated from human gingiva (HGMSC). METHODS To promote the osteogenic differentiation of HGMSCs we employed resveratrol, a nutraceutical known to modulate autophagy and cell differentiation, together with osteoblastic inductive factors. Osteoblastic differentiation and autophagy were monitored through western blotting and immunofluorescence staining of specific markers. RESULTS We show that HGMSCs can differentiate into osteoblasts when cultured in the presence of appropriate factors and that resveratrol accelerates this process by up-regulating autophagy. The prolonged incubation with dexamethasone, β-glycerophosphate and ascorbic acid induced the osteogenic differentiation of HGMSCc with increased expression of autophagy markers. Resveratrol (1 μM) alone elicited a less marked osteogenic differentiation yet it greatly induced autophagy and, when added to the osteogenic differentiation factors, it provoked a synergistic effect. Resveratrol and osteogenic inductive factors synergistically induced the AMPK-BECLIN-1 pro-autophagic pathway in differentiating HGMSCs, that was thereafter downregulated in osteoblastic differentiated cells. Pharmacologic inhibition of BECLIN-1-dependent autophagy precluded the osteogenic differentiation of HGMSCs. CONCLUSIONS Autophagy modulation is instrumental for osteoblastic differentiation of HGMSCs. The present findings can be translated into the regenerative cell therapy of maxillary / mandibular bone defects.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy
| | - Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, via Corriera 1, 48033, Cotignola, Ravenna, Italy
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, via Corriera 1, 48033, Cotignola, Ravenna, Italy.,Medical Sciences Department, University of Ferrara, Via Fossato di Mortara, 70, Ferrara, Italy
| | - Carmen Mortellaro
- Oral Surgery Unit, Department of Medical Science, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy.
| |
Collapse
|
28
|
Chen Y, Wu T, Huang S, Suen CWW, Cheng X, Li J, Hou H, She G, Zhang H, Wang H, Zheng X, Zha Z. Sustained Release SDF-1α/TGF-β1-Loaded Silk Fibroin-Porous Gelatin Scaffold Promotes Cartilage Repair. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14608-14618. [PMID: 30938503 DOI: 10.1021/acsami.9b01532] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Continuous delivery of growth factors to the injury site is crucial to creating a favorable microenvironment for cartilage injury repair. In the present study, we fabricated a novel sustained-release scaffold, stromal-derived factor-1α (SDF-1α)/transforming growth factor-β1 (TGF-β1)-loaded silk fibroin-porous gelatin scaffold (GSTS). GSTS persistently releases SDF-1α and TGF-β1, which enhance cartilage repair by facilitating cell homing and chondrogenic differentiation. Scanning electron microscopy showed that GSTS is a porous microstructure and the protein release assay demonstrated the sustainable release of SDF-1α and TGF-β1 from GSTS. Bone marrow-derived mesenchymal stem cells (MSCs) maintain high in vitro cell activity and excellent cell distribution and phenotype after seeding into GSTS. Furthermore, MSCs acquired enhanced chondrogenic differentiation capability in the TGF-β1-loaded scaffolds (GSTS or GST: loading TGF-β1 only) and the conditioned medium from SDF-1α-loaded scaffolds (GSTS or GSS: loading SDF-1α only) effectively promoted MSCs migration. GSTS was transplanted into the osteochondral defects in the knee joint of rats, and it could promote cartilage regeneration and repair the cartilage defects at 12 weeks after transplantation. Our study shows that GSTS can facilitate in vitro MSCs homing, migration, chondrogenic differentiation and SDF-1α and TGF-β1 have a synergistic effect on the promotion of in vivo cartilage forming. This SDF-1α and TGF-β1 releasing GSTS have promising therapeutic potential in cartilage repair.
Collapse
Affiliation(s)
- Yuanfeng Chen
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Tingting Wu
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Shusen Huang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Chun-Wai Wade Suen
- Department of Genetics , University of Cambridge , Cambridge CB2 3EH , United Kingdom
| | - Xin Cheng
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College , Jinan University , Guangzhou 510632 , Guangdong , P. R. China
| | - Jieruo Li
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Huige Hou
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Guorong She
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Huantian Zhang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Huajun Wang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Xiaofei Zheng
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Zhengang Zha
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| |
Collapse
|
29
|
Integrated Multi-Assay Culture Model for Stem Cell Chondrogenic Differentiation. Int J Mol Sci 2019; 20:ijms20040951. [PMID: 30813231 PMCID: PMC6413173 DOI: 10.3390/ijms20040951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 01/14/2023] Open
Abstract
Recent osteochondral repair strategies highlight the promise of mesenchymal progenitors, an accessible stem cell source with osteogenic and chondrogenic potential, used in conjunction with biomaterials for tissue engineering. For this, regenerative medicine approaches require robust models to ensure selected cell populations can generate the desired cell type in a reproducible and measurable manner. Techniques for in vitro chondrogenic differentiation are well-established but largely qualitative, relying on sample staining and imaging. To facilitate the in vitro screening of pro-chondrogenic treatments, a 3D micropellet culture combined with three quantitative GAG assays has been developed, with a fourth parallel assay measuring sample content to enable normalisation. The effect of transforming growth factor beta (TGF-β) used to validate this culture format produced a measurable increase in proteoglycan production in the parallel assays, in both 2D and 3D culture configurations. When compared to traditional micropellets, the monolayer format appeared less able to detect changes in cell differentiation, however in-well 3D cultures displayed a significant differential response. Effects on collagen 2 expression confirmed these observations. Based on these results, a microplate format was optimised for 3D culture, in a high-throughput in-well configuration. This model showed improved sensitivity and confirmed the 3D micropellet in-well quantitative assays as an effective differentiation format compatible with streamlined, high-throughput chondrogenic screens.
