1
|
Jin M, Wei X, Mu X, Ren W, Zhang S, Tang C, Cao W. Life-cycle analysis of biohydrogen production via dark-photo fermentation from wheat straw. BIORESOURCE TECHNOLOGY 2024; 396:130429. [PMID: 38336214 DOI: 10.1016/j.biortech.2024.130429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
This study presents a life-cycle analysis using energy conversion characteristics as an evaluation index to assess the feasibility of this production method. The results indicate that for a system processing 1000 kg/h of wheat straw, the addition of 12000 kg/h of 2 wt% H2SO4 and 120 kg/h of CH3COONa yields 340,000 L/h of H2 and 348.6 kW of electricity. The energy conversion efficiency from the feedstock to the product is 21.4 %, while the efficiency from the hydrolysate to the product is 62.2 %. The total CO2 emission is 27.1 kg/h. Variations in the hydrolysate have the most significant impact on energy conversion efficiency. This study explores the feasibility of industrial-scale biohydrogen production via dark-photo fermentation from wheat straw and analyzes the energy characteristic indices and the sensitivity of these indices to key parameters.
Collapse
Affiliation(s)
- Mingjie Jin
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xuan Wei
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xuefang Mu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Weixi Ren
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Sihu Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Canfang Tang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Wen Cao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
2
|
Li R, Ruan H, Zhang D, Zhu C, Lai C, Yong Q. Tween 80 reversed adverse effects of combined autohydrolysis and p-toluenesulfonic acid pretreatment on enzymatic hydrolysis of poplar. BIORESOURCE TECHNOLOGY 2024; 393:130056. [PMID: 37993070 DOI: 10.1016/j.biortech.2023.130056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
In this study, a combined pretreatment involving autohydrolysis and p-toluenesulfonic acid (p-TsOH) was performed on poplar to coproduce xylooligosaccharides (XOSs) and monosaccharides. The autohydrolysis (180 °C, 30 min) yielded 53.2 % XOS and enhanced the delignification efficiency in the subsequent p-TsOH treatment. Furthermore, considerably high glucan contents (64.1 %∼83.1 %) were achieved in the combined pretreated substrates. However, their enzymatic digestibilities were found to be extremely poor (9.6 %∼14.2 %), which were even lower than the single p-TsOH pretreated substrates (10.2 %∼35.8 %). The underlying reasons were revealed by systematically investigating the effects of the single and combined pretreatment strategies on substrate properties. Moreover, the Tween 80 addition successfully reversed the adverse effects of combined pretreatment on the enzymatic hydrolysis, achieving a high glucose yield of 99.3 % at an enzyme loading of 10 filter paper units/g (FPU/g) glucan. These results deepen the understanding of the synergy of combined pretreatment on biomass fractionation and enzymatic saccharification.
Collapse
Affiliation(s)
- Ruoyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hui Ruan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Daihui Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
| | - Chongyang Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| |
Collapse
|
3
|
Wang RJ, He SC, Huang D, Wu DW, He SY, Guo TQ, Chen CG, Mao HM. Effects of king grass and rice straw hay on apparent digestibility and ruminal microorganisms of buffalo. Anim Biotechnol 2023; 34:1514-1523. [PMID: 35167410 DOI: 10.1080/10495398.2022.2036748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The purpose of this study was to explore the effects of Rice straw and King grass on apparent digestibility, ruminal bacterial, and fungus composition in buffaloes. Three ruminal fistulated buffaloes were used in a 3 × 2 Latin square design. The dietary treatments were king grass and straw hay. Experimental animals were kept in individual pens and concentrate was offered at 1 kg/d while roughage was fed ad libitum. Each period lasted for 15d, with the first 12d for an adaptation period, followed by a 3-day formal trial period. King grass has higher digestibility of protein. Rice straw has higher digestibility to cellulose. The results showed that when buffaloes were fed king grass and straw, Bacteroidetes were dominant in the rumen normal flora, but firmicutes were not. In addition, the results of this experiment suggest that increasing protein content in diets may be beneficial to increase the relative abundance of Proteobacteria. Similarly, higher dietary fiber content may be beneficial for increasing relative abundance of Prevotella and Staphylococcus. The dominant fungi in ruminal fluid 2 h after ingestion were aerobic fungi. These aerobic fungi most likely entered the rumen with food. Whether and how long aerobic fungi can survive in the rumen needs more research.
Collapse
Affiliation(s)
- Rong-Jiao Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, P.R. China
| | - Shi-Chun He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| | - Dan Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, P.R. China
| | - Dong-Wang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| | - Shao-Ying He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| | - Tai-Qing Guo
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| | - Chang-Guo Chen
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, P.R. China
| | - Hua-Ming Mao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| |
Collapse
|
4
|
Jayakumar M, Gindaba GT, Gebeyehu KB, Periyasamy S, Jabesa A, Baskar G, John BI, Pugazhendhi A. Bioethanol production from agricultural residues as lignocellulosic biomass feedstock's waste valorization approach: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163158. [PMID: 37001650 DOI: 10.1016/j.scitotenv.2023.163158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Bioenergy is becoming very popular, drawing attention as a renewable energy source that may assist in managing growing energy costs, besides possibly affording revenue to underprivileged farmers and rural populations worldwide. Bioethanol made from agricultural residual-biomass provides irreplaceable environmental, socioeconomic, and strategic benefits and can be considered as a safe and cleaner liquid fuel alternative to traditional fossil fuels. There is a significant advancement made at the bench scale towards fuel ethanol production from agricultural lignocellulosic materials (ALCM). These process technologies include pretreatment of ALCM biomass employment of cellulolytic enzymes for depolymerizing carbohydrate polymers into fermentable sugars to effectively achieve it by applying healthy fermentative microbes for bioethanol generation. Amongst all the available process methods, weak acid hydrolysis followed by enzymatic hydrolysis process technique. Recovering higher proficient celluloses is more attractive in terms of economic benefits and long-term environmental effects. Besides, the state of ALCM biomass based bioethanol production methods is discussed in detail, which could make it easier for the scientific and industrial communities to utilize agricultural leftovers properly.
Collapse
Affiliation(s)
- Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia.
| | - Gadissa Tokuma Gindaba
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | | | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Abdisa Jabesa
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - Beula Isabel John
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali-140103, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
5
|
Honarmandrad Z, Kucharska K, Gębicki J. Processing of Biomass Prior to Hydrogen Fermentation and Post-Fermentative Broth Management. Molecules 2022; 27:7658. [PMID: 36364485 PMCID: PMC9658980 DOI: 10.3390/molecules27217658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 09/10/2023] Open
Abstract
Using bioconversion and simultaneous value-added product generation requires purification of the gaseous and the liquid streams before, during, and after the bioconversion process. The effect of diversified process parameters on the efficiency of biohydrogen generation via biological processes is a broad object of research. Biomass-based raw materials are often applied in investigations regarding biohydrogen generation using dark fermentation and photo fermentation microorganisms. The literature lacks information regarding model mixtures of lignocellulose and starch-based biomass, while the research is carried out based on a single type of raw material. The utilization of lignocellulosic and starch biomasses as the substrates for bioconversion processes requires the decomposition of lignocellulosic polymers into hexoses and pentoses. Among the components of lignocelluloses, mainly lignin is responsible for biomass recalcitrance. The natural carbohydrate-lignin shields must be disrupted to enable lignin removal before biomass hydrolysis and fermentation. The matrix of chemical compounds resulting from this kind of pretreatment may significantly affect the efficiency of biotransformation processes. Therefore, the actual state of knowledge on the factors affecting the culture of dark fermentation and photo fermentation microorganisms and their adaptation to fermentation of hydrolysates obtained from biomass requires to be monitored and a state of the art regarding this topic shall become a contribution to the field of bioconversion processes and the management of liquid streams after fermentation. The future research direction should be recognized as striving to simplification of the procedure, applying the assumptions of the circular economy and the responsible generation of liquid and gas streams that can be used and purified without large energy expenditure. The optimization of pre-treatment steps is crucial for the latter stages of the procedure.
