1
|
Singarayar MS, Chandrasekaran A, Balasundaram D, Veerasamy V, Neethirajan V, Thilagar S. Prebiotics: Comprehensive analysis of sources, structural characteristics and mechanistic roles in disease regulation. Microb Pathog 2024; 197:107071. [PMID: 39447658 DOI: 10.1016/j.micpath.2024.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Prebiotics are nondigestible components that comprise short-chain carbohydrates, primarily oligosaccharides, which are converted into beneficial compounds by probiotics. Various plant substances with prebiotic properties provide substantial health benefits and are used to prevent different diseases and for medical and clinical applications. Consuming prebiotics gives impeccable benefits since it aids in gut microbial balance. Prebiotic research is primarily concerned with the influence of intestinal disorders. The proposed review will describe recent data on the sources, structures, implementation of prebiotics and potential mechanisms in preventing and treating various disorders, with an emphasis on the gut microbiome. Prebiotics have a distinctive impact on the gastro intestine by explicitly encouraging the growth of probiotic organisms like Bifidobacteria and Lactobacilli. This in turn augments the body's inherent ability to fend off harmful pathogens. Prebiotic carbohydrates may also provide other non-specific advantages due to their fermentation in the large intestine. Additional in vivo research is needed to fully comprehend the interactions between prebiotics and probiotics ingested by hosts to improve their nutritional and therapeutic benefits.
Collapse
Affiliation(s)
- Magdalin Sylvia Singarayar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Ajithan Chandrasekaran
- Department of Horticulture, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | | | - Veeramurugan Veerasamy
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Vivek Neethirajan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
2
|
Dempsey M, Thavarajah D. Low molecular weight carbohydrates and abiotic stress tolerance in lentil ( Lens culinaris Medikus): a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1408252. [PMID: 39421141 PMCID: PMC11484031 DOI: 10.3389/fpls.2024.1408252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Lentil (Lens culinaris Medikus) is a nutrient-rich, cool-season food legume that is high in protein, prebiotic carbohydrates, vitamins, and minerals. It is a staple food in many parts of the world, but crop performance is threatened by climate change, where increased temperatures and less predictable precipitation can reduce yield and nutritional quality. One mechanism that many plant species use to mitigate heat and drought stress is the production of disaccharides, oligosaccharides and sugar alcohols, collectively referred to as low molecular weight carbohydrates (LMWCs). Recent evidence indicates that lentil may also employ this mechanism - especially raffinose family oligosaccharides and sugar alcohols - and that these may be suitable targets for genomic-assisted breeding to improve crop tolerance to heat and drought stress. While the genes responsible for LMWC biosynthesis in lentil have not been fully elucidated, single nucleotide polymorphisms and putative genes underlying biosynthesis of LMWCs have been identified. Yet, more work is needed to confirm gene identity, function, and response to abiotic stress. This review i) summarizes the diverse evidence for how LMWCs are utilized to improve abiotic stress tolerance, ii) highlights current knowledge of genes that control LMWC biosynthesis in lentil, and iii) explores how LMWCs can be targeted using diverse genomic resources and markers to accelerate lentil breeding efforts for improved stress tolerance.
Collapse
Affiliation(s)
| | - Dil Thavarajah
- Plant and Environmental Sciences, Pulse Quality and Nutritional Breeding, Biosystems Research Complex, Clemson University, Clemson, SC, United States
| |
Collapse
|
3
|
Gao Y, Zhang W, Zhang T, Yu Y, Mao S, Liu J. Fructo-oligosaccharide supplementation enhances the growth of nursing dairy calves while stimulating the persistence of Bifidobacterium and hindgut microbiome's maturation. J Dairy Sci 2024; 107:5626-5638. [PMID: 38522831 DOI: 10.3168/jds.2024-24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
The colonization and development of the gut microbiome in dairy calves play a crucial role in their overall health and future productivity. Despite the widely proposed benefits of inulin-related products on the host, there is insufficient information about how supplementing fructo-oligosaccharides (FOS) affects the colonization and development of the gut microbiome in calves. In a randomized intervention trial involving newborn male Holstein dairy calves, we investigated the effect of FOS on the calf hindgut microbiome, short-chain fatty acids (SCFA), growth performance, and the incidence of diarrhea. The daily administration of FOS exhibited a time-dependent increase in the ADG and the concentration of SCFA. Concurrently, FOS delayed the natural decline of Bifidobacterium, promoting the maturation and stabilization of the hindgut microbiome. These findings not only contribute to a theoretical understanding of the judicious application of prebiotics but also hold significant practical implications for the design of early life dietary interventions in the rearing of dairy calves.
Collapse
Affiliation(s)
- Yunlong Gao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanqiu Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yueying Yu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinxin Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Jung DH, Kim IY, Kim YJ, Chung WH, Lim MY, Nam YD, Seo DH, Park CS. Lacticaseibacillus paracasei completely utilizes fructooligosacchrides in the human gut through β-fructosidase (FosE). World J Microbiol Biotechnol 2024; 40:261. [PMID: 38972914 DOI: 10.1007/s11274-024-04068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
The fecal microbiota of two healthy adults was cultivated in a medium containing commercial fructooligosaccharides [FOS; 1-kestose (GF2), nystose (GF3), and 1F-fructofuranosylnystose (GF4)]. Initially, the proportions of lactobacilli in the two feces samples were only 0.42% and 0.17%; however, they significantly increased to 7.2% and 4.8%, respectively, after cultivation on FOS. Most FOS-utilizing isolates could utilize only GF2; however, Lacticaseibacillus paracasei strain Lp02 could fully consume GF3 and GF4 too. The FOS operon (fosRABCDXE) was present in Lc. paracasei Lp02 and another Lc. paracasei strain, KCTC 3510T, but fosE was only partially present in the non-FOS-degrading strain KCTC 3510T. In addition, the top six upregulated genes in the presence of FOS were fosABCDXE, particularly fosE. FosE is a β-fructosidase that hydrolyzes both sucrose and all three FOS. Finally, a genome-based analysis suggested that fosE is mainly observed in Lc. paracasei, and only 13.5% (61/452) of their reported genomes were confirmed to include it. In conclusion, FosE allows the utilization of FOS, including GF3 and GF4 as well as GF2, by some Lc. paracasei strains, suggesting that this species plays a pivotal role in FOS utilization in the human gut.
Collapse
Affiliation(s)
- Dong-Hyun Jung
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - In-Young Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ye-Jin Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Won-Hyong Chung
- Department of Animal Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Mi-Young Lim
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
5
|
Popov IV, Koopmans B, Venema K. Modulation of human gut microbiota by linear and branched fructooligosaccharides in an in vitro colon model (TIM-2). J Appl Microbiol 2024; 135:lxae170. [PMID: 38986506 DOI: 10.1093/jambio/lxae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/16/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
AIMS This study aimed to compare the effects of linear and branched fructooligosaccharides (FOS) extracted from chicory and grass (Lolium perenne), respectively on human microbiota composition, diversity, and metabolism. METHODS AND RESULTS To test the effects of linear and branched FOS on human microbiota we used the artificial in vitro human colon model (TIM-2). Microbiota composition and diversity were assessed by V3-V4 16S rRNA metagenomic sequencing, followed by differential taxa abundance and alpha/beta diversity analyses. SCFA/BCFA production was evaluated by gas chromatography-mass spectrometry. As a result, branched FOS had the most beneficial effects on microbial diversity and metabolite production. Also, branched FOS significantly increased the abundance of commensal bacteria associated with maintaining healthy gut functions and controlling inflammation, such as Butyricicoccus, Erysipelotrichaceae, Phascolarctobacterium, and Sutterella. Linear FOS also significantly increased the abundance of some other commensal gut bacteria (Anaerobutyricum, Lachnospiraceae, Faecalibacterium), but there were no differences in diversity metrics compared to the control. CONCLUSIONS The study revealed that branched FOS had the most beneficial effects compared to the linear FOS in vitro, concerning microbiota modulation, and metabolite production, making this a good candidate for further studies in food biotechnology.
