1
|
Chauhan S, Dhalaria R, Ghoshal S, Kanwal KS, Verma R. Altitudinal Impact on Phytochemical Composition and Mycorrhizal Diversity of Taxus Contorta Griff in the Temperate Forest of Shimla District. J Basic Microbiol 2024; 64:e2400016. [PMID: 38922741 DOI: 10.1002/jobm.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
Taxus contorta (family Taxaceae) is a native plant of temperate region of western Himalaya. The current study investigated the effect of altitude on the phytochemical composition and mycorrhizal diversity, associated with distribution of T. contorta in Shimla district, Himachal Pradesh, India. Quantitative phytochemical analysis of the leaf extracts indicated that alkaloid levels decreased with altitude, with the highest value in Himri's methanol extracts (72.79 ± 1.08 mg/g) while phenol content increased with altitude, peaking in Nankhari's methanol extracts (118.83 ± 5.90 mg/g). Saponin content was higher in methanol extracts (78.13 ± 1.66 mg/g in Nankhari, 68.06 ± 1.92 mg/g in Pabbas, and 56.32 ± 1.93 mg/g in Himri). Flavonoid levels were notably higher in chloroform extracts, particularly in Nankhari (219.97 ± 2.99 mg/g), and positively correlated with altitude. Terpenoids were higher in chloroform extracts at Himri (11.34 ± 0.10 mg/g) and decreased with altitude. Taxol content showed minimal variation between solvents and altitudes (4.53-6.98 ppm), while rutin was only detected in methanol extracts (1.31-1.46 ppm). Mycorrhizal spore counts in T. contorta's rhizosphere varied with altitude: highest at Himri (77.83 ± 2.20 spores/50 g soil), decreasing to Pabbas (68.06 ± 1.96 spores/50 g soil) and lowest at Nankhari (66.00 ± 2.77 spores/50 g soil), with 17 AMF species identified overall, showing significant altitudinal influence on spore density. The rhizosphere of T. contorta was shown to be dominated by the Glomus species. The rhizospheric soil of the plant was found to be slightly acidic. Organic carbon and available potassium content decreased contrasting with increasing available nitrogen and phosphorus with altitude. Correlation data showed strong negative links between organic carbon (-0.83), moderate positive for nitrogen (0.46) and phosphorus (0.414), and moderate negative for potassium (-0.56) with the altitude. This study provides a comprehensive insight into changes in phytochemical constituents, mycorrhizal diversity and soil composition of T. contorta along a range of altitude.
Collapse
Affiliation(s)
- Saurav Chauhan
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Shankharoop Ghoshal
- Biodiversity Monitoring and Conservation Planning, Ashoka Trust for Research in Ecology and the Environment, Bengaluru, Karnataka, India
| | - K S Kanwal
- Centre for Biodiversity Conservation and Management, G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho, Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Gautam RD, Kumar A, Singh S, Chauhan R, Kumar A, Singh S. A comprehensive overview of breeding strategy to improve phenotypic and quality traits in Valeriana jatamansi Jones. Heliyon 2023; 9:e18294. [PMID: 37560641 PMCID: PMC10407054 DOI: 10.1016/j.heliyon.2023.e18294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Valeriana jatamansi is a high value perennial herb that grows at an altitude of 1000-3000 MASL in the Indian Himalayan Region and is used in the Ayurvedic, Unani and Chinese systems of medicine. The plant extracts and essential oil (EO) obtained from its roots are used in the pharmaceutical, aromatic and flavouring industries. On account of high global annual demand and lack of organized cultivation of this herb, it is mostly collected from the wild causing depletion of the natural populations and also leading to variable produce making it unsuitable for industrial use. Therefore, to promote its cultivation, it becomes imperative to develop varieties with uniformity. Significant variations have been reported in V. jatamansi populations in terms of underground biomass accumulation, essential oil and valepotriates indicating potential of genotypic variability for effective selection. The review focuses on the diversity and variations at inter- and intra-population levels for phenotypic traits, variations for different active constituents and scope of improvement through selective breeding in V. jatamansi. The species has cross-pollinated breeding behaviour on account of floral dimorphism and presents unique opportunities for development of homozygous progeny lines through controlled self/sib-pollination by applying the breeding methods described in the review for population improvement. The germplasm resources of unique and improved selections can be maintained clonally to ensure their true-to-type identity. This review article was framed in the year 2022 after thoroughly studying the literature from the year 1919-2022. The study focuses on the variations in V. jatamansi which could be used to maximize the production through various breeding techniques for biomass and yield of different active constituents to meet the requirements of pharmaceutical and aroma industries.
Collapse
Affiliation(s)
- Rahul Dev Gautam
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
- Agrotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, Kangra (H.P), India
| | - Ajay Kumar
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
- Agrotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, Kangra (H.P), India
| | - Satbeer Singh
- Agrotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, Kangra (H.P), India
| | - Ramesh Chauhan
- Agrotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, Kangra (H.P), India
| | - Ashok Kumar
- Agrotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, Kangra (H.P), India
| | - Sanatsujat Singh
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
- Agrotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, Kangra (H.P), India
| |
Collapse
|
3
|
Tiwari D, Kewlani P, Gaira KS, Bhatt ID, Sundriyal RC, Pande V. Predicting phytochemical diversity of medicinal and aromatic plants (MAPs) across eco-climatic zones and elevation in Uttarakhand using Generalized Additive Model. Sci Rep 2023; 13:10888. [PMID: 37407604 DOI: 10.1038/s41598-023-37495-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
The present study uses a systematic approach to explore the phytochemical composition of medicinal plants from Uttarakhand, Western Himalaya. The phytochemical composition of medicinal plants was analyzed based on (i) the presence of different chemical groups and (ii) bioactive compounds. The Generalized Additive Model (GAM) analysis was used to predict the occurrence of chemical groups and active compounds across different eco-climatic zones and the elevation in Uttarakhand. A total of 789 medicinal plants represented by 144 taxonomic families were screened to explore the phytochemical diversity of the medicinal plants of Uttarakhand. These medicinal plant species are signified in different life forms such as herbs (58.86%), shrubs (18.24%), trees (17.48%), ferns (2.38%), and climbers (2.13%). The probability of occurrence of the chemical groups found in tropical, sub-tropical, and warm temperate eco-climatic zones, whereas active compounds have a high Probability towards alpine, sub-alpine, and cool temperate zones. The GAM predicted that the occurrence of species with active compounds was declining significantly (p < 0.01), while total active compounds increased across elevation (1000 m). While the occurrence of species with the chemical group increased, total chemical groups were indicated to decline with increasing elevation from 1000 m (p < 0.000). The current study is overwhelmed to predict the distribution of phytochemicals in different eco-climatic zones and elevations using secondary information, which offers to discover bioactive compounds of the species occurring in the different eco-climatic habitats of the region and setting the priority of conservation concerns. However, the study encourages the various commercial sectors, such as pharmaceutical, nutraceutical, chemical, food, and cosmetics, to utilize unexplored species. In addition, the study suggests that prioritizing eco-climatic zones and elevation based on phytochemical diversity should be a factor of concern in the Himalayan region, especially under the climate change scenario.