Collapse
|
30
|
Markides H, Newell KJ, Rudorf H, Ferreras LB, Dixon JE, Morris RH, Graves M, Kaggie J, Henson F, El Haj AJ. Ex vivo MRI cell tracking of autologous mesenchymal stromal cells in an ovine osteochondral defect model. Stem Cell Res Ther 2019; 10:25. [PMID: 30635066 PMCID: PMC6330448 DOI: 10.1186/s13287-018-1123-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/04/2018] [Accepted: 12/25/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Osteochondral injuries represent a significant clinical problem requiring novel cell-based therapies to restore function of the damaged joint with the use of mesenchymal stromal cells (MSCs) leading research efforts. Pre-clinical studies are fundamental in translating such therapies; however, technologies to minimally invasively assess in vivo cell fate are currently limited. We investigate the potential of a MRI- (magnetic resonance imaging) and superparamagnetic iron oxide nanoparticle (SPION)-based technique to monitor cellular bio-distribution in an ovine osteochondral model of acute and chronic injuries. METHODS MSCs were isolated, expanded and labelled with Nanomag, a 250-nm SPION, and using a novel cell-penetrating technique, glycosaminoglycan-binding enhanced transduction (GET). MRI visibility thresholds, cellular toxicity and differentiation potential post-labelling were assessed in vitro. A single osteochondral defect was created in the medial femoral condyle in the left knee joint of each sheep with the contralateral joint serving as the control. Cells, either GET-Nanomag labelled or unlabelled, were delivered 1 week or 4.5 weeks later. Sheep were sacrificed 7 days post implantation and immediately MR imaged using a 0.2-T MRI scanner and validated on a 3-T MRI scanner prior to histological evaluation. RESULTS MRI data demonstrated a significant increase in MRI contrast as a result of GET-Nanomag labelling whilst cell viability, proliferation and differentiation capabilities were not affected. MRI results revealed evidence of implanted cells within the synovial joint of the injured leg of the chronic model only with no signs of cell localisation to the defect site in either model. This was validated histologically determining the location of implanted cells in the synovium. Evidence of engulfment of Nanomag-labelled cells by leukocytes is observed in the injured legs of the chronic model only. Finally, serum c-reactive protein (CRP) levels were measured by ELISA with no obvious increase in CRP levels observed as a result of P21-8R:Nanomag delivery. CONCLUSION This study has the potential to be a powerful translational tool with great implications in the clinical translation of stem cell-based therapies. Further, we have demonstrated the ability to obtain information linked to key biological events occurring post implantation, essential in designing therapies and selecting pre-clinical models.
Collapse
Affiliation(s)
- Hareklea Markides
- Institute of Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent, ST4 7QB UK
- Department of Chemical Engineering, Healthcare Technologies Institute, Birmingham University, B15 2TT, Birmingham, UK
| | - Karin J. Newell
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Hills Road Cambridge, Cambridge, CB2 0QQ UK
| | - Heike Rudorf
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES UK
| | - Lia Blokpoel Ferreras
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - James E. Dixon
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD UK
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NF UK
| | - Robert H. Morris
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NF UK
- Department of Radiology, University of Cambridge, Hills Rd, Cambridge, CB2 0QQ UK
| | - Martin Graves
- Department of Radiology, University of Cambridge, Hills Rd, Cambridge, CB2 0QQ UK
| | - Joshua Kaggie
- Department of Radiology, University of Cambridge, Hills Rd, Cambridge, CB2 0QQ UK
| | - Frances Henson
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Hills Road Cambridge, Cambridge, CB2 0QQ UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES UK
| | - Alicia J. El Haj
- Institute of Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent, ST4 7QB UK
- Department of Chemical Engineering, Healthcare Technologies Institute, Birmingham University, B15 2TT, Birmingham, UK
| |
Collapse
|
31
|
Critchley S, Cunniffe G, O'Reilly A, Diaz-Payno P, Schipani R, McAlinden A, Withers D, Shin J, Alsberg E, Kelly DJ. Regeneration of Osteochondral Defects Using Developmentally Inspired Cartilaginous Templates. Tissue Eng Part A 2018; 25:159-171. [PMID: 30358516 DOI: 10.1089/ten.tea.2018.0046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Successfully treating osteochondral defects involves regenerating both the damaged articular cartilage and the underlying subchondral bone, in addition to the complex interface that separates these tissues. In this study, we demonstrate that a cartilage template, engineered using bone marrow-derived mesenchymal stem cells, can enhance the regeneration of such defects and promote the development of a more mechanically functional repair tissue. We also use a computational mechanobiological model to understand how joint-specific environmental factors, specifically oxygen levels and tissue strains, regulate the conversion of the engineered template into cartilage and bone in vivo.