Collapse
Affiliation(s)
- Igor V Popov
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, 5928 SZ Venlo, The Netherlands
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | | | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, 5928 SZ Venlo, The Netherlands
| |
Collapse
|
6
|
Coetzee G, García-Aparicio MDP, Bosman CE, van Rensburg E, Görgens JF. Evaluation of different glycerol fed-batch strategies in a lab-scale bioreactor for the improved production of a novel engineered β-fructofuranosidase enzyme in Pichia pastoris. World J Microbiol Biotechnol 2024; 40:223. [PMID: 38819502 PMCID: PMC11143039 DOI: 10.1007/s11274-024-04027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
The β-fructofuranosidase enzyme from Aspergillus niger has been extensively used to commercially produce fructooligosaccharides from sucrose. In this study, the native and an engineered version of the β-fructofuranosidase enzyme were expressed in Pichia pastoris under control of the glyceraldehyde-3-phosphate dehydrogenase promoter, and production was evaluated in bioreactors using either dissolved oxygen (DO-stat) or constant feed fed-batch feeding strategies. The DO-stat cultivations produced lower biomass concentrations but this resulted in higher volumetric activity for both strains. The native enzyme produced the highest volumetric enzyme activity for both feeding strategies (20.8% and 13.5% higher than that achieved by the engineered enzyme, for DO-stat and constant feed, respectively). However, the constant feed cultivations produced higher biomass concentrations and higher volumetric productivity for both the native as well as engineered enzymes due to shorter process time requirements (59 h for constant feed and 155 h for DO-stat feed). Despite the DO-stat feeding strategy achieving a higher maximum enzyme activity, the constant feed strategy would be preferred for production of the β-fructofuranosidase enzyme using glycerol due to the many industrial advantages related to its enhanced volumetric enzyme productivity.
Collapse
Affiliation(s)
- Gerhardt Coetzee
- Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - María Del Prado García-Aparicio
- Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- The Centre for Energy, Environmental and Technological Research, Department of Energy, Avda Complutense 40, Madrid, 28040, Spain
| | - Catharine Elizabeth Bosman
- Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| | - Eugéne van Rensburg
- Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Johann Ferdinand Görgens
- Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| |
Collapse
|
7
|
Calvez V, Becherucci G, Covello C, Piccirilli G, Mignini I, Esposto G, Laterza L, Ainora ME, Scaldaferri F, Gasbarrini A, Zocco MA. Navigating the Intersection: Sarcopenia and Sarcopenic Obesity in Inflammatory Bowel Disease. Biomedicines 2024; 12:1218. [PMID: 38927425 PMCID: PMC11200968 DOI: 10.3390/biomedicines12061218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Inflammatory bowel diseases (IBDs) are intricate systemic conditions that can extend beyond the gastrointestinal tract through both direct and indirect mechanisms. Sarcopenia, characterized by a reduction in muscle mass and strength, often emerges as a consequence of the clinical course of IBDs. Indeed, sarcopenia exhibits a high prevalence in Crohn's disease (52%) and ulcerative colitis (37%). While computed tomography and magnetic resonance imaging remain gold-standard methods for assessing muscle mass, ultrasound is gaining traction as a reliable, cost-effective, and widely available diagnostic method. Muscle strength serves as a key indicator of muscle function, with grip strength test emerging nowadays as the most reliable assessment method. In IBDs, sarcopenia may arise from factors such as inflammation, malnutrition, and gut dysbiosis, leading to the formulation of the 'gut-muscle axis' hypothesis. This condition determines an increased need for surgery with poorer post-surgical outcomes and a reduced response to biological treatments. Sarcopenia and its consequences lead to reduced quality of life (QoL), in addition to the already impaired QoL. Of emerging concern is sarcopenic obesity in IBDs, a challenging condition whose pathogenesis and management are still poorly understood. Resistance exercise and nutritional interventions, particularly those aimed at augmenting protein intake, have demonstrated efficacy in addressing sarcopenia in IBDs. Furthermore, anti-TNF biological therapies showed interesting outcomes in managing this condition. This review seeks to furnish a comprehensive overview of sarcopenia in IBDs, elucidating diagnostic methodologies, pathophysiological mechanisms, and clinical implications and management. Attention will also be paid to sarcopenic obesity, exploring the pathophysiology and possible treatment modalities of this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Catholic University of Rome, 00168 Rome, Italy; (V.C.); (G.B.); (C.C.); (G.P.); (I.M.); (G.E.); (L.L.); (M.E.A.); (F.S.); (A.G.)
| |
Collapse
|
8
|
El Jeni R, Villot C, Koyun OY, Osorio-Doblado A, Baloyi JJ, Lourenco JM, Steele M, Callaway TR. Invited review: "Probiotic" approaches to improving dairy production: Reassessing "magic foo-foo dust". J Dairy Sci 2024; 107:1832-1856. [PMID: 37949397 DOI: 10.3168/jds.2023-23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The gastrointestinal microbial consortium in dairy cattle is critical to determining the energetic status of the dairy cow from birth through her final lactation. The ruminant's microbial community can degrade a wide variety of feedstuffs, which can affect growth, as well as production rate and efficiency on the farm, but can also affect food safety, animal health, and environmental impacts of dairy production. Gut microbial diversity and density are powerful tools that can be harnessed to benefit both producers and consumers. The incentives in the United States to develop Alternatives to Antibiotics for use in food-animal production have been largely driven by the Veterinary Feed Directive and have led to an increased use of probiotic approaches to alter the gastrointestinal microbial community composition, resulting in improved heifer growth, milk production and efficiency, and animal health. However, the efficacy of direct-fed microbials or probiotics in dairy cattle has been highly variable due to specific microbial ecological factors within the host gut and its native microflora. Interactions (both synergistic and antagonistic) between the microbial ecosystem and the host animal physiology (including epithelial cells, immune system, hormones, enzyme activities, and epigenetics) are critical to understanding why some probiotics work but others do not. Increasing availability of next-generation sequencing approaches provides novel insights into how probiotic approaches change the microbial community composition in the gut that can potentially affect animal health (e.g., diarrhea or scours, gut integrity, foodborne pathogens), as well as animal performance (e.g., growth, reproduction, productivity) and fermentation parameters (e.g., pH, short-chain fatty acids, methane production, and microbial profiles) of cattle. However, it remains clear that all direct-fed microbials are not created equal and their efficacy remains highly variable and dependent on stage of production and farm environment. Collectively, data have demonstrated that probiotic effects are not limited to the simple mechanisms that have been traditionally hypothesized, but instead are part of a complex cascade of microbial ecological and host animal physiological effects that ultimately impact dairy production and profitability.
Collapse
Affiliation(s)
- R El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C Villot
- Lallemand SAS, Blagnac, France, 31069
| | - O Y Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J J Baloyi
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - M Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
9
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
10
|
Sun W, Li E, Mao X, Zhang Y, Wei Q, Huang Z, Wan A, Zou Y. The oligosaccharides of Xiasangju alleviates dextran sulfate sodium-induced colitis in mice by inhibiting inflammation. PLoS One 2023; 18:e0295324. [PMID: 38060482 PMCID: PMC10703232 DOI: 10.1371/journal.pone.0295324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Xiasangju (XSJ) is a traditional Chinese herbal formula consisted of Prunella spica, Mulberry leaf and Chrysanthemi indici flos, which can be used to treat fever, headache and ulcer. To explore the effects of oligosaccharides from XSJ (OX) on colitis, we used dextran sulfate sodium (DSS) to establish colitis mouse models. After administration of OX with different doses on the control and colitis mice, we measured their body weights, disease activity indexes (DAI), lengths and histopathologic changes of colons, spleen indexes. The inflammatory cytokines and oxidative stress-related factors in serum, and the intestinal microbial community in feces were also detected. We found that colitis mice with oral administration of OX showed higher body weights and lower levels of DAI and spleen index. Tissue damages induced by DSS were also alleviated by OX treatment. The colitis mice with OX treatment exhibited lower levels of AST, ALT, BUN, CR, MDA and a down-regulated expression of IL-6 and IL-1β, while the activity of SOD was up-regulated. Furthermore, OX improved the relative abundance of gut microbiota and restored the proportions of Bacteroidetes and Muribaculaceae. We found that oligosaccharides from XSJ alleviated the symptoms of colitis mice through its inhibitory effects on inflammation and oxidative stress, and also regulated the composition of intestinal flora, which indicates a beneficial role for patients with colitis.
Collapse
Affiliation(s)
- Weiguang Sun
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Erna Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Xin Mao
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Yulin Zhang
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Quxing Wei
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Zhiyun Huang
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Anfeng Wan
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| |
Collapse
|
11
|
He X, Sun C, Zhao J, Zhang Y, Zhang X, Fang Y. High Viscosity Slows the Utilization of Rapidly Fermentable Dietary Fiber by Human Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19078-19087. [PMID: 38053507 DOI: 10.1021/acs.jafc.3c05652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In the present study, the influence of viscosity on the fermentation characteristics of fructooligosaccharides (FOS) by gut microbiota was examined. Different concentrations of methylcellulose (MC) were added to create varying viscosities and the mixture was fermented with FOS by gut microbiota. The results demonstrated that higher viscosity had a significant impact on slowing down the fermentation rate of FOS. Specifically, the addition of 2.5 wt% MC, which had the highest viscosity, resulted in the lowest and slowest production of gas and short-chain fatty acids (SCFAs), indicating that increased viscosity could hinder the breakdown of FOS by gut microbiota. Additionally, the slower fermentation of FOS did not significantly alter the structure of the gut microbiota community compared to that of FOS alone, suggesting that MC could be used in combination with FOS to achieve similar prebiotic effects and promote gut health while exhibiting a slower fermentation rate.