Collapse
Affiliation(s)
- Deepti Tiwari
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India
| | - Pushpa Kewlani
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India
| | - Kailash S Gaira
- G.B. Pant National Institute of Himalayan Environment, Sikkim Regional Centre, Pangthang, Gangtok, Sikkim, India
| | - Indra D Bhatt
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India.
| | - R C Sundriyal
- Department of Forestry and Natural Resources, HNB Garhwal University, Srinagar, Garhwal, 249169, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| |
Collapse
|
4
|
Bahukhandi A, Joshi K, Kewlani P, Tiwari DC, Jugran AK, Bhatt ID. Comparative assessment of morphological, physiological and phytochemical attributes of cultivated Valeriana jatamansi Jones in Uttarakhand, West Himalaya. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107751. [PMID: 37230025 DOI: 10.1016/j.plaphy.2023.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Medicinal plants are global sources of herbal products, drugs, and cosmetics. They are disappearing rapidly due to anthropogenic pressure, overexploitation, unsustainable harvesting, lack of knowledge on cultivation, and the availability of quality plating materials. In this context, standardized in-vitro propagation protocol was followed to produce Valeriana jatamansi Jones, and transferred in two locations at Kosi-Katarmal (GBP) Almora (1200 masl) and Sri Narayan Ashram (SNA) Pithoragarh (Altitude 2750 masl), Uttarakhand. Over the three years of growth, plants were gathered from both locations for determining biochemical and physiological parameters, and growth performance. The plants growing at Sri Narayan Ashram (SNA) showed considerably (p < 0.05) higher amounts of polyphenolics, antioxidant activities, and phenolic compounds. Similarly, physiological parameters (transpiration 0.004 mol m-2 s-1; photosynthesis 8.20 μmol m-2 s-1; stomatal conductance 0.24 mol m-2 s-1), plant growth performance (leaves number 40, roots number 30, root length 14 cm) and soil attributes (total nitrogen 9.30; potassium 0.025; phosphorus 0.34 mg/g, respectively) were found best in the SNA as compared to GBP. In addition, moderate polar solvent (i.e., acetonitrile and methanol) was found suitable for extracting higher bioactive constituents from plants. The findings from this study revealed that large-scale cultivation of V. jatamansi should promote at higher elevation areas such as Sri Narayan Ashram to harness the maximum potential of the species. Such a protective approach with the right interventions will be helpful to provide livelihood security to the local populace along with quality material for commercial cultivation. This can fulfill the demand through regular supply of raw material to the industries and simultaneously promote their conservation.
Collapse
Affiliation(s)
- Amit Bahukhandi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora-263643, Uttarakhand, India.
| | - Kuldeep Joshi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora-263643, Uttarakhand, India
| | - Pushpa Kewlani
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora-263643, Uttarakhand, India
| | - Deep C Tiwari
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora-263643, Uttarakhand, India
| | - Arun K Jugran
- Garhwal Regional Centre of G. B. Pant National Institute of Himalayan Environment, Srinagar-246174, Uttarakhand, India
| | - Indra D Bhatt
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora-263643, Uttarakhand, India.
| |
Collapse
|
5
|
Mkhize SS, Simelane MBC, Mongalo NI, Pooe OJ. Bioprospecting the Biological Effects of Cultivating Pleurotus ostreatus Mushrooms from Selected Agro-Wastes and Maize Flour Supplements. J Food Biochem 2023. [DOI: 10.1155/2023/2762972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Pleurotus mushrooms are valuable food supplements with health and environmental restorative potential. In this paper, we sought to evaluate the biological activities and profile the bioactive compounds found in Pleurotus ostreatus cultivated from agro-waste supplemented with maize flour. We investigated carbon to nitrogen (C/N), antimicrobial, antioxidant, and antimalarial potential for the varying supplementation during mushroom cultivation. GCMS was utilized for screening bioactive compounds found in P. ostreatus. Changes in supplementation directly correlate with changes in compound profiling. Nonetheless, some compounds were found to be common amongst the tested mushrooms, including pentadecanoic acid; 9,12-octadecadienoic acid, methyl ester; pentadecanoic acid, methyl ester; octadecanoic acid; and diisooctyl phthalate. The highest antimicrobial potential against Gram-positive Staphylococcus aureus was observed when maize flour supplements were increased to 12% and 18%. Our data demonstrated that the observed antioxidant (DPPH, ABTS, and reducing power) and antimicrobial activity could emanate from various supplementation conditions. Furthermore, supplementation has an impact on the mushroom yield and phytochemical profiles of the produced mushroom.
Collapse
|
6
|
Liu X, Hu Y, Xue Z, Zhang X, Liu X, Liu G, Wen M, Chen A, Huang B, Li X, Yang N, Wang J. Valtrate, an iridoid compound in Valeriana, elicits anti-glioblastoma activity through inhibition of the PDGFRA/MEK/ERK signaling pathway. J Transl Med 2023; 21:147. [PMID: 36829235 PMCID: PMC9960449 DOI: 10.1186/s12967-023-03984-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Valtrate, a natural compound isolated from the root of Valeriana, exhibits antitumor activity in many cancers through different mechanisms. However, its efficacy for the treatment of glioblastoma (GBM), a tumor type with a poor prognosis, has not yet been rigorously investigated. METHODS GBM cell lines were treated with valtrate and CCK-8, colony formation and EdU assays, flow cytometry, and transwell, 3D tumor spheroid invasion and GBM-brain organoid co-culture invasion assays were performed to assess properties of proliferation, viability, apoptosis and invasion/migration. RNA sequencing analysis on valtrate-treated cells was performed to identify putative target genes underlying the antitumor activity of the drug in GBM cells. Western blot analysis, immunofluorescence and immunohistochemistry were performed to evaluate protein levels in valtrate-treated cell lines and in samples obtained from orthotopic xenografts. A specific activator of extracellular signal-regulated kinase (ERK) was used to identify the pathways mediating the effect. RESULTS Valtrate significantly inhibited the proliferation of GBM cells in vitro by inducing mitochondrial apoptosis and suppressed invasion and migration of GBM cells by inhibiting levels of proteins associated with epithelial mesenchymal transition (EMT). RNA sequencing analysis of valtrate-treated GBM cells revealed platelet-derived growth factor receptor A (PDGFRA) as a potential target downregulated by the drug. Analysis of PDGFRA protein and downstream mediators demonstrated that valtrate inhibited PDGFRA/MEK/ERK signaling. Finally, treatment of tumor-bearing nude mice with valtrate led to decreased tumor volume (fivefold difference at day 28) and enhanced survival (day 27 vs day 36, control vs valtrate-treated) relative to controls. CONCLUSIONS Taken together, our study demonstrated that the natural product valtrate elicits antitumor activity in GBM cells through targeting PDGFRA and thus provides a candidate therapeutic compound for the treatment of GBM.