Collapse
Affiliation(s)
| | - Karolina Kucharska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
| | | |
Collapse
|
6
|
Hydrothermal treatment of lignocellulose waste for the production of polyhydroxyalkanoates copolymer with potential application in food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Zhou M, Tian X. Development of different pretreatments and related technologies for efficient biomass conversion of lignocellulose. Int J Biol Macromol 2022; 202:256-268. [PMID: 35032493 DOI: 10.1016/j.ijbiomac.2022.01.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/05/2022]
Abstract
Lignocellulose, a kind of biological resource widely existing in nature, which can be transformed into value-added biochemical products through saccharification, fermentation or chemical catalysis. Pretreatments are the necessary step to increase the accessibility and digestibility of lignocellulose. This paper comprehensively reviewed different pretreatment progress of lignocellulose in recent year, including mechanical/thermal, biological, inorganic solvent, organic solvent and unconventional physical-chemical pretreatments, focusing on quantifying the influence of pretreatments on subsequent biomass conversion. In addition, related pretreatment techniques such as genetic engineering, reactor configurations, downstream process and visualization technology of pretreatment were discussed. Finally, this review presented the challenge of lignocellulose pretreatment in the future.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
8
|
Chen WH, Nižetić S, Sirohi R, Huang Z, Luque R, M Papadopoulos A, Sakthivel R, Phuong Nguyen X, Tuan Hoang A. Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. BIORESOURCE TECHNOLOGY 2022; 344:126207. [PMID: 34715344 DOI: 10.1016/j.biortech.2021.126207] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In recent years, lignocellulosic biomass has emerged as one of the most versatile energy sources among the research community for the production of biofuels and value-added chemicals. However, biomass pretreatment plays an important role in reducing the recalcitrant properties of lignocellulose, leading to superior quality of target products in bioenergy production. Among existing pretreatment techniques, liquid hot water (LHW) pretreatment has several outstanding advantages compared to others including minimum formation of monomeric sugars, significant removal of hemicellulose, and positive environmental impacts; however, several constraints of LHW pretreatment should be clarified. This contribution aims to provide a comprehensive analysis of reaction mechanism, reactor characteristics, influencing factors, techno-economic aspects, challenges, and prospects for LHW-based biomass pretreatment. Generally, LHW pretreatment could be widely employed in bioenergy processing from biomass, but circular economy-based advanced pretreatment techniques should be further studied in the future to achieve maximum efficiency, and minimum cost and drawbacks.
Collapse
Affiliation(s)
- Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Sandro Nižetić
- University of Split, FESB, Rudjera Boskovica 32, 21000 Split, Croatia
| | - Ranjna Sirohi
- Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India; Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Zuohua Huang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie, Ctra. Nnal. IV-A, Km. 396, E-14014 Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Agis M Papadopoulos
- Department of Mechanical Engineering, Aristotle University Thessaloniki, Greece
| | - R Sakthivel
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh city, Vietnam
| | - Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh city University of Technology (HUTECH), Ho Chi Minh city, Vietnam.
| |
Collapse
|
9
|
Effect of Liquid Hot Water Pretreatment on Hydrolysates Composition and Methane Yield of Rice Processing Residue. ENERGIES 2021. [DOI: 10.3390/en14113254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lignocellulosic rice processing residue was pretreated in liquid hot water (LHW) at three different temperatures (140, 160, and 180 °C) and two pretreatment times (10 and 20 min) in order to assess its effects on hydrolysates composition, matrix structural changes and methane yield. The concentrations of acetic acid, 5-hydroxymethylfurfural and furfural increased with pretreatment severity (log Ro). The maximum methane yield (276 L kg−1 VS) was achieved under pretreatment conditions of 180 °C for 20 min, with a 63% increase compared to untreated biomass. Structural changes resulted in a slight removal of silica on the upper portion of rice husks, visible predominantly at maximum severity. However, the outer epidermis was kept well organized. The results indicate, at severities 2.48 ≤ log Ro ≤ 3.66, a significant potential for the use of LHW to improve methane production from rice processing residue.
Collapse
|
10
|
Mora-Sandí A, Ramírez-González A, Castillo-Henríquez L, Lopretti-Correa M, Vega-Baudrit JR. Persea Americana Agro-Industrial Waste Biorefinery for Sustainable High-Value-Added Products. Polymers (Basel) 2021; 13:1727. [PMID: 34070330 PMCID: PMC8197556 DOI: 10.3390/polym13111727] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Significant problems have arisen in recent years, such as global warming and hunger. These complications are related to the depletion and exploitation of natural resources, as well as environmental pollution. In this context, bioprocesses and biorefinery can be used to manage agro-industrial wastes for obtaining high-value-added products. A large number of by-products are composed of lignin and cellulose, having the potential to be exploited sustainably for chemical and biological conversion. The biorefinery of agro-industrial wastes has applications in many fields, such as pharmaceuticals, medicine, material engineering, and environmental remediation. A comprehensive approach has been developed toward the agro-industrial management of avocado (Persea americana) biomass waste, which can be transformed into high-value-added products to mitigate global warming, save non-renewable energy, and contribute to health and science. Therefore, this work presents a comprehensive review on avocado fruit waste biorefinery and its possible applications as biofuel, as drugs, as bioplastics, in the environmental field, and in emerging nanotechnological opportunities for economic and scientific growth.
Collapse
Affiliation(s)
- Anthony Mora-Sandí
- School of Chemistry, National University of Costa Rica (UNA), Heredia 86-3000, Costa Rica; (A.M.-S.); (A.R.-G.)
| | - Abigail Ramírez-González
- School of Chemistry, National University of Costa Rica (UNA), Heredia 86-3000, Costa Rica; (A.M.-S.); (A.R.-G.)
| | - Luis Castillo-Henríquez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica;
- Faculty of Pharmacy, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Mary Lopretti-Correa
- Nuclear Research Center, Faculty of Science, Universidad de la República (UdelaR), Montevideo 11300, Uruguay;
| | - José Roberto Vega-Baudrit
- School of Chemistry, National University of Costa Rica (UNA), Heredia 86-3000, Costa Rica; (A.M.-S.); (A.R.-G.)
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica;
| |
Collapse
|
11
|
Jin C, Bao J. Lysine Production by Dry Biorefining of Wheat Straw and Cofermentation of Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1900-1906. [PMID: 33539090 DOI: 10.1021/acs.jafc.0c07902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A preliminary study shows that lysine production from lignocellulose feedstock is feasible, but the conversion of xylose in lignocellulose to lysine remains unsolved. Two technical barriers are responsible for the remaining xylose conversion: one is the xylose loss into the wastewater stream of the biorefinery processing chain, and the other is the lack of efficient lysine-producing strain with xylose utilization. Here, we conducted a new biorefinery approach of consequent dry acid pretreatment and biodetoxification, resulting in zero wastewater generation and then well-preserved xylose. To provide the lysine-producing strain with xylose utilization, we modified the Corynebacterium glutamicum by establishing the xylose assimilation pathway and improving the NADPH cofactor regeneration. The combinational modification of biorefinery processing and strain development led to 31.3 g/L of lysine production with a yield of 0.23 g lysine per gram of wheat straw derived sugars. This study provides a practical method for upgraded lysine production from lignocellulose for future industrial applications.
