1
|
Ayala JR, Montero G, Coronado MA, García C, Curiel-Alvarez MA, León JA, Sagaste CA, Montes DG. Characterization of Orange Peel Waste and Valorization to Obtain Reducing Sugars. Molecules 2021; 26:molecules26051348. [PMID: 33802601 PMCID: PMC7961523 DOI: 10.3390/molecules26051348] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Annually, millions of tons of foods are generated with the purpose to feed the growing world population. One particular eatable is orange, the production of which in 2018 was 75.54 Mt. One way to valorize the orange residue is to produce bioethanol by fermenting the reducing sugars generated from orange peel. Hence, the objective of the present work was to determine the experimental conditions to obtain the maximum yield of reducing sugars from orange peel using a diluted acid hydrolysis process. A proximate and chemical analysis of the orange peel were conducted. For the hydrolysis, two factorial designs were prepared to measure the glucose and fructose concentration with the 3,5-DNS acid method and UV-Visible spectroscopy. The factors were acid concentration, temperature and hydrolysis time. After the hydrolysis, the orange peel samples were subjected to an elemental SEM-EDS analysis. The results for the orange peel were 73.530% of moisture, 99.261% of volatiles, 0.052% of ash, 0.687% of fixed carbon, 19.801% of lignin, 69.096% of cellulose and 9.015% of hemicellulose. The highest concentration of glucose and fructose were 24.585 and 9.709 g/L, respectively. The results highlight that sugar production is increased by decreasing the acid concentration.
Collapse
|
2
|
Soomro AF, Abbasi IA, Ni Z, Ying L, Liu J. Influence of temperature on enhancement of volatile fatty acids fermentation from organic fraction of municipal solid waste: Synergism between food and paper components. BIORESOURCE TECHNOLOGY 2020; 304:122980. [PMID: 32062392 DOI: 10.1016/j.biortech.2020.122980] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
This study explores individual contributions and synergistic effects of food and paper, main components of organic fraction of municipal solid waste (OFMSW) towards volatile fatty acids (VFA) fermentation under different temperatures (25, 37, 42 and 52 °C). Thanks to the synergism of food and paper component (FC & PC), the results revealed that OFMSW is suitable for VFA production. Maximum VFA production was noticed to be 21.5 mg/L at 42 °C, ~2.1, and 1.42 times higher than fermentation of PC and FC. Enhanced hydrolysis of PC occurred at >37 °C, increasing alkalinity in leachate to 6.7 g/L at 42 °C, thus maintaining a stable pH (5.4-5.6) during acidogenic fermentation. Additionally, 74% of COD is hydrolyzed, of which 79% is converted to VFA based on biodegradable carbon at 42 °C. It is suggested that co-existence of FC and PC can enhance VFA production of OFMSW, and targeted VFA production can be maximized through process optimization.
Collapse
Affiliation(s)
- Abdul F Soomro
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Irfan Ahmed Abbasi
- Department of Energy and Environment Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Zhe Ni
- Beijing Geo Environ Engineering & Technology, Inc, Beijing 100095, China
| | - Li Ying
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Srivastava N, Rathour R, Jha S, Pandey K, Srivastava M, Thakur VK, Sengar RS, Gupta VK, Mazumder PB, Khan AF, Mishra PK. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Biomolecules 2019; 9:E220. [PMID: 31174354 PMCID: PMC6627771 DOI: 10.3390/biom9060220] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels. The production of biofuels from biomass is an enzyme mediated process, wherein β-glucosidase (BGL) enzymes play a key role in biomass hydrolysis by producing monomeric sugars from cellulose-based oligosaccharides. However, the production and availability of these enzymes realize their major role to increase the overall production cost of biomass to biofuels production technology. Therefore, the present review is focused on evaluating the production and efficiency of β-glucosidase enzymes in the bioconversion of cellulosic biomass for biofuel production at an industrial scale, providing its mechanism and classification. The application of BGL enzymes in the biomass conversion process has been discussed along with the recent developments and existing issues. Moreover, the production and development of microbial BGL enzymes have been explained in detail, along with the recent advancements made in the field. Finally, current hurdles and future suggestions have been provided for the future developments. This review is likely to set a benchmark in the area of cost effective BGL enzyme production, specifically in the biorefinery area.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Rishabh Rathour
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Sonam Jha
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Karan Pandey
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Manish Srivastava
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.
| | - Rakesh Singh Sengar
- Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel, University of Agriculture and Technology, Meerut 250110, U.P., India.