Collapse
Affiliation(s)
- Xiangxiang He
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Faculty of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingwen Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Ardalan ZS, Livingstone KM, Polzella L, Avakian J, Rohani F, Sparrow MP, Gibson PR, Yao CK. Perceived dietary intolerances, habitual intake and diet quality of patients with an ileoanal pouch: Associations with pouch phenotype (and behaviour). Clin Nutr 2023; 42:2095-2108. [PMID: 37748240 DOI: 10.1016/j.clnu.2023.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/24/2023] [Accepted: 07/23/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND AND AIMS Ileoanal pouch patients frequently attribute pouch-related symptoms and pouchitis with diet. We aimed to assess perceived food intolerance and habitual dietary intake and their relationship with pouch indication, symptoms and current or history of pouchitis. METHODS In this cross-sectional study, patients with an ileoanal pouch completed a dietary intolerance and a food frequency questionnaire, that specifically quantifies habitual intake of FODMAPs. Perceived dietary intolerance rates, nutrient intake and diet quality, and their differences based on pouch indication, symptom, and current or history of pouchitis were assessed. Associations between intolerances and intake, and between dietary intake with pouchitis risk were analysed using univariable and multivariable regression analysis. RESULTS Of the 58 (10 FAP and 48 UC) patients with complete data, 81% of UC and 80% of FAP patients reported dietary intolerances. Overall diet quality was good. Differences in dietary intake were limited to a few food groups. Patients with a history of pouchitis had a lower intake of fruits (p = 0.03) and nuts (p = 0.004). Patients with current pouchitis had a lower intake of nuts (p = 0.02). On multivariable logistic regression, intake of dietary fibre was associated negatively [OR 0.68(95%CI:0.51-0.92)] and of non-digestible oligosaccharides positively with pouchitis history [OR 5.5(95% CI:1.04-29.1)]. CONCLUSIONS In patients with an ileoanal pouch, perceived dietary intolerances are common but had minimal impact on nutritional adequacy and diet quality. Negative associations of the intakes of fruits, nuts and dietary fibre and positive association with non-digestible oligosaccharides with a history of pouchitis require further study to inform dietary recommendations.
Collapse
Affiliation(s)
- Zaid S Ardalan
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia.
| | - Katherine M Livingstone
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Louise Polzella
- Department of Nutrition and Dietetics, Monash University, Victoria, Australia
| | - Julia Avakian
- Department of Nutrition and Dietetics, Monash University, Victoria, Australia
| | - Faran Rohani
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Miles P Sparrow
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Peter R Gibson
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Chu K Yao
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Liu N, Qin L, Zeng H, Wen A, Miao S. Integrative proteomic-transcriptomic analysis revealed the lifestyles of Lactobacillus paracasei H4-11 and Kluyveromyces marxianus L1-1 under co-cultivation conditions. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
14
|
Jaswal AS, Elangovan R, Mishra S. Synthesis and molecular characterization of levan produced by immobilized Microbacterium paraoxydans. J Biotechnol 2023; 373:63-72. [PMID: 37451319 DOI: 10.1016/j.jbiotec.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
In this study, we report high molecular weight (HMW) levan production by whole cells of Microbacterium paraoxydans, previously reported to be a good producer of fructooligosaccharides. Structural analysis of the extracellularly produced fructan indicated the glycosidic bonds between the adjacent fructose to be of β-(2, 6) linkage with over 90% of the fructan to have molecular weight around 2 × 108 Da and 10% with a molecular weight of ∼20 kDa. Immobilization of the cells in Ca-alginate led to the production of 44.6 g/L levan with a yield of 0.29 g/g sucrose consumed. Factors affecting the conversion rate were identified by One-Factor-At-a-Time (OFAT) analysis and the combination of these (initial sucrose concentration of 400 g/L, 100 mM buffer pH 7, the temperature of 37 °C and 20 mM CaCl2) led to the production of ∼129 g/L of levan with a yield of ∼0.41 g/g sucrose consumed and volumetric productivity of 1.8 g/L/h.
Collapse
Affiliation(s)
- Avijeet Singh Jaswal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India.
| |
Collapse
|
15
|
Dong CD, Tsai ML, Nargotra P, Kour B, Chen CW, Sun PP, Sharma V. Bioprocess development for the production of xylooligosaccharide prebiotics from agro-industrial lignocellulosic waste. Heliyon 2023; 9:e18316. [PMID: 37519746 PMCID: PMC10372396 DOI: 10.1016/j.heliyon.2023.e18316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
The development of sustainable biorefineries and bioeconomy has been the mandate of most of the governments with major focus on restricting the climate change concerns and finding new strategies to maintain the global food supply chain. Xylooligosaccharides (XOS) are short-chain oligomers which due to their excellent prebiotic potential in the nutraceutical sector has attracted intense research focus in the recent years. The agro-industrial crop and food waste can be utilized for the production of XOS which are derived from hemicellulose fraction (xylan) of the lignocellulosic materials. The extraction of xylan, is traditionally achieved by acidic and alkaline pretreatments which, however, have limited industrial applications. The inclusion of cutting-edge and environmentally beneficial pretreatment methods and technologies such as deep eutectic solvents and green catalysts are preferred. Moreover, the extraction of xylans from biomass using combinatorial pretreatment approaches may help in economizing the whole bioprocess. The current review outlines the factors involved in the xylan extraction and depolymerization processes from different lignocellulosic biomass and the subsequent enzymatic hydrolysis for XOS production. The different types of oligosaccharides and their prebiotic potential for the growth of healthy gut bacteria have also been explained. The introduction of modern molecular technologies has also made it possible to identify enzymes and microorganisms with the desired characteristics for usage in XOS industrial production processes.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Vishal Sharma
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- School of Biotechnology, University of Jammu, India
| |
Collapse
|
16
|
Jiménez-Amezcua I, González-Prada A, Díez-Municio M, Soria AC, Ruiz-Matute AI, Sanz ML. Simultaneous microwave-assisted extraction of bioactive compounds from aged garlic. J Chromatogr A 2023; 1704:464128. [PMID: 37302253 DOI: 10.1016/j.chroma.2023.464128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
In this work, the simultaneous extraction of bioactives (organosulfur compounds, such as S-allyl-L-cysteine (SAC), carbohydrates, such as neokestose and neonystose, and total phenolic compounds) from aged garlic has been optimized for the first time to obtain multifunctional extracts for further application as food ingredients. Analytical methods using liquid chromatography coupled to mass spectrometry (HPLC-MS) and by hydrophilic interaction liquid chromatography with evaporative light scattering detection (HILIC-ELSD) were also previously optimized. High sensitivity (limits of detection between 0.013 and 0.77 µg mL-1) and appropriate repeatability (< 12%) and accuracy (> 92%) for the analysis of bioactives were achieved. After selecting water as the extraction solvent and microwave-assisted extraction (MAE) as the most efficient technique, operation conditions were optimized using a Box-Behnken experimental design (60 min; 120 °C; 0.05 g mL-1; 1 cycle) to maximize the content of bioactives from different aged garlic samples. Regarding organosulfur compounds, only SAC (traces-2.32 mg g-1 dry sample) and cycloalliin (1.23-3.01 mg g-1 dry sample) were detected in all samples, while amino acids such as arginine (0.24-3.45 mg g-1 dry sample) and proline (0.43-3.91 mg g-1 dry sample) were, in general, the most abundant. Bioactive carbohydrates (from trisaccharides to nonasaccharides) were only detected in fresh garlic and aged garlic processed under mild conditions, whereas all garlic extracts showed antioxidant activity. The developed MAE methodology is shown as a successful alternative to other procedures for the simultaneous extraction of aged garlic bioactives intended by the food and nutraceutical industries, among others.