Collapse
Affiliation(s)
- Ci Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
12
|
Hoşgün EZ, Biran Ay S, Bozan B. Effect of sequential pretreatment combinations on the composition and enzymatic hydrolysis of hazelnut shells. Prep Biochem Biotechnol 2020; 51:570-579. [PMID: 33103953 DOI: 10.1080/10826068.2020.1836657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hazelnut shells, a high lignin containing biomass, were subjected to individual and sequential liquid hot water (LHW), alkaline (AP) and dilute acid pretreatments (DAP). Among the single pretreatments, LHW demonstrated the highest cellulose recovery of 98.1%, DAP resulted in the highest hemicellulose solubilization of 56.0%, and AP of the highest lignin removal of 49.6%. Employing two-step pretreatment on hazelnut shells, in general, demonstrated an enhanced action of the second pretreatment; therefore, the sequence of the pretreatment methods had a significant impact on both substrate characteristics and enzymatic hydrolysis efficiency of biomass. In terms of delignification, AP-LHW achieved 60.7% lignin removal, while LHW-DAP showed the highest hemicellulose removal of 93.8% and DAP-LHW resulted in the highest cellulose recovery of 94.0%. Structural properties of raw and pretreated hazelnut shells were observed by FTIR. The maximum glucose recovery of 54.9% was observed in DAP-LHW pretreated samples. For this pretreatment combination, almost 1.8 MJ total energy was required to recover 10.2 g glucose. The findings indicated that complete removal of the physical barrier of lignin and hemicellulose might not be essential; partial relocation of lignin and alteration of cellulose structure may also be efficient in increasing the sugar recovery from the lignocellulosic biomass.
Collapse
Affiliation(s)
- Emir Zafer Hoşgün
- Department of Chemical Engineering, Faculty of Engineering, Eskişehir Technical University, Eskişehir, Turkey
| | - Suzan Biran Ay
- Department of Chemical Engineering, Faculty of Engineering, Eskişehir Technical University, Eskişehir, Turkey
| | - Berrin Bozan
- Department of Chemical Engineering, Faculty of Engineering, Eskişehir Technical University, Eskişehir, Turkey
| |
Collapse
|
13
|
Huangfu X, Xu N, Yang J, Yang H, Zhang M, Ye Z, Wang S, Chen J. Transport and retention of hydrochar-diatomite nanoaggregates in water-saturated porous sand: Effect of montmorillonite and phosphate at different ionic strengths and solution pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134487. [PMID: 31726294 DOI: 10.1016/j.scitotenv.2019.134487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Hydrochar, a solid hydrate with a high energy density, is produced by hydrothermal carbonization of lignocellulosic biomass and is widely applied in agriculture as a soil amendment. The fate and transport of hydrochar when applied to soil need to be investigated. The major components of soil, clay and phosphate, likely interact with hydrochar in the subsurface. This study investigated the cotransport behavior of hydrochar and diatomite (D) through water-saturated quartz sand in the presence of montmorillonite (M) and/or phosphate in NaCl (1-50 mM) solutions at pH 6.0 and 9.0. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images and zeta potential (ZP) results showed that hydrochar-D nanoaggregates formed preferentially due to surface charge heterogeneity. M inhibited the transport of hydrochar-D in sand columns regardless of the solution pH mainly because the organo-mineral clusters of hydrochar-D with M were prone to filling the pores of the sand medium. Moreover, fine M particles preferentially attached to sand could decrease the ZP of the sand surface and subsequently decrease the repulsive forces between hydrochar-D and sand. The copresence of M and phosphate slightly facilitated hydrochar-D transport at pH 6.0 due to phosphate adsorption, whereas a negligible effect on transport occurred at pH 9.0. Thus, phosphate played a predominant role in the transport of hydrochar when clays were also present. A two-site kinetic retention model suggested that k1d/k1 and k2 are responsible for hydrochar-clay aggregate deposition in sand. Our findings relate to the potential risks posed by hydrochar in subsurface soils and aquifers where clay and phosphate ubiquitously co-occur.
Collapse
Affiliation(s)
- Xinxing Huangfu
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Nan Xu
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jing Yang
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Han Yang
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mo Zhang
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi Ye
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shiqi Wang
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jianping Chen
- Jiangsu Province Key Laboratory of Intelligent Building Efficiency, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
14
|
Improvement of Anaerobic Digestion of Lignocellulosic Biomass by Hydrothermal Pretreatment. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183853] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lignocellulosic biomass, comprising of cellulose, hemicellulose, and lignin, is a difficult-to-degrade substrate when subjected to anaerobic digestion. Hydrothermal pretreatment of lignocellulosic biomass could enhance the process performance by increasing the generation of methane, hydrogen, and bioethanol. The recalcitrants (furfurals, and 5-HMF) could be formed at high temperatures during hydrothermal pretreatment of lignocellulosic biomass, which may hinder the process performance. However, the detoxification process involving the use of genetically engineered microbes may be a promising option to reduce the toxic effects of inhibitors. The key challenge lies in the scaleup of the hydrothermal process, mainly due to necessity of upholding high temperature in sizeable reactors, which may demand high capital and operational costs. Thus, more efforts should be towards the techno-economic feasibility of hydrothermal pre-treatment at full scale.
Collapse
|
15
|
Yue Z, Hou Q, Liu W, Yu S, Wang X, Zhang H. Autohydrolysis prior to poplar chemi-mechanical pulping: Impact of surface lignin on subsequent alkali impregnation. BIORESOURCE TECHNOLOGY 2019; 282:318-324. [PMID: 30877912 DOI: 10.1016/j.biortech.2019.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Chemi-mechanical pulping, a typical high-yield pulping method, combined with autohydrolysis pretreatment prior to pulping is an efficient and value-added utilization method for biomass in pulp and paper industry. This study investigated the surface lignin changes of poplar sapwood chips in autohydrolysis pretreatment and their effect on the subsequent alkali impregnation for chemi-mechanical pulping. The results showed that the surface lignin content went up with the increase of autohydrolysis intensity, and that the existence of the surface lignin had nearly no impact on the subsequent alkali impregnation in making chemi-mechanical pulps (CMPs) compared to the volume porosity, which was validated by using the stepwise regression analysis. It can be further concluded that autohydrolysis can facilitate the subsequent alkali impregnation of the autohydrolyzed sapwood chips in making CMP, which would be of significance for the combination of biomass refinery and pulp and paper industry.
Collapse
Affiliation(s)
- Zhen Yue
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Qingxi Hou
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wei Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Shiyun Yu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaodi Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Honglei Zhang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
16
|
Luo T, Huang H, Mei Z, Shen F, Ge Y, Hu G, Meng X. Hydrothermal pretreatment of rice straw at relatively lower temperature to improve biogas production via anaerobic digestion. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Feasibility of Continuous Pretreatment of Corn Stover: A Comparison of Three Commercially Available Continuous Pulverizing Devices. ENERGIES 2019. [DOI: 10.3390/en12081422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We determined the potential of three mechanical pulverizers—a continuous ball mill (CBM), an air classifier mill (ACM), and a high-speed mill (HSM)—in the continuous pretreatment of corn stover. The mean diameters of the pulverized biomasses were not significantly different in the three cases, and the glucose yields from the CBM-, ACM-, and HSM-pulverized samples were 29%, 49%, and 44%, respectively. The energy requirements and process capacities for the ACM and HSM were similar. We conclude that the ACM and HSM could be used in the continuous pretreatment of corn stover and would be useful in biofuel production.
