1
|
Markelova N, Chumak A. Antimicrobial Activity of Bacillus Cyclic Lipopeptides and Their Role in the Host Adaptive Response to Changes in Environmental Conditions. Int J Mol Sci 2025; 26:336. [PMID: 39796193 PMCID: PMC11720072 DOI: 10.3390/ijms26010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Bacillus cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions. Therefore, in a natural environment, alternative mechanisms of antimicrobial action by CLPs are more likely, such as inducing apoptosis in fungal cells, preventing microbial adhesion to the substrate, and promoting the death of phytopathogens by stimulating plant immune responses. In addition, CLPs in low concentrations act as signaling molecules of Bacillus's own metabolism, and when environmental conditions change, they form an adaptive response of the host bacterium. Namely, they trigger the differentiation of the bacterial population into various specialized cell types: competent cells, flagellated cells, matrix producers, and spores. In this review, we have summarized the current understanding of the antimicrobial action of Bacillus CLPs under both experimental and natural conditions. We have also shown the relationship between some regulatory pathways involved in CLP biosynthesis and bacterial cell differentiation, as well as the role of CLPs as signaling molecules that determine changes in the physiological state of Bacillus subpopulations in response to shifts in environmental conditions.
Collapse
Affiliation(s)
- Natalia Markelova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia;
| | | |
Collapse
|
2
|
Liu Y, Yin C, Zhu M, Zhan Y, Lin M, Yan Y. Comparative Genomic Analysis of Bacillus velezensis BRI3 Reveals Genes Potentially Associated with Efficient Antagonism of Sclerotinia sclerotiorum (Lib.) de Bary. Genes (Basel) 2024; 15:1588. [PMID: 39766855 PMCID: PMC11675273 DOI: 10.3390/genes15121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bacillus velezensis has recently received increased attention as a potential biological agent because of its broad-spectrum antagonistic capacity against harmful bacteria and fungi. This study aims to thoroughly analyze the genomic characteristics of B. velezensis BRI3, thereby providing theoretical groundwork for the agronomic utilization of this strain. METHODS In this work, we evaluated the beneficial traits of the newly isolated strain B. velezensis BRI3 via in vitro experiments, whole-genome sequencing, functional annotation, and comparative genomic analysis. RESULTS B. velezensis BRI3 exhibits broad-spectrum antifungal activity against various soilborne pathogens, displays inhibitory effects comparable to those of the type strain FZB42, and exhibits particularly effective antagonism against Sclerotinia sclerotiorum (Lib.) de Bary. Whole-genome sequencing and assembly revealed that the genome of BRI3 contains one chromosome and two plasmids, which carry a large amount of genetic information. Moreover, 13 biosynthetic gene clusters (BGCs) involved in the biosynthesis of secondary metabolites were predicted within the BRI3 genome. Among these, two unique BGCs (cluster 11 and cluster 13), which were not previously reported in the genomes of other strains and could potentially encode novel metabolic products, were identified. The results of the comparative genomic analysis demonstrated the genomic structural conservation and genetic homogeneity of BRI3. CONCLUSIONS The unique characteristics and genomic data provide insights into the potential application of BRI3 as a biocontrol and probiotic agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongliang Yan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Romanenko MN, Shikov AE, Savina IA, Shmatov FM, Nizhnikov AA, Antonets KS. Genomic Insights into the Bactericidal and Fungicidal Potential of Bacillus mycoides b12.3 Isolated in the Soil of Olkhon Island in Lake Baikal, Russia. Microorganisms 2024; 12:2450. [PMID: 39770653 PMCID: PMC11676374 DOI: 10.3390/microorganisms12122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The dispersal of plant pathogens is a threat to the global economy and food industry which necessitates the need to discover efficient biocontrol agents such as bacteria, fungi, etc., inhibiting them. Here, we describe the Bacillus mycoides strain b12.3 isolated from the soil of Olkhon Island in Lake Baikal, Russia. By applying the co-cultivation technique, we found that the strain inhibits the growth of plant pathogens, such as the bacteria Xanthomonas campestris, Clavibacter michiganensis, and Pectobacterium atrospecticum, as well as the fungus Alternaria solani. To elucidate the genomic fundament explaining these activities, we leveraged next-generation whole-genome sequencing and obtained a high-quality assembly based on short reads. The isolate bore seven known BGCs (biosynthetic gene clusters), including those responsible for producing bacillibactin, fengycin, and petrobactin. Moreover, the genome contained insecticidal genes encoding for App4Aa1, Tpp78Ba1, and Spp1Aa1 toxins, thus implicating possible pesticidal potential. We compared the genome with the 50 closest assemblies and found that b12.3 is enriched with BGCs. The genomic analysis also revealed that genomic architecture corresponds to the experimentally observed activity spectrum implying that the combination of produced secondary metabolites delineates the range of inhibited phytopathogens Therefore, this study deepens our knowledge of the biology and ecology of B. mycoides residing in the Lake Baikal region.
Collapse
Affiliation(s)
- Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Fedor M. Shmatov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Hernández-Rodríguez M, Jasso-de Rodríguez D, Hernández-Castillo FD, Moggio I, Arias E, Valenzuela-Soto JH, Flores-Olivas A. The Rhizobacterium Bacillus amyloliquefaciens MHR24 Has Biocontrol Ability Against Fungal Phytopathogens and Promotes Growth in Arabidopsis thaliana. Microorganisms 2024; 12:2380. [PMID: 39597768 PMCID: PMC11596665 DOI: 10.3390/microorganisms12112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
A novel rhizobacteria Bacillus was isolated from rhizosphere of soil associated with tomato (Solanum lycopersicum L.) under open field conditions. The Bacillus amyloliquefaciens strain MHR24 (MHR24) is a promising biocontrol agent against several fungal phytopathogens. In this research, MHR24 was characterized by an effective antagonistic ability against Alternaria alternata (Aa), Botrytis cinerea (Bc), Fusarium oxysporum F1 (F1), F. oxysporum F2 (F2), F. oxysporum R3 (F3), and Sclerotinia sclerotiorum (Sc). In particular, MHR24 showed a strong inhibition via airborne volatiles against Bc, F3, Aa, and F2 fungal strains. MHR24 also showed elevated saline stress tolerance at 1% and 25% to NaCl and KCl. The molecular sequence analysis of 16S rDNA confirmed the identity of the isolate as Bacillus amyloliquefaciens strain MHR24. Bioassays on Arabidopsis thaliana Col-0 inoculated with MHR24 showed in in vitro conditions that MHR24 significantly increases the foliar and root area, while in growth chamber conditions, it strongly increases the dry shoot biomass of A. thaliana. The observed results indicate that B. amyloliquefaciens MHR24 has a broad-spectrum biocontrol against fungal phytopathogens and can be used as a biofertilizer and biocontrol agent to improve horticultural crops.
Collapse
Affiliation(s)
- Mónica Hernández-Rodríguez
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo 25315, Coahuila, Mexico; (M.H.-R.); (D.J.-d.R.); (F.D.H.-C.)
- Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Saltillo 25294, Coahuila, Mexico; (I.M.); (E.A.)
| | - Diana Jasso-de Rodríguez
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo 25315, Coahuila, Mexico; (M.H.-R.); (D.J.-d.R.); (F.D.H.-C.)
| | - Francisco Daniel Hernández-Castillo
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo 25315, Coahuila, Mexico; (M.H.-R.); (D.J.-d.R.); (F.D.H.-C.)
| | - Ivana Moggio
- Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Saltillo 25294, Coahuila, Mexico; (I.M.); (E.A.)
| | - Eduardo Arias
- Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Saltillo 25294, Coahuila, Mexico; (I.M.); (E.A.)
| | - José Humberto Valenzuela-Soto
- CONAHCyT-Centro de Investigación en Química Aplicada, Departamento de Biociencias y Agrotecnología, Saltillo 25294, Coahuila, Mexico
| | - Alberto Flores-Olivas
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo 25315, Coahuila, Mexico; (M.H.-R.); (D.J.-d.R.); (F.D.H.-C.)
| |
Collapse
|
5
|
Su L, Zhang J, Fan J, Li D, Zhao M, Wang Y, Pan H, Zhao L, Zhang X. Antagonistic Mechanism Analysis of Bacillus velezensis JLU-1, a Biocontrol Agent of Rice Pathogen Magnaporthe oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19657-19666. [PMID: 39190007 DOI: 10.1021/acs.jafc.4c05353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Magnaporthe oryzae, the causal agent of rice blast, is a fungal disease pathogen. Bacillus spp. have emerged as the most promising biological control agent alternative to chemical fungicides. In this study, the bacterial strain JLU-1 with significant antagonistic activity isolated from the rhizosphere soil of rice was identified as Bacillus velezensis through whole-genome sequencing, average nucleotide identity analysis, and 16S rRNA gene sequencing. Twelve gene clusters for secondary metabolite synthesis were identified in JLU-1. Furthermore, 3 secondary metabolites were identified in JLU-1, and the antagonistic effect of secondary metabolites against fungal pathogens was confirmed. Exposure to JLU-1 reduced the virulence of M. oryzae, and JLU-1 has the ability to induce the reactive oxygen species production of rice and improve the salt tolerance of rice. All of these results indicated that JLU-1 and its secondary metabolites have the promising potential to be developed into a biocontrol agent to control fungal diseases.
Collapse
Affiliation(s)
- Longhao Su
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiyue Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jinyu Fan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Dan Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Meixi Zhao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yichi Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Lei Zhao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xianghui Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Jagadeesan Y, Meenakshisundaram S, Pichaimuthu S, Balaiah A. A scientific version of understanding "Why did the chickens cross the road"? - A guided journey through Bacillus spp. towards sustainable agriculture, circular economy and biofortification. ENVIRONMENTAL RESEARCH 2024; 244:117907. [PMID: 38109965 DOI: 10.1016/j.envres.2023.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
The world, a famished planet with an overgrowing population, requires enormous food crops. This scenario compelled the farmers to use a high quantity of synthetic fertilizers for high food crop productivity. However, prolonged usage of chemical fertilizers results in severe adverse effects on soil and water quality. On the other hand, the growing population significantly consumes large quantities of poultry meats. Eventually, this produces a mammoth amount of poultry waste, chicken feathers. Owing to the protein value of the chicken feathers, these wastes are converted into protein hydrolysate and further extend their application as biostimulants for sustained agriculture. The protein profile of chicken feather protein hydrolysate (CFPH) produced through Bacillus spp. was the maximum compared to physical and chemical protein extraction methods. Several studies proved that the application of CFPH and active Bacillus spp. culture to soil and plants results in enhanced plant growth, phytochemical constituents, crop yield, soil nutrients, fertility, microbiome and resistance against diverse abiotic and biotic stresses. Overall, "CFPH - Jack of all trades" and "Bacillus spp. - an active camouflage to the surroundings where they applied showed profound and significant benefits to the plant growth under the most adverse conditions. In addition, Bacillus spp. coheres the biofortification process in plants through the breakdown of metals into metal ions that eventually increase the nutrient value of the food crops. However, detailed information on them is missing. This can be overcome by further real-world studies on rhizoengineering through a multi-omics approach and their interaction with plants. This review has explored the best possible and efficient strategy for managing chicken feather wastes into protein-rich CFPH through Bacillus spp. bioconversion and utilizing the CFPH and Bacillus spp. as biostimulants, biofertilizers, biopesticides and biofortificants. This paper is an excellent report on organic waste management, circular economy and sustainable agriculture research frontier.
Collapse
Affiliation(s)
- Yogeswaran Jagadeesan
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Shanmugapriya Meenakshisundaram
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Suthakaran Pichaimuthu
- Genprotic Biopharma Private Limited, SPIC Bioprocess Laboratory, Anna University, Taramani Campus, Taramani, Chennai, Tamilnadu, 600113, India.
| | - Anandaraj Balaiah
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| |
Collapse
|
7
|
Wang Z, Zhang W, Wang Z, Zhang Z, Liu Y, Liu S, Wu Q, Saiding E, Han J, Zhou J, Xu J, Yi X, Zhang Z, Wang R, Su X. Analysis of antimicrobial biological activity of a marine Bacillus velezensis NDB. Arch Microbiol 2024; 206:131. [PMID: 38421449 DOI: 10.1007/s00203-024-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
A new strain of Bacillus velezensis NDB was isolated from Xiangshan Harbor and antibacterial test revealed antibacterial activity of this strain against 12 major pathogenic bacteria. The whole genome of the bacterium was sequenced and found to consist of a 4,214,838 bp circular chromosome and a 7410 bp circular plasmid. Furthermore, it was predicted by AntiSMASH and BAGEL4 to have 12 clusters of secondary metabolism genes for the synthesis of the inhibitors, fengycin, bacillomycin, macrolactin H, bacillaene, and difficidin, and there were also five clusters encoding potentially novel antimicrobial substances, as well as three bacteriocin biosynthesis gene clusters of amylocyclicin, ComX1, and LCI. qRT-PCR revealed significant up-regulation of antimicrobial secondary metabolite synthesis genes after 24 h of antagonism with pathogenic bacteria. Furthermore, MALDI-TOF mass spectrometry revealed that it can secrete surfactin non-ribosomal peptide synthase and polyketide synthase to exert antibacterial effects. GC-MS was used to analyze methanol extract of B. velezensis NDB, a total of 68 compounds were identified and these metabolites include 16 amino acids, 17 acids, 3 amines, 11 sugars, 11 alcohols, 1 ester, and 9 other compounds which can inhibit pathogenic bacteria by initiating the antibiotic secretion pathway. A comparative genomic analysis of gene families showed that the specificity of B. velezensis NDB was mainly reflected in environmental adaptability. Overall, this research on B. velezensis NDB provides the basis for elucidating its biocontrol effect and promotes its future application as a probiotic.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Wenwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Zhixuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Yan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Songyi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Qiaoli Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Emilaguli Saiding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jiajie Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Xianghua Yi
- Xiangshan Lanshang Marine Technology Co., Ltd, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| | - Rixin Wang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| |
Collapse
|
8
|
Maral-Gül D, Eltem R. Evaluation of Bacillus isolates as a biological control agents against soilborne phytopathogenic fungi. Int Microbiol 2024:10.1007/s10123-024-00490-1. [PMID: 38376639 DOI: 10.1007/s10123-024-00490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Pesticides, used in agriculture to control plant diseases, pose risks to the environment and human health. To address this, there's a growing focus on biocontrol, using microorganisms instead of chemicals. In this study, we aimed to identify Bacillus isolates as potential biological control agents. We tested 1574 Bacillus isolates for antifungal effects against pathogens like Botrytis cinerea, Fusarium solani, and Rhizoctonia solani. Out of these, 77 isolates formed inhibition zones against all three pathogens. We then investigated their lytic enzyme activities (protease, chitinase, and chitosanase) and the production of antifungal metabolites (siderophore and hydrogen cyanide). Coagulase activity was also examined to estimate potential pathogenicity in humans and animals. After evaluating all mechanisms, 19 non-pathogenic Bacillus isolates with significant antifungal effects were chosen. Molecular identification revealed they belonged to B. subtilis (n = 19) strains. The 19 native Bacillus strains, demonstrating strong antifungal effects in vitro, have the potential to form the basis for biocontrol product development. This could address challenges in agricultural production, marking a crucial stride toward sustainable agriculture.
Collapse
Affiliation(s)
- Derya Maral-Gül
- Graduate School of Natural and Applied Sciences, Department of Bioengineering, Ege University, 35100, Bornova-Izmir, Türkiye.
| | - Rengin Eltem
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Türkiye
| |
Collapse
|
9
|
Raimi AR, Ezeokoli OT, Adeleke RA. Soil nutrient management influences diversity, community association and functional structure of rhizosphere bacteriome under vegetable crop production. Front Microbiol 2023; 14:1229873. [PMID: 37840710 PMCID: PMC10568080 DOI: 10.3389/fmicb.2023.1229873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Rhizosphere bacterial communities play a crucial role in promoting plant and soil ecosystem health and productivity. They also have great potential as key indicators of soil health in agroecosystems. Various environmental factors affect soil parameters, which have been demonstrated to influence soil microbial growth and activities. Thus, this study investigated how rhizosphere bacterial community structure and functions are affected by agronomic practices such as organic and conventional fertiliser application and plant species types. Methods Rhizosphere soil of vegetable crops cultivated under organic and conventional fertilisers in different farms was analysed using high-throughput sequencing of the 16S rRNA gene and co-occurrence network pattern among bacterial species. The functional structure was analysed with PICRUSt2 pipeline. Results Overall, rhizosphere bacterial communities varied in response to fertiliser type, with soil physicochemical parameters, including NH4, PO4, pH and moisture content largely driving the variations across the farms. Organic farms had a higher diversity richness and more unique amplicon sequence variants than conventional farms. Bacterial community structure in multivariate space was highly differentiated across the farms and between organic and conventional farms. Co-occurrence network patterns showed community segmentation for both farms, with keystone taxa more prevalent in organic than conventional farms. Discussion Module hub composition and identity varied, signifying differences in keystone taxa across the farms and positive correlations between changes in microbial composition and ecosystem functions. The organic farms comprised functionally versatile communities characterised by plant growth-promoting keystone genera, such as Agromyces, Bacillus and Nocardioides. The results revealed that organic fertilisers support high functional diversity and stronger interactions within the rhizosphere bacterial community. This study provided useful information about the overall changes in soil microbial dynamics and how the changes influence ecosystem functioning under different soil nutrient management and agronomic practices.
Collapse
|
10
|
Dominguez J, Jayachandran K, Stover E, Krystel J, Shetty KG. Endophytes and Plant Extracts as Potential Antimicrobial Agents against Candidatus Liberibacter Asiaticus, Causal Agent of Huanglongbing. Microorganisms 2023; 11:1529. [PMID: 37375030 DOI: 10.3390/microorganisms11061529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Huanglongbing (HLB), also known as citrus greening, is an insidious disease in citrus and has become a threat to the sustainability of the citrus industry worldwide. In the U.S., Candidatus Liberibacter asiaticus (CLas) is the pathogen that is associated with HLB, an unculturable, phloem-limited bacteria, vectored by the Asian Citrus Psyllid (ACP, Diaphorina citri). There is no known cure nor treatment to effectively control HLB, and current control methods are primarily based on the use of insecticides and antibiotics, where effectiveness is limited and may have negative impacts on beneficial and non-target organisms. Thus, there is an urgent need for the development of effective and sustainable treatment options to reduce or eliminate CLas from infected trees. In the present study, we screened citrus-derived endophytes, their cell-free culture supernatants (CFCS), and crude plant extracts for antimicrobial activity against two culturable surrogates of CLas, Sinorhizobium meliloti and Liberibacter crescens. Candidates considered high-potential antimicrobial agents were assessed directly against CLas in vitro, using a propidium monoazide-based assay. As compared to the negative controls, statistically significant reductions of viable CLas cells were observed for each of the five bacterial CFCS. Subsequent 16S rRNA gene sequencing revealed that each of the five bacterial isolates were most closely related to Bacillus amyloliquefaciens, a species dominating the market of biological control products. As such, the aboveground endosphere of asymptomatic survivor citrus trees, grown in an organic orchard, were found to host bacterial endophytes capable of effectively disrupting CLas cell membranes. These results concur with the theory that native members of the citrus microbiome play a role in the development of HLB. Here, we identify five strains of Bacillus amyloliquefaciens demonstrating notable potential to be used as sources of novel antimicrobials for the sustainable management of HLB.
Collapse
Affiliation(s)
- Jessica Dominguez
- Department of Earth and Environment, Florida International University, Miami, FL 33199, USA
| | | | - Ed Stover
- United States Department of Agriculture/Agricultural Research Service, Ft. Pierce, FL 34945, USA
| | - Joseph Krystel
- United States Department of Agriculture/Agricultural Research Service, Ft. Pierce, FL 34945, USA
| | - Kateel G Shetty
- Department of Earth and Environment, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
11
|
Zhou Q, Tu M, Fu X, Chen Y, Wang M, Fang Y, Yan Y, Cheng G, Zhang Y, Zhu Z, Yin K, Xiao Y, Zou L, Chen G. Antagonistic transcriptome profile reveals potential mechanisms of action on Xanthomonas oryzae pv. oryzicola by the cell-free supernatants of Bacillus velezensis 504, a versatile plant probiotic bacterium. Front Cell Infect Microbiol 2023; 13:1175446. [PMID: 37325518 PMCID: PMC10265122 DOI: 10.3389/fcimb.2023.1175446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Bacterial leaf streak (BLS) of rice is a severe disease caused by the bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) that has gradually become the fourth major disease on rice in some rice-growing regions in southern China. Previously, we isolated a Bacillus velezensis strain 504 that exhibited apparent antagonistic activity against the Xoc wild-type strain RS105, and found that B. velezensis 504 was a potential biocontrol agent for BLS. However, the underlying mechanisms of antagonism and biocontrol are not completely understood. Here we mine the genomic data of B. velezensis 504, and the comparative transcriptomic data of Xoc RS105 treated by the cell-free supernatants (CFSs) of B. velezensis 504 to define differentially expressed genes (DEGs). We show that B. velezensis 504 shares over 89% conserved genes with FZB42 and SQR9, two representative model strains of B. velezensis, but 504 is more closely related to FZB42 than SQR9, as well as B. velezensis 504 possesses the secondary metabolite gene clusters encoding the essential anti-Xoc agents difficidin and bacilysin. We conclude that approximately 77% of Xoc RS105 coding sequences are differentially expressed by the CFSs of B. velezensis 504, which significantly downregulates genes involved in signal transduction, oxidative phosphorylation, transmembrane transport, cell motility, cell division, DNA translation, and five physiological metabolisms, as well as depresses an additional set of virulence-associated genes encoding the type III secretion, type II secretion system, type VI secretion system, type IV pilus, lipopolysaccharides and exopolysaccharides. We also show that B. velezensis 504 is a potential biocontrol agent for bacterial blight of rice exhibiting relative control efficiencies over 70% on two susceptible cultivars, and can efficiently antagonize against some important plant pathogenic fungi including Colletotrichum siamense and C. australisinense that are thought to be the two dominant pathogenic species causing leaf anthracnose of rubber tree in Hainan province of China. B. velezensis 504 also harbors some characteristics of plant growth-promoting rhizobacterium such as secreting protease and siderophore, and stimulating plant growth. This study reveals the potential biocontrol mechanisms of B. velezensis against BLS, and also suggests that B. velezensis 504 is a versatile plant probiotic bacterium.
Collapse
Affiliation(s)
- Qi Zhou
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Tu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xue Fu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ying Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muyuan Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yichao Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanyun Cheng
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yikun Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongfeng Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Yin
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Youlun Xiao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Effects of Bacillus amyloliquefaciens XJ-BV2007 on Growth of Alternaria alternata and Production of Tenuazonic Acid. Toxins (Basel) 2023; 15:toxins15010053. [PMID: 36668873 PMCID: PMC9867350 DOI: 10.3390/toxins15010053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Large amounts of processing tomato are grown in Xinjiang, China. Tomato black spot disease, caused by Alternaria spp., and the produced alternaria toxins in tomato products are posing risks to human health. In this study, we isolated a rhizospheric bacterium, XJ-BV2007, from tomato (Solanum lycopersicum) fields, which we identified as Bacillus amyloliquefaciens. We found that this bacterium has a strong antagonistic effect against Alternaria alternata and reduces the accumulation of alternaria toxins in tomatoes. According to the antifungal activity of the bacteria-free filtrate, we revealed that B. amyloliquefaciens XJ-BV2007 suppresses A. alternata by the production of antifungal metabolites. Combining semi-preparative high-performance liquid chromatography, we employed UPLC-QTOF-MS analysis and the Oxford cup experiment to find that fengycin plays an important role in inhibiting A. alternata. This paper firstly reported that B. amyloliquefaciens efficiently controls tomato black spot disease and mycotoxins caused by A. alternata. B. amyloliquefaciens XJ-BV2007 may provide an alternative biocontrol strain for the prevention of tomato black spot disease.
Collapse
|
13
|
Harish S. Bio-Prospecting of Endospore-Based Formulation of Bacillus sp. BST18 Possessing Antimicrobial Genes for the Management of Soil-Borne Diseases of Tomato. Curr Microbiol 2022; 79:380. [DOI: 10.1007/s00284-022-03077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
14
|
Study on spray-drying of Bacillus velezensis NKMV-3 strain, its formulation and bio efficacy against early blight of tomato. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Chen Q, Qiu Y, Yuan Y, Wang K, Wang H. Biocontrol activity and action mechanism of Bacillus velezensis strain SDTB038 against Fusarium crown and root rot of tomato. Front Microbiol 2022; 13:994716. [PMID: 36118232 PMCID: PMC9479544 DOI: 10.3389/fmicb.2022.994716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium crown and root rot of tomato is a soilborne diseases that has brought serious harm and economic losses to tomato production in facilities in recent years. The disease has been reported in more than 30 countries worldwide, but there are few reports on its biological control. A Bacillus velezensis strain SDTB038 with biocontrol effects was isolated and identified in a previous study and is considered one of the most important PGPRs. Seven secondary metabolite biosynthesis gene clusters were found in strain SDTB038 by whole genome sequencing, explaining its biocontrol effects. Results indicated that different concentrations of SDTB038 fermentation broth inhibited the mycelial growth of Fusarium crown and root rot of tomato. Strain SDTB038 could generate indole acetic acid and promote healthy growth of tomatoes, while the effect of 108 CFU/ml SDTB038 concentration on promoting tomato growth was the most obvious. B. velezensis SDTB038 significantly reduced the accumulation of ROS in tomato plants, induced the up-regulation of antifreeze genes, and promoted the rapid recovery of tomato plants at low temperatures in a pot experiment. At the same time, SDTB038 had good control effect on Fusarium crown and root rot of tomato, and 108 CFU/ml SDTB038 fermentation broth had the best control effect, which was 42.98%. In summary, the strain B. velezensis SDTB038 may be a promising bacterial agent for biological control of Fusarium crown and root rot of tomato, and an important source of potential antimicrobial compounds.
Collapse
|
16
|
Ahmed I, Asgher M, Sher F, Hussain SM, Nazish N, Joshi N, Sharma A, Parra-Saldívar R, Bilal M, Iqbal HMN. Exploring Marine as a Rich Source of Bioactive Peptides: Challenges and Opportunities from Marine Pharmacology. Mar Drugs 2022; 20:208. [PMID: 35323507 PMCID: PMC8948685 DOI: 10.3390/md20030208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
This review highlights the underexplored potential and promises of marine bioactive peptides (MBPs) with unique structural, physicochemical, and biological activities to fight against the current and future human pathologies. A particular focus is given to the marine environment as a significant source to obtain or extract high-value MBPs from touched/untouched sources. For instance, marine microorganisms, including microalgae, bacteria, fungi, and marine polysaccharides, are considered prolific sources of amino acids at large, and peptides/polypeptides in particular, with fundamental structural sequence and functional entities of a carboxyl group, amine, hydrogen, and a variety of R groups. Thus, MBPs with tunable features, both structural and functional entities, along with bioactive traits of clinical and therapeutic value, are of ultimate interest to reinforce biomedical settings in the 21st century. On the other front, as the largest biome globally, the marine biome is the so-called "epitome of untouched or underexploited natural resources" and a considerable source with significant potentialities. Therefore, considering their biological and biomedical importance, researchers around the globe are redirecting and/or regaining their interests in valorizing the marine biome-based MBPs. This review focuses on the widespread bioactivities of MBPs, FDA-approved MBPs in the market, sustainable development goals (SDGs), and legislation to valorize marine biome to underlying the impact role of bioactive elements with the related pathways. Finally, a detailed overview of current challenges, conclusions, and future perspectives is also given to satisfy the stimulating demands of the pharmaceutical sector of the modern world.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia;
- Department of Regional Science Operations, La Trobe Rural Health School, Albury-Wodonga, Flora Hill, VIC 3690, Australia
| | - Muhammad Asgher
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38000, Punjab, Pakistan;
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Syed Makhdoom Hussain
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Punjab, Pakistan;
| | - Nadia Nazish
- Department of Zoology, University of Sialkot, Sialkot 51040, Punjab, Pakistan;
| | - Navneet Joshi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar 332311, India;
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Av. Epigmenio González No. 500, Fracc. San Pablo, Queretaro 76130, Mexico;
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China;
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
| |
Collapse
|