Collapse
Affiliation(s)
- I Jiménez-Amezcua
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva, 3, Madrid 28006, Spain; Pharmactive Biotech Products SLU, Faraday, 7, Madrid 28049, Spain
| | - A González-Prada
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva, 3, Madrid 28006, Spain
| | - M Díez-Municio
- Pharmactive Biotech Products SLU, Faraday, 7, Madrid 28049, Spain
| | - A C Soria
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva, 3, Madrid 28006, Spain
| | - A I Ruiz-Matute
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva, 3, Madrid 28006, Spain
| | - M L Sanz
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva, 3, Madrid 28006, Spain.
| |
Collapse
|
17
|
Wang L, Wang C, Peng Y, Zhang Y, Liu Y, Liu Y, Yin Y. Research progress on anti-stress nutrition strategies in swine. ANIMAL NUTRITION 2023; 13:342-360. [DOI: 10.1016/j.aninu.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/04/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
|
18
|
Sajnaga E, Socała K, Kalwasińska A, Wlaź P, Waśko A, Jach ME, Tomczyk M, Wiater A. Response of murine gut microbiota to a prebiotic based on oligosaccharides derived via hydrolysis of fungal α-(1→3)-d-glucan: Preclinical trial study on mice. Food Chem 2023; 417:135928. [PMID: 36933426 DOI: 10.1016/j.foodchem.2023.135928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/04/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
We investigated the modulating effect of α-(1→3)-glucooligosaccharides (GOS), i.e. a product of fungal α-(1→3)-d-glucan hydrolysis, on the gut microbiota composition. Mice were fed with a GOS-supplemented diet and two control diets for 21 days, and fecal samples were collected at 0, 1, and 3-week time points. The bacterial community composition was determined by 16S rRNA gene Illumina sequencing. The gut microbiota of the GOS-supplemented mice showed profound time-dependent changes in the taxonomic composition; however, we did not observe significant changes in α-diversity indices. The biggest number of genus abundance shifts after 1 week of the treatment was noticed between the group of the GOS-supplemented mice and the controls; however, the differences were still relevant after the 3-week treatment. The GOS-supplemented mice displayed higher abundance of Prevotella spp., with a concomitant decrease in the abundance of Escherichia-Shigella. Hence, GOS seems to be a promising candidate for a new prebiotic.
Collapse
Affiliation(s)
- Ewa Sajnaga
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, ul. Konstantynów 1J, 20-708 Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, ul. Lwowska 1, 87-100 Toruń, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, ul. Skromna 8, 20-704 Lublin, Poland
| | - Monika Elżbieta Jach
- Department of Molecular Biology, John Paul II Catholic University of Lublin, ul. Konstantynów 1H, 20-708 Lublin, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
19
|
Sharma N, Kang DK, Paik HD, Park YS. Beyond probiotics: a narrative review on an era of revolution. Food Sci Biotechnol 2023; 32:413-421. [PMID: 36911329 PMCID: PMC9992473 DOI: 10.1007/s10068-022-01212-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Whether knowingly or unknowingly, humans have been consuming probiotic microorganisms through traditionally fermented foods for generations. Bacteria, like lactic acid bacteria, are generally thought to be harmless and produce many metabolites that are beneficial for human health. Probiotics offer a wide range of health benefits; however, their therapeutic usage is limited because they are living organisms. As a result, the focus on the health advantages of microbes has recently shifted from viable live probiotics to non-viable microbes made from probiotics. These newly emerging non-viable microbes include paraprobiotics, postbiotics, psychobiotics, nutribiotics, and gerobiotics. Their metabolites can boost physiological health and reveal the therapeutic effects of probiotics. This new terminology in microbes, their traits, and their applications are summarized in the present review.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
20
|
Zhang Q, Hu S, Wu J, Sun P, Zhang Q, Wang Y, Zhao Q, Han T, Qin L, Zhang Q. Nystose attenuates bone loss and promotes BMSCs differentiation to osteoblasts through BMP and Wnt/β-catenin pathway in ovariectomized mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Dimov I, Mollova D, Vasileva T, Bivolarski V, Nikolova M, Bivolarska A, Iliev I. Metabolic profiling of probiotic strain Lactobacillus delbrueckii subsp. bulgaricus L14 cultivated in presence of prebiotic oligosaccharides and polysaccharides in simulating in vitro gastrointestinal tract system. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2023.2178825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Affiliation(s)
- Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Daniela Mollova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Tonka Vasileva
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Veselin Bivolarski
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Mariana Nikolova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| |
Collapse
|
22
|
Chavan AR, Singh AK, Gupta RK, Nakhate SP, Poddar BJ, Gujar VV, Purohit HJ, Khardenavis AA. Recent trends in the biotechnology of functional non-digestible oligosaccharides with prebiotic potential. Biotechnol Genet Eng Rev 2023:1-46. [PMID: 36714949 DOI: 10.1080/02648725.2022.2152627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/13/2022] [Indexed: 01/31/2023]
Abstract
Prebiotics as a part of dietary nutrition can play a crucial role in structuring the composition and metabolic function of intestinal microbiota and can thus help in managing a clinical scenario by preventing diseases and/or improving health. Among the different prebiotics, non-digestible carbohydrates are molecules that selectively enrich a typical class of bacteria with probiotic potential. This review summarizes the current knowledge about the different aspects of prebiotics, such as its production, characterization and purification by various techniques, and its link to novel product development at an industrial scale for wide-scale use in diverse range of health management applications. Furthermore, the path to effective valorization of agricultural residues in prebiotic production has been elucidated. This review also discusses the recent developments in application of genomic tools in the area of prebiotics for providing new insights into the taxonomic characterization of gut microorganisms, and exploring their functional metabolic pathways for enzyme synthesis. However, the information regarding the cumulative effect of prebiotics with beneficial bacteria, their colonization and its direct influence through altered metabolic profile is still getting established. The future of this area lies in the designing of clinical condition specific functional foods taking into consideration the host genotypes, thus facilitating the creation of balanced and required metabolome and enabling to maintain the healthy status of the host.
Collapse
Affiliation(s)
- Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vaibhav Vilasrao Gujar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- JoVE, Mumbai, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
23
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
24
|
Isomelezitose Overproduction by Alginate-Entrapped Recombinant E. coli Cells and In Vitro Evaluation of Its Potential Prebiotic Effect. Int J Mol Sci 2022; 23:ijms232012682. [PMID: 36293535 PMCID: PMC9604484 DOI: 10.3390/ijms232012682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
In this work, the trisaccharide isomelezitose was overproduced from sucrose using a biocatalyst based on immobilized Escherichia coli cells harbouring the α-glucosidase from the yeast Metschnikowia reukaufii, the best native producer of this sugar described to date. The overall process for isomelezitose production and purification was performed in three simple steps: (i) oligosaccharides synthesis by alginate-entrapped E. coli; (ii) elimination of monosaccharides (glucose and fructose) using alginate-entrapped Komagataella phaffii cells; and (iii) semi-preparative high performance liquid chromatography under isocratic conditions. As result, approximately 2.15 g of isomelezitose (purity exceeding 95%) was obtained from 15 g of sucrose. The potential prebiotic effect of this sugar on probiotic bacteria (Lactobacillus casei, Lactobacillus rhamnosus and Enterococcus faecium) was analysed using in vitro assays for the first time. The growth of all probiotic bacteria cultures supplemented with isomelezitose was significantly improved and was similar to that of cultures supplemented with a commercial mixture of fructo-oligosaccharides. In addition, when isomelezitose was added to the bacteria cultures, the production of organic acids (mainly butyrate) was significantly promoted. Therefore, these results confirm that isomelezitose is a potential novel prebiotic that could be included in healthier foodstuffs designed for human gastrointestinal balance maintenance.
Collapse
|
25
|
Antifungal activity of lactic acid bacteria and their application in food biopreservation. ADVANCES IN APPLIED MICROBIOLOGY 2022; 120:33-77. [PMID: 36243452 DOI: 10.1016/bs.aambs.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lactic acid bacteria (LAB) are ubiquitous bacteria associated with spontaneous lactic fermentation of vegetables, dairy and meat products. They are generally recognized as safe (GRAS), and they are involved in transformation of probiotic lacto-fermented foods, highly desired for their nutraceutical properties. The antifungal activity is one of the exciting properties of LAB, because of its possible application in food bio-preservation, as alternative to chemical preservatives. Many recent research works have been developed on antifungal activity of LAB, and they demonstrate their capacity to produce various antifungal compounds, (i.e. organic acids, PLA, proteinaceous compounds, peptides, cyclic dipeptides, fatty acids, and other compounds), of different properties (hydrophilic, hydrophobic and amphiphilic). The effectiveness of LAB in controlling spoilage and pathogenic fungi, demonstrated in different agricultural and food products, can be due to the synergistic effect between their antifungal compounds of different properties; where the amphiphilic-compounds allow the contact between the target microbial cell (hydrophilic compartment) and antifungal hydrophobic-compounds. Further studies on the interaction between compounds of these three properties are to de be developed, in order to highlight more their mechanism of action, and make LAB more profitable in improving shelf life and nutraceutical properties of foods.