Collapse
|
18
|
Azahanim Khamis N, Shamsudin S, Siha Abd Rahman N, Farihan Kasim K. Effects of autohydrolysis on rice biomass for reducing sugars production. MATERIALS TODAY: PROCEEDINGS 2019; 16:2078-2087. [DOI: 10.1016/j.matpr.2019.06.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
19
|
Gogoi P, Zhang Z, Geng Z, Liu W, Hu W, Deng Y. Low-temperature, Low-Energy, and High-Efficiency Pretreatment Technology for Large Wood Chips with a Redox Couple Catalyst. CHEMSUSCHEM 2018; 11:1121-1131. [PMID: 29359405 DOI: 10.1002/cssc.201702090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/19/2017] [Indexed: 06/07/2023]
Abstract
The pretreatment of lignocellulosic biomass plays a vital role in the conversion of cellulosic biomass to bioethanol, especially for softwoods and hardwoods. Although many pretreatment technologies have been reported so far, only a few pretreatment methods can handle large woodchips directly. To improve the efficiency of pretreatment, existing technologies require the grinding of the wood into small particles, which is an energy-consuming process. Herein, for the first time, we report a simple, effective, and low-temperature (≈100 °C) process for the pretreatment of hardwood (HW) and softwood (SW) chips directly by using a catalytic system of FeCl3 /NaNO3 (FCSNRC). The pretreatment experiments were conducted systematically, and a conversion of 71.53 and 70.66 % of cellulose to sugar could be obtained for the direct use of large HW and SW chips. The new method reported here overcomes one of the critical barriers in biomass-to-biofuel conversion, and both grinding and thermal energies can be reduced significantly.
Collapse
Affiliation(s)
- Parikshit Gogoi
- School of Chemical and Biomolecular Engineering, Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia, 30318, United States
- Department of Chemistry, Nowgong College, Nagaon, 782001, Assam, India
| | - Zhe Zhang
- School of Chemical and Biomolecular Engineering, Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia, 30318, United States
| | - Zhishuai Geng
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30318, United States
| | - Wei Liu
- School of Chemical and Biomolecular Engineering, Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia, 30318, United States
| | - Weize Hu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30318, United States
| | - Yulin Deng
- School of Chemical and Biomolecular Engineering, Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia, 30318, United States
| |
Collapse
|
20
|
Banoth C, Sunkar B, Tondamanati PR, Bhukya B. Improved physicochemical pretreatment and enzymatic hydrolysis of rice straw for bioethanol production by yeast fermentation. 3 Biotech 2017; 7:334. [PMID: 28955631 DOI: 10.1007/s13205-017-0980-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022] Open
Abstract
Lignocellulosic biomass such as agricultural and forest residues are considered as an alternative, inexpensive, renewable, and abundant source for fuel ethanol production. In the present study, three different pretreatment methods for rice straw were carried out to investigate the maximum lignin removal for subsequent bioethanol fermentation. The chemical pretreatments of rice straw were optimized under different pretreatment severity conditions in the range of 1.79-2.26. Steam explosion of rice straw at 170 °C for 10 min, sequentially treated with 2% (w/v) KOH (SEKOH) in autoclave at 121 °C for 30 min, resulted in 85 ± 2% delignification with minimum sugar loss. Combined pretreatment of steam explosion and KOH at severity factor (SF 3.10) showed improved cellulose fraction of biomass. Furthermore, enzymatic hydrolysis at 30 FPU/g enzyme loading resulted in 664.0 ± 5.39 mg/g sugar yield with 82.60 ± 1.7% saccharification efficiency. Consequently, the hydrolysate of SEKOH with 58.70 ± 1.52 g/L sugars when fermented with Saccharomyces cerevisiae OBC14 showed 26.12 ± 1.24 g/L ethanol, 0.44 g/g ethanol yield with 87.03 ± 1.6% fermentation efficiency.
Collapse
|
21
|
Imman S, Laosiripojana N, Champreda V. Effects of Liquid Hot Water Pretreatment on Enzymatic Hydrolysis and Physicochemical Changes of Corncobs. Appl Biochem Biotechnol 2017; 184:432-443. [PMID: 28721652 DOI: 10.1007/s12010-017-2541-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/18/2017] [Indexed: 11/29/2022]
Abstract
Liquid hot water (LHW) pretreatment is an efficient chemical-free strategy for enhancing enzymatic digestibility of lignocellulosic biomass for conversion to fuels and chemicals in biorefinery. In this study, effects of LHW on removals of hemicelluloses and lignin from corncobs were studied under varying reaction conditions. LHW pretreatment at 160 °C for 10 min promoted the highest levels of hemicellulose solubilization into the liquid phase, resulting into the maximized pentose yield of 58.8% in the liquid and more than 60% removal of lignin from the solid, with 73.1% glucose recovery from enzymatic hydrolysis of the pretreated biomass using 10 FPU/g Celluclast™. This led to the maximal glucose and pentose recoveries of 81.9 and 71.2%, respectively, when combining sugars from the liquid phase from LHW and hydrolysis of the solid. Scanning electron microscopy revealed disruption of the intact biomass structure allowing increasing enzyme's accessibility to the cellulose microfibers which showed higher crystallinity index compared to the native biomass as shown by x-ray diffraction with a marked increase in surface area as revealed by BET measurement. The work provides an insight into effects of LHW on modification of physicochemical properties of corncobs and an efficient approach for its processing in biorefinery industry.
Collapse
Affiliation(s)
- Saksit Imman
- School of Energy and Environment, University of Phayao, Tambon Maeka, Amphur Muang, Phayao, 56000, Thailand.
| | - Navadol Laosiripojana
- The Joint Graduate School for Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok, 10140, Thailand.,BIOTEC-JGSEE Integrative Biorefinery Laboratory, National Center for Genetic Engineering and Biotechnology, Innovation Cluster 2 Building, Thailand Science Park, Khlong Luang, Pathumthani, 12120, Thailand
| | - Verawat Champreda
- BIOTEC-JGSEE Integrative Biorefinery Laboratory, National Center for Genetic Engineering and Biotechnology, Innovation Cluster 2 Building, Thailand Science Park, Khlong Luang, Pathumthani, 12120, Thailand.,Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathumthani, 12120, Thailand
| |
Collapse
|
22
|
Abstract
The global push toward an efficient and economical biobased economy has driven research to develop more cost-effective applications for the entirety of plant biomass, including lignocellulosic crops. As discussed elsewhere (Karlsson M, Atanasova L, Funck Jensen D, Zeilinger S, in Heitman J et al. [ed], Tuberculosis and the Tubercle Bacillus, 2nd ed, in press), significant progress has been made in the use of polysaccharide fractions from lignocellulose, cellulose, and various hemicellulose types. However, developing processes for use of the lignin fraction has been more challenging. In this chapter, we discuss characteristics of lignolytic enzymes and the fungi that produce them as well as potential and current uses of lignin-derived products.