Collapse
Affiliation(s)
- Susan Critchley
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Gráinne Cunniffe
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Adam O'Reilly
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Pedro Diaz-Payno
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Rossana Schipani
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Aidan McAlinden
- 3 Section of Veterinary Clinical Studies, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | | - Jungyoun Shin
- 5 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Eben Alsberg
- 5 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.,6 Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio.,7 National Centre for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Daniel J Kelly
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,8 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland.,9 Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
32
|
Iturriaga L, Hernáez-Moya R, Erezuma I, Dolatshahi-Pirouz A, Orive G. Advances in stem cell therapy for cartilage regeneration in osteoarthritis. Expert Opin Biol Ther 2018; 18:883-896. [PMID: 30020816 DOI: 10.1080/14712598.2018.1502266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Osteoarthritis (OA) is a progressive joint disease that compromises the structural integrity of cartilage tissue. Conventional treatments based on medication or surgery are nowadays inefficient and cell-based therapy has emerged as one of the most promising methods for cartilage regeneration. The first therapy developed for cartilage defects was autologous chondrocyte implantation, but in the last few decades stem cells (SCs) from different sources have been proposed as a possible alternative for OA. AREAS COVERED SC sources and available delivery procedures (scaffolds/hydrogels) are presented, along with the main issues arisen in this regard. Thereafter, preclinical and clinical trials performed in recent years are reviewed in order to take a glance toward the potential benefits that such therapies could deliver to the patients. EXPERT OPINION SCs have proven their potential and safety for OA treatment. Nevertheless, there are still many questions to be resolved before their widespread used in clinical practice, such as the treatment mechanism, the best cell source, the most appropriate processing method, the most effective dose and delivery procedure, and their efficacy. In this sense, long-term follow-up and larger randomized controlled trials utilizing standardized and established outcome scores are mandatory to make objective conclusions.
Collapse
Affiliation(s)
- Leire Iturriaga
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Raquel Hernáez-Moya
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Itsasne Erezuma
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Alireza Dolatshahi-Pirouz
- c DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , Lyngby , Denmark
| | - Gorka Orive
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain.,d University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua) , Vitoria , Spain
| |
Collapse
|
33
|
Chiang CS, Chen JY, Chiang MY, Hou KT, Li WM, Chang SJ, Chen SY. Using the interplay of magnetic guidance and controlled TGF-β release from protein-based nanocapsules to stimulate chondrogenesis. Int J Nanomedicine 2018; 13:3177-3188. [PMID: 29922054 PMCID: PMC5995423 DOI: 10.2147/ijn.s156284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction Stimulating the proliferation and differentiation of chondrocytes for the regeneration of articular cartilage is a promising strategy, but it is currently ineffective. Although both physical stimulation and growth factors play important roles in cartilage repair, their interplay remains unclear and requires further investigation. In this study, we aimed to clarify their contribution using a magnetic drug carrier that not only can deliver growth factors but also provide an external stimulation to cells in the two-dimensional environment. Materials and methods We developed a nanocapsule (transforming growth factor-β1 [TGF-β1]-loaded magnetic amphiphilic gelatin nanocapsules [MAGNCs]; TGF-β1@MAGNCs) composed of hexanoic-anhydride-grafted gelatin and iron oxide nanoparticles to provide a combination treatment of TGF-β1 and magnetically induced physical stimuli. With the expression of Arg-Gly-Asp peptide in the gelatin, the TGF-β1@MAGNCs have an inherent affinity for chondrogenic ATDC5 cells. Results In the absence of TGF-β1, ATDC5 cells treated with a magnetic field show significantly upregulated Col2a1 expression. Moreover, TGF-β1 slowly released from biodegradable TGF-β1@ MAGNCs further improves the differentiation with increased expression of Col2a1 and Aggrecan. Conclusion Our study shows the time-dependent interplay of physical stimuli and growth factors on chondrogenic regeneration, and demonstrates the promising use of TGF-β1@MAGNCs for articular cartilage repair.
Collapse
Affiliation(s)
- Chih-Sheng Chiang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Jian-Yi Chen
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Min-Yu Chiang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Kai-Ting Hou
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Ming Li
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Shwu-Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
34
|
Petters O, Schmidt C, Thuemmler C, Peinemann F, Zscharnack M, Somerson JS, Schulz RM. Point-of-care treatment of focal cartilage defects with selected chondrogenic mesenchymal stromal cells-An in vitro proof-of-concept study. J Tissue Eng Regen Med 2018; 12:1717-1727. [PMID: 29766671 DOI: 10.1002/term.2699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 08/16/2017] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Abstract
Due to the poor self-healing capacities of cartilage, innovative approaches are a major clinical need. The use of in vitro expanded mesenchymal stromal cells (MSCs) in a 2-stage approach is accompanied by cost-, time-, and personnel-intensive good manufacturing practice production. A 1-stage intraoperative procedure could overcome these drawbacks. The aim was to prove the feasibility of a point-of-care concept for the treatment of cartilage lesions using defined MSC subpopulations in a collagen hydrogel without prior MSC monolayer expansion. We tested 4 single marker candidates (MSCA-1, W4A5, CD146, CD271) for their effectiveness of separating colony-forming units of ovine MSCs via magnetic cell separation. The most promising surface marker with regard to the highest enrichment of colony-forming cells was subsequently used to isolate a MSC subpopulation for the direct generation of a cartilage graft composed of a collagen type I hydrogel without the propagation of MSCs in monolayer. We observed that separation with CD271 sustained the highest enrichment of colony-forming units. We then demonstrated the feasibility of generating a cartilage graft with an unsorted bone marrow mononuclear cell fraction and with a characterized CD271 positive MSC subpopulation without the need for a prior cell expansion. A reduced volume of 6.25% of the CD271 positive MSCs was needed to achieve the same results regarding chondrogenesis compared with the unseparated bone marrow mononuclear cell fraction, drastically reducing the number of nonrelevant cells. This study provides a proof-of-concept and reflects the potential of an intraoperative procedure for direct seeding of cartilage grafts with selected CD271 positive cells from bone marrow.