Collapse
|
26
|
Yue X, Chen Z, Zhang J, Huang C, Zhao S, Li X, Qu Y, Zhang C. Extraction, purification, structural features and biological activities of longan fruit pulp (Longyan) polysaccharides: A review. Front Nutr 2022; 9:914679. [PMID: 35958258 PMCID: PMC9358249 DOI: 10.3389/fnut.2022.914679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Dimocarpus longan Lour. (also called as longan) is a subtropical and tropical evergreen tree belonging to the Sapindaceae family and is widely distributed in China, Southeast Asia and South Asia. The pulp of longan fruit is a time-honored traditional medicinal and edible raw material in China and some Asian countries. With the advancement of food therapy in modern medicine, longan fruit pulp as an edible medicinal material is expected to usher in its rapid development as a functional nutrient. As one of the main constituents of longan fruit pulp, longan fruit pulp polysaccharides (LPs) play an indispensable role in longan fruit pulp-based functional utilization. This review aims to outline the extraction and purification methods, structural characteristics and biological activities (such as immunoregulatory, anti-tumor, prebiotic, anti-oxidant, anti-inflammatory and inhibition of AChE activity) of LPs. Besides, the structure-activity relationship, application prospect and patent application of LPs were analyzed and summarized. Through the systematic summary, this review attempts to provide a theoretical basis for further research of LPs, and promote the industrial development of this class of polysaccharides.
Collapse
Affiliation(s)
- Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Mafra D, Ugochukwu SA, Borges NA, Cardozo LFMF, Stenvinkel P, Shiels PG. Food for healthier aging: power on your plate. Crit Rev Food Sci Nutr 2022; 64:603-616. [PMID: 35959705 DOI: 10.1080/10408398.2022.2107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Inflammageing is a persistent low-level inflammatory burden that accompanies age-related dysregulation of the immune system during normative aging and within the diseasome of aging. A healthy diet containing a balanced amount of macronutrients, vitamins and minerals, adequate in calories and rich in poly(phenols), has an essential role in mitigating the effects of inflammageing and extending healthspan through modulation of the activity of a range of factors. These include transcription factors, such as nuclear factor erythroid-derived 2 related factor 2 (Nrf2) and nuclear factor-κB (NF-kB), the inflammasome and the activities of the gut microbiota. The aim of this narrative review is to discuss the potential of food to ameliorate the effects of the diseasome of aging.
Collapse
Affiliation(s)
- Denise Mafra
- Post-Graduation Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Natalia A Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
- Post-Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
| | - Ludmila F M F Cardozo
- Post-Graduation Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
- Post-Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
28
|
Galvão DFA, Pessoni RAB, Elsztein C, Moreira KA, Morais MA, de Cássia Leone Figueiredo-Ribeiro R, Gaspar M, Morais MMC, Fialho MB, Braga MR. A comparative study between Fusarium solani and Neocosmospora vasinfecta revealed differential profile of fructooligosaccharide production. Folia Microbiol (Praha) 2022; 67:873-889. [PMID: 35729302 DOI: 10.1007/s12223-022-00983-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Fructooligosaccharides (FOS) are fructose-based oligosaccharides employed as additives to improve the food's nutritional and technological properties. The rhizosphere of plants that accumulate fructopolysaccharides as inulin has been revealed as a source of filamentous fungi. These fungi can produce FOS either by inulin hydrolysis or by biosynthesis from sucrose, including unusual FOS with enhanced prebiotic properties. Here, we investigated the ability of Fusarium solani and Neocosmospora vasinfecta to produce FOS from different carbon sources. Fusarium solani and N. vasinfecta grew preferentially in inulin instead of sucrose, resulting in the FOS production as the result of endo-inulinase activities. N. vasinfecta was also able to produce the FOS 1-kestose and 6-kestose from sucrose, indicating transfructosylating activity, absent in F. solani. Moreover, the results showed how these carbon sources affected fungal cell wall composition and the expression of genes encoding for β-1,3-glucan synthase and chitin synthase. Inulin and fructose promoted changes in fungal macroscopic characteristics partially explained by alterations in cell wall composition. However, these alterations were not directly correlated with the expression of genes related to cell wall synthesis. Altogether, the results pointed to the potential of both F. solani and N. vasinfecta to produce FOS at specific profiles.
Collapse
Affiliation(s)
- Daiane F A Galvão
- Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, R. Bom Pastor, s/n, 55 292-270, Garanhuns, PA, Brazil.,Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Rosemeire A B Pessoni
- Faculdade da Saúde, Universidade Metodista de São Paulo, Rua Alfeu Tavares, 149, Sao Bernardo do Campo, SP, 09641-000, Brazil
| | - Carolina Elsztein
- Departamento de Genética, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, 50670-901, Recife PE, Brazil
| | - Keila A Moreira
- Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, R. Bom Pastor, s/n, 55 292-270, Garanhuns, PA, Brazil
| | - Marcos A Morais
- Departamento de Genética, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, 50670-901, Recife PE, Brazil
| | - Rita de Cássia Leone Figueiredo-Ribeiro
- Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais (former Instituto de Botânica), Av. Miguel Stéfano, 3687, São Paulo, SP, 04301-902, Brazil
| | - Marília Gaspar
- Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais (former Instituto de Botânica), Av. Miguel Stéfano, 3687, São Paulo, SP, 04301-902, Brazil
| | - Marcia M C Morais
- Instituto de Ciências Biológicas, Universidade de Pernambuco, R. Arnóbio Marques, 310 50100-130, Recife, PA, Brazil
| | - Mauricio B Fialho
- Universidade Federal do ABC, Avenida dos Estados, Santo André, SP, 5001, 09210-580, Brazil.
| | - Marcia R Braga
- Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais (former Instituto de Botânica), Av. Miguel Stéfano, 3687, São Paulo, SP, 04301-902, Brazil.
| |
Collapse
|
29
|
Pengrattanachot N, Thongnak L, Lungkaphin A. The impact of prebiotic fructooligosaccharides on gut dysbiosis and inflammation in obesity and diabetes related kidney disease. Food Funct 2022; 13:5925-5945. [PMID: 35583860 DOI: 10.1039/d1fo04428a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is an extensive health problem worldwide that is frequently associated with diabetes. It is a risk factor for the development of several diseases including diabetic nephropathy. Recent studies have reported that gut dysbiosis aggravates the progression of obesity and diabetes by increasing the production of uremic toxins in conjunction with gut barrier dysfunction which then leads to increased passage of lipopolysaccharides (LPS) into the blood circulatory system eventually causing systemic inflammation. Therefore, the modification of gut microbiota using a prebiotic supplement may assist in the restoration of gut barrier function and reduce any disturbance of the inflammatory response. In this review information has been compiled concerning the possible mechanisms involved in an increase in obesity, diabetes and kidney dysfunction via the exacerbation of the inflammatory response and its association with gut dysbiosis. In addition, the role of fructooligosaccharides (FOS), a source of prebiotic widely available commercially, on the improvement of gut dysbiosis and attenuation of inflammation on obese and diabetic conditions has been reviewed. The evidence confirms that FOS supplementation could improve the pathological changes associated with obesity and diabetes related kidney disease, however, knowledge concerning the mechanisms involved is still limited and needs further elucidation.
Collapse
Affiliation(s)
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
30
|
da Silva MVT, Nunes SS, Costa WC, Sanches SMD, Silveira ALM, Ferreira ARS, Filha RS, Correia MIT, das Graças Mota L, Generoso SDV. Acute intake of fructooligosaccharide and partially hydrolyzed guar gum on gastrointestinal transit: A randomized crossover clinical trial. Nutrition 2022; 102:111737. [DOI: 10.1016/j.nut.2022.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
|
31
|
Application of prebiotics in apple products and potential health benefits. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1249-1262. [PMID: 35250051 PMCID: PMC8882558 DOI: 10.1007/s13197-021-05062-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Among the fruits, the apple stands out among the most used for elaboration of processed foods. However, the importance of prebiotics in apple products has never been widely analyzed. Prebiotic is a food component resistant to gastric acidity, digestion by mammalian enzymes and gastrointestinal absorption. But following fermentation in the colon, prebiotics result in specific changes in the composition and / or metabolism of the gastrointestinal microbiota, conferring benefits to the health of the host. Therefore, fortifying apple-based products with additional prebiotics is an important strategy for improving consumer health benefits. In this review, after compiling and analyzing scientific and technological studies focusing on prebiotics in apple products, the following benefits of these prebiotics became evident: (1) reduction of water loss in the food matrix; (2) preservation of bioactive and volatile compounds; (3) texture improvement (thickening) in the food industry; (4) increased shelf-live and (5) increased survival of probiotic bacteria, promoting positive effects on microbiota. In addition, this review shows the benefits of different prebiotics for stability and sensory acceptance of apple processed foods.