Collapse
|
23
|
Zieliński M, Nowicka A, Dębowski M. Hydrothermal Depolymerization of Virginia Fanpetals ( Sida Hermaphrodita ) Biomass with the Use of Microwave Radiation as a Potential Method for Substrate Pre-treatment Before the Process of Methane Fermentation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.egypro.2017.03.377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Lü H, Shi X, Li Y, Meng F, Liu S, Yan L. Multi-objective regulation in autohydrolysis process of corn stover by liquid hot water pretreatment. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Capolupo L, Faraco V. Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 2016; 100:9451-9467. [PMID: 27714444 PMCID: PMC5071362 DOI: 10.1007/s00253-016-7884-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 11/01/2022]
Abstract
Lignocellulosic biomass is the most abundant, low-cost, bio-renewable resource that holds enormous importance as alternative source for production of biofuels and other biochemicals that can be utilized as building blocks for production of new materials. Enzymatic hydrolysis is an essential step involved in the bioconversion of lignocellulose to produce fermentable monosaccharides. However, to allow the enzymatic hydrolysis, a pretreatment step is needed in order to remove the lignin barrier and break down the crystalline structure of cellulose. The present manuscript is dedicated to reviewing the most commonly applied "green" pretreatment processes used in bioconversion of lignocellulosic biomasses within the "biorefinery" concept. In this frame, the effects of different pretreatment methods on lignocellulosic biomass are described along with an in-depth discussion on the benefits and drawbacks of each method, including generation of potentially inhibitory compounds for enzymatic hydrolysis, effect on cellulose digestibility, and generation of compounds toxic for the environment, and energy and economic demand.
Collapse
Affiliation(s)
- Laura Capolupo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126, Naples, Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126, Naples, Italy.
- European Center "Europe Direct LUP", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126, Naples, Italy.
- Interdepartmental Center "R. d'Ambrosio, LUPT", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126, Naples, Italy.
| |
Collapse
|
26
|
Xu N, Liu W, Hou Q, Wang P, Yao Z. Effect of autohydrolysis on the wettability, absorbility and further alkali impregnation of poplar wood chips. BIORESOURCE TECHNOLOGY 2016; 216:317-22. [PMID: 27259186 DOI: 10.1016/j.biortech.2016.05.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 05/11/2023]
Abstract
Autohydrolysis with different severity factors was performed on poplar wood chips prior to pulping, and the wettability, absorbility and the following impregnation of NaOH solution for the poplar wood chips were then investigated. The results showed that after autohydrolysis pretreatment the porosity, shrinkage and fiber saturation point (FSP) of the poplar wood chips were increased, while the surface contact angle decreased as the severity factor was increased. The autohydrolyzed chips absorbed more NaOH in impregnation that resulted in a low NaOH concentration in the bulk impregnation liquor (i.e., the impregnation liquor outside wood chips), while the concentration in the entrapped liquor (i.e., the impregnation liquor inside wood chips) was increased. Autohydrolysis substantially improved the effectiveness of alkali impregnation.
Collapse
Affiliation(s)
- Ningpan Xu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Qingxi Hou
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Peiyun Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zhirong Yao
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
27
|
Wasoontharawat M, Jantama SS, Kanchanatawee S, Jantama K. Effect of physicochemical pre-treatment of rice straw on its digestibility by Clostridium cellulolyticum. Bioprocess Biosyst Eng 2016; 39:1775-84. [PMID: 27438372 DOI: 10.1007/s00449-016-1652-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/12/2016] [Indexed: 11/28/2022]
Abstract
Rice straw (RS) may serve as a low-cost biomass for the production of biofuels and biochemicals, but its native structure is resistant to enzymatic and microbial deconstruction. Therefore, an efficient pre-treatment method is required to modify crystalline cellulose to a more reactive amorphous form. This work investigated pre-treatments of rice straw involving size reduction (S) followed by either sodium hydroxide (NaOH) or diluted sulfuric acid (H2SO4) and liquid hot water (LHW). The shrinkage of the vascular bundles in the rice straw structure pre-treated with NaOH-LHW-S was higher than that with LHW-S and H2SO4-LHW-S pre-treatments. The highest levels of total fermentative products and residual sugars were obtained at the concentrations of 7.8 ± 0.2 and 2.1 ± 0.3 g/L, respectively, after fermentation by Clostridium cellulolyticum for NaOH-LHW-S pre-treated rice straw at 121 °C for 120 min. Overall, the combined physicochemical pre-treatment of RS led to improved microbial hydrolysis during cellulose degradation at the percentage of 85.5 ± 0.5.
Collapse
Affiliation(s)
- Metinee Wasoontharawat
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
- Faculty of Science, Udon Thani Rhajabat University, 64 Taharn Road, Muang, 41000, Thailand
| | - Sirima Suvarnakuta Jantama
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani, 34190, Thailand
| | - Sunthorn Kanchanatawee
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand.
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
28
|
Chen S, Zhang X, Ling Z, Ji Z, Ramarao BV, Ramaswamy S, Xu F. Probing and visualizing the heterogeneity of fiber cell wall deconstruction in sugar maple (Acer saccharum) during liquid hot water pretreatment. RSC Adv 2016. [DOI: 10.1039/c6ra18333f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The S2 layer was differentiated into heavy-damaged region with more polysaccharides removed and relatively intact light-damaged region after LHW pretreatment.
Collapse
Affiliation(s)
- Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Xun Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Zhe Ling
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Zhe Ji
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Bandaru V. Ramarao
- Department of Paper and Bioprocess Engineering
- SUNY College of Environmental Science and Forestry
- Syracuse
- USA
| | - Shri Ramaswamy
- Department of Bioproducts and Biosystems Engineering
- University of Minnesota
- Saint Paul
- USA
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| |
Collapse
|
29
|
Silveira MHL, Morais ARC, da Costa Lopes AM, Olekszyszen DN, Bogel-Łukasik R, Andreaus J, Pereira Ramos L. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. CHEMSUSCHEM 2015; 8:3366-90. [PMID: 26365899 DOI: 10.1002/cssc.201500282] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/03/2015] [Indexed: 05/08/2023]
Abstract
Lignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids).
Collapse
Affiliation(s)
- Marcos Henrique Luciano Silveira
- CEPESQ, Research Center in Applied Chemistry, Department of Chemistry, Federal University of Paraná, Curitiba, PR, 81531-970, Brazil
| | - Ana Rita C Morais
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | - Andre M da Costa Lopes
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | | | - Rafał Bogel-Łukasik
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal.
| | - Jürgen Andreaus
- Department of Chemistry, Regional University of Blumenau, Blumenau, SC, 89012 900, Brazil.
| | - Luiz Pereira Ramos
- CEPESQ, Research Center in Applied Chemistry, Department of Chemistry, Federal University of Paraná, Curitiba, PR, 81531-970, Brazil.