Collapse
Affiliation(s)
- Oliver Petters
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Schmidt
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Thuemmler
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Frank Peinemann
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Matthias Zscharnack
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Jeremy S Somerson
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Ronny M Schulz
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
35
|
Stem Cells for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:219-240. [DOI: 10.1007/978-3-319-76735-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Ude CC, Shamsul BS, Ng MH, Chen HC, Ohnmar H, Amaramalar SN, Rizal AR, Johan A, Norhamdan MY, Azizi M, Aminuddin BS, Ruszymah BHI. Long-term evaluation of osteoarthritis sheep knee, treated with TGF-β3 and BMP-6 induced multipotent stem cells. Exp Gerontol 2018; 104:43-51. [PMID: 29421350 DOI: 10.1016/j.exger.2018.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 12/09/2017] [Accepted: 01/16/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hyaline articular cartilage, which protects the bones of diarthrodial joints from forces associated with load bearing, frictions, and impacts has very limited capacities for self-repair. Over the years, the trend of treatments has shifted to regenerations and researchers have been on the quest for a lasting regeneration. We evaluated the treatment of osteoarthritis by chondrogenically induced ADSCs and BMSCs for a long time functional recovery. METHODS Osteoarthritis was induced at the right knee of sheep by complete resection of ACL and medial meniscus. Stem cells from sheep were induced to chondrogenic lineage. Test sheep received 5 mls single doses of 2 × 107 autologous PKH26-labelled ADSCs or BMSCs, while controls received basal medium. Functional recovery of the knees was evaluated via electromyography. RESULTS Induced ADSCs had 625, 255, 393, 908, 409, 157 and 1062 folds increases of collagen I, collagen II, aggrecan, SOX9, cartilage oligomeric protein, chondroadherin and fibromodullin compare to uninduced cells, while BMSCs had 702, 657, 321, 276, 337, 233 and 1163 respectively; p = .001. Immunocytochemistry was positive for these chondrogenic markers. 12 months post-treatment, controls scored 4 in most regions using ICRS, while the treated had 8; P = .001. Regenerated cartilages were positive to PKH26 and demonstrated the presence of condensing cartilages on haematoxylin and eosin; and Safranin O. OA degenerations caused significant amplitude shift from right to left hind limb. After treatments, controls persisted with significant decreases; while treated samples regained balance. CONCLUSIONS Both ADSCs and BMSCs had increased chondrogenic gene expressions using TGF-β3 and BMP-6. The treated knees had improved cartilage scores; PKH26 can provide elongated tracking, while EMG results revealed improved joint recoveries. These could be suitable therapies for osteoarthritis.
Collapse
Affiliation(s)
- C C Ude
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia; Bioartificial Organ and Regenerative Medicine Unit, National Defence University of Malaysia, Sungai Besi Camp 57000, K.L, Malaysia
| | - B S Shamsul
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia
| | - M H Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia
| | - H C Chen
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
| | - Htwe Ohnmar
- Rehab Unit, Department of Orthopedic & Traumatology, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia
| | - S N Amaramalar
- Rehab Unit, Department of Orthopedic & Traumatology, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia
| | - A R Rizal
- Department of Orthopedic & Traumatology, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia.
| | - A Johan
- Department of Orthopedic & Traumatology, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia
| | - M Y Norhamdan
- Department of Orthopedic & Traumatology, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia
| | - M Azizi
- Bioartificial Organ and Regenerative Medicine Unit, National Defence University of Malaysia, Sungai Besi Camp 57000, K.L, Malaysia
| | - B S Aminuddin
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia; ENT Consultant Clinic, Ampang Putri Specialist Hospital, 68000 Ampang, Malaysia
| | - B H I Ruszymah
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia; Department of Physiology, Medical Faculty, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif Bandar Tun Razak Muda Abdul Aziz, Campus, 56000 K.L, Malaysia..
| |
Collapse
|
37
|
Do Neuroendocrine Peptides and Their Receptors Qualify as Novel Therapeutic Targets in Osteoarthritis? Int J Mol Sci 2018; 19:ijms19020367. [PMID: 29373492 PMCID: PMC5855589 DOI: 10.3390/ijms19020367] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/15/2023] Open
Abstract
Joint tissues like synovium, articular cartilage, meniscus and subchondral bone, are targets for neuropeptides. Resident cells of these tissues express receptors for various neuroendocrine-derived peptides including proopiomelanocortin (POMC)-derived peptides, i.e., α-melanocyte-stimulating hormone (α-MSH), adrenocorticotropin (ACTH) and β-endorphin (β-ED), and sympathetic neuropeptides like vasoactive intestinal peptide (VIP) and neuropeptide y (NPY). Melanocortins attained particular attention due to their immunomodulatory and anti-inflammatory effects in several tissues and organs. In particular, α-MSH, ACTH and specific melanocortin-receptor (MCR) agonists appear to have promising anti-inflammatory actions demonstrated in animal models of experimentally induced arthritis and osteoarthritis (OA). Sympathetic neuropeptides have obtained increasing attention as they have crucial trophic effects that are critical for joint tissue and bone homeostasis. VIP and NPY are implicated in direct and indirect activation of several anabolic signaling pathways in bone and synovial cells. Additionally, pituitary adenylate cyclase-activating polypeptide (PACAP) proved to be chondroprotective and, thus, might be a novel target in OA. Taken together, it appears more and more likely that the anabolic effects of these neuroendocrine peptides or their respective receptor agonists/antagonists may be exploited for the treatment of patients with inflammatory and degenerative joint diseases in the future.