Collapse
Affiliation(s)
- Xuemeng Liu
- grid.452402.50000 0004 1808 3430Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117 China
| | - Yaotian Hu
- grid.452402.50000 0004 1808 3430Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117 China
| | - Zhiyi Xue
- grid.452402.50000 0004 1808 3430Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117 China
| | - Xun Zhang
- grid.452402.50000 0004 1808 3430Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117 China
| | - Xiaofei Liu
- grid.452402.50000 0004 1808 3430Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117 China
| | - Guowei Liu
- grid.452402.50000 0004 1808 3430Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117 China
| | - Muzi Wen
- grid.284723.80000 0000 8877 7471School of Public Health, Southern Medical University, Foushan, 528000 China
| | - Anjing Chen
- grid.452402.50000 0004 1808 3430Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117 China
| | - Bin Huang
- grid.452402.50000 0004 1808 3430Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117 China
| | - Xingang Li
- grid.452402.50000 0004 1808 3430Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117 China
| | - Ning Yang
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, China. .,Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China. .,Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, 250012, China.
| | - Jian Wang
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, China. .,Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China. .,Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009, Bergen, Norway.
| |
Collapse
|
7
|
Taheri A, Ganjeali A, Arefi-Oskouie A, Çirak C, Cheniany M. The variability of phenolic constituents and antioxidant properties among wild populations of Ziziphora clinopodioides Lam. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:221-237. [PMID: 36875730 PMCID: PMC9981857 DOI: 10.1007/s12298-023-01283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
In this study, phenolic derivatives and antioxidant activities of fourteen Ziziphora clinopodioides populations, as well as LC-MS/MS analysis of three specific flavonoids were evaluated. Generally, high contents of phenolic derivatives were found in shoot extracts compared to roots. LC-MS/MS, a powerful analytical technique, was employed for the identification and quantify the individual flavonoids in Z. clinopodioides populations' extracts, in a quantity order of quercetin > rutin > apigenin. Scavenging activity by DPPH and FRAP was performed, and accordingly, in the shoot, the highest values for the DDPH were 4.61 ± 0.4 and 7.59 ± 0.26 µg ml- 1 in populations 1 and 13, respectively, and for the FRAP were 328.61 ± 5.54 and 292.84 ± 2.85 mg g DW- 1, in populations 6 and 1 respectively. Multivariate analysis results of the principal component analysis indicated the amount of polyphenols to be useful indicators in differentiating the geographical localities which explain 92.7% of the total variance. According to the results of hierarchical cluster analysis, the studied populations could be separated into two groups in that the contents of phenolic derivatives and antioxidant activities of different plant parts. Both shoot and root samples were well discriminated with the orthogonal partial least squares discriminant analysis (R2X: 0.861; Q2: 0.47) model. The validity of the model was confirmed by using receiver operating characteristic curve analysis and permutation tests. Such data make an important addition to our current knowledge of Ziziphora chemistry and are decisive in the identification of germplasms with a homogeneous phytochemical profile, high chemical content and bioactivity. The present results could also be helpful for the potential application of Z. clinopodioides in different kinds of industries as natural antioxidants. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01283-y.
Collapse
Affiliation(s)
- Azadeh Taheri
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 91779-48974 Mashhad, Iran
| | - Ali Ganjeali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 91779-48974 Mashhad, Iran
| | - Afsaneh Arefi-Oskouie
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cüneyt Çirak
- Vocational High School of Bafra, Ondokuz Mayis University, Samsun, Turkey
| | - Monireh Cheniany
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 91779-48974 Mashhad, Iran
| |
Collapse
|
8
|
Lei L, Yuan X, Fu K, Chen Y, Lu Y, Shou N, Wu D, Chen X, Shi J, Zhang M, Chen Z, Shi Z. Pseudotargeted metabolomics revealed the adaptive mechanism of Draba oreades Schrenk at high altitude. FRONTIERS IN PLANT SCIENCE 2022; 13:1052640. [PMID: 36570906 PMCID: PMC9784223 DOI: 10.3389/fpls.2022.1052640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Strong ultraviolet radiation and low temperature environment on Gangshika Mountain, located in the eastern part of the Qilian Mountains in Qinghai Province, can force plants to produce some special secondary metabolites for resisting severe environmental stress. However, the adaptive mechanism of Draba oreades Schrenk at high altitude are still unclear. In the current study, Draba oreades Schrenk from the Gangshika Mountain at altitudes of 3800 m, 4000 m and 4200 m were collected for comprehensive metabolic evaluation using pseudotargeted metabolomics method. Through KEGG pathway enrichment analysis, we found that phenylpropanoid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism related to the biosynthesis of flavonoids were up-regulated in the high-altitude group, which may enhance the environmental adaptability to strong ultraviolet intensity and low temperature stress in high altitude areas. By TopFc20 distribution diagram, the content of flavonoids gradually increased with the elevation of altitude, mainly including apigenin, luteolin, quercetin, hesperidin, kaempferol and their derivatives. Based on the random forest model, 10 important metabolites were identified as potential biomarkers. L-phenylalanine, L-histidine, naringenin-7-O-Rutinoside-4'-O-glucoside and apigenin related to the flavonoids biosynthesis and plant disease resistance were increased with the elevation of altitude. This study provided important insights for the adaptive mechanism of Draba oreades Schrenk at high altitude by pseudotargeted metabolomics.
Collapse
Affiliation(s)
- Ling Lei
- Clinical Psychology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Xuefeng Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yijun Lu
- Clinical Psychology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Na Shou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dandan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jian Shi
- Metabolomics Detection Department, Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Minjuan Zhang
- Metabolomics Detection Department, Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Zhe Chen
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Li J, Li X, Wang C, Zhang M, Ye M, Wang Q. The potential of Valeriana as a traditional Chinese medicine: traditional clinical applications, bioactivities, and phytochemistry. Front Pharmacol 2022; 13:973138. [PMID: 36210806 PMCID: PMC9534556 DOI: 10.3389/fphar.2022.973138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/26/2022] [Indexed: 01/30/2023] Open
Abstract
Valeriana plants are members of the Caprifoliaceae family, which include more than 200 species worldwide. We summarized previous reports on traditional clinical applications, bioactivities, and phytochemistry of Valeriana by searching electronic databases of Science Direct, Web of Science, PubMed, and some books. Some Valeriana species have been used as traditional medicines, demonstrating calming fright and tranquilizing mind, promoting Qi and blood, activating blood circulation and regulating menstruation, dispelling wind and eliminating dampness, regulating Qi-flowing to relieve pain, and promoting digestion and checking diarrhea, and treating diseases of the nervous, cardiovascular, and digestive systems, inflammation, gynecology, and others. Pharmacology studies revealed the effects of Valeriana, including sedative, hypnotic, antispasmodic, analgesic, antidepressant, anxiolytic, anticonvulsant, antiepileptic, neuroprotective, antibacterial, antiviral, cytotoxic, and antitumor effects as well as cardiovascular and cerebrovascular system improvements. More than 800 compounds have been isolated or identified from Valeriana, including iridoids, lignans, flavonoids, sesquiterpenoids, alkaloids, and essential oils. Constituents with neuroprotective, anti-inflammatory, cytotoxic, and sedative activities were also identified. However, at present, the developed drugs from Valeriana are far from sufficient. We further discussed the pharmacological effects, effective constituents, and mechanisms directly related to the traditional clinical applications of Valeriana, revealing that only several species and their essential oils were well developed to treat insomnia. To effectively promote the utilization of resources, more Valeriana species as well as their different medicinal parts should be the focus of future related studies. Clinical studies should be performed based on the traditional efficacies of Valeriana to facilitate their use in treating diseases of nervous, cardiovascular, and digestive systems, inflammation, and gynecology. Future studies should also focus on developing effective fractions or active compounds of Valeriana into new drugs to treat diseases associated with neurodegeneration, cardiovascular, and cerebrovascular, inflammation and tumors. Our review will promote the development and utilization of potential drugs in Valeriana and avoid wasting their medicinal resources.