- INCT Energy and Environment (INCT E&A), Department of Chemistry, Federal University of Paraná.
| |
Collapse
|
30
|
Ngamprasertsith S, Sunphorka S, Kuchonthara P, Reubroycharoen P, Sawangkeaw R. Pretreatment of rice straw by hot-compressed water for enzymatic saccharification. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-014-0389-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Hou Q, Liu L, Liu W, Wang Y, Xu N, Liang Q. Achieving Refining Energy Savings and Pulp Properties for Poplar Chemithermomechanical Pulp Improvement through Optimized Autohydrolysis Pretreatment. Ind Eng Chem Res 2014. [DOI: 10.1021/ie503244b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qingxi Hou
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lihui Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yang Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ningpan Xu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qian Liang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
32
|
Hou Q, Wang Y, Liu W, Liu L, Xu N, Li Y. An application study of autohydrolysis pretreatment prior to poplar chemi-thermomechanical pulping. BIORESOURCE TECHNOLOGY 2014; 169:155-161. [PMID: 25048956 DOI: 10.1016/j.biortech.2014.06.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
This study investigated the autohydrolysis pre-treatment prior to chemi-thermomechanical pulping (CTMP) process including the effects of autohydrolysis pretreatment with a lower severity on characteristics of the autohydrolysis liquor and hydrolyzed chips. The intensity of autohydrolysis, characterized by the severity factor, increased from 1.76 to 3.54, the hydrolyzed chips yield decreased from 99.0% to 86.7% and the xylose extraction yield increased from 0.8% to 44.0%. The content of holocellulose, pentosan and acid soluble lignin remained in the hydrolyzed chips decreased dramatically with increasing the treatment severity. After the autohydrolysis pretreatment, the resultant poplar chemi-thermomechanical pulp with a severity factor of 2.37 could obtain a 15.3 Nm/g tensile index, 58.6% ISO brightness and a 2.39 cm(3)/g bulk.
Collapse
Affiliation(s)
- Qingxi Hou
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yang Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lihui Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ningpan Xu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yang Li
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
33
|
López González LM, Pereda Reyes I, Dewulf J, Budde J, Heiermann M, Vervaeren H. Effect of liquid hot water pre-treatment on sugarcane press mud methane yield. BIORESOURCE TECHNOLOGY 2014; 169:284-290. [PMID: 25062540 DOI: 10.1016/j.biortech.2014.06.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 05/25/2023]
Abstract
Sugarcane press mud was pretreated by liquid hot water (LHW) at different temperatures (140-210 °C) and pre-treatment times (5-20 min) in order to assess the effects on the chemical oxygen demand (COD) solubilisation, inhibitors formation and methane yield. The experimental results showed that a high degree of biomass solubilisation was possible using LHW. Higher methane yields were obtained at lower severities (log(Ro) = 2.17-2.77) with (i) mild temperatures (140-150 °C) and long contact times (12.5 min, 20 min) or (ii) mild temperatures (175 °C) with short contact time (2 min). The highest increase in methane yield (up to 63%) compared to the untreated press mud was found at 150 °C for 20 min. At temperatures of 200 °C and 210 °C, low methane efficiency was attributed to the possible formation of refractory compounds through the Maillard reaction.
Collapse
Affiliation(s)
- Lisbet Mailin López González
- Universidad de Sancti Spíritus "José Martí Pérez" (UNISS), Centro de Energía y Procesos Industriales (CEEPI), Avenida de los Mártires 360, CP 60100 Sancti Spíritus, Cuba.
| | - Ileana Pereda Reyes
- Instituto Superior Politécnico "José Antonio Echeverría" (Cujae), Centro de Estudio de Ingeniería de Procesos (CIPRO), Calle 114 No. 11901 e/Rotonda y Ciclovía, Marianao CP 19390, La Habana, Cuba
| | - Jo Dewulf
- Ghent University, Department of Sustainable Organic Chemistry and Technology, Coupure Links, 653, 9000 Ghent, Belgium
| | - Jörn Budde
- Leibniz-Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Monika Heiermann
- Leibniz-Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Han Vervaeren
- Laboratory of Industrial Water and Eco-technology (LIWET), Faculty of Bioscience Engineering, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| |
Collapse
|
34
|
Yu G, Yano S, Inoue H, Inoue S, Wang J, Endo T. Structural insights into rice straw pretreated by hot-compressed water in relation to enzymatic hydrolysis. Appl Biochem Biotechnol 2014; 174:2278-94. [PMID: 25178420 DOI: 10.1007/s12010-014-1199-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/22/2014] [Indexed: 11/29/2022]
Abstract
Pretreatment-induced structural alteration is critical in influencing the rate and extent of enzymatic saccharification of lignocellulosic biomass. The present work has investigated structural features of rice straw pretreated by hot-compressed water (HCW) from 140 to 240 °C for 10 or 30 min and enzymatic hydrolysis profiles of pretreated rice straw. Compositional profiles of pretreated rice straw were examined to offer the basis for structural changes. The wide-angle X-ray diffraction analysis revealed possible modification in crystalline microstructure of cellulose and the severity-dependent variation of crystallinity. The specific surface area (SSA) of pretreated samples was able to achieve more than 10-fold of that of the raw material and was in linear relationship with the removal of acetyl groups and xylan. The glucose yield by enzymatic hydrolysis of pretreated materials correlated linearly with the SSA increase and the dissolution of acetyl and xylan. A quantitatively intrinsic relationship was suggested to exist between enzymatic hydrolysis and the extraction of hemicellulose components in hydrothermally treated rice straw, and SSA was considered one important structural parameter signaling the efficiency of enzymatic digestibility in HCW-treated materials in which hemicellulose removal and lignin redistribution happened.
Collapse
Affiliation(s)
- Guoce Yu
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, 739-0046, Japan,
| | | | | | | | | | | |
Collapse
|
35
|
Xu Z, Huang F. Pretreatment methods for bioethanol production. Appl Biochem Biotechnol 2014; 174:43-62. [PMID: 24972651 DOI: 10.1007/s12010-014-1015-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/15/2014] [Indexed: 11/24/2022]
Abstract
Lignocellulosic biomass, such as wood, grass, agricultural, and forest residues, are potential resources for the production of bioethanol. The current biochemical process of converting biomass to bioethanol typically consists of three main steps: pretreatment, enzymatic hydrolysis, and fermentation. For this process, pretreatment is probably the most crucial step since it has a large impact on the efficiency of the overall bioconversion. The aim of pretreatment is to disrupt recalcitrant structures of cellulosic biomass to make cellulose more accessible to the enzymes that convert carbohydrate polymers into fermentable sugars. This paper reviews several leading acidic, neutral, and alkaline pretreatments technologies. Different pretreatment methods, including dilute acid pretreatment (DAP), steam explosion pretreatment (SEP), organosolv, liquid hot water (LHW), ammonia fiber expansion (AFEX), soaking in aqueous ammonia (SAA), sodium hydroxide/lime pretreatments, and ozonolysis are intensively introduced and discussed. In this minireview, the key points are focused on the structural changes primarily in cellulose, hemicellulose, and lignin during the above leading pretreatment technologies.
Collapse
Affiliation(s)
- Zhaoyang Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Jiangsu, 210037, People's Republic of China,
| | | |
Collapse
|
36
|
Kumagai A, Kawamura S, Lee SH, Endo T, Rodriguez M, Mielenz JR. Simultaneous saccharification and fermentation and a consolidated bioprocessing for Hinoki cypress and Eucalyptus after fibrillation by steam and subsequent wet-disk milling. BIORESOURCE TECHNOLOGY 2014; 162:89-95. [PMID: 24747386 DOI: 10.1016/j.biortech.2014.03.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 05/18/2023]
Abstract
An advanced pretreatment method that combines steam treatment (ST) with wet disk milling (WDM) was evaluated using two different species of woods, viz., Hinoki cypress (softwood) and Eucalyptus (hardwood). Bioconversion of the pretreated products was performed using enzymatic saccharification via a commercial cellulase mixture and two types of fermentation processing, i.e., yeast-based simultaneous saccharification and fermentation (SSF) and Clostridium thermocellum-based consolidated bioprocessing (CBP). A higher yield of glucose was obtained in the enzymatic saccharification and fermentation products from SSF and CBP with pretreatment consisting of WDM after ST, as compared to either ST or WDM alone. Maximum ethanol production via SSF and CBP were 359.3 and 79.4 mg/g-cellulose from Hinoki cypress, and 299.5 and 73.1 mg/g-cellulose from Eucalyptus, respectively. While the main fermentation product generated in CBP was acetate, the total products yield was 319.9 and 262.0 mg/g-cellulose from Hinoki cypress and Eucalyptus, respectively.