Collapse
|
38
|
Dias IR, Viegas CA, Carvalho PP. Large Animal Models for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:441-501. [PMID: 29736586 DOI: 10.1007/978-3-319-76735-2_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Namely, in the last two decades, large animal models - small ruminants (sheep and goats), pigs, dogs and horses - have been used to study the physiopathology and to develop new therapeutic procedures to treat human clinical osteoarthritis. For that purpose, cartilage and/or osteochondral defects are generally performed in the stifle joint of selected large animal models at the condylar and trochlear femoral areas where spontaneous regeneration should be excluded. Experimental animal care and protection legislation and guideline documents of the US Food and Drug Administration, the American Society for Testing and Materials and the International Cartilage Repair Society should be followed, and also the specificities of the animal species used for these studies must be taken into account, such as the cartilage thickness of the selected defect localization, the defined cartilage critical size defect and the joint anatomy in view of the post-operative techniques to be performed to evaluate the chondral/osteochondral repair. In particular, in the articular cartilage regeneration and repair studies with animal models, the subchondral bone plate should always be taken into consideration. Pilot studies for chondral and osteochondral bone tissue engineering could apply short observational periods for evaluation of the cartilage regeneration up to 12 weeks post-operatively, but generally a 6- to 12-month follow-up period is used for these types of studies.
Collapse
Affiliation(s)
- Isabel R Dias
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal. .,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal. .,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Carlos A Viegas
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal.,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro P Carvalho
- Department of Veterinary Medicine, University School Vasco da Gama, Av. José R. Sousa Fernandes 197, Lordemão, Coimbra, 3020-210, Portugal.,CIVG - Vasco da Gama Research Center, University School Vasco da Gama, Coimbra, Portugal
| |
Collapse
|
39
|
Tissue Engineering Strategies for Osteochondral Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:353-371. [PMID: 29736582 DOI: 10.1007/978-3-319-76735-2_16] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue engineering strategies have been pushing forward several fields in the range of biomedical research. The musculoskeletal field is not an exception. In fact, tissue engineering has been a great asset in the development of new treatments for osteochondral lesions. Herein, we overview the recent developments in osteochondral tissue engineering. Currently, the treatments applied in a clinical scenario have shown some drawbacks given the difficulty in regenerating a fully functional hyaline cartilage. Among the different strategies designed for osteochondral regeneration, it is possible to identify cell-free strategies, scaffold-free strategies, and advanced strategies, where different materials are combined with cells. Cell-free strategies consist in the development of scaffolds in the attempt to better fulfill the requirements of the cartilage regeneration process. For that, different structures have been designed, from monolayers to multilayered structures, with the intent to mimic the osteochondral architecture. In the case of scaffold-free strategies, they took advantage on the extracellular matrix produced by cells. The last strategy relies in the development of new biomaterials capable of mimicking the extracellular matrix. This way, the cell growth, proliferation, and differentiation at the lesion site are expedited, exploiting the self-regenerative potential of cells and its interaction with biomolecules. Overall, despite the difficulties associated with each approach, tissue engineering has been proven a valuable tool in the regeneration of osteochondral lesions and together with the latest advances in the field, promises to revolutionize personalized therapies.
Collapse
|
40
|
Garate A, Sánchez P, Delgado D, Bilbao AM, Muiños-López E, Granero-Moltó F, Orive G, Prosper F, Pedraz JL, Sánchez M. Autologous bioscaffolds based on different concentrations of platelet rich plasma and synovial fluid as a vehicle for mesenchymal stem cells. J Biomed Mater Res A 2017; 106:377-385. [PMID: 28960933 DOI: 10.1002/jbm.a.36247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 01/08/2023]
Abstract
In the field of tissue engineering, diverse types of bioscaffolds are being developed currently for osteochondral defect applications. In this work, a novel scaffold based on platelet rich plasma (PRP) and hyaluronic acid with mesenchymal stem cells (MSCs) has been evaluated to observe its effect on immobilized cells. The bioscaffolds were prepared by mixing different volumes of synovial fluid (SF) with PRP from patients obtaining three formulations at PRP-SF ratios of 3:1, 1:1 and 1:3 (v/v). The live/dead staining revealed that although the cell number of each type of bioscaffold was different, these this constructs provide cells with a suitable environment for their viability and proliferation. Moreover, immobilized MSCs showed their ability to secrete fibrinolytic enzymes, which vary depending on the fibrin amount of the scaffold. Immunohistochemical analysis revealed the positive staining for collagen type II in all cases, proving the biologic action of SF derived MSCs together with the suitable characteristics of the bioscaffold for chondrogenic differentiation. Considering all these aspects, this study demonstrates that these cells-based constructs represent an attractive method for cell immobilization, achieving completely autologous and biocompatible scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 377-385, 2018.