Collapse
Affiliation(s)
- Jianchun Li
- Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, College of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoliang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Changfu Wang
- Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, College of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Manli Zhang
- Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, College of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minhui Ye
- Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, College of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiuhong Wang
- Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, College of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
10
|
Joshi K, Adhikari P, Bhatt ID, Pande V. Source dependent variation in phenolics, antioxidant and antimicrobial activity of Paeonia emodi in west Himalaya, India. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1785-1798. [PMID: 36387977 PMCID: PMC9636362 DOI: 10.1007/s12298-022-01242-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Paeonia emodi is one of the ethno therapeutically important Himalayan plants used to cure various diseases. However, a systematic investigation of the effect of altitude on phytochemical, antioxidant, and antimicrobial activity has not been reported so far. The present study assessed the variation in the bioactive compounds, antioxidant and antimicrobial activity of the leaf, and rhizome of P. emodi collected from different altitudes. Phytochemicals such as phenols, flavonoids, flavanol, tannins, emodin, and paeoniflorin were found in all the sampled populations, but the quantity varied significantly across the altitude. In leaf, phenolics, flavonoids, and tannins content positively correlated with altitude (p < 0.01), but flavanol did not show any connection. Similarly, in the rhizome, positive relation with altitude (p < 0.01) was observed in phenol, flavonoids, and paeoniflorin. Antioxidant activity measured by 1, 1-diphenyl- 2 picrylhydrazyl (DPPH) and nitric oxide assays showed a positive correlation (p < 0.05) with altitude. 2, 2-azinobis (3-ethylbenzothiazoline-6-sulphonic acid), ferric reducing antioxidant power, and hydroxyl ion assays did not show any relation with altitude. Antimicrobial activity was higher in the case of rhizome for the minimum inhibitory concentration and positively correlated with phenolics, flavonoids, and flavanol (p < 0.05). The present study further revealed that the secondary metabolites in the leaf and rhizome extracts of P. emodi are an excellent source of antioxidant and antimicrobial activity, thus validating the species' therapeutic potential. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01242-z.
Collapse
Affiliation(s)
- Kuldeep Joshi
- Centre for Biodiversity Conservation and Management, G. B. Pant, National Institute of Himalayan Environment, Kosi- Katarmal, Almora, Uttarakhand 263 643 India
| | - Priyanka Adhikari
- Centre for Biodiversity Conservation and Management, G. B. Pant, National Institute of Himalayan Environment, Kosi- Katarmal, Almora, Uttarakhand 263 643 India
| | - Indra D. Bhatt
- Centre for Biodiversity Conservation and Management, G. B. Pant, National Institute of Himalayan Environment, Kosi- Katarmal, Almora, Uttarakhand 263 643 India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Nainital, Uttarakhand 263 136 India
| |
Collapse
|
11
|
Chemical Diversity of Essential Oil of Valeriana jatamansi from Different Altitudes of Himalaya and Distillation Methods. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082387. [PMID: 35458582 PMCID: PMC9029108 DOI: 10.3390/molecules27082387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Valeriana jatamansi is an important temperate herb that is used in the pharmaceutical and essential oil industries. In India, this species is now on the verge of extinction due to the over-exploitation of its rhizomes from its natural habitat. It is hypothesized that the variations in bioactive compounds in its essential oil are very high among the wild populations as well as cultivated sources. Thus, this study was conducted to evaluate the chemical profiling of essential oil of four wild populations (Rupena, Kugti, Garola, and Khani) and two cultivated sources (CSIR-IHBT, Salooni), which were distilled at three consecutive days. The variation in oil concentration in roots/rhizomes was found significant (p ≤ 0.05), and the maximum value (0.35%) was registered with the population collected from Kugti and Khani. In essential oil, irrespective of population and distillation day, patchouli alcohol was the major compound, which ranged from 19 to 63.1%. The maximum value (63.1%) was recorded with the essential oil obtained from Garola’s population and distilled on the first day. The percentage of seychellene was abruptly increased with subsequent days of extraction in all the populations. The multivariate analysis revealed that the essential oil profiles of Rupena, Kugti, Garola, and CSIR-IHBT populations were found to be similar during the first day of distillation. However, during the second day, Rupena, Kugti, Khani, and CSIR-IHBT came under the same ellipse of 0.95% coefficient. The results suggest that the population of Kugti is superior in terms of oil concentration (0.35%), with a higher proportion of patchouli alcohol (63% on the first day). Thus, repeated distillation is recommended for higher recovery of essential oil. Moreover, repeated distillation can be used to attain V. jatamansi essential oil with differential and perhaps targeted definite chemical profile.
Collapse
|
12
|
Nayeem N, Imran M, Mohammed Basheeruddin Asdaq S, Imam Rabbani S, Ali Alanazi F, Alamri AS, Alsanie WF, Alhomrani M. Total phenolic, flavonoid contents, and biological activities of stem extracts of Astragalus spinosus (Forssk.) Muschl. grown in Northern Border Province, Saudi Arabia. Saudi J Biol Sci 2022; 29:1277-1282. [PMID: 35280574 PMCID: PMC8913549 DOI: 10.1016/j.sjbs.2021.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background and objective Genus Astragalus belongs to the family Fabaceae and is one among the largest genera consisting of around 3000 species. The plants have been used traditionally in treatment of various ailments in folklore. The study was planned to assess the analgesic and inflammatory activity of Astragulus spinosus (Forssk.) Muschl extract of the stem. Materials and methods Course powder of stems of Astragulus spinosus was extracted using chloroform and methanol as solvents. Folin ciocalteu method was employed for determination of the phenolic acid content. Aluminum chloride colorimetric procedure was followed for estimating the flavonoid content. Both chloroform and methanolic extracts at 250 and 500 mg/kg, were tested for the analgesic activity, however, only methanolic extract was selected for anti-inflammatory property based on the results of analgesic activity. The analgesic effect was executed on male rats by the hot plate model. The anti-inflammatory effect was studied in the carrageenan rat paw edema model. The experimental information was interpreted statistically using one-way ANOVA and p < 0.05 was used to express importance of the results. Results The total phenolics of the methanol extract was 420 µg and that of chloroform extract was 265 µgwhile total flavonoid content in terms of quercetin was found to be 68 µg and 17.5 µg for methanol and chloroform extract respectively. Only methanolic extract exhibited significant (p < 0.001) analgesic activity by elevating the pain threshold starting from 15 min. The methanolic extract inhibited (p < 0.001) the edema in carrageenan induced model. The performance of higher dose (500 mg/kg) was better with reference to lower dose (250 mg/kg). Conclusion Outcome of the results show that the methanolic stem extracts exhibited significant analgesic and anti-inflammatory-like activity with reference to chloroform extract. Credit of which is given to flavonoids and phenolic content present in the methanolic extract. However, more research is suggested to establish the safety and effectiveness of the herbal drug to manage diseased states including pain and inflammation.