Collapse
Affiliation(s)
- Akio Kumagai
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 737-0046, Japan
| | - Shunsuke Kawamura
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 737-0046, Japan
| | - Seung-Hwan Lee
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 737-0046, Japan; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, 192-1 Hyoja, Chuncheon 200-701, South Korea
| | - Takashi Endo
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 737-0046, Japan.
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6226, USA
| | - Jonathan R Mielenz
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6226, USA.
| |
Collapse
|
37
|
Parametric Optimization of Cultural Conditions for Carboxymethyl Cellulase Production Using Pretreated Rice Straw by Bacillus sp. 313SI under Stationary and Shaking Conditions. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2014; 2014:651839. [PMID: 24868469 PMCID: PMC4020544 DOI: 10.1155/2014/651839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
Abstract
Carboxymethyl cellulase (CMCase) provides a key opportunity for achieving tremendous benefits of utilizing rice straw as cellulosic biomass. Out of total 80 microbial isolates from different ecological niches one bacterial strain, identified as Bacillus sp. 313SI, was selected for CMCase production under stationary as well as shaking conditions of growth. During two-stage pretreatment, rice straw was first treated with 0.5 M KOH to remove lignin followed by treatment with 0.1 N H2SO4 for removal of hemicellulose. The maximum carboxymethyl cellulase activity of 3.08 U/mL was obtained using 1% (w/v) pretreated rice straw with 1% (v/v) inoculum, pH 8.0 at 35°C after 60 h of growth under stationary conditions, while the same was obtained as 4.15 U/mL using 0.75% (w/v) pretreated substrate with 0.4% (v/v) inoculum, pH 8.0 at 30°C, under shaking conditions of growth for 48 h. For maximum titre of CMCase carboxymethyl cellulose was optimized as the best carbon source under both cultural conditions while ammonium sulphate and ammonium nitrate were optimized as the best nitrogen sources under stationary and shaking conditions, respectively. The present study provides the useful data about the optimized conditions for CMCase production by Bacillus sp. 313SI from pretreated rice straw.
Collapse
|
38
|
Li X, Lu J, Zhao J, Qu Y. Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. PLoS One 2014; 9:e95455. [PMID: 24763192 PMCID: PMC3998958 DOI: 10.1371/journal.pone.0095455] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/26/2014] [Indexed: 11/22/2022] Open
Abstract
Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism.
Collapse
Affiliation(s)
- Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jie Lu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Dalian Polytechnic University, Dalian, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
39
|
Li J, Lu J, Li X, Ren T, Cong R, Zhou L. Dynamics of potassium release and adsorption on rice straw residue. PLoS One 2014; 9:e90440. [PMID: 24587364 PMCID: PMC3938734 DOI: 10.1371/journal.pone.0090440] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/30/2014] [Indexed: 11/19/2022] Open
Abstract
Straw application can not only increase crop yields, improve soil structure and enrich soil fertility, but can also enhance water and nutrient retention. The aim of this study was to ascertain the relationships between straw decomposition and the release-adsorption processes of K+. This study increases the understanding of the roles played by agricultural crop residues in the soil environment, informs more effective straw recycling and provides a method for reducing potassium loss. The influence of straw decomposition on the K+ release rate in paddy soil under flooded condition was studied using incubation experiments, which indicated the decomposition process of rice straw could be divided into two main stages: (a) a rapid decomposition stage from 0 to 60 d and (b) a slow decomposition stage from 60 to 110 d. However, the characteristics of the straw potassium release were different from those of the overall straw decomposition, as 90% of total K was released by the third day of the study. The batches of the K sorption experiments showed that crop residues could adsorb K+ from the ambient environment, which was subject to decomposition periods and extra K+ concentration. In addition, a number of materials or binding sites were observed on straw residues using IR analysis, indicating possible coupling sites for K+ ions. The aqueous solution experiments indicated that raw straw could absorb water at 3.88 g g−1, and this rate rose to its maximum 15 d after incubation. All of the experiments demonstrated that crop residues could absorb large amount of aqueous solution to preserve K+ indirectly during the initial decomposition period. These crop residues could also directly adsorb K+ via physical and chemical adsorption in the later period, allowing part of this K+ to be absorbed by plants for the next growing season.
Collapse
Affiliation(s)
- Jifu Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Wuhan, China
| | - Jianwei Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Wuhan, China
- * E-mail:
| | - Xiaokun Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Wuhan, China
| | - Tao Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Wuhan, China
| | - Rihuan Cong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Wuhan, China
| | - Li Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Wuhan, China
| |
Collapse
|
40
|
Cybulska I, Chaturvedi T, Brudecki GP, Kádár Z, Meyer AS, Baldwin RM, Thomsen MH. Chemical characterization and hydrothermal pretreatment of Salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential. BIORESOURCE TECHNOLOGY 2014; 153:165-172. [PMID: 24362358 DOI: 10.1016/j.biortech.2013.11.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/12/2013] [Accepted: 11/25/2013] [Indexed: 06/03/2023]
Abstract
Salicornia bigelovii straw was characterized and evaluated as a potential lignocellulosic bioethanol feedstock. S. bigelovii used in the study was grown in the United Arab Emirates using saltwater (40ppt) for irrigation. Salt removal was performed prior to pretreatment to protect the processing equipment and avoid inhibition of enzymes and yeast. Composition of the washed biomass was comparable to traditional lignocellulosic biomasses with relatively high glucan and xylan content (26 and 22g/100gDM, respectively) but with lower lignin content (7g/100gDM). The washed feedstock was subjected to hydrothermal pretreatment, producing highly digestible (up to 92% glucan-to-glucose conversion) and fermentable (up to 100% glucose-to-ethanol conversion) fiber fractions. Liquid fractions obtained in the pretreatment did not show inhibition towards Saccharomyces cerevisiae. No significant differences among the enzymatic convertibility and microbial fermentability of the fibers as well as low xylose recoveries suggest that lower severity pretreatment conditions could be exploited for S. bigelovii.
Collapse
Affiliation(s)
- Iwona Cybulska
- Masdar Institute of Science and Technology, P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | - Tanmay Chaturvedi
- Masdar Institute of Science and Technology, P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | - Grzegorz P Brudecki
- Masdar Institute of Science and Technology, P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | - Zsófia Kádár
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anne S Meyer
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Robert M Baldwin
- Masdar Institute of Science and Technology, P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | - Mette Hedegaard Thomsen
- Masdar Institute of Science and Technology, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
41
|
Kim DS, Myint AA, Lee HW, Yoon J, Lee YW. Evaluation of hot compressed water pretreatment and enzymatic saccharification of tulip tree sawdust using severity factors. BIORESOURCE TECHNOLOGY 2013; 144:460-466. [PMID: 23899570 DOI: 10.1016/j.biortech.2013.06.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
Tulip tree sawdust was pretreated using hot compressed water with different pretreatment severities (LogR0, 3.05-5.01) by varying reaction temperatures (180-220°C) and residence time (1-30 min). It is found that the chemical composition and physicochemical properties of the pretreated products can be characterized and correlated with severity. Removal of most of the xylan and other hemicellulosic sugars from the raw material was observed at a severity of 4.5. Thus, the residual solids were recovered with increased cellulose and lignin contents. Nearly complete glucan conversion was achieved after 48 h of hydrolysis with 10 FPU/g of wet residual solid obtained above a severity of 4.8. The characteristics of the pretreated solids according to the pretreatment severity were strongly related with the glucose yield. The removal of structural barriers to the enzyme attack was the dominant factor affecting enzyme accessibility to the substrate.