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | | | - Ahamad Faiz Khan
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| |
Collapse
|
4
|
Soomro AF, Ni Z, Ying L, Liu J. The effect of ISR on OFMSW during acidogenic fermentation for the production of AD precursor: kinetics and synergies. RSC Adv 2019; 9:18147-18156. [PMID: 35515208 PMCID: PMC9064650 DOI: 10.1039/c9ra02898f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 11/21/2022] Open
Abstract
Acidogenic fermentation of organic fraction of municipal solid waste (OFMSW) and it's components (food waste and paper wastes) was studied in batch percolator reactor without artificial pH adjustment.
Collapse
Affiliation(s)
| | - Zhe Ni
- Beijing GeoEnviron Engineering & Technology, Inc
- Beijing 100095
- China
| | - Li Ying
- Key Laboratory of Clean Energy of Liaoning
- College of Energy and Environment
- Shenyang Aerospace University
- Shenyang 110136
- China
| | - Jianguo Liu
- School of Environment
- Tsinghua University
- Beijing
- China
| |
Collapse
|
5
|
Li W, Ji P, Zhou Q, Hua C, Han C. Insights into the Synergistic Biodegradation of Waste Papers Using a Combination of Thermostable Endoglucanase and Cellobiohydrolase from Chaetomium thermophilum. Mol Biotechnol 2018; 60:49-54. [PMID: 29192396 DOI: 10.1007/s12033-017-0043-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Enzymatic hydrolysis is considered an efficient and environmental strategy for the degradation of organic waste materials. Compared to mesophilic cellulases, thermostable cellulases with considerable activity are more advantageous in waste paper hydrolysis, particularly in terms of their participation in synergistic action. In this study, the synergistic effect of two different types of thermostable Chaetomium thermophilum cellulases, the endoglucanase CTendo45 and the cellobiohydrolase CtCel6, on five common kinds of waste papers was investigated. CtCel6 significantly enhanced the bioconversion process, and CTendo45 synergistically increased the degradation, with a maximum degree of synergistic effect of 1.67 when the mass ratio of CTendo45/CtCel6 was 5:3. The synergistic degradation products of each paper material were also determined. Additionally, the activities of CTendo45 and CtCel6 were found to be insensitive to various metals at 2 mM and 10 mM ion concentrations. This study gives an initial insight into a satisfactory synergistic effect of C. thermophilum thermostable cellulases for the hydrolysis of different paper materials, which provides a potential combination of enzymes for industrial applications, including environmentally friendly waste management and cellulosic ethanol production.
Collapse
Affiliation(s)
- Weiguang Li
- Department of Mycology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Peng Ji
- Department of Mycology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Qinzheng Zhou
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Chengyao Hua
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Chao Han
- Department of Mycology, Shandong Agricultural University, Taian, 271018, Shandong, China. .,College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
6
|
Optimization of High Solids Dilute Acid Hydrolysis of Spent Coffee Ground at Mild Temperature for Enzymatic Saccharification and Microbial Oil Fermentation. Appl Biochem Biotechnol 2016; 180:753-765. [PMID: 27179516 DOI: 10.1007/s12010-016-2130-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022]
Abstract
Soluble coffee, being one of the world's most popular consuming drinks, produces a considerable amount of spent coffee ground (SCG) along with its production. The SCG could function as a potential lignocellulosic feedstock for production of bioproducts. The objective of this study is to investigate the possible optimal condition of dilute acid hydrolysis (DAH) at high solids and mild temperature condition to release the reducing sugars from SCG. The optimal condition was found to be 5.3 % (w/w) sulfuric acid concentration and 118 min reaction time. Under the optimal condition, the mean yield of reducing sugars from enzymatic saccharification of defatted SCG acid hydrolysate was 563 mg/g. The SCG hydrolysate was then successfully applied to culture Lipomyces starkeyi for microbial oil fermentation without showing any inhibition. The results suggested that dilute acid hydrolysis followed by enzymatic saccharification has the great potential to convert SCG carbohydrates to reducing sugars. This study is useful for the further developing of biorefinery using SCG as feedstock at a large scale.
Collapse
|
7
|
Wood IP, Cook NM, Wilson DR, Ryden P, Robertson JA, Waldron KW. Ethanol from a biorefinery waste stream: Saccharification of amylase, protease and xylanase treated wheat bran. Food Chem 2016; 198:125-31. [DOI: 10.1016/j.foodchem.2015.09.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/04/2015] [Accepted: 09/29/2015] [Indexed: 11/30/2022]
|
8
|
Cellulases: Classification, Methods of Determination and Industrial Applications. Appl Biochem Biotechnol 2016; 179:1346-80. [PMID: 27068832 DOI: 10.1007/s12010-016-2070-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/31/2016] [Indexed: 10/22/2022]
Abstract
Microbial cellulases have been receiving worldwide attention, as they have enormous potential to process the most abundant cellulosic biomass on this planet and transform it into sustainable biofuels and other value added products. The synergistic action of endoglucanases, exoglucanases, and β-glucosidases is required for the depolymerization of cellulose to fermentable sugars for transformation in to useful products using suitable microorganisms. The lack of a better understanding of the mechanisms of individual cellulases and their synergistic actions is the major hurdles yet to be overcome for large-scale commercial applications of cellulases. We have reviewed various microbial cellulases with a focus on their classification with mechanistic aspects of cellulase hydrolytic action, insights into novel approaches for determining cellulase activity, and potential industrial applications of cellulases.