Collapse
Affiliation(s)
- Naira Nayeem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | | | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Farhan Ali Alanazi
- Department of Pharmaceutical Care, Rafha Maternity and Children Hospital, Ministry of Health, Rafha, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| |
Collapse
|
13
|
Kewlani P, Tiwari DC, Singh B, Negi VS, Bhatt ID, Pande V. Source-dependent variation in phenolic compounds and antioxidant activities of Prinsepia utilis Royle fruits. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:162. [PMID: 35141786 DOI: 10.1007/s10661-022-09786-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Prinsepia utilis, a wild-growing Himalayan shrub, is a good source of phytoceuticals, cosmeceuticals, and antioxidants. The present study is an attempt to investigate the effect of altitude and edaphic factors on phenolics and antioxidant activity in fruit pulp of Prinsepia utilis. The ripened fruits and soil samples were collected for detailed investigation. The fruits (pulp) were extracted in methanol for analyzing total phenolics and antioxidant activity using a spectrophotometric method and phenolic compounds by high-performance liquid chromatography (HPLC). Similarly, standard methods for soil analysis were used. Results reveal that altitude negatively correlated with total phenolics and flavonoid contents determined by a spectrophotometric method and with specific phenolic compounds determined by HPLC. For instance, Dwarahat population (PU-1) at lower altitude (1400 m asl) exhibited higher values of total phenolics and flavonoids, while total tannin was higher at Nainital (PU-6) population (2000 m asl). The antioxidant activity measured by 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was found higher in Narayan Ashram (PU-9) population (2750 m asl), while ferric reducing antioxidant power (FRAP) was significantly higher in Badechena (PU-2) population (1600 m asl). Soil nutrients (edaphic factors) showed a good correlation among measured parameters. Neighbor-joining and principal component analysis identified phenolics and antioxidant-rich populations that can be utilized for collection of fruits from these populations.
Collapse
Affiliation(s)
- Pushpa Kewlani
- G. B. Pant, National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India
| | - Deep C Tiwari
- G. B. Pant, National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India
| | - Basant Singh
- G. B. Pant, National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India
| | - Vikram S Negi
- G. B. Pant, National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India
| | - Indra D Bhatt
- G. B. Pant, National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India.
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, 263 136, Nainital, Uttarakhand, India
| |
Collapse
|
14
|
Tram LH, Van Thong N, Thuy LT, Anh NT, Minh NH, Minh TT, Thi Hong Phuong N, Ha TT, Nguyet Nguyen TM, Le DD, Hiep ND, Park JT, Thi To Chinh T, Thu Huong T, Lee M. Secondary metabolites from Valeriana jatamansi with their anti-inflammatory activity. Nat Prod Res 2021; 36:4620-4629. [PMID: 34812687 DOI: 10.1080/14786419.2021.2004600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Valeriana jatamansi is hired as multiple remedies for treatment of insomnia, blood and circulatory disorders, asthma, dry cough, jaundice, seminal weakness, cardiac debility, and skin diseases in Vietnam. Our research discovered the phytochemical investigation of constituents from this herbal medicine resulted in the isolation of two new compounds (jatamansides A (4) and B (7)) together with 16 known ones from the whole plant. Their structures were established by using spectroscopic techniques (multinuclear and multidimensional nuclear magnetic resonance, infrared, ultraviolet-visible), mass spectrometry, hydrolysis analysis, or comparing their NMR data to those reported in the literature. In addition, all the isolates were evaluated for their inhibitory effect against TNF-α production in LPS-stimulated on RAW264.7 cells with significant inhibition.
Collapse
Affiliation(s)
- Le Huyen Tram
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Nguyen Van Thong
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Le Thi Thuy
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Nguyen Tuan Anh
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Nguyen Hoang Minh
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Tran Thi Minh
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Hong Phuong
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Tran Thu Ha
- Intellectual Property Office of Vietnam, Hanoi, Vietnam
| | | | - Duc Dat Le
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nguyen Dinh Hiep
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Jong-Tae Park
- Department of Food Science and technology, Chungnam National University, Daejeon, Republic of Korea
| | | | - Tran Thu Huong
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon-si, Korea
| |
Collapse
|
15
|
Ghimire BK, Seo JW, Yu CY, Kim SH, Chung IM. Comparative Study on Seed Characteristics, Antioxidant Activity, and Total Phenolic and Flavonoid Contents in Accessions of Sorghum bicolor (L.) Moench. Molecules 2021; 26:molecules26133964. [PMID: 34209531 PMCID: PMC8271980 DOI: 10.3390/molecules26133964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/05/2022] Open
Abstract
Sorghum is a major cereal food worldwide, and is considered a potential source of minerals and bioactive compounds. Its wide adaptive range may cause variations in its agronomic traits, antioxidant properties, and phytochemical content. This extensive study investigated variations in seed characteristics, antioxidant properties, and total phenolic (TPC) and flavonoid contents (TFC) of sorghum collected from different ecological regions of 15 countries. The antioxidant potential of the seed extracts of various sorghum accessions was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis 3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging assays. Significant variations in TPC were observed among the sorghum accessions. All 78 sorghum accessions used in this study exhibited significant variations in TFC, with the lowest and highest amount observed in accessions C465 and J542, respectively. DPPH scavenging potential of the seed extracts for all the accessions ranged from 11.91 ± 4.83 to 1343.90 ± 81.02 µg mL−1. The ABTS assay results were similar to those of DPPH but showed some differences in the accessions. Pearson’s correlation analysis revealed a wide variation range in the correlation between antioxidant activity and TPC, as well as TFC, among the sorghum accessions. A wide diversity range was also recorded for the seed characteristics (1000-seed weight and seed germination rate). A dendrogram generated from UPGMA clustering, based on seed traits, antioxidant activity, TPC, and TFC was highly dispersed for these accessions. Variations among the accessions may provide useful information regarding the phytoconstituents, antioxidant properties, and phytochemical contents of sorghum and aid in designing breeding programs to obtain sorghum with improved agronomic traits and bioactive properties.
Collapse
Affiliation(s)
- Bimal-Kumar Ghimire
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (B.-K.G.); (S.-H.K.)
| | - Ji-Won Seo
- Bioherb Research Institute, Kangwon National University, Chuncheon 24341, Korea; (J.-W.S.); (C.-Y.Y.)
| | - Chang-Yeon Yu
- Bioherb Research Institute, Kangwon National University, Chuncheon 24341, Korea; (J.-W.S.); (C.-Y.Y.)
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (B.-K.G.); (S.-H.K.)
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (B.-K.G.); (S.-H.K.)