Collapse
Affiliation(s)
- Dae Sung Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
42
|
Imman S, Arnthong J, Burapatana V, Laosiripojana N, Champreda V. Autohydrolysis of Tropical Agricultural Residues by Compressed Liquid Hot Water Pretreatment. Appl Biochem Biotechnol 2013; 170:1982-95. [DOI: 10.1007/s12010-013-0320-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
|
43
|
Hideno A, Kawashima A, Endo T, Honda K, Morita M. Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers on the surface. BIORESOURCE TECHNOLOGY 2013; 132:64-70. [PMID: 23395739 DOI: 10.1016/j.biortech.2013.01.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 05/25/2023]
Abstract
The effects of adding trace acids in ethanol based organosolv treatment were investigated to increase the enzymatic digestibility of Japanese cypress. A high glucose yield (60%) in the enzymatic hydrolysis was obtained by treating the sample at 170 °C for 45 min in 50% ethanol liquor containing 0.4% hydrochloric acid. Moreover, the enzymatic digestibility of the treated sample was improved to ∼70% by changing the enzyme from acremonium cellulase to Accellerase1500. Field emission scanning electron microscopy revealed the presence of lignin droplets and partial cellulose nanofibers on the surface of the treated sample. Simultaneous saccharification and fermentation of the treated samples using thermotolerant yeast (Kluyveromyces marxianus NBRC1777) was tested. A high ethanol concentration (22.1 g/L) was achieved using the EtOH50/W50/HCl0.4-treated sample compared with samples from other treatments.
Collapse
Affiliation(s)
- Akihiro Hideno
- Senior Research Fellow Center, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | | | | | | | | |
Collapse
|
44
|
Pretreatment of Lignocellulosic Biomass Using Green Ionic Liquids. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2013. [DOI: 10.1007/978-94-007-6052-3_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Nitsos CK, Matis KA, Triantafyllidis KS. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. CHEMSUSCHEM 2013. [PMID: 23180649 DOI: 10.1002/cssc.201200546] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The natural resistance to enzymatic deconstruction exhibited by lignocellulosic materials has designated pretreatment as a key step in the biological conversion of biomass to ethanol. Hydrothermal pretreatment in pure water represents a challenging approach because it is a method with low operational costs and does not involve the use of organic solvents, difficult to handle chemicals, and "external" liquid or solid catalysts. In the present work, a systematic study has been performed to optimize the hydrothermal treatment of lignocellulosic biomass (beech wood) with the aim of maximizing the enzymatic digestibility of cellulose in the treated solids and obtaining a liquid side product that could also be utilized for the production of ethanol or valuable chemicals. Hydrothermal treatment experiments were conducted in a batch-mode, high-pressure reactor under autogeneous pressure at varying temperature (130-220 °C) and time (15-180 min) regimes, and at a liquid-to-solid ratio (LSR) of 15. The intensification of the process was expressed by the severity factor, log R(o). The major changes induced in the solid biomass were the dissolution/removal of hemicellulose to the process liquid and the partial removal and relocation of lignin on the external surface of biomass particles in the form of recondensed droplets. The above structural changes led to a 2.5-fold increase in surface area and total pore volume of the pretreated biomass solids. The enzymatic hydrolysis of cellulose to glucose increased from less than 7 wt% for the parent biomass to as high as 70 wt% for the treated solids. Maximum xylan recovery (60 wt%) in the hydrothermal process liquid was observed at about 80 wt% hemicellulose removal; this was accomplished by moderate treatment severities (log R(o)=3.8-4.1). At higher severities (log R(o)=4.7), xylose degradation products, mainly furfural and formic acid, were the predominant chemicals formed.
Collapse
Affiliation(s)
- Christos K Nitsos
- Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | |
Collapse
|
46
|
Bhatia L, Johri S, Ahmad R. An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2012; 2:65. [PMID: 23217124 PMCID: PMC3547755 DOI: 10.1186/2191-0855-2-65] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 11/11/2022] Open
Abstract
Agro-industrial wastes are generated during the industrial processing of agricultural products. These wastes are generated in large amounts throughout the year, and are the most abundant renewable resources on earth. Due to the large availability and composition rich in compounds that could be used in other processes, there is a great interest on the reuse of these wastes, both from economical and environmental view points. The economic aspect is based on the fact that such wastes may be used as low-cost raw materials for the production of other value-added compounds, with the expectancy of reducing the production costs. The environmental concern is because most of the agro-industrial wastes contain phenolic compounds and/or other compounds of toxic potential; which may cause deterioration of the environment when the waste is discharged to the nature. Although the production of bioethanol offers many benefits, more research is needed in the aspects like feedstock preparation, fermentation technology modification, etc., to make bioethanol more economically viable.
Collapse
|
47
|
Gao MT, Yano S, Inoue H, Sakanishi K. Production of ethanol from potato pulp: Investigation of the role of the enzyme from Acremonium cellulolyticus in conversion of potato pulp into ethanol. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Deutschmann R, Dekker RF. From plant biomass to bio-based chemicals: Latest developments in xylan research. Biotechnol Adv 2012; 30:1627-40. [DOI: 10.1016/j.biotechadv.2012.07.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/12/2012] [Accepted: 07/01/2012] [Indexed: 11/26/2022]
|
49
|
Hideno A, Inoue H, Yanagida T, Tsukahara K, Endo T, Sawayama S. Combination of hot compressed water treatment and wet disk milling for high sugar recovery yield in enzymatic hydrolysis of rice straw. BIORESOURCE TECHNOLOGY 2012; 104:743-8. [PMID: 22130080 DOI: 10.1016/j.biortech.2011.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 05/23/2023]
Abstract
Rice straw has attracted significant interest in Japan as a potential raw material for biorefineries. Combination of hot-compressed water treatment (HCWT) and wet disk milling (WDM) was investigated to improve the enzymatic digestibility of rice straw and enhance sugar recovery yield. Rice straw, cut to <3 mm, was autoclaved at 121, 135, and 150 °C for 60 min, and subsequently treated by wet disk milling. WDM with HCWT at 135 °C for 60 min produced maximum xylose and glucose yields of 79% and 90%, respectively, at 10 FPU/g-substrate cellulase loading. Autoclaving at 150 °C leaked a 35% arabinose effluence in the liquid phase. Hydrolysis via WDM with HCWT required a lower enzyme loading (5 FPU/g-substrate) than either pretreatment process in isolation for >70% xylose and 80% glucose yield. Economical analysis indicate that enzymes cost for ethanol production is reduced by 19-67% by WDM with HCWT.
Collapse
Affiliation(s)
- Akihiro Hideno
- Biomass Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 737-0046, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Lü X, Saka S. New insights on monosaccharides’ isomerization, dehydration and fragmentation in hot-compressed water. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2011.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|