Collapse
Affiliation(s)
- Ane Garate
- Advanced Biological Therapy Unit- UTBA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advanced Biological Therapy Unit- UTBA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain.,NanoBioCel group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Diego Delgado
- Advanced Biological Therapy Unit- UTBA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain
| | - Ane Miren Bilbao
- Arthroscopic Surgery Unit-UCA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain
| | - Emma Muiños-López
- Cell Therapy and Experimental Orthopedics, University of Navarra Clinic, Pamplona, Spain
| | - Froilán Granero-Moltó
- Cell Therapy and Experimental Orthopedics, University of Navarra Clinic, Pamplona, Spain
| | - Gorka Orive
- NanoBioCel group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Felipe Prosper
- Cell Therapy and Experimental Orthopedics, University of Navarra Clinic, Pamplona, Spain.,Hematology and Cell Therapy department, University of Navarra Clinic, Pamplona, Spain
| | - José Luis Pedraz
- NanoBioCel group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Mikel Sánchez
- Advanced Biological Therapy Unit- UTBA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain.,Arthroscopic Surgery Unit-UCA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain
| |
Collapse
|
41
|
Dorcemus DL, George EO, Dealy CN, Nukavarapu SP. * Harnessing External Cues: Development and Evaluation of an In Vitro Culture System for Osteochondral Tissue Engineering. Tissue Eng Part A 2017; 23:719-737. [PMID: 28346796 PMCID: PMC5568178 DOI: 10.1089/ten.tea.2016.0439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/15/2017] [Indexed: 01/14/2023] Open
Abstract
Over the last decade, engineered structures have been developed for osteochondral (OC) tissue regeneration. While the optimal structure design is yet to be determined, these scaffolds require in vitro evaluation before clinical use. However, the means by which complex scaffolds, such as OC scaffolds, can be tested are limited. Taking advantage of a mesenchymal stem cell's (MSC's) ability to respond to its surrounding we harness external cues, such as the cell's mechanical environment and delivered factors, to create an in vitro culture system for OC tissue engineering with a single cell source on a gradient yet integrated scaffold system. To do this, the effect of hydrogel stiffness on the expression of human MSCs (hMSCs) chondrogenic differentiation was studied using histological analysis. Additionally, hMSCs were also cultured in different combinations of chondrogenic and osteogenic media to develop a co-differentiation media suitable for OC lineage differentiation. A uniquely graded (density-gradient matrix) OC scaffold with a distal cartilage hydrogel phase specifically tailored to support chondrogenic differentiation was cultured using a newly developed "simulated in vivo culture method." The scaffold's culture in co-differentiation media models hMSC infiltration into the scaffold and subsequent differentiation into the distal cartilage and proximal bone layers. Cartilage and bone marker staining along with specific matrix depositions reveal the effect of external cues on the hMSC differentiation. As a result of these studies a model system was developed to study and culture OC scaffolds in vitro.
Collapse
Affiliation(s)
- Deborah L Dorcemus
- 1 Department of Biomedical Engineering, University of Connecticut , Storrs, Connecticut
- 2 Institute for Regenerative Engineering, UCONN Health , Farmington, Connecticut
| | - Eve O George
- 2 Institute for Regenerative Engineering, UCONN Health , Farmington, Connecticut
| | - Caroline N Dealy
- 3 Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, UCONN Health , Farmington, Connecticut
| | - Syam P Nukavarapu
- 1 Department of Biomedical Engineering, University of Connecticut , Storrs, Connecticut
- 2 Institute for Regenerative Engineering, UCONN Health , Farmington, Connecticut
- 4 Orthopaedic Surgery Department, UCONN Health , Farmington, Connecticut
- 5 Department of Material Science and Engineering, University of Connecticut , Storrs, Connecticut
| |
Collapse
|
42
|
Vayas R, Reyes R, Rodríguez-Évora M, Del Rosario C, Delgado A, Évora C. Evaluation of the effectiveness of a bMSC and BMP-2 polymeric trilayer system in cartilage repair. ACTA ACUST UNITED AC 2017; 12:045001. [PMID: 28675146 DOI: 10.1088/1748-605x/aa6f1c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study a poly(lactide-co-glycolide) acid (PLGA) tri-layer scaffold is proposed for cartilage repair. The trilayer system consists of a base layer formed by a tablet of PLGA microspheres, a second layer composed of a microsphere suspension placed on top of the tablet, and the third layer, which constitutes an external electrospun PLGA thin polymeric membrane. Combinations of bone morphogenetic protein-2 (BMP-2) encapsulated in the microspheres of the suspension layer, and bone marrow mesenchymal stem cells (bMSC) seeded on the electrospun membrane, are evaluated by histologic analyses and immunohistochemistry in a critical size osteochondral defect in rabbits. Five experimental groups, including a control group (empty defect), a blank group (blank scaffold), a bMSC treated group, two groups treated with 2.5 μg or 8.5 μg of BMP-2 and another two groups implanted with bMSC-BMP-2 combination are evaluated. The repair area increases throughout the experimental time (24 weeks). The repair observed in the treated groups is statistically higher than in control and blank groups. However, the bMSC-BMP-2 combination does not enhance the BMP-2 response. In conclusion, BMP-2 and bMSC repaired effectively the osteochondral defect in the rabbits. The bMSC-BMP-2 combination did not produce synergism.