- Correspondence: ; Tel.: +82-010-547-08301
| |
Collapse
|
16
|
Luo C, Li Y, Budhathoki R, Shi J, Yer H, Li X, Yan B, Wang Q, Wen Y, Huang M, Huang H. Complete chloroplast genomes of Impatiens cyanantha and Impatiens monticola: Insights into genome structures, mutational hotspots, comparative and phylogenetic analysis with its congeneric species. PLoS One 2021; 16:e0248182. [PMID: 33798203 PMCID: PMC8018631 DOI: 10.1371/journal.pone.0248182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/20/2021] [Indexed: 12/22/2022] Open
Abstract
Impatiens L., the largest genus in the family Balsaminaceae with approximately 1000 species, is a controversial and complex genus that includes many economically important species well known for medicinal and ornamental values. However, there is limited knowledge of molecular phylogeny and chloroplast genomics, and uncertainties still exist at a taxonomic level. In this study, we have assembled four chloroplast genomics specimens of Impatiens cyanantha and Impatiens monticola, which are found at the different altitudes of Guizhou and Yunnan in China, and compared them with previously published three wild Balsaminaceae species (Impatiens piufanensis, Impatiens glandlifera, and Hydrocera triflora). The complete chloroplast genome sequences ranged from 152,236 bp (I. piufanensis) to 154,189 bp (H. triflora) and encoded 115 total distinct genes, of which 81 were protein-coding, 30 were distinct transfer RNA genes(tRNA), and 4 were ribosomal RNA genes (rRNA). A comparative analysis of I. cyanantha (Guizhou) vs. I. cyanantha (Yunnan) and I. monticola (Guizhou) vs. I. monticola (Yunnan) revealed minor changes in lengths; however, similar gene contents, gene orders, and GC contents existed among them. Interestingly, highly coding and non-coding genes, and regions matK, psbK, atpH-atpI, trnC-trnT, petN, psbM, atpE, rbcL, accD, psaL, rps3-rps19, ndhG-ndhA,rpl16, rpoB, ndhB, ndhF, ycf1, and ndhH were found, which could be suitable for identification of species and phylogenetic studies. During the comparison between I. cyanantha (Guizhou) and I. cyanantha (Yunnan), we observed that the rps4, ycf2, ndhF, ycf1, and rpoC2 genes underwent positive selection. Meanwhile, in the comparative study of I. monticola (Guizhou) vs. I. monticola (Yunnan), The accD and ycf1 genes were positively selected. Additionally, phylogenetic relationships based on maximum likelihood (ML) and Bayesian inference (BI) among whole chloroplast genomes showed that a sister relationship with I. monticola (Guizhou) and I. monticola (Yunnan) formed a clade with I.piufanensis proving their close connection. Besides, I.cyanantha (Guizhou) and I. cyanantha (Yunnan) formed a clade with I. glandlifera. Along with the findings and the results, the current study might provide valuable significant genomic resources for systematics and evolution of the genus impatiens in different altitudes of regions.
Collapse
Affiliation(s)
- Chao Luo
- College of Landscape Architecture and Horticultural Science, Southwest Forestry University, Kunming, China
- Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, China
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, China
- Department of Landscape Architecture and Plant Science, University of Connecticut, Storrs, CT, United States of America
| | - Yang Li
- College of Landscape Architecture and Horticultural Science, Southwest Forestry University, Kunming, China
- Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, China
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, China
| | - Roshani Budhathoki
- Department of Landscape Architecture and Plant Science, University of Connecticut, Storrs, CT, United States of America
| | - Jiyuan Shi
- Department of Landscape Architecture and Plant Science, University of Connecticut, Storrs, CT, United States of America
| | - Huseyin Yer
- Department of Landscape Architecture and Plant Science, University of Connecticut, Storrs, CT, United States of America
| | - Xinyi Li
- College of Landscape Architecture and Horticultural Science, Southwest Forestry University, Kunming, China
- Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, China
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, China
| | - Bo Yan
- College of Landscape Architecture and Horticultural Science, Southwest Forestry University, Kunming, China
- Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, China
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, China
| | - Qiong Wang
- College of Landscape Architecture and Horticultural Science, Southwest Forestry University, Kunming, China
- Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, China
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, China
| | - Yonghui Wen
- College of Landscape Architecture and Horticultural Science, Southwest Forestry University, Kunming, China
- Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, China
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, China
| | - Meijuan Huang
- College of Landscape Architecture and Horticultural Science, Southwest Forestry University, Kunming, China
- Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, China
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, China
| | - Haiquan Huang
- College of Landscape Architecture and Horticultural Science, Southwest Forestry University, Kunming, China
- Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, China
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, China
| |
Collapse
|
17
|
Pandey V, Bhatt ID, Nandi SK. Seasonal trends in morpho-physiological attributes and bioactive content of Valeriana jatamansi Jones under full sunlight and shade conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:327-340. [PMID: 33707872 PMCID: PMC7907411 DOI: 10.1007/s12298-021-00944-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 05/31/2023]
Abstract
UNLABELLED Valeriana jatamansi Jones, an important medicinal herb of the Himalayan region, is an essential source of many therapeutic compounds and is traded/consumed in very high volume. The hypothesis of this study was that different seasons and light conditions may affect the content of medicinally valuable components with changes in the morpho-physiological attributes of the plant. Growing plants under suitable light conditions and harvesting of appropriate plant parts in optimum season is crucial for harnessing the full potential of the crop. Thus, the study was carried out to determine the seasonal response of V. jatamansi plants (genetically identical plants of same age) in terms of growth and phytochemical content under two different light conditions (full sunlight and 50% shade). During all seasons, growth parameters (plant height, leaf number, leaf area, relative water content, plant biomass) and the principle bioactive compounds (valerenic acid) were higher under shade conditions, while total flavonoids, tannins, phenolic compounds and antioxidant activities were higher under full sunlight conditions. HPLC analysis revealed that valerenic acid and most of the phenolic content were higher during summer season, especially in leaf part of the plant. The study suggested harvesting of V. jatamansi plants (especially leaf), during summer season to harness high quality raw material and to prevent loss of belowground parts. This strategy can be adopted by farmers for large scale cultivation of species. SUPPLEMENTARY INFORMATION The online version of this article contains supplementary material available at 10.1007/s12298-021-00944-0.
Collapse
Affiliation(s)
- Veena Pandey
- G. B. Pant National Institute of Himalayan Environment (GBP-NIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - I. D. Bhatt
- G. B. Pant National Institute of Himalayan Environment (GBP-NIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Shyamal K. Nandi
- G. B. Pant National Institute of Himalayan Environment (GBP-NIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| |
Collapse
|
18
|
Jugran AK, Rawat S, Devkota HP, Bhatt ID, Rawal RS. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother Res 2020; 35:223-245. [PMID: 32909364 DOI: 10.1002/ptr.6821] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is a disease of serious concern faced by the health care industry today. Primary diabetes mellitus and its complications are still costly to manage with modern drugs. Extensive research on the screening of anti-diabetic agents in past decades established natural products as one of the major potential sources of drug discovery. However, only a few drugs of plant origin have been scientifically validated. Therefore, the development of new anti-diabetic drugs is of great demand. Hence, natural products could be explored as potential anti-diabetic drugs. Natural plants derived extracts and molecules like berberine, ginsenosides, curcumin, stevioside, gingerols, capsaicin, catechins, simple phenolic compounds, anthocyanins, resveratrol, genistein and hesperidin obtained from different species are used for curing diabetes and found to possess different action mechanisms. In this review, the importance of medicinal plants and their active constituents for anti-diabetic agents are described. The present study also emphasized the importance of diabetes control, reduction in its complications and use of the anti-diabetic agents. The detailed action mechanism of these extracts/compounds for their activities are also described. However, the anti-diabetic drugs from plant origin require scientific validation through animal and clinical studies to exploit in terms of modern commercial medicines.