Collapse
|
9
|
Nishimura H, Tan L, Sun ZY, Tang YQ, Kida K, Morimura S. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 48:644-651. [PMID: 26687227 DOI: 10.1016/j.wasman.2015.11.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/03/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane.
Collapse
Affiliation(s)
- Hiroto Nishimura
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Li Tan
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu 610065, China.
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu 610065, China
| | - Kenji Kida
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan; College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu 610065, China
| | - Shigeru Morimura
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| |
Collapse
|
10
|
Wood IP, Cao HG, Tran L, Cook N, Ryden P, Wilson DR, Moates GK, Collins SRA, Elliston A, Waldron KW. Comparison of saccharification and fermentation of steam exploded rice straw and rice husk. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:193. [PMID: 27602056 PMCID: PMC5011935 DOI: 10.1186/s13068-016-0599-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/19/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Rice cultivation produces two waste streams, straw and husk, which could be exploited more effectively. Chemical pretreatment studies using rice residues have largely focussed on straw exploitation alone, and often at low substrate concentrations. Moreover, it is currently not known how rice husk, the more recalcitrant residue, responds to steam explosion without the addition of chemicals. RESULTS The aim of this study has been to systematically compare the effects of steam explosion severity on the enzymatic saccharification and simultaneous saccharification and fermentation of rice straw and husk produced from a variety widely grown in Vietnam (Oryza sativa, cv. KhangDan18). Rice straw and husk were steam exploded (180-230 °C for 10 min) into hot water and washed to remove fermentation inhibitors. In both cases, pretreatment at 210 °C and above removed most of the noncellulosic sugars. Prolonged saccharification at high cellulase doses showed that rice straw could be saccharified most effectively after steam explosion at 210 °C for 10 min. In contrast, rice husk required more severe pretreatment conditions (220 °C for 10 min), and achieved a much lower yield (75 %), even at optimal conditions. Rice husk also required a higher cellulase dose for optimal saccharification (10 instead of 6 FPU/g DM). Hemicellulase addition failed to improve saccharification. Small pilot scale saccharification at 20 % (w/v) substrate loading in a 10 L high torque bioreactor resulted in similarly high glucose yields for straw (reaching 9 % w/v), but much less for husk. Simultaneous saccharification and fermentation under optimal pretreatment and saccharification conditions showed similar trends, but the ethanol yield from the rice husk was less than 40 % of the theoretical yield. CONCLUSIONS Despite having similar carbohydrate compositions, pretreated rice husk is much less amenable to saccharification than pretreated rice straw. This is likely to attenuate its use as a biorefinery feedstock unless improvements can be made either in the feedstock through breeding and/or modern biotechnology, or in the pretreatment through the employment of improved or alternative technologies. Physiological differences in the overall chemistry or structure may provide clues to the nature of lignocellulosic recalcitrance.
Collapse
Affiliation(s)
- Ian P. Wood
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | | | - Long Tran
- Vietnam Academy of Agricultural Science, Hanoi, Vietnam
| | - Nicola Cook
- The Earlham Institute, Norwich Research Park, Norwich, NR4 7UG UK
| | - Peter Ryden
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | - David R. Wilson
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | - Graham K. Moates
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | - Samuel R. A. Collins
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | - Adam Elliston
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | - Keith W. Waldron
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| |
Collapse
|
11
|
Zhao X, Moates GK, Elliston A, Wilson DR, Coleman MJ, Waldron KW. Simultaneous saccharification and fermentation of steam exploded duckweed: Improvement of the ethanol yield by increasing yeast titre. BIORESOURCE TECHNOLOGY 2015; 194:263-269. [PMID: 26210138 PMCID: PMC4534771 DOI: 10.1016/j.biortech.2015.06.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 05/23/2023]
Abstract
This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210°C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g(-1) substrate) cellulase plus β-glucosidase (2 U g(-1) substrate) and a yeast inoculum of 10% (v/v or 8.0×10(7) cells mL(-1)). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors.
Collapse
Affiliation(s)
- X Zhao
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - G K Moates
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - A Elliston
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - D R Wilson
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - M J Coleman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - K W Waldron
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom.
| |
Collapse
|