Collapse
Affiliation(s)
- Raquel Vayas
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, E-38200 La Laguna, Spain. Servicio de Cirugía Ortopédica y Traumatología, Complejo Hospitalario Universitario Ntra. Sra. de Candelaria, E-38010 Santa Cruz de Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
43
|
The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells-Their Current Uses and Potential Applications. Stem Cells Int 2017; 2017:2638305. [PMID: 28698718 PMCID: PMC5494105 DOI: 10.1155/2017/2638305] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/16/2017] [Indexed: 02/07/2023] Open
Abstract
Only select tissues and organs are able to spontaneously regenerate after disease or trauma, and this regenerative capacity diminishes over time. Human stem cell research explores therapeutic regenerative approaches to treat various conditions. Mesenchymal stem cells (MSCs) are derived from adult stem cells; they are multipotent and exert anti-inflammatory and immunomodulatory effects. They can differentiate into multiple cell types of the mesenchyme, for example, endothelial cells, osteoblasts, chondrocytes, fibroblasts, tenocytes, vascular smooth muscle cells, and sarcomere muscular cells. MSCs are easily obtained and can be cultivated and expanded in vitro; thus, they represent a promising and encouraging treatment approach in orthopedic surgery. Here, we review the application of MSCs to various orthopedic conditions, namely, orthopedic trauma; muscle injury; articular cartilage defects and osteoarthritis; meniscal injuries; bone disease; nerve, tendon, and ligament injuries; spinal cord injuries; intervertebral disc problems; pediatrics; and rotator cuff repair. The use of MSCs in orthopedics may transition the practice in the field from predominately surgical replacement and reconstruction to bioregeneration and prevention. However, additional research is necessary to explore the safety and effectiveness of MSC treatment in orthopedics, as well as applications in other medical specialties.
Collapse
|
44
|
Ruan SQ, Yan L, Deng J, Huang WL, Jiang DM. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. INTERNATIONAL ORTHOPAEDICS 2017; 41:1899-1908. [DOI: 10.1007/s00264-017-3522-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022]
|
45
|
Chen L, Wu Z, Zhou Y, Li L, Wang Y, Wang Z, Chen Y, Zhang P. Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. J Appl Polym Sci 2017. [DOI: 10.1002/app.45271] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Li Chen
- School of Pharmaceutical Sciences; Jilin University; Changchun 130021 People's Republic of China
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Zhenxu Wu
- School of Pharmaceutical Sciences; Jilin University; Changchun 130021 People's Republic of China
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Yulai Zhou
- School of Pharmaceutical Sciences; Jilin University; Changchun 130021 People's Republic of China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100039 People's Republic of China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100039 People's Republic of China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100039 People's Republic of China
| | - Yue Chen
- School of Pharmaceutical Sciences; Jilin University; Changchun 130021 People's Republic of China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100039 People's Republic of China
| |
Collapse
|
46
|
Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N. Biological characteristic effects of human dental pulp stem cells on poly-ε-caprolactone-biphasic calcium phosphate fabricated scaffolds using modified melt stretching and multilayer deposition. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:25. [PMID: 28070691 DOI: 10.1007/s10856-016-5833-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Craniofacial bone defects such as alveolar cleft affect the esthetics and functions that need bone reconstruction. The advanced techniques of biomaterials combined with stem cells have been a challenging role for maxillofacial surgeons and scientists. PCL-coated biphasic calcium phosphate (PCL-BCP) scaffolds were created with the modified melt stretching and multilayer deposition (mMSMD) technique and merged with human dental pulp stem cells (hDPSCs) to fulfill the component of tissue engineering for bone substitution. In the present study, the objective was to test the biocompatibility and biofunctionalities that included cell proliferation, cell viability, alkaline phosphatase activity, osteocalcin, alizarin red staining for mineralization, and histological analysis. The results showed that mMSMD PCL-BCP scaffolds were suitable for hDPSCs viability since the cells attached and spread onto the scaffold. Furthermore, the constructs of induced hDPSCs and scaffolds performed ALP activity and produced osteocalcin and mineralized nodules. The results indicated that mMSMD PCL-BCP scaffolds with hDPSCs showed promise in bone regeneration for treatment of osseous defects.
Collapse
Affiliation(s)
- Natkrita Wongsupa
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Thongchai Nuntanaranont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand.
| | - Suttatip Kamolmattayakul
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Nuttawut Thuaksuban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| |
Collapse
|
47
|
Desando G, Bartolotti I, Vannini F, Cavallo C, Castagnini F, Buda R, Giannini S, Mosca M, Mariani E, Grigolo B. Repair Potential of Matrix-Induced Bone Marrow Aspirate Concentrate and Matrix-Induced Autologous Chondrocyte Implantation for Talar Osteochondral Repair: Patterns of Some Catabolic, Inflammatory, and Pain Mediators. Cartilage 2017; 8:50-60. [PMID: 27994720 PMCID: PMC5154420 DOI: 10.1177/1947603516642573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The low regenerative potential of cartilage contributed to the development of different cell therapies aimed to improve the clinical outcome in young patients with Osteochondral Lesions of the Talus (OLT). This study is designed to assess the regenerative potential of autologous matrix-induced Bone Marrow Aspirate Concentrate (mBMAC) and matrix-induced Autologous Chondrocyte Implantation (mACI) evaluating, on a small number of osteochondral biopsies, the expression of some catabolic, inflammatory, and pain mediators. DESIGN Twenty-two patients with OLT were analyzed in this study; 7 were treated with mACI and 15 with mBMAC. Informed consent was obtained from all the patients. Clinical assessments were performed pre-operatively and at 12, 24, and 36 months after surgery using the American Orthopedic Foot and Ankle Society (AOFAS). Histology and immunohistochemistry were used to assess cartilage repair at 24 months. Data were analyzed using non-parametric Wilcoxon-Mann-Whitney and Spearman tests. RESULTS A remarkable improvement in AOFAS score was noticed for both treatments up to 36 months; however, patients treated with mACI reported the best AOFAS score. Various degrees of tissue remodeling were observed by histological analysis for both cell strategies. However, mBMAC treatment showed a higher expression of some fibrous and hypertrophic markers compared to mACI group. A mild positivity for nerve growth factor, as pain mediator, was noticed for both treatments.M. CONCLUSIONS Our findings demonstrated the best histological and clinical results following mACI treatment since different fibrotic and hypertrophic features were evident in the mBMAC group at 24-month follow-up.