Collapse
Affiliation(s)
- Arun K Jugran
- Garhwal Regional Centre, G. B. Pant National Institute of Himalayan Environment (NIHE), Srinagar, Uttarakhand, India
| | - Sandeep Rawat
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment (NIHE), Gangtok, Sikkim, India
| | - Hari P Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Indra D Bhatt
- Center for Biodiversity Conservation and Management (CBCM), G. B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, Uttarakhand, India
| | - Ranbeer S Rawal
- Center for Biodiversity Conservation and Management (CBCM), G. B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, Uttarakhand, India
| |
Collapse
|
19
|
Chick CN, Misawa-Suzuki T, Suzuki Y, Usuki T. Preparation and antioxidant study of silver nanoparticles of Microsorum pteropus methanol extract. Bioorg Med Chem Lett 2020; 30:127526. [PMID: 32882415 DOI: 10.1016/j.bmcl.2020.127526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
This study reports a preparation of silver nanoparticles (SNPs) using Microsorum pteropus methanol extract, as a new approach in the development of therapeutic strategies against diseases caused by oxidative stress, reactive oxygen, and nitrogen species. During the effort of extraction and isolation from M. pteropus, X-ray single-crystal structural analysis of sucrose was succeeded. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and hydrogen peroxide scavenging assay were used to confirm the antioxidant potential. Preparation of SNPs was confirmed by ultraviolet-visible (UV-Vis) spectra with peaks between 431 and 436 nm. Infrared (IR) analysis showed OH, NH functional groups of alcohol, phenol, amine, and aliphatic CH stretching vibrations of hydrocarbon chains of the synthesized nanoparticles. The antioxidant properties of the SNPs significantly showed DPPH reduction with an IC₅₀ value of 47.0 µg/mL and hydrogen peroxide scavenging activity with an IC₅₀ value of 35.8 µg/mL, and hence, indicating their capability to eliminate potentially damaging oxidants involved in oxidative stress and their related diseases.
Collapse
Affiliation(s)
- Christian Nanga Chick
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Tomoyo Misawa-Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Yumiko Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
20
|
Wang H, Song Z, Xing H, Shi Z, Wu P, Zhang J, Tuerhong M, Xu J, Guo Y. Nitric oxide inhibitory iridoids as potential anti-inflammatory agents from Valeriana jatamansi. Bioorg Chem 2020; 101:103974. [DOI: 10.1016/j.bioorg.2020.103974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/17/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022]
|
21
|
Suyal R, Rawat S, Rawal RS, Bhatt ID. Variability in morphology, phytochemicals, and antioxidants in Polygonatum verticillatum (L.) All. populations under different altitudes and habitat conditions in Western Himalaya, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 191:783. [PMID: 31989296 DOI: 10.1007/s10661-019-7687-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Polygonatum verticillatum (L.) All. is one among eight species of Astavarga group of plants known for its vitality strengthening properties and used in different herbal formulations. However, systematic investigation on morphology and antioxidant phytochemicals in relation to different environmental variables like altitude and habitat conditions is poorly available. The present study reveals significant (p < 0.05) differences in structural and functional attributes among sixteen different populations of P. verticillatum in West Himalaya. Among the different populations, plants growing in moist habitat and oak forest exhibited maximum plant height, leaf number, biomass and phytochemical content (total phenolics, tannin, and flavonol). Antioxidant activity using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) positively (p < 0.05) correlated with altitude. Presence of strong antioxidant and DNA damage prevention activity of the species validate its use as vitality strengthening and anti-aging properties. Identified suitable altitude, habitat conditions, and forest types can be utilized for reintroduction of species in to suitable agro-climatic condition. This will also help in obtaining higher quality produce and management practices for conservation of this species.
Collapse
Affiliation(s)
- Renu Suyal
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India
| | - Sandeep Rawat
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India
| | - Ranbeer S Rawal
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India
| | - Indra D Bhatt
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India.
| |
Collapse
|
22
|
Zou K, Liu X, Zhang D, Yang Q, Fu S, Meng D, Chang W, Li R, Yin H, Liang Y. Flavonoid Biosynthesis Is Likely More Susceptible to Elevation and Tree Age Than Other Branch Pathways Involved in Phenylpropanoid Biosynthesis in Ginkgo Leaves. FRONTIERS IN PLANT SCIENCE 2019; 10:983. [PMID: 31417595 PMCID: PMC6682722 DOI: 10.3389/fpls.2019.00983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/12/2019] [Indexed: 05/22/2023]
Abstract
Ginkgo leaves are always resources for flavonoids pharmaceutical industry. However, the effect of the elevation and tree age changes on flavonoid biosynthesis have not been detailly explored in Ginkgo leaves. In addition, whether these environmental pressures have similar effects on the biosynthesis of other non-flavonoids polyphenolics in phenylpropanoid biosynthesis is not known at present. In this research, de novo transcriptome sequencing of Ginkgo leaves was performed coupled with ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry analyses to obtain a comprehensive understanding of the influence of elevation and tree age on phenylpropanoid biosynthesis. A total of 557,659,530 clean reads were assembled into 188,155 unigenes, of which 135,102 (71.80%) were successfully annotated in seven public databases. The putative DFRs, LARs, and ANRs were significantly up-regulated with the increase of elevation in young Ginkgo tree leaves. The relative concentration of flavonoid derivatives with high parent ion intensity was likely to imply that the elevation increase promoted the biosynthesis of flavonoids. Complex gene variations involved in flavonoid biosynthesis were observed with the tree age increase. However, flavonoid derivatives analysis predicted that the rise of tree age was more likely to be detrimental to the flavonoids manufacture. Otherwise, multiple genes implicated in the synthesis of hydroxycinnamates, lignin, and lignan exhibited fluctuations with the elevation increase. Significantly up-regulated CADs and down-regulated PRDs potentially led to the accumulation of p-Coumaryl alcohol, one of the lignin monomers, and might inhibit further lignification. Overall, the putative DFRs seemed to show more considerable variability toward these stress, and appeared to be the main regulatory point in the flavonoid biosynthesis. Light enhancement caused by elevation increase may be the main reason for flavonoids accumulation. Flavonoid biosynthesis exhibited a greater degree of perturbation than that of hydroxycinnamates, lignins and lignans, potentially suggesting that flavonoid biosynthesis might be more susceptible than other branch pathways involved in phenylpropanoid biosynthesis. This research effectively expanded the functional genomic library and provide new insights into phenylpropanoid biosynthesis in Ginkgo.
Collapse
Affiliation(s)
- Kai Zou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Du Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Qin Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Shaodong Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Wenqi Chang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing, China
- Zhejiang CONBA Pharmaceutical, Co., Ltd., Hangzhou, China
| | - Rui Li
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| |
Collapse
|
23
|
Ghimire BK, Yu CY, Kim SH, Chung IM. Diversity in Accessions of Panicum miliaceum L. Based on Agro-Morphological, Antioxidative, and Genetic Traits. Molecules 2019; 24:molecules24061012. [PMID: 30871255 PMCID: PMC6470979 DOI: 10.3390/molecules24061012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 11/22/2022] Open
Abstract
The genetic diversity and antioxidant potential of Panicum miliaceum L. accessions collected from different geo-ecological regions of South Korea were evaluated and compared. Antioxidant potential of seeds was estimated by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical scavenging assays and total phenolic content was determined by the Folin–Ciocalteu method. Total phenolic content (TPC) in 80% methanolic extracts ranged from 16.24 ± 0.86 to 58.04 ± 1.00 mg gallic acid equivalent (GAE)/g of the sample extracts and total flavonoid content (TFC) varied from 7.19 ± 1.05 to 52.56 ± 1.50 mg quercetin equivalents (QE) mg/g of the sample extracts. DPPH radical scavenging capacity of the extracts from the 15 accessions of P. miliaceum varied from 206.44 ± 7.72 to 2490.24 ± 4.641 mg GAE/g of the sample extracts and ABTS radical scavenging capacity ranged from 624.85 ± 13.1 to 1087. 77 ± 9.58 mg GAE/g of the sample extracts. A wide range of genetic variation was observed as measured by Shannon’s information index (I), number of effective alleles (Ne), number of observed alleles (Na), expected heterozygosity (He), unbiased expected heterozygosity (uHe). The observed variation in the bioactive properties, morphological traits, and genetic diversity among the accessions may provide useful information for breeding programs seeking to improve bioactive properties of P. miliaceum.