Collapse
|
32
|
Coetzee G, Smith JJ, Görgens JF. Influence of codon optimization, promoter, and strain selection on the heterologous production of a β-fructofuranosidase from Aspergillus fijiensis ATCC 20611 in Pichia pastoris. Folia Microbiol (Praha) 2022; 67:339-350. [PMID: 35133569 DOI: 10.1007/s12223-022-00947-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/01/2022] [Indexed: 12/21/2022]
Abstract
Fructooligosaccharides (FOS) are compounds possessing various health properties and are added to functional foods as prebiotics. The commercial production of FOS is done through the enzymatic transfructolysation of sucrose by β-fructofuranosidases which is found in various organisms of which Aureobasidium pullulans and Aspergillus niger are the most well known. This study overexpressed two differently codon-optimized variations of the Aspergillus fijiensis β-fructofuranosidase-encoding gene (fopA) under the transcriptional control of either the alcohol oxidase (AOX1) or glyceraldehyde-3-phosphate dehydrogenase (GAP) promoters. When cultivated in shake flasks, the two codon-optimized variants displayed similar volumetric enzyme activities when expressed under control of the same promoter with the GAP strains producing 11.7 U/ml and 12.7 U/ml, respectively, and the AOX1 strains 95.8 U/ml and 98.6 U/ml, respectively. However, the highest production levels were achieved for both codon-optimized genes when expressed under control of the AOX1 promoter. The AOX1 promoter was superior to the GAP promoter in bioreactor cultivations for both codon-optimized genes with 13,702 U/ml and 2718 U/ml for the AOX1 promoter for ATUM and GeneArt®, respectively, and 6057 U/ml and 1790 U/ml for the GAP promoter for ATUM and GeneArt®, respectively. The ATUM-optimized gene produced higher enzyme activities when compared to the one from GeneArt®, under the control of both promoters.
Collapse
Affiliation(s)
- Gerhardt Coetzee
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Jacques J Smith
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
33
|
Saini R, Patel AK, Saini JK, Chen CW, Varjani S, Singhania RR, Di Dong C. Recent advancements in prebiotic oligomers synthesis via enzymatic hydrolysis of lignocellulosic biomass. Bioengineered 2022; 13:2139-2172. [PMID: 35034543 PMCID: PMC8973729 DOI: 10.1080/21655979.2021.2023801] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Interest in functional food, such as non-digestible prebiotic oligosaccharides is increasing day by day and their production is shifting toward sustainable manufacturing. Due to the presence of high carbohydrate content, lignocellulosic biomass (LCB) is the most-potential, cost-effective and sustainable substrate for production of many useful products, including lignocellulose-derived prebiotic oligosaccharides (LDOs). These have the same worthwhile properties as other common oligosaccharides, such as short chain carbohydrates digestible to the gut flora but not to humans mainly due to their resistance to the low pH and high temperature and their demand is constantly increasing mainly due to increased awareness about their potential health benefits. Despite several advantages over the thermo-chemical route of synthesis, comprehensive and updated information on the conversion of lignocellulosic biomass to prebiotic oligomers via controlled enzymatic saccharification is not available in the literature. Thus, the main objective of this review is to highlight recent advancements in enzymatic synthesis of LDOs, current challenges, and future prospects of sustainably producing prebiotic oligomers via enzymatic hydrolysis of LCB substrates. Enzyme reaction engineering practices, custom-made enzyme preparations, controlled enzymatic hydrolysis, and protein engineering approaches have been discussed with regard to their applications in sustainable synthesis of lignocellulose-derived oligosaccharide prebiotics. An overview of scale-up aspects and market potential of LDOs has also been provided.
Collapse
Affiliation(s)
- Reetu Saini
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
34
|
Horinouchi A, Hirai H, Hirano R, Kurihara S, Takagi H, Matsumoto K. Intestinal immunomodulatory activity of indigestible glucan in mice and its utilization by intestinal bacteria in vitro. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
35
|
Fructooligosaccharide decreases the production of uremic toxin precursor through modulating gut microbes mediated tyrosine metabolism pathway. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Charoenwongpaiboon T, Wangpaiboon K, Pichyangkura R. Cross-linked levansucrase aggregates for fructooligosaccharide synthesis in fruit juices. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
de Oliveira RL, Bernardino MIDS, Silva TBS, Converti A, Porto CS, Porto TS. Extraction and purification of Aspergillus tamarii β-fructofuranosidase with transfructosylating activity using aqueous biphasic systems (PEG/phosphate) and magnetic field. Prep Biochem Biotechnol 2021; 52:478-486. [PMID: 34428129 DOI: 10.1080/10826068.2021.1964085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
β-fructofuranosidases (FFases) are enzymes involved in sucrose hydrolysis and fructo-oligosaccharides' production which are of great interest for the food industry. FFase from Aspergillus tamarii URM4634 was extracted using PEG/Phosphate Aqueous Biphasic Systems (ABS), and the impact of magnetic field on the extraction behavior was evaluated. A 24-full experimental design was employed to study the influence of molar mass of PEG, concentrations of PEG and phosphate and pH on the selected response variables, i.e., partition coefficient (K), purification factor (PF), activity yield (Y) and selectivity (S). The influence of magnetic field during partition and NaCl concentration on the same responses was also studied. The best results of FFase extraction without magnetic field (K = 0.50, PF = 4.05, Y = 72.66% and S = 0.06) were observed at pH 8.0 using 12.5% (w/w) PEG 400 and 25% (w/w) NaH2PO4/K2HPO4. Application of the magnetic field allowed improving the performance, with the best results being obtained at the longest distance between magnets (lowest magnetic field) and absence of NaCl (K = 0.93, PF = 4.22, Y = 83.79% and S = 0.09). The outcomes obtained demonstrate that ABS combination with low intensity magnetic field can be used as an efficient FFase pre-purification method.
Collapse
Affiliation(s)
| | | | | | - Attilio Converti
- Department Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
| | | | - Tatiana Souza Porto
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| |
Collapse
|
38
|
Divyashri G, Sadanandan B, Chidambara Murthy KN, Shetty K, Mamta K. Neuroprotective Potential of Non-Digestible Oligosaccharides: An Overview of Experimental Evidence. Front Pharmacol 2021; 12:712531. [PMID: 34497516 PMCID: PMC8419344 DOI: 10.3389/fphar.2021.712531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Non-digestible oligosaccharides (NDOs) from dietary sources have the potential as prebiotics for neuroprotection. Globally, diverse populations suffering from one or the other forms of neurodegenerative disorders are on the rise, and NDOs have the potential as supportive complementary therapeutic options against these oxidative-linked disorders. Elevated levels of free radicals cause oxidative damage to biological molecules like proteins, lipids, and nucleic acids associated with various neurological disorders. Therefore, investigating the therapeutic or prophylactic potential of prebiotic bioactive molecules such as NDOs as supplements for brain and cognitive health has merits. Few prebiotic NDOs have shown promise as persuasive therapeutic solutions to counter oxidative stress by neutralizing free radicals directly or indirectly. Furthermore, they are also known to modulate through brain-derived neurotrophic factors through direct and indirect mechanisms conferring neuroprotective and neuromodulating benefits. Specifically, NDOs such as fructo-oligosaccharides, xylo-oligosaccharides, isomalto-oligosaccharides, manno-oligosaccharides, pectic-oligosaccharides, and similar oligosaccharides positively influence the overall health via various mechanisms. Increasing evidence has suggested that the beneficial role of such prebiotic NDOs is not only directed towards the colon but also distal organs including the brain. Despite the wide applications of these classes of NDOs as health supplements, there is limited understanding of the possible role of these NDOs as neuroprotective therapeutics. This review provides important insights into prebiotic NDOs, their source, and production with special emphasis on existing direct and indirect evidence of their therapeutic potential in neuroprotection.
Collapse
Affiliation(s)
- Gangaraju Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - Kotamballi N Chidambara Murthy
- Central Research Laboratory and Division of Research and Patents, Ramaiah Medical College and Hospital, Bengaluru, India
| | - Kalidas Shetty
- Department of Plant Science, North Dakota State University, Fargo, ND, United States
| | - Kumari Mamta
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
39
|
Castillo JJ, Galermo AG, Amicucci MJ, Nandita E, Couture G, Bacalzo N, Chen Y, Lebrilla CB. A Multidimensional Mass Spectrometry-Based Workflow for De Novo Structural Elucidation of Oligosaccharides from Polysaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2175-2185. [PMID: 34261322 PMCID: PMC8344699 DOI: 10.1021/jasms.1c00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/09/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Carbohydrates play essential roles in a variety of biological processes that are dictated by their structures. However, characterization of carbohydrate structures remains extremely difficult and generally unsolved. In this work, a de novo mass spectrometry-based workflow was developed to isolate and structurally elucidate oligosaccharides to provide sequence, monosaccharide compositions, and glycosidic linkage positions. The approach employs liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based methods in a 3-dimensional concept: one high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOF MS) analysis for oligosaccharide sequencing and two ultra high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-QqQ MS) analyses on fractionated oligosaccharides to determine their monosaccharides and linkages compositions. The workflow was validated by applying the procedure to maltooligosaccharide standards. The approach was then used to determine the structures of oligosaccharides derived from polysaccharide standards and whole food products. The integrated LC-MS workflow will reveal the in-depth structures of oligosaccharides.
Collapse
Affiliation(s)
- Juan Jose Castillo
- Department of Chemistry, University of
California Davis, Davis, California 95616, United
States
| | - Ace G. Galermo
- Department of Chemistry, University of
California Davis, Davis, California 95616, United
States
| | - Matthew J. Amicucci
- Department of Chemistry, University of
California Davis, Davis, California 95616, United
States
- Agricultural and Environmental Chemistry Graduate
Group, University of California Davis, Davis, California 95616,
United States
| | - Eshani Nandita
- Department of Chemistry, University of
California Davis, Davis, California 95616, United
States
| | - Garret Couture
- Department of Chemistry, University of
California Davis, Davis, California 95616, United
States
| | - Nikita Bacalzo
- Department of Chemistry, University of
California Davis, Davis, California 95616, United
States
| | - Ye Chen
- Department of Chemistry, University of
California Davis, Davis, California 95616, United
States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of
California Davis, Davis, California 95616, United
States
| |
Collapse
|
40
|
In Vitro Fecal Fermentation Patterns of Arabinoxylan from Rice Bran on Fecal Microbiota from Normal-Weight and Overweight/Obese Subjects. Nutrients 2021; 13:nu13062052. [PMID: 34203983 PMCID: PMC8232586 DOI: 10.3390/nu13062052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
Arabinoxylan (AX) is a structural polysaccharide found in wheat, rice and other cereal grains. Diets high in AX-containing fiber may promote gut health in obesity through prebiotic function. Thus, the impact of soluble AX isolated from rice bran fiber on human gut microbiota phylogenetic composition and short-chain fatty acid (SCFA) production patterns from normal-weight and overweight/obese subjects was investigated through in vitro fecal fermentation. Results showed that rice bran arabinoxylan modified the microbiota in fecal samples from both weight classes compared to control, significantly increasing Collinsella, Blautia and Bifidobacterium, and decreasing Sutterella, Bilophila and Parabacteroides. Rice bran AX also significantly increased total and individual SCFA contents (p < 0.05). This study suggests that rice bran AX may beneficially impact gut health in obesity through prebiotic activities.
Collapse
|
41
|
Verma DK, Patel AR, Thakur M, Singh S, Tripathy S, Srivastav PP, Chávez-González ML, Gupta AK, Aguilar CN. A review of the composition and toxicology of fructans, and their applications in foods and health. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Choukade R, Kango N. Production, properties, and applications of fructosyltransferase: a current appraisal. Crit Rev Biotechnol 2021; 41:1178-1193. [PMID: 34015988 DOI: 10.1080/07388551.2021.1922352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Fructosyltransferases (FTases) are drawing increasing attention due to their application in prebiotic fructooligosaccharide (FOS) generation. FTases have been reported to occur in a variety of microorganisms but are predominantly found in filamentous fungi. These are employed at the industrial scale for generating FOS which make the key ingredient in functional food supplements and nutraceuticals due to their bifidogenic and various other health-promoting properties. SCOPE AND APPROACH This review is aimed to discuss recent developments made in the area of FTase production, characterization, and application in order to present a comprehensive account of their present status to the reader. Structural features, catalytic mechanisms, and FTase improvement strategies have also been discussed in order to provide insight into these aspects. KEY FINDINGS AND CONCLUSIONS Although FTases occur in several plants and microorganisms, fungal FTases are being exploited commercially for industrial-scale FOS generation. Several fungal FTases have been characterized and heterologously expressed. However, considerable scope exists for improved production and application of FTases for cost-effective production of prebiotic FOS.HIGHLIGHTSFructosyltrasferase (FTase) is a key enzyme in fructo-oligosaccharide (FOS) generationDevelopments in the production, properties, and functional aspects of FTasesMolecular modification and immobilization strategies for improved FOS generationFructosyltransferases are innovation hotspots in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Ritumbhara Choukade
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
43
|
Wu S, Zhang J, Jiang C, Wang S, Que R, An L. Up-regulation of neprilysin mediates the protection of fructo-oligosaccharides against Alzheimer's disease. Food Funct 2021; 11:6565-6572. [PMID: 32644062 DOI: 10.1039/d0fo00161a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fructo-oligosaccharides (FOS), an important prebiotic, have been proved to have a beneficial effect on Alzheimer's disease (AD); however, the specific mechanism remains to be confirmed. Senile plaques are one of the main neuropathological features of AD and the core of senile plaques mainly consists of extracellular beta-amyloid (Aβ). Reducing Aβ accumulation in the brain is an important therapeutic strategy for AD. Neprilysin (NEP), a major Aβ-degrading enzyme, has been found to be decreased in the AD brain. Evidence has shown that the expression of NEP is associated with histone acetylation levels. Histone deacetylases (HDACs) are the key enzymes in the modulation of histone acetylation modification. Importantly, several metabolites of FOS have been demonstrated to be pan-HDAC inhibitors. In this study, we demonstrate that FOS ameliorate cognitive impairment and alleviate Aβ accumulation in the brain of AD model mice. The regulation of HDAC2 on NEP plays an important role in the anti-AD effect of FOS.
Collapse
Affiliation(s)
- Sining Wu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Jingzhu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Congmin Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Sihui Wang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Ran Que
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Li An
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
44
|
Nie Y, Luo F. Dietary Fiber: An Opportunity for a Global Control of Hyperlipidemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5542342. [PMID: 33897940 PMCID: PMC8052145 DOI: 10.1155/2021/5542342] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Dietary fiber has a long history in the intervention study of hyperlipidemia. In this review, current understandings of structures, sources, and natures of various kinds of dietary fibers (DFs) were analyzed first. Available evidences for the use of different varieties of DFs in the lipid-lowering action both in vitro and in vivo were subsequently classified, including both soluble ones, such as glucans, pectins, and gums, and insoluble ones, including arabinooxylans and chitosans, in order to draw a primary conclusion of their dose and molecular weight relationship with lipid-lowering effect. Their potential mechanisms, especially the related molecular mechanism of protective action in the treatment and prevention of hyperlipidemia, were summarized at last. Five major mechanisms are believed to be responsible for the antihyperlipidemic benefits of DFs, including low levels of energy, bulking effect, viscosity, binding capacity, and fermentation thus ameliorating the symptoms of hyperlipidemia. From the molecular level, DFs could possibly affect the activities of HMG-CoA reductase, LDL receptors, CYP7A1, and MAPK signaling pathway as well as other lipid metabolism-related target genes. In summary, dietary fibers could be used as alternative supplements to exert certain lipid-lowering effects on humans. However, more clinical evidence is needed to strengthen this proposal and its fully underlying mechanism still requires more investigation.
Collapse
Affiliation(s)
- Ying Nie
- School of Food Technology and Biological Science, Hanshan Normal University, Chaozhou 521041, China
- Laboratory of Molecular Nutrition, College of Food science and Engineering, National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Laboratory of Molecular Nutrition, College of Food science and Engineering, National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
45
|
The β-Fructofuranosidase from Rhodotorula dairenensis: Molecular Cloning, Heterologous Expression, and Evaluation of Its Transferase Activity. Catalysts 2021. [DOI: 10.3390/catal11040476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The β-fructofuranosidase from the yeast Rhodotorula dairenensis (RdINV) produces a mixture of potential prebiotic fructooligosaccharides (FOS) of the levan-, inulin- and neo-FOS series by transfructosylation of sucrose. In this work, the gene responsible for this activity was characterized and its functionality proved in Pichia pastoris. The amino acid sequence of the new protein contained most of the characteristic elements of β-fructofuranosidases included in the family 32 of the glycosyl hydrolases (GH32). The heterologous yeast produced a protein of about 170 kDa, where N-linked and O-linked carbohydrates constituted about 15% and 38% of the total protein mass, respectively. Biochemical and kinetic properties of the heterologous protein were similar to the native enzyme, including its ability to produce prebiotic sugars. The maximum concentration of FOS obtained was 82.2 g/L, of which 6-kestose represented about 59% (w/w) of the total products synthesized. The potential of RdINV to fructosylate 19 hydroxylated compounds was also explored, of which eight sugars and four alditols were modified. The flexibility to recognize diverse fructosyl acceptors makes this protein valuable to produce novel glycosyl-compounds with potential applications in food and pharmaceutical industries.
Collapse
|
46
|
Wang L, Cheng R, Sun X, Zhao Y, Ge W, Yang Y, Gao Y, Ding Z, Liu J, Zhang J. Preparation and Gut Microbiota Modulatory Property of the Oligosaccharide Riclinoctaose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3667-3676. [PMID: 33750134 DOI: 10.1021/acs.jafc.0c07783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In relation to available polysaccharides, oligosaccharides have a low molecular weight, less viscosity, and complete water solubility. These properties endow oligosaccharides with significant biological properties including the microbiota regulation ability. In this study, a homogeneous oligooctasaccharide, riclinoctaose, was biosynthesized from succinylglycan riclin by enzymatic degradation. Monosaccharide composition, Fourier-transform infrared, electrospray ionization mass spectrometry, and nuclear magnetic resonance spectrometry analysis indicated that riclinoctaose is an oligooctasaccharide consisting of one galactose and seven glucose residues, with a pyruvate group linked to the terminal glucose residue. The effects of dietary riclinoctaose on the gut microbiota of mice were evaluated. We found that the dietary riclinoctaose significantly altered intestinal microbiota with the increased growth of beneficial intestinal bacteria including Bifidobacteria and Lactobacillus and decreased the abundance of pernicious bacteria such as Gammaproteobacteria. The level of short-chain fatty acids (SCFAs) was significantly elevated in the riclinoctaose cecum. Our results suggested that riclinoctaose as a prebiotic may have a great potential application in functional foods.
Collapse
Affiliation(s)
- Lei Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Rui Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiaqing Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yan Gao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
47
|
Kaur AP, Bhardwaj S, Dhanjal DS, Nepovimova E, Cruz-Martins N, Kuča K, Chopra C, Singh R, Kumar H, Șen F, Kumar V, Verma R, Kumar D. Plant Prebiotics and Their Role in the Amelioration of Diseases. Biomolecules 2021; 11:440. [PMID: 33809763 PMCID: PMC8002343 DOI: 10.3390/biom11030440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prebiotics are either natural or synthetic non-digestible (non-)carbohydrate substances that boost the proliferation of gut microbes. Undigested fructooligosaccharides in the large intestine are utilised by the beneficial microorganisms for the synthesis of short-chain fatty acids for their own growth. Although various food products are now recognized as having prebiotic properties, several others, such as almonds, artichoke, barley, chia seeds, chicory, dandelion greens, flaxseeds, garlic, and oats, are being explored and used as functional foods. Considering the benefits of these prebiotics in mineral absorption, metabolite production, gut microbiota modulation, and in various diseases such as diabetes, allergy, metabolic disorders, and necrotising enterocolitis, increasing attention has been focused on their applications in both food and pharmaceutical industries, although some of these food products are actually used as food supplements. This review aims to highlight the potential and need of these prebiotics in the diet and also discusses data related to the distinct types, sources, modes of action, and health benefits.
Collapse
Affiliation(s)
- Amrit Pal Kaur
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Harsh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Fatih Șen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, EvliyaÇelebi Campus, Dumlupınar University, Kütahya 43100, Turkey;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| |
Collapse
|
48
|
Catenza KF, Donkor KK. Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: A review. Food Chem 2021; 355:129416. [PMID: 33774226 DOI: 10.1016/j.foodchem.2021.129416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Functional oligosaccharides (OS) are diverse groups of carbohydrates that confer several health benefits stemming from their prebiotic activity. Commonly used oligosaccharides, fructooligosaccharides and galactooligosaccharides, are used in a wide range of applications from food ingredients to mimic the prebiotic activity of human milk oligosaccharides (HMOs) in infant formula to sugar and fat replacers in dairy and bakery products. However, while consumption of these compounds is associated with several positive health effects, increased consumption can cause intestinal discomfort and aggravation of intestinal bowel syndrome symptoms. Hence, it is essential to develop rapid and reliable techniques to quantify OS for quality control and proper assessment of their functionality in food and food products. The present review will focus on recent analytical techniques used to quantify OS in different matrices such as food and beverage products.
Collapse
Affiliation(s)
- K F Catenza
- Department of Physical Sciences (Chemistry), Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - K K Donkor
- Department of Physical Sciences (Chemistry), Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada.
| |
Collapse
|
49
|
Woodbury TJ, Lust AL, Mauer LJ. The effects of commercially available sweeteners (sucrose and sucrose replacers) on wheat starch gelatinization and pasting, and cookie baking. J Food Sci 2021; 86:687-698. [PMID: 33496959 DOI: 10.1111/1750-3841.15572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 11/28/2022]
Abstract
A variety of sucrose replacers (SRs) are increasing in popularity for reducing sucrose usage in low moisture baked goods (cookies, biscuits, etc.). The goal of this study was to link SR physicochemical properties to their observed effects on starch thermal properties, including results from differential scanning calorimetry, rapid viscoanalysis, particle size analysis, and model wire-cut cookie baking performance. The 12 SRs examined in this study were: Truvia, Splenda, Swerve, coconut palm sugar, Monk Fruit, erythritol, Benefiber, Miralax, blue agave syrup, yacon syrup, Sukrín Fiber Gold Syrup, and date syrup. The onset gelatinization temperature (Tgel ) of wheat starch increased significantly (P < 0.05) as sucrose and SR concentration increased (0 to 60% w/w), with significant variations in Tgel found between different sweetener types at the same concentration. Generally, as solution concentration increased, the larger SRs (degree of polymerization [DP]> 10) decreased paste viscosity (peak and final), decreased granule swelling, and increased Tgel compared to the control (water). The smaller SRs (DP < 10) increased both paste viscosity (peak and final) and granule swelling, unlike the larger SRs, and did not increase Tgel as much as larger SRs. The SRs which performed similar to sucrose in model cookie baking (fracturability, spread, color, etc.) and effects on starch properties (Tgel , paste viscosity, and granule swelling) were yacon, Sukrín, date syrups, and coconut palm sugar. The results linking sweetener physicochemical properties to their effects on starch gelatinization, pasting, and swelling can be used to guide reformulation strategies for potentially reducing sugar and/or increasing fiber content in foods. PRACTICAL APPLICATION: Several commercially available natural sweeteners and polymers (coconut palm sugar, date syrup, yacon syrup, Sukrín Fiber Gold syrup, and Benefiber) show promise for reducing or replacing sucrose in cookies, and other low-moisture baked goods, based on their similar effects on wheat starch gelatinization, pasting, and swelling, as well as performance in cookie baking trials. Compared to sucrose, some of these ingredients have a lower glycemic response and higher dietary fiber content, and act as prebiotics, thereby providing potential health benefit.
Collapse
Affiliation(s)
- Travest J Woodbury
- Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, U.S.A
| | - Andres L Lust
- Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, U.S.A
| | - Lisa J Mauer
- Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, U.S.A
| |
Collapse
|
50
|
Fan R, Burghardt JP, Huang J, Xiong T, Czermak P. Purification of Crude Fructo-Oligosaccharide Preparations Using Probiotic Bacteria for the Selective Fermentation of Monosaccharide Byproducts. Front Microbiol 2021; 11:620626. [PMID: 33584587 PMCID: PMC7874009 DOI: 10.3389/fmicb.2020.620626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Probiotics are microbes that promote health when consumed in sufficient amounts. They are present in many fermented foods or can be provided directly as supplements. Probiotics utilize non-digestible prebiotic oligosaccharides for growth in the intestinal tract, contributing to a healthy microbiome. The oligosaccharides favored by probiotics are species-dependent, as shown by the selective utilization of substrates in mixed sugar solutions such as crude fructo-oligosaccharides (FOS). Enzymatically produced crude FOS preparations contain abundant monosaccharide byproducts, residual sucrose, and FOS varying in chain length. Here we investigated the metabolic profiles of four probiotic bacteria during the batch fermentation of crude FOS under controlled conditions. We found that Bacillus subtilis rapidly utilized most of the monosaccharides but little sucrose or FOS. We therefore tested the feasibility of a microbial fed-batch fermentation process for the purification of FOS from crude preparations, which increased the purity of FOS from 59.2 to 82.5% with a final concentration of 140 g·l-1. We also tested cell immobilization in alginate beads as a means to remove monosaccharides from crude FOS. This encapsulation concept establishes the basis for new synbiotic formulations that combine probiotic microbes and prebiotic oligosaccharides.
Collapse
Affiliation(s)
- Rong Fan
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Jan Philipp Burghardt
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany
| | - Jinqing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany
| |
Collapse
|