Collapse
Affiliation(s)
| | - Isabella Bartolotti
- Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Francesca Vannini
- 1Clinic of Orthopaedics and Traumatology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Carola Cavallo
- Laboratory RAMSES, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Francesco Castagnini
- 1Clinic of Orthopaedics and Traumatology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Roberto Buda
- 1Clinic of Orthopaedics and Traumatology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Sandro Giannini
- 1Clinic of Orthopaedics and Traumatology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Massimiliano Mosca
- 1Clinic of Orthopaedics and Traumatology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Erminia Mariani
- Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopedic Institute, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Brunella Grigolo
- Laboratory RAMSES, Rizzoli Orthopedic Institute, Bologna, Italy; Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
48
|
Yamaguchi S, Aoyama T, Ito A, Nagai M, Iijima H, Tajino J, Zhang X, Wataru K, Kuroki H. Effect of Low-Intensity Pulsed Ultrasound after Mesenchymal Stromal Cell Injection to Treat Osteochondral Defects: An In Vivo Study. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2903-2913. [PMID: 27600474 DOI: 10.1016/j.ultrasmedbio.2016.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/03/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
We investigated the effect of low-intensity pulsed ultrasound (LIPUS) treatment combined with mesenchymal stromal cell (MSC) injection for cartilage repair and subchondral bone reconstitution for treatment of osteochondral defects. An osteochondral defect was created on both femur grooves of Wistar rats. Four weeks later, bone marrow MSCs were injected into the right knee joint. The rats were divided into two intervention groups: without or with LIPUS irradiation. Cartilage repair was evaluated histologically based on the Wakitani cartilage repair score. Subchondral bone reconstitution was evaluated as bone volume (BV)/tissue volume (TV) by micro-computed tomography analysis. MSC injection improved the cartilage repair score, and LIPUS irradiation improved BV/TV. Combination treatment promoted both cartilage repair and BV/TV improvement. Thus, MSC injection combined with LIPUS irradiation is more effective than either treatment alone in promoting concurrent cartilage repair and subchondral reconstitution.
Collapse
Affiliation(s)
- Shoki Yamaguchi
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Japan Society for the Promotion of Science, Tokyo, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Momoko Nagai
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirotaka Iijima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Junichi Tajino
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiangkai Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyan Wataru
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
49
|
Ruan W, Xue Y, Zong Y, Sun C. Effect of BMPs and Wnt3a co-expression on the osteogenetic capacity of osteoblasts. Mol Med Rep 2016; 14:4328-4334. [DOI: 10.3892/mmr.2016.5734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/30/2016] [Indexed: 11/06/2022] Open
|
50
|
Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther 2016; 7:131. [PMID: 27612948 PMCID: PMC5016979 DOI: 10.1186/s13287-016-0394-0] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adult mesenchymal stem cells (MSCs) represent a subject of intense experimental and biomedical interest. Recently, trophic activities of MSCs have become the topic of a number of revealing studies that span both basic and clinical fields. In this review, we focus on recent investigations that have elucidated trophic mechanisms and shed light on MSC clinical efficacy relevant to musculoskeletal applications. Innate differences due to MSC sourcing may play a role in the clinical utility of isolated MSCs. Pain management, osteochondral, nerve, or blood vessel support by MSCs derived from both autologous and allogeneic sources have been examined. Recent mechanistic insights into the trophic activities of these cells point to ultimate regulation by nitric oxide, nuclear factor-kB, and indoleamine, among other signaling pathways. Classic growth factors and cytokines-such as VEGF, CNTF, GDNF, TGF-β, interleukins (IL-1β, IL-6, and IL-8), and C-C ligands (CCL-2, CCL-5, and CCL-23)-serve as paracrine control molecules secreted or packaged into extracellular vesicles, or exosomes, by MSCs. Recent studies have also implicated signaling by microRNAs contained in MSC-derived exosomes. The response of target cells is further regulated by their microenvironment, involving the extracellular matrix, which may be modified by MSC-produced matrix metalloproteinases (MMPs) and tissue inhibitor of MMPs. Trophic activities of MSCs, either resident or introduced exogenously, are thus intricately controlled, and may be further fine-tuned via implant material modifications. MSCs are actively being investigated for the repair and regeneration of both osteochondral and other musculoskeletal tissues, such as tendon/ligament and meniscus. Future rational and effective MSC-based musculoskeletal therapies will benefit from better mechanistic understanding of MSC trophic activities, for example using analytical "-omics" profiling approaches.
Collapse
Affiliation(s)
- Heidi R Hofer
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219, USA.
| |
Collapse
|