Collapse
Affiliation(s)
- Bimal Kumar Ghimire
- Department of Applied Life Science, Konkuk University, Seoul 143-701, Korea.
| | - Chang Yeon Yu
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Korea.
| | - Seung Hyun Kim
- Department of Applied Life Science, Konkuk University, Seoul 143-701, Korea.
| | - Ill-Min Chung
- Department of Applied Life Science, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
24
|
Jugran AK, Rawat S, Bhatt ID, Rawal RS. Valeriana jatamansi: An herbaceous plant with multiple medicinal uses. Phytother Res 2019; 33:482-503. [PMID: 30663144 DOI: 10.1002/ptr.6245] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/26/2018] [Accepted: 11/03/2018] [Indexed: 01/22/2023]
Abstract
Valeriana jatamansi Jones (Family: Caprifoliaceae), a high value medicinal plant, was distributed in many countries of Asia. The species possesses important valepotriates and is a good source of flavones or flavone glycosides, lignans, sesquiterpenoids or sesquiterpenoid glycoside, bakkenolide type sesquiterpenoids, phenolic compounds, terpinoids, etc. The use of the species in traditional and modern medicines is well known. For instance, V. jatamansi is very important for its insect repelling and antihelmethic properties. Similarly, sedative, neurotoxic, cytotoxic, antidepressant, antioxidant, and antimicrobial activities of the species in various ailments in the indigenous system of medicine, particularly in Asia, are reported. This review focuses on the detailed phytochemical composition, medicinal uses, and pharmacological properties of V. jatamansi along with analysis of botanical errors in published literature and reproducibility of the biomedical researches on this multipurpose herbaceous species.
Collapse
Affiliation(s)
- Arun K Jugran
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre, Srinagar, Uttarakhand, India
| | - Sandeep Rawat
- Centre for Biodiversity Conservation and Management (CBCM), G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Indra D Bhatt
- Centre for Biodiversity Conservation and Management (CBCM), G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Ranbeer S Rawal
- Centre for Biodiversity Conservation and Management (CBCM), G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, India
| |
Collapse
|
25
|
Influence of Light Exposure during Cold Storage of Minimally Processed Vegetables (Valeriana sp.). J FOOD QUALITY 2018. [DOI: 10.1155/2018/4694793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Minimally processed vegetables are sensitive to leaves discoloration and quality deterioration, and these negative aspects can affect their shelf life. During the manufacturing processing, Valeriana leaves were submitted to different dipping acid solutions and then were stored at cold temperature in dark and in light to study the influence of the light exposure on their quality in terms of total free acidity, dry matter percentage, colour, water activity, total bacterial count, antioxidant components, and total antioxidant activity. The results suggest that dark storage is recommended for a better physicochemical quality of Valeriana leaves. In particular, light influenced significantly the browning index and hue angle with a significance level of p<0.01 and p<0.05, respectively, whereas both exposure conditions affected total bacterial count and pH (p<0.01). Dipping treatments had an effect on pH, aw, and total bacterial count, while the storage time influenced with highly significant differences the most of the studied parameters, except for the antioxidant compounds.
Collapse
|
26
|
Wang F, Zhang Y, Wu S, He Y, Dai Z, Ma S, Liu B. Studies of the structure-antioxidant activity relationships and antioxidant activity mechanism of iridoid valepotriates and their degradation products. PLoS One 2017; 12:e0189198. [PMID: 29232391 PMCID: PMC5726618 DOI: 10.1371/journal.pone.0189198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress has been associated with diverse diseases, including obesity, cancer and neurodegeneration. In fact, Valeriana jatamansi Jones (valerian) and its extracts possess strong antioxidant activities that extend their application in clinical practice to the treatment of these illnesses, even though the underlying mechanisms are not well understood. Iridoid valepotriate, a characteristic iridoid ester in valerian with poor chemical stability, possesses considerable antioxidant components. The original compounds and their degradation products have been found to exhibit strong antioxidant activities. However, the relationship between their structure and antioxidant effects and the mechanism underlying their oxidation resistance remain unclear. A forced degradation study using three iridoid valepotriates (valtrate, acevaltrate and 1-β acevaltrate) was performed in this work, and the structures of their degradation products were estimated by TLC-MS and LC-MS. Comparison of the antioxidant activities of the iridoid valepotriates before and after forced degradation revealed that degradation reduced the activities of the iridoid valepotriates in free radical scavenging and cytotoxic and cell apoptosis tests. The results suggested that the oxirane nucleus is important for defining the antioxidant profile of iridoid valepotriate. We uncovered possible mechanisms that could explain the antioxidant activities, including the generation of two hydroxyl groups through intramolecular transfer of an H• from an oxirane ring and a reduction in ROS levels through interactions with GABAergic signalling pathways.
Collapse
Affiliation(s)
- Feifei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- National Institutes for Food and Drug Control, Beijing, China
| | - Yumei Zhang
- National Institutes for Food and Drug Control, Beijing, China
| | - Shouhai Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi He
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhong Dai
- National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, China
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
27
|
Population Genetic Structure and Marker Trait Associations Using Morphological, Phytochemical and Molecular Parameters in Habenaria edgeworthii—a Threatened Medicinal Orchid of West Himalaya, India. Appl Biochem Biotechnol 2016; 181:267-282. [DOI: 10.1007/s12010-016-2211-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
28
|
Rawat S, Bhatt ID, Rawal RS, Nandi SK. Geographical and Environmental Variation in Chemical Constituents and Antioxidant Properties inRoscoea proceraWall. J Food Biochem 2016. [DOI: 10.1111/jfbc.12302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sandeep Rawat
- Biodiversity conservation and Management & Biotechnological Appilications, G.B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal; Almora-263 643 Uttarakhand India
- Biotechnology Division, CSIR-Institue of Himalayan Bioresource Technology; Palampur-176 061 Himachal Pradesh India
| | - Indra D. Bhatt
- Biodiversity conservation and Management & Biotechnological Appilications, G.B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal; Almora-263 643 Uttarakhand India
| | - Ranbeer S. Rawal
- Biodiversity conservation and Management & Biotechnological Appilications, G.B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal; Almora-263 643 Uttarakhand India
| | - Shyamal K. Nandi
- Biodiversity conservation and Management & Biotechnological Appilications, G.B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal; Almora-263 643 Uttarakhand India
| |
Collapse
|
29
|
Effect of Processing and Storage Methods on the Nutritional, Anti-nutritional, and Anti-oxidant Properties of Paeonia emodi, Wall. ex. Royle. Appl Biochem Biotechnol 2016; 180:322-37. [DOI: 10.1007/s12010-016-2